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Abstract

In this paper we present a compact review on the mostly used techniques
for computational reduction in numerical approximation of partial differ-
ential equations. We highlight the common features of these techniques
and provide a detailed presentation of the reduced basis method, focusing
on greedy algorithms for the construction of the reduced spaces. An alter-
native family of reduction techniques based on surrogate response surface
models is briefly recalled too. Then, a simple example dealing with inviscid
flows is presented, showing the reliability of the reduced basis method and
a comparison between this technique and some surrogate models.

Keywords: Computational reduction; reduced basis methods; proper or-
thogonal decomposition; parametrized partial differential equations.

1 Introduction and historical perspective

Scientific computing and numerical simulations in engineering have gained an
ever increasing importance during the last decades. In several fields, from
aerospace and mechanical engineering to life sciences, numerical simulations of
partial differential equations (PDE) provide nowadays a virtual platform ancil-
lary to material/mechanics testing or in vitro experiments, useful either for (i)
the prediction of input/output response or (ii) the design and optimization of a
system [52]. A determinant factor leading to a strong computational speed-up is
the constant increase of available computational power, which has gone with the
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progressive improvement of algorithms for solving large linear systems. Indeed,
numerical simulation of turbulent flows, multiscale and multiphysics phenom-
ena, are nowadays possible by means of discretization techniques such as finite
elements/volumes or spectral methods, but are very demanding, involving up to
O(106 − 109) degrees of freedom and several hours (or even days) of CPU time,
also on powerful hardware parallel architectures. Nevertheless, it is still very dif-
ficult – and often impossible – to deal with many query scenarios, such as those
occurring in sensitivity analysis of PDE solutions with respect to parameters,
optimization problems under PDE constraints (optimal control, shape optimiza-
tion), or real time simulations and output evaluations. In all these situations,
suitable reduction techniques enable the computation of a solution entailing an
acceptable amount of CPU time and limited storage capacity.
The goal of a computational reduction technique is to capture the essential fea-
tures of the input/output behavior of a system in a rapid and reliable way, i.e.
(i) by improving computational performances and (ii) by keeping the approx-
imation error between the reduced-order solution and the full-order one under
control. In particular, we aim at approximating a PDE solution using a handful
of degrees of freedom instead of millions that would be needed for a full-order
approximation. Indeed, we need to pay the cost of solving several times the
full-order problem (through an expensive Offline stage), in order to be able to
perform many low-cost reduced-order simulations (inexpensive Online stage) for
new instances of the input variables.

The idea standing at the basis of computational reduction strategies is the
assumption (often verified) that the behavior of a system can be well described
by a small number of dominant modes. Although reduction strategies have be-
come a very popular research field in the last three decades, we may consider as
the earliest attempt of reduction strategy the truncated Fourier series (1806) to
approximate a function by means of a small number of trigonometric terms or
modes, which can be seen as the foundation of the successive projection meth-
ods based on a set of snaphots. On the other hand, polynomial interpolation
(Waring (1779), rediscovered by Euler in 1783, and published by Lagrange in
1795) can be seen as the earliest kernel of the surrogate models (or metamodels)
used for predicting outputs of interest for combinations of input values which
have not been simulated.
Proper orthogonal decomposition is probably the best known technique for com-
putational reduction; it was firstly introduced in statistics as principal compo-
nent analysis by Pearson (1901) [38], then developed independently by Hotelling
(1936) [23], and still stands at the basis of statistical multivariate analysis. How-
ever, this kind of techniques was not widely exploited until the advent of elec-
tronic computers during the 50’s, when the first steps towards computational
reduction in linear algebra were moved thanks to Lanczos [28] and his iteration
method (1950), at the basis of the so-called Krylov subspace expansions. Proper
orthogonal decomposition (POD) was introduced for the first time as computa-
tional reduction tool by Lumley (1967) and Sirovich (1987) [53] in the analysis
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of complex turbulent fluid flows. Together with POD in fluid dynamics – a field
which has always provided strong impulses to reduction strategies – the use of
reduced basis methods was pioneered by Noor (1980) in computational nonlin-
ear mechanics for the instability analysis of structures [35], and then studied by
other researchers in the same decade [17,40,42].
Computational reduction is not the only available approach to speed-up com-
plex numerical simulations; depending on the applications, we might consider
instead geometrical reduction techniques or model reduction techniques, possibly
coupled to computational reduction tools. In particular:

• Geometrical reduction techniques are based on a multiscale paradigm,
yielding to coupling mathematical models at different geometric scales
(3D, 2D, 1D and even 0D) through suitable interface conditions. A natu-
ral framework where suitable geometric multiscaling techniques have been
developed is the numerical simulation of blood flows in the circulatory
system [39, 47]. Due to different physiological and morphological aspects,
three-dimensional models for blood flows in (local) portions of large vessels
have been coupled with one-dimensional (global) models for the network
of arteries and veins, or even to zero-dimensional (ODE) models for the
capillary network. In this case, the geometrical downscaling involves time-
dependent Navier-Stokes equations (3D), an Euler hyperbolic system (1D)
or lumped parameter models based on ordinary differential equations (0D).

• Model reduction techniques can be regarded as strategies based on het-
erogeneous domain decomposition (DD) methods, which consider different
mathematical models in different subdomains [46]. Hence, we refine the
mathematical model wherever interested to a finer description of the phe-
nomena, without increasing the complexity all over the domain, by treating
the interface between the two models as unknown. Classical examples are
advection-diffusion problems where a simpler pure advective model is con-
sidered except for the boundary layer, or potential flow models coupled
to full Navier-Stokes models to describe e.g. fluid flows around obstacles.
Like in the usual DD framework, coupling conditions give rise to an inter-
face problem (governed by the Steklov-Poincaré operator), which can be
solved using classical tools derived from optimal control problems (giving
rise to the so-called virtual control approach [15, 18]). These techniques
are suitable also for treating multiphysics problems, such as the coupling
between hyperbolic and elliptic equations for boundary layers [18], or the
Darcy-Stokes coupling for fluid flows through porous media [4].

The structure of the paper is as follows. We illustrate in Sect. 2 some features
shared by several computational reduction approaches, focusing on the reduced
basis-like techniques. Hence, we describe in Sect. 3 the most popular methods
for computing snapshots and constructing reduced basis: greedy algorithms and
proper orthogonal decomposition. The former is the kernel of reduced basis
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methods for parametrized PDEs, which are detailed in Sect. 4. Moreover, we
provide a brief insight on surrogate models in Sect. 5. In the end, we discuss a
simple application within the reduced basis framework and provide a comparison
with some surrogate models in Sect. 6.

2 Computational reduction: main features

The focus of this paper is on parametrized PDEs where the input parameter
vector µ ∈ D ⊂ R

p might describe physical properties of the system, as well
as boundary conditions, source terms or the geometrical configuration. For the
sake of space, we only focus on steady parametrized problems, which take the
following form: given µ ∈ D, evaluate the output of interest s(µ) = J(u(µ))
where the solution u(µ) ∈ X = X(Ω) satisfies

L(µ)u(µ) = F (µ); (1)

here Ω ⊂ R
d, d = 1, 2, 3 is a regular domain, X is a suitable Hilbert space, X∗

its dual, L(µ) : X → X∗ is a second-order differential operator and F (µ) ∈ X∗.
Its weak formulation reads: find u(µ) ∈ X = X(Ω) such that

a(u(µ), v;µ) = f(v;µ), ∀ v ∈ X(Ω), (2)

where the bilinear forma

a(u, v;µ) := X∗〈L(µ)u, v〉X , ∀u, v ∈ X, (3)

is continuous and coercive, i.e. for each µ ∈ D:

sup
u∈X

sup
v∈X

a(u, v;µ)

‖u‖X‖v‖X
< +∞, ∃ α0 > 0 : inf

u∈X

a(u, u;µ)

‖u‖2
X

≥ α0.

If the coercivity assumption is not satisfied, stability is in fact fulfilled in the
more general sense of the inf-sup condition. On the other hand,

f(v;µ) = X∗〈F (µ), v〉X (4)

is a continuous linear form. Further assumptions suitable for the effectivity
of some reduction strategies will be introduced later on. We may distinguish
between two general paradigms in computational reduction, that we will qualify
as projection vs. interpolation, yielding the following families of techniques:

aIn a more rigorous way, we should introduce the Riesz identification operator R : V ∗ → V

by which we identify V and its dual, so that, given a third Hilbert space H such that V →֒ H∗

and H∗ →֒ V ∗, X∗〈L(µ)u, v〉X = (R L(µ)u, v)H . However, the Riesz operator will be omitted
for the sake of simplicity.
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1. Computational Reduction Techniques (CRT) are problem-dependent
methods which aim at reducing the dimension of the algebraic system
arising from the discretization of a PDE problem. The reduced solution is
thus obtained through a projection onto a small subspace made by global
basis functions, constructed for the specific problem, rather than onto a
large space of generic, local basis functions (like in finite elements);

2. Surrogate Response Surfaces (SRS), also known as metamodels or em-
ulators, are instead problem-transparent methods, which provide an ap-
proximation of the input/output map by fitting a set of data obtained by
numerical simulation. The PDEs connecting input and output are usu-
ally solved by full-order discretization techniques (based e.g. on finite
elements). In this review, we will focus on CRTs, while a short description
of some SRS methods will be provided in Sect. 5.

The goal of a CRT for PDE problems is to compute, in a cheap way, a low-
dimensional approximation of the PDE solution without using a high-fidelity,
computationally expensive discretization scheme. The most common choices,
like proper orthogonal decomposition (POD) or reduced basis (RB) methods,
seek for a reduced solution through a projection onto suitable low-dimensional
subspacesb. The essential components of a CRT can be summarized as follows:

• High-fidelity discretization technique: in any case, a CRT is premised upon,
and does not replace completely, a high-fidelity (sometimes denoted as
truth) discretization method, such as the finite element method (FEM),
which in the steady case (1) reads as: given µ ∈ D, evaluate sh(µ) =
J(uh(µ)), being uh(µ) ∈ Xh such that

Lh(µ)uh(µ) = Fh(µ), (5)

where Xh ⊂ X is a finite dimensional space of very large dimension Nh

and Lh(µ), Fh(µ) are discrete operators. In an abstract way, introducing
the projection operators Πh : X → Xh and Π∗

h : X∗ → X∗
h onto Xh and

X∗
h, respectively, and denoting uh(µ) = Πhu(µ), we have

Π∗
h(L(µ)Π−1

h uh(µ) − f(µ)) = 0, (6)

identifying Lh(µ) and Fh(µ) as

Lh(µ) = Π∗
hL(µ)Π−1

h , Fh(µ) = Π∗
hF (µ).

Equivalently, thanks to (3)-(4), the weak formulation of (6) is:

a(uh(µ), vh;µ) = f(vh;µ), ∀ vh ∈ Xh. (7)

bIndeed, we remark that several CRTs, like POD, have been originally introduced and
developed in order to speed-up the solution of very complex time-dependent problems, like for
turbulent flows, without being addressed to parametrized problems (i.e. time was considered
as the only parameter).
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In particular, we assume that

‖u(µ) − uh(µ)‖X ≤ E(h), ∀ µ ∈ D,
being E(h) an estimation of the discretization error, which can be made as
small as desired by choosing a suitable discretization space. In practice,
we will rely on a FEM approximation as truth discretization method.

• (Galerkin) projection: a CRT usually consists of selecting a reduced basis of
few high-fidelity PDE solutions {uh(µi)}N

i=1 (called snapshots) and seeking
a reduced approximation uN (µ) expressed as a linear combination of the
basis functions [7, 37]; the coefficients or weights of this combination are
determined through a (Galerkin-like) projection of the equations onto the
reduced space XN , being N = dim(XN ) ≪ Nh: given µ ∈ D, evaluate
sN (µ) = J(uN (µ)), where uN (µ) ∈ XN solves

LN (µ)uN (µ) − FN (µ) = 0; (8)

the smaller is N , the cheaper will be the reduced problem. Equivalently,

a(uN (µ), vN ;µ) = f(vN ;µ), ∀ vN ∈ XN . (9)

As before, introducing the projectors onto the reduced space XN and its
dual X∗

N , ΠN : Xh → XN and Π∗
N : X∗

h → X∗
N , we have

Π∗
N (Lh(µ)Π−1

N uN (µ) − Fh(µ)) = 0, (10)

so that we can identify

LN (µ) = Π∗
NLh(µ)Π−1

N , FN (µ) = Π∗
Nfh(µ).

Two possible strategies for sampling the parameter space and construct-
ing the corresponding snapshots will be discussed in Sect. 3.1 and 3.2.
Moreover, an algebraic perspective of projection/reduction stages based
on matrix computation will be presented in Sect. 4, after introducing the
reduced basis method formalism.

• Offline/Online procedure: under suitable assumptions (see Sect. 4) the
extensive generation of the snapshots database can be performed Offline
once, and is completely decoupled from each new subsequent input-output
Online query [37]. Clearly, during the Online stage, the reduced problem
can be solved for parameter instances µ ∈ D not selected during the Offline
stage, and even extrapolating the solution for values µ ∈ Dext belonging
to a parameter superset Dext ⊇ D [9].
Not only, the expensive Offline computations have to be amortized over
the Online stage; for instance, in the reduced basis context the break-even
point is usually reached with O(102) online queries.
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• Error estimation procedure: sharp, inexpensive bounds ∆N (µ) such that

‖uh(µ) − uN (µ)‖X ≤ ∆N (µ), ∀µ ∈ D, N = 1, . . . , Nmax,

may be available [37], as well as output error bounds such that |sh(µ) −
sN (µ)| ≤ ∆s

N (µ). These error estimators might also be employed for a
clever parameter sampling during the construction of the reduced space.
For the sake of brevity, we do not discuss the construction of a posteriori
error estimators, extensively used within the reduced basis context: the
interested reader may refer e.g. to [45,49] and to references therein. s

We remark that CRTs do not replace, but rather are built upon – and measured
(as regards accuracy) relative to – a high-fidelity discretization technique, so
that an algorithmic collaboration is pursued, expressed simply by means of a
triangular inequality as follows, for all µ ∈ D,

‖u(µ) − uN (µ)‖X ≤ ‖u(µ) − uh(µ)‖X + ‖uh(µ) − uN (µ)‖X ≤ E(h) + ∆N (µ).

3 Construction of reduced spaces

3.1 Greedy algorithms

A well-known strategy for constructing reduced subspaces is that of using greedy
algorithms, based on the idea of selecting at each step the locally optimal ele-
ment. In an abstract setting, given a compact set K in a Hilbert space X , we
seek for functions {f0, f1, . . . , fN−1} such that each f ∈ K is well approximated
by the elements of the subspace KN = span{f0, . . . , fN−1}; starting from a first
element f0 ∈ K such that ‖f0‖X = maxf∈K ‖f‖X , at the N -th step a greedy
algorithm selects

fN = arg max
f∈K

‖f − ΠRB
N f‖X ,

being ΠRB
N the orthogonal projection w.r.t. the scalar product inducing the

norm ‖ · ‖X onto KN . Hence fN is the worst case element, which maximizes
the error in approximating the subspace K using the elements of KN . A more
feasible variant of this algorithm – called weak greedy algorithm in [3] – replaces
the true error ‖f − ΠRB

N f‖X by a surrogate ηN (f) (in our case, the a posteriori
error bound) satisfying

cηηN (f) ≤ ‖f − ΠRB
N f‖X ≤ CηηN (f), f ∈ X .

In this way, fN = arg maxf∈K ηN (f) can be computed more effectively, un-
der the assumption that the surrogate error is cheap to evaluate. We refer the
reader to [3] for more details and some results on convergence rates of these algo-
rithms. In particular, the current procedure for constructing reduced subspaces
in parametrized PDEs like (1) is based on the following weak greedy algorithm.
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For the sake of space, we bound ourselves to the case of time-independent prob-
lems. Moreover, we denote the particular samples which shall serve to select
the RB space – or “train” the RB approximation – by Ξtrain, its cardinality by
|Ξtrain| = ntrain and by ε∗tol a chosen tolerance for the stopping criterion of the
algorithm. For a generic element z : D → XN , we denote

‖z‖L∞(Ξtrain;X) ≡ ess sup
µ∈Ξtrain

‖z(µ)‖X .

Starting from S1 = {µ1}, we adopt the following procedure:

S1 = {µ1}; compute uh(µ1); XRB
1 = span{uh(µ1)};

for N = 2 : Nmax

µN = arg maxµ∈Ξtrain
∆N−1(µ);

εN−1 = ∆N−1(µ
N );

if εN−1 ≤ ε∗tol
Nmax = N − 1;

end;

compute uh(µN );

SN = SN−1 ∪ {µN};
XRB

N = XRB
N−1 ∪ span{uh(µN )};

end.

As already mentioned in Sect. 2, ∆N (µ) is a sharp, inexpensive a posteriori error
bound for ‖uh(µ)− uN (µ)‖X . Hence, using the weak greedy algorithm only FE
solutions corresponding to the selected snapshots have to be computed; instead,
the pure version of the greedy algorithm would select

µN = arg ess sup
µ∈Ξtrain

‖uh(µ) − uN−1(µ)‖X ,

i.e. the element maximizing the true error ‖uh(µ) − uN−1(µ)‖L∞(Ξtrain;X), and
would entail a much higher computational cost, requiring at each step the com-
putation of ntrain FE solutions. Greedy algorithms have been applied in several
contexts, involving also other reduction issues; some recent applications deal e.g.
with a simultaneous parameter and state reduction, in problems requiring the
exploration of high-dimensional parameter spaces [6, 29].

3.2 Alternative approaches

Another technique used for the construction of reduced spaces in computational
reduction of parametrized systems is proper orthogonal decomposition (POD), a
very popular approach used in several different fields such as multivariate statisti-
cal analysis (where it is called principal component analysis) or theory of stochas-
tic processes (Karhunen-Loève decomposition). The first applications of POD
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were concerned with the analysis of turbulent flows and date back to the early
’90s [1,2]; more recent applications can be found, for instance, in [22,25,27,30],
as well as in [9, 12,20] for parametrized flows.
POD techniques reduce the dimensionality of a system by transforming the orig-
inal variables onto a new set of uncorrelated variables (that are called POD
modes, or principal components) such that the first few modes retain most of
the energy present in all of the original variables. This allows to obtain a reduced,
modal representation through a spectral decomposition which requires basic ma-
trix computations (a singular value decomposition) also for complex nonlinear
problems. However, no a posteriori estimations for the error between the reduced
and the full-order approximations are in general available, making the choice of
the reduction size and the quality assessment of the reduced solution sometimes
critical. Moreover, (ii) space reduction through spectral decomposition entails
in general very large computational costs.

We shortly review the main features of the PODc in the context of parametrized
PDEs. Given a finite sample Ξ of points in D, a train sample Ξtrain (which shall
serve to select the POD space), for a generic element z : D → XN , we denote

‖z‖L2(Ξ;X) ≡
(

|Ξ|−1
∑

µ∈Ξ

‖z(µ)‖2
X

)1/2
.

The POD method seeks an N -dimensional subspace XPOD
N ⊂ Xh approximating

the data in an optimal least-squares sense; thus, we seek an orthogonal projector
ΠPOD

N : Xh → XPOD
N , of prescribed rank N , as follows:

XN POD
N = arg inf

XN
N

⊂span{yN (µ),µ∈Ξtrain}
‖yN (µ) − ΠPOD

N yN (µ)‖L2(Ξtrain;X). (11)

Following the so-called method of snapshots, introduced by Sirovich [53], we com-
pute the ntrain full-order approximations {y(µm)}ntrain

m=1 corresponding to µ1, . . . ,µntrain ,
the mean

ȳ =
1

ntrain

ntrain
∑

j=1

y(µj)

and the correlation matrix C ∈ R
ntrain×ntrain whose components are

Cij =
1

ntrain

ntrain
∑

m=1

(

y(µi) − ȳ, y(µj) − ȳ
)

X
, 1 ≤ i, j ≤ ntrain.

Then, we compute the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λntrain
≥ 0 (ordered by

decreasing size) and the eigenvectors of the correlation matrix, which solve:

Cψk = λkψk, k = 1, . . . , ntrain.

cFor a general and synthetic introduction to POD techniques in view of the reduction of
a (time-dependent) dynamical system – which is the first (and most used) application of this
strategy – the interested reader may refer to [41,56].
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The central result of POD states that the optimal subspace XPOD
N of dimension

N minimizing (11) is given by

XPOD
N = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax,

where the POD basis functions are defined as

ζk =
ζ̃k

‖ζ̃k‖X

, ζ̃k =

ntrain
∑

m=1

ψk,m(y(µm) − ȳ), 1 ≤ k ≤ ntrain,

being ψk,m = (ψk)m the m-th component of the k-th eigenvector. In this
way, the basis functions {ζk}ntrain

k=1 are orthonormal, i.e. they are such that
(ζn, ζm)X = δn m, for 1 ≤ n,m ≤ ntrain. In particular, Nmax is chosen as
the smallest N such that εPOD

N = (
∑ntrain

k=N+1 λk)
1/2 ≤ ǫ∗tol, i.e. the energy εPOD

N

retained by the last ntrain −Nmax modes is negligible. Typically, this POD ap-
proach is much more expensive than the Greedy approach: in the latter, we
only need to compute the N – typically very few – FE retained snapshots; in
the POD approach, we must compute all ntrain – typically/desirably very many
– FE candidate snapshots, as well as the solution of an eigenproblem for the
correlation matrix C ∈ R

ntrain×ntrain .
Two additional techniques – indeed quite close to POD – for generating reduced
spaces are the Centroidal Voronoi Tessellation [7–9] and the Proper Generalized
Decomposition [10,11,16,36].
We remark that the current approach for constructing reduced basis approxima-
tions of time-dependent parametrized PDEs exploits a combined POD-greedy
procedure – POD in time to capture the causality associated with the evolution
equation, greedy procedure for sampling the parameter space and treat more
efficiently extensive ranges of parameter variation (see e.g. [21, 45]).

4 Reduced Basis Methods for parametrized PDEs

In this section we illustrate with more detail the general features presented in
Sect. 2 in the case of reduced basis methods for parametrized PDEs, focusing
on the steady case. Reduced Basis (RB) discretization is, in brief, a Galerkin
projection on an N -dimensional approximation space that focuses on the para-
metrically induced manifold Mh = {uh(µ) ∈ Xh : µ ∈ D}. We restrict out
attention to the Lagrange RB spaces, which are based on the use of “snapshot”
FE solutions of the PDE, and review the construction of the RB approximation
in the elliptic case. Moreover, we make the ansatz that the manifold Mh given
by the set of fields engendered as the input varies over the parameter domain
D, is sufficiently smooth.

In order to define a (hierarchical) sequence of Lagrange spaces XN , 1 ≤ N ≤
Nmax, such that X1 ⊂ X2 ⊂ · · ·XNmax ⊂ X, we first introduce a “master set”
of properly selected parameter points µn ∈ D, 1 ≤ n ≤ Nmax, and define, for
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given N ∈ {1, . . . , Nmax}, the Lagrange parameter samples

SN = {µ1, . . . ,µN} , (12)

and associated Lagrange greedy-RB spaces

XRB
N = span{uh(µn), 1 ≤ n ≤ N} , (13)

assembled by means of the greedy procedure presented in Sect. 3.1; in the rest
of the section the superscript RB will be often omitted for clarity.
As already mentioned, the RB approximation of the PDE solution can be ex-
pressed as follows: given µ ∈ D, evaluate sN (µ) = J(uN (µ)), where uN (µ) ∈
XN := XRB

N ⊂ Xh satisfies

a(uN (µ), vN ;µ) = f(vN ), ∀ vN ∈ XN . (14)

We immediately obtain the classical optimality result:

|||uh(µ) − uN (µ)|||µ ≤ inf
w∈XN

|||uh(µ) − w|||µ , (15)

i.e. in the energy normd the Galerkin procedure automatically selects the best
combination of snapshots; moreover, we have that

sh(µ) − sN (µ) = |||uh(µ) − uN (µ)|||2µ , (16)

i.e. the output converges as the “square” of the energy error.

We now consider the discrete equations associated with the Galerkin approx-
imation (14). First of all, we apply the Gram-Schmidt process with respect to
the (·, ·)X inner product to the snapshots uh(µn), 1 ≤ n ≤ N , to obtain mutu-
ally (·, ·)X–orthonormal basis functions ζn, 1 ≤ n ≤ N . Then, the RB solution
can be expressed as:

uN (µ) =

N
∑

m=1

uN m(µ)ζm; (17)

by plugging this expression in (14) and choosing v = ζNn , 1 ≤ n ≤ N , we obtain
the RB “stiffness” equations

N
∑

m=1

a(ζm, ζn;µ) uN m(µ) = f(ζn), (18)

for the RB coefficients uN m(µ), 1 ≤ m,n ≤ N ; the RB output can be subse-
quently evaluated as

sN (µ) =

N
∑

m=1

uN m(µ)l(ζm) . (19)

dThe energy norm ||| · |||µ is defined, for all v ∈ X, as |||v|||µ = a(v, v;µ), provided that
a(·, ·;µ) is a symmetric and coercive bilinear form. The corresponding scalar product will be
denoted as ((cot, ·))µ .
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Although the system (18) is nominally of small size, yet it involves entities
ζn, 1 ≤ n ≤ N, associated with our Nh-dimensional FE approximation space.
Fortunately, a strong computational speedup can be achieved by making the
crucial assumption of affine parametric dependence. The linear/bilinear forms
can be expressed as a linear combination

a(w, v;µ) =

Qa
∑

q=1

Θq
a(µ) aq(w, v), f(w;µ) =

Qf
∑

q=1

Θq
f (µ) f q(w) (20)

for some finite Qa, Qf , where Θq
a : D → R, 1 ≤ q ≤ Qa, Θq

f : D → R, 1 ≤ q ≤ Qf

are smooth scalar functions depending on µ, and aq, 1 ≤ q ≤ Qa, f
q, 1 ≤ q ≤ Qf

are bilinear/linear forms independent of µ. This property is in fact not exotic,
actually it is quite naturally fulfilled in many kinds of applications in science
and engineering. Under this assumption, (18)-(19) can be rewritten as





Qa
∑

q=1

Θq
a(µ)Aq

N



uN (µ) =

Qf
∑

q=1

Θq
f (µ)f q

N , (21)

sN (µ) = lNuN (µ), (22)

where (uN (µ))m = uN m(µ) and, for 1 ≤ m,n ≤ N ,

(Aq
N )mn = aq(ζm, ζn), (f q

N )n = f q(ζn), (lN )n = l(ζn).

Since each basis function ζn belongs to the FE space Xh, they can be written as
as a linear combination of the FE basis functions {φh

i }Ni=1:

ζn =

N
∑

i=1

ζn iφ
h
i , 1 ≤ n ≤ N ;

in matrix form, the basis can be represented as an orthonormal matrix

ZN := ZRB
N = [ ζ1 | . . . | ζN ] ∈ R

N×N , 1 ≤ N ≤ Nmax,

being (ZN )jn = ζn j for 1 ≤ n ≤ N , 1 ≤ j ≤ N . Therefore, the RB “stiffness”
matrix can be assembled once the corresponding FE “stiffness” matrix has been
computed, and can be obtained as

A
q
N = ZT

NA
q
hZN , f

q
N = ZT

N f
q
h, lN = ZT

N lh (23)

being
(Aq

h)ij = aq(φj , φi), (f q
h)i = f q(φi), (lh)i = l(φi) (24)

the FE algebraic structures. In this way, computation entails an expensive µ-
independent Offline stage performed only once and a very inexpensive Online
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stage for any chosen parameter value µ ∈ D. During the former the FE struc-

tures {A
q
h}

Qa

q=1, {f q
h}

Qf

q=1, lh, as well as the snapshots {u(µn)}Nmax

n=1 and the corre-

sponding orthonormal basis {ζn}Nmax

n=1 , are computed and stored. In the latter,

for any given µ, all the Θa
q(µ), Θf

q (µ) functions are evaluated, and the N ×N
linear system (21) is assembled and solved, in order to get the RB approxi-
mation uN (µ). Then, the RB output approximation is obtained through the
simple scalar product (19). Although being dense (rather than sparse as in the
FE case), the system matrix is very small, with a size independent of the FE
space dimension Nh.
A general formulation of RB methods can be found for example in [45,49]. Early
applications to problems arising in computational fluid dynamics are described
in [24,43], while recent applications dealing with Stokes and Navier-Stokes equa-
tions are presented e.g. in [14, 34, 44, 50, 54]. More recent extensions to flow
control problems by shape optimization can be found in [31,32]. The reader in-
terested in time-dependent problems can instead refer to [19,21] or to the more
recent review provided in [45].

We close this section by pointing out the connection between the RB approx-
imation and the FE approximation from an algebraic standpoint. Let us denote
by uh ∈ R

N and uN ∈ R
N the vectors of degrees of freedom of the FEM and

of the RB approximation, associated to the functions uh ∈ Xh and uN ∈ XN ,
respectively. Moreover, let Ah(µ) and AN (µ) be the matrices corresponding to
the FEM and to the RB discretization, respectively, for any given parameter
value µ ∈ D. From the relationships discussed in this section, the reduced linear
system (21) can be rewritten as

AN (µ)uN (µ) = fN (µ), (25)

whereas the full-order FEM linear system would read

Ah(µ)uh(µ) = fh(µ). (26)

In order to make a connection between the RB and the FE linear systems, we
can express (without considering a basis orthonormalization)

uh(µ) = ZN (uN (µ) + δN (µ)), (27)

where the error term δN ∈ R
N accounts for the fact that ZNuN is not the exact

solution of the full-order system and a priori is not vanishing.
By plugging the expression (27) into (26) and multiplying the system by ZT

N ,
we obtain

ZT
NAh(µ)ZN (uN (µ) + δN (µ)) = ZT

N fh(µ).

Thanks to (24) and to (25), we thus find that

AN (µ)δN (µ) = 0,

13



i.e. the algebraic counterpart of the Galerkin orthogonality property, fulfilled by
the RB approximation, that is:

a(uh(µ) − uN (µ), vN ) = 0, ∀vN ∈ XN .

On the other hand, setting δh(µ) = ZNδN (µ), we have

uh(µ) = ZNuN (µ) + δh(µ), (28)

where now the error term δh ∈ R
N is represented in the reduced vector space

R
N . Plugging (28) into (26), we end up with

Ah(µ)δh(µ) = fh(µ) − Ah(µ)ZNuN (µ),

which is the algebraic counterpart of the error residual relationship:

a(e(µ), v;µ) = r(v;µ), ∀ v ∈ XN . (29)

being e(µ) := uh(µ)−uN (µ) ∈ XN the (reduced) approximation error, r(v;µ) ∈
(XN )′ the residual, given by

r(v;µ) := f(v;µ) − a(uN (µ), v;µ), ∀ v ∈ XN . (30)

Together with a lower bound of the coercivity constant, equation (29) is a basic
ingredient for a posteriori error bounds; see [45,49] for further details.

5 Surrogate models: response surfaces and kriging

A different strategy to speedup numerical output evaluations related to parame-
trized systems can be based on suitable data-driven, problem-transparent meth-
ods, without attempting to reduce the computational cost related to PDE dis-
cretization. Surrogate models provide mathematical and statistical techniques
for the approximation of an input/output relationship (e.g. implied by a com-
puter simulation model). In data-fitting models, an approximation of the global
behavior of an output with respect to the input variables is constructed using
available data, produced by the numerical simulation of a full-order model. For
these models the goal is twofold, since we might be interested either in (i) finding
an explanation of the behavior of the simulation model (in terms of a functional
relationship between the output and the input variables) or in (ii) evaluating
the prediction of the expected simulation output for scenarios (or combination
of input values, or factors) that have not yet been simulated. The final goals
of surrogate models may be for instance validation and verification of the nu-
merical model, sensitivity analysis and/or optimization. A review of prediction
methodologies for analysis of computer experiments and their main features can
be found e.g. in [51,55].
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5.1 Response surfaces

One of the most common surrogate models is the polynomial response surface
method (RSM), which is based on low-order polynomial regression and aims at
representing the output (or response) surface as a polynomial function of the
input parameters. Another class of techniques, more suitable than low-order
polynomial regression for data fitting in wider parameter spaces, are the so-
called kriging methods. We present in this section the former, focusing on the
simplest case of a single (univariate, scalar) simulation output w, which can be
expressed in general as a function of p input variables:

w = s(µ1, . . . , µp);

here s : R
p → R denotes the function implicitly defined by the numerical approx-

imation of the output w; D = (µij) denotes the design matrix for the numerical
simulation experiment, with j = 1, . . . , p and i = 1, . . . , n, being n the number
of input combinations evaluated during the experiment. If the response is well-
modeled by a linear function of the input variables, the approximating function
is a first-order polynomial regression model:

wreg,1(µ) = β0 +

p
∑

i=1

βiµi + εreg,

where β = (β0, . . . , βp) ∈ R
p+1 is the parameter vector of the surrogate model

and εreg is the error term including the lack of fit of the surrogate model. In
matrix form, considering the n combinations evaluated on the lines, we have

wreg,1 = Xβ + εreg,

being X = [1 |D] ∈ R
n×(p+1), 1 = (1, . . . , 1)T ∈ R

n, and εreg ∈ R
n the vector

of the residuals in the n input combinations. The estimation β̂ of the parame-
ters of the model is usually obtained through the least squares method, giving
β̂ = (XT

X)−1
Xw, where w = (w1, . . . , wn) ∈ R

n is the vector containing the n
output values obtained through the numerical simulations corresponding to the
input combinations D. Hence, for a new input combination µnew, the response
surface prediction is given by ŵreg,1(µnew) = xT

newβ̂ = xT
new(XT

X)−1
Xw, being

xnew = (1;µnew)T ; the response surface analysis is then performed using the
fitted surface. Several design optimality criteria are available for choosing the
input combinations X where we intend to simulate the output values, on the ba-
sis of which the response surface is fitted, in order to get an accurate estimation
β̂ (in terms of minimum variance); a popular option is based for instance on the
minimization of |det(XT

X)−1|. If there is a curvature effect in the system, then
a polynomial of higher degree must be used, such as a second-order polynomial
regression model:

wreg,2(µ) = β0 +

p
∑

i=1

βiµi +

p
∑

i=1

βiiµ
2
i +

p
∑

i=1,j=1
i<j

βijµiµj + εreg,
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for which the analysis can be performed in the same way. In the case where
the output function s(·) has several local maxima and minima, and the problem
involves high dimensions and/or scattered data in the parameter space, radial
basis functions (RBF) have been found very accurate to generate response sur-
face models [33]. An interpolation model based on RBFs is a linear combination
of the form

wrbf (µ) =

n
∑

i=1

γiφ(‖µ− µi‖),

where φ(r) is a function depending on the radial distance r = ‖µ − µi‖, γ =
(γ1, . . . , γn)T is a vector of coefficients determined from the interpolation condi-
tions wrbf (µi) = s(µi), i.e. the RBF surface matches the output function s(·)
at all data points µi. The equivalent matrix formulation is

Pγ = s,

where s = (s(µ1), . . . , s(µn))T and (P)ij = φ(‖µi − µj‖). Typical choices for
the radial basis φ(r) are, for example, the thin plate spline φ(r) = r2 ln(r), the
Gaussian function φ(r) = exp(−cr2), the multiquadric function φ(r) =

√
r2 + c2,

where c > 0 is a chosen scaling constant. Other options, such as a combination of
low-order polynomial models and RBFs, may result more convenient depending
on the problem to be solved (see e.g. [5]).

5.2 Kriging models

Although the polynomial RSM provide in general an acceptable trend of the
global behavior of the response, they might fail in capturing local minima or
maxima. Kriging models – which can be seen as a further generalization of
the RSM based on low-order polynomial regression – provide better results for
nonlinear prediction in multi-dimensional parameter domains involving a more
complex response behavior. In particular, these models yield the best linear
unbiased prediction in (a given, in our case input parameter) space using obser-
vations taken at known nearby locations. A general reference is given by [13],
while a compact survey of these techniques can be found, for instance, in [26].
Within this class of models, we treat the output of some numerical experiment
as a realization from a stochastic process, i.e.

w(µ) = m+ δ(µ), µ ∈ D

where δ(µ) is a zero-mean stochastic process (E(δ(µ)) = 0) with known covari-
ance function C such that

Cii = var(δ(µi)) = σ2, Cij = cov(δ(µi), δ(µj)) = σ2ρ(‖µi − µj‖),

being the covariance Cij = cov(δ(µi), δ(µj)) dependent only on the difference
‖µi − µj‖ – i.e. ρ(δ(µi), δ(µj)) = ρ(‖µi − µj‖). If we assume that m is known,
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the simple kriging predictor can be obtained as the linear predictor

wsk(µ) = k +
n

∑

i=1

liw(µi)

of w(µ̄) (output at an unexperimented combination µ̄) minimizing (w.r.t. l =
(l1, . . . , ln)) the mean-squared prediction error E[(w(µ̄) −wsk(µ))2], being {w(µi)}n

i=1

the computed values of the output. This gives l = c̄C−1 and k = (1− c̄C−11)m,
where (c̄)i = (cov(δ(µ̄), δ(µi)).
If m is unknown (ordinary kriging), the previous expression is no longer a predic-
tor; one possibility is to restrict the solution to the class of homogeneous linear
predictors

wok(µ) =

n
∑

i=1

λiw(µi), s.t.

n
∑

i=1

λi = 1

and to look for the best linear unbiased predictor obtained by minimizing

λ̂ = arg min
λ

E[(w(µ̄) − wok(µ))2].

In any case, the weights λi are not constant (whereas the β coefficients in RSM
models are) but decrease with the distance between the input µ to be predicted
and the input combinations {µi}n

i=1 used in the numerical experiment. The
kriging weights λ obviously depend on the correlations

ρ(w(µr), w(µs)) =

p
∏

j=1

ρ(hj(r, s)), hj(r, s) = |µrj − µsj |

with j = 1, . . . , p, r, s = 1, . . . , n, between the simulation outputs in the kriging
model; usual choices are exponential or Gaussian covariance functions, under
the form ρ(hj(r, s)) = exp(−θjh

α
j (r, s)), being θj a measure of the importance

of the input µj (the higher θj is, the less effect input j has) and α = 1, 2 for the
exponential or the Gaussian case, respectively. In particular, by construction
the kriging predictor is uniformly unbiased, i.e. wok(µi) = w(µi),∀i = 1, . . . , n.
More general models (universal kriging) employ a regression model for estimating
m; e.g. for a first-order regression model we consider the expression

wuk(µ) = β0 +

p
∑

i=1

βiµi +

n
∑

i=1

λiw(µi),

where the weights β and λ are obtained (as before) as the generalized least
squares solution, and depend on the covariance function; an optimal expression
for the coefficients θj in the covariance function can also be computed.
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6 A simple application of interest

We present in this section an application of the RB method to a simple problem
of interest in ideal computational fluid dynamics – the description of the flow
around parametrized airfoils – as well as some comparisons between the RB
results and those obtained by applying the surrogate models of Sect. 5.
In particular, we consider a potential flow model, describing steady, laminar,
inviscid, irrotational flows in two-dimensional domains. Usual contexts where
the potential flow model is used are, for instance, aerodynamics in the so-called
panel method (for the simulation of flows around aircrafts and the outer flow
fields for airfoils) and hydrodynamics (for example, in water waves and ground-
water flows). However, this model is too simplistic, since it is not able to describe
e.g. flows in presence of boundary layers or strong vorticity effects; a common
strategy to take them into account consists in the coupling of a potential flow
model (outside the boundary layer) with more accurate models (e.g. Navier-
Stokes equations) inside the boundary layer [46].

Let us consider a rectangular domain D ⊂ R
2 and a parametrized NACA

airfoil Bo(µ) and denote Ωo(µ) ⊂ R
2 the parametrized fluid domain given by

Ωo(µ) = D \Bo(µ). Denote (u, p) the velocity and the pressure, respectively, of
a fluid flow: under the previous assumptions, u = ∇φ, can be described as the
gradient of a scalar function φ, which is called velocity potential and satisfies –
in the incompressible case – the Laplace equation:

−∆φ = 0 in Ωo(µ)
∂φ

∂n
= 0 on Γw(µ)

∂φ

∂n
= φin on Γin(µ)

φ = φref on Γout(µ),

where homogeneous Neumann conditions describe non-penetration on the walls
Γw(µ), inhomogeneous Neumann conditions are used to impose the velocity uin

on the inflow boundary Γin(µ) (being φin = uin · n and n the outward normal
vector to Γin(µ)) and Dirichlet conditions are employed to prescribe the level
of the potential on the outflow boundary Γout(µ); see Fig. 1 for the geometrical
configuration used in this example.
The pressure p can be obtained by Bernoulli’s equation:

p+
1

2
ρ|u|2 = pin +

1

2
ρ|uin|2, in Ωo(µ),

whereas the pressure coefficient cp – useful to study the aerodynamical perfor-
mances of the airfoil – can be defined as

cp(p) =
p− pin
1
2ρ|uin|2

= 1 −
( |u|2
|uin|2

)

,
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Figure 1: Geometrical configuration and parameters for the potential flow example.

where pin and uin are the pressure and the velocity of the undisturbed flow on
the inflow boundary, respectively. The weak formulation of this problem on the
parametrized domain Ωo(µ) is given by: find u ∈ X(Ωo(µ)) s.t.

ao(u, v;µ) = fo(v;µ), ∀v ∈ X(Ωo(µ))

being

ao(w, v;µ) =

∫

Ωo(µ)
∇w · ∇vdΩo, fo(w;µ) =

∫

Ωo(µ)
wφindΩo,

and assuming uin = (1, 0), φref = 0. In particular, we consider the flow around
a symmetric airfoil profile parametrized w.r.t. thickness µ1 ∈ [4, 24] and the
angle of attack µ2 ∈ [0.01, π/4]; the profile is rotated according to µ2, while the
external boundaries remain fixed and the inflow velocity is parallel to the x axis
(see Fig. 1). A possible parametrization (NACA family) is

xo =

(

1
0

)

+

(

cosµ2 − sinµ2

sinµ2 cosµ2

) (

−1 0
0 ±µ1/20

) (

1 − t2

ϕ(t)

)

, t ∈ [0,
√

0.3]

xo =

(

0
0

)

+

(

cosµ2 − sinµ2

sinµ2 cosµ2

) (

1 0
0 ±µ1/20

) (

t2

ϕ(t)

)

, t ∈ [
√

0.3, 1],

being ϕ(t) = 0.2969t − 0.1260t2 − 0.3520t4 + 0.2832t6 − 0.1021t8 the parame-
trization of the boundary. By means of this geometrical map, an automatic
affine representation based on domain decomposition (where basic subdomains
are either straight or curvy triangles) can be built within the rbMIT library [49];
in this way, we can recover an affine decomposition, which in this case consists
of Qa = 45, Qf = 1 terms. For the derivation of the parametrized formulation
(7) and of the affinity assumptions, we refer the reader to [48,49].

Starting from a truth FE approximation of size N ≈ 3, 500 elements, the
greedy procedure for the construction of the RB space selects Nmax = 7 snap-
shots with a stopping tolerance of εRB

tol = 10−2, thus yielding a reduction of 500
in the dimension of the linear system; in Fig. 2 the convergence of the greedy
procedure, as well as the selected snapshots, are reported.

19



1 2 3 4 5 6 7
10−3

10−2

10−1

100

101

102

N

RB Greedy algorithm

4 6 8 10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

µ
1

µ 2

RB Greedy algorithm

Figure 2: Convergence of the greedy procedure (maxµ∈Ξtrain
∆N (µ), N = 1, . . . , Nmax)

and corresponding selected snapshots in the parameter space D.

Concerning the computational performances, the FE offline stage (involving the
automatic geometry handling and affine decomposition, and the FE structures
assembling) takes aboute toffline

FE = 8h on a single-processor desktop; the most
expensive stage is the construction of the automatic affine domain decompo-
sition. The construction of the RB space with the greedy algorithm and the
algebraic structures for the efficient evaluation of the error bounds takes about
4h, giving a total RB offline time of toffline

RB = 12h. Concerning the online stage,
the computation of the field solution for 100 parameter values takes tonline

FE = 5.2s
with the FE discretization and tonline

RB = 2.12 × 10−2s with the RB approxima-
tion, entailing a computational speedup of tonline

RB /tonline
FE = 250. In Fig. 3 some

representative solutions are shown. We can point out how, in presence of posi-
tive angles of attack, the flow fields are no longer symmetric on the two sides of
the airfoil, showing increasing pressure peaks with increasing angles of attack.

We can also appreciate the limit of the model, since the streamlines on the
upper and lower sides of the airfoil are not parallel to the trailing edge (thus not
obeying to the Kutta condition) but form a rear stagnation point on the upper
side of the profile. Moreover, in order to evaluate the aerodynamic performance
along different airfoil sections, we can evaluate the pressure coefficient cp on the
airfoil boundary – our output of interest. Thanks to the offline/online strategy,
given a new configuration (corresponding to a new parameter combination µ =
(µ1, µ2)), the evaluation of cp(µ) can be performed in almost a real time. As
expected, pressure at the leading edge depends on both the angle of attack µ2

and the thickness µ1 of the profile: the smaller the angle of attack and the
thinner the profile, the larger is the positive pressure. Moreover, the thickest
profile shows smaller positive pressure on the lower side, while the stagnation
point (corresponding to cp = 1, i.e. to the point of maximum – or stagnation
– pressure, where u = 0) is close to the leading edge, and moves towards the
midchord as µ2 increases.

eComputations have been executed on a personal computer with 2× 2GHz Dual Core AMD
Opteron(tm) processors 2214 HE and 16 GB of RAM.

20



−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5
Pressure error = 0.0036346

 

 

0.9

0.95

1

1.05

1.1

1.15

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5
Velocity error = 0.0072692

 

 

0.8

0.85

0.9

0.95

1

1.05

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5
Pressure error = 0.0002852

 

 

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5
Velocity error = 0.00057039

 

 

0.5

1

1.5

2

2.5

3

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5
Pressure error = 0.00020307

 

 

−0.5

0

0.5

1

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5
Velocity error = 0.00040613

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3: RB solutions to the potential flow problems: pressure field (left), velocity
magnitude and streamlines (right) for µ = [4, 0], µ = [14, π/5], µ = [24, π/8] (from top
to bottom).

6.1 Comparison between RB appoximation & surrogate models

Next we compare the performance of the RB method and the surrogate models
presented in Sec. 5 in evaluating the output s(µ) ≡ cp(µ). In particular, we
consider a set of K points located on the upper part of the profile {xk}K

k=1, for
which we compute:

• the RB approximation sN (µ;xk) = cp(pN (µ);xk), obtained using the RB
approximation pN (µ) of the pressure;

• the surrogate outputs for k = 1, . . . ,K, obtained through RSM

sRSM,1
N (µ;xk) = βk

0 +
2

∑

j=1

βk
i µi,

sRSM,2
N (µ;xk) = βk

0 +

2
∑

i=1

βk
i µi +

2
∑

i=1

βk
iiµ

2
i +

2
∑

i<j

βk
ijµiµj ,

21



0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

x

cp

 

 

Upper side of profile

Lower side of profile

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

x

cp

 

 

Upper side of profile

Lower side of profile

0 0.2 0.4 0.6 0.8 1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

cp

 

 

Upper side of profile

Lower side of profile

0 0.2 0.4 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1

x

cp

 

 

Upper side of profile

Lower side of profile

Figure 4: Some representative RB output computations of the pressure coefficient
cp for different values of the geometrical parameters: from top, left to bottom, right,
µ = [14, π/8], µ = [14, π/5], µ = [24, π/8], µ = [24, π/5].

with polynomial regression of order 1 and 2, respectively;

• the surrogate outputs obtained through a RBF interpolation

sRBF
N (µ;xk) = βk

0 +

2
∑

j=1

βk
i µi +

n
∑

i=1

γiφ(‖µ− µi‖),

being here φ(r) = r2log(r) the so-called thin-plate spline RBF, while the
polynomial function enforces the well posedness of the interpolation prob-
lem (see e.g. [5, 33]);

• the surrogate outputs

sKRI
N (µ;xk) = βk

0 +

2
∑

i=1

βk
i µi +

n
∑

i=1

λk
i (θ;µ

1, . . . ,µn)w(µi)

obtained through a (universal) kriging model, where, for all k = 1, . . . ,K,
a different covariance function ρ(hk

j (r, s)) = exp(−θk
j h

2
j (r, s)), j = 1, 2, has

been considered; here hj(r, s) = |µrj − µsj |, for r, s = 1, . . . , n. In partic-
ular, optimal values (maximum likelihood estimation) for the coefficients
θk
j ∈ [0.1, 20] have been computed, for all k and j.
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For the construction of the surrogate models, we consider a set of n exper-
imented combinations of parameter values {µi}n

i=1, in the cases n = 7 (corre-
sponding to the dimension N of the RB space) and n = 100, and the corre-
sponding n output values obtained through a FE simulation, for each point xk,
k = 1, . . . ,K. The sample {µi}n

i=1 corresponding to the experimented parameter
combinations has been randomly selected in the parameter space D according to
a bivariate uniform distribution. In order to compare the results, we introduce
a fine test sample Ξtrain ⊂ D of dimension ntrain = 500, selected according to a
bivariate uniform distribution too. Error bounds computed directly on velocity
and/or pressure solution (see Fig. 3) are available in [48].
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Figure 5: High-fidelity FEM and surrogate (based on n = 7computed values) cp dis-
tributions on the upper part of the airfoil corresponding to µ̄ = [14.3451, 0.3655] (left:
RSM with a first (red) and second (green) order regression models; right: RBF inter-
polation (black) and kriging model (cyan)).

In Fig. 5 we show the distribution of the pressure coefficient obtained through
a FE high-fidelity approximation for a new, randomly chosen, parameter com-
bination µ̄, as well the distributions obtained through the surrogate models
presented, using n = 7computed values. The errors between the high-fidelity
approximation and the surrogate approximations are represented in Fig. 6, for
the cases n = 7 (left) and n = 100 (right).

We can remark that for surrogate models built upon a small number of com-
puted outputs, RSM with low-order polynomial regression give a result which is
comparable to the one obtained with more advanced techniques, such as RBF
or kriging. In particular, the error is about 10−1 for linear RSM and RBF, 10−2

(with some lower peaks) for the kriging approximation and 10−3 for quadratic
RSM. Increasing the number of computed outputs, we find that the kriging
model is the one giving the best performance (errors about 10−5 ÷ 10−6), ap-
proximation through RSM does not show a remarkable improved quality, while
RBF performs in a sensibly better way. In the last Fig. 7 we compare the errors
between FEM and surrogate (built in the case n = 7) output approximations, as
well as the error estimation for the RB approximation of the output, obtained

23



0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

x

er
ro

r

 

 

linear RSM

quadratic RSM

RBF interpolant

kriging

0 0.2 0.4 0.6 0.8 1

10
−8

10
−6

10
−4

10
−2

10
0

x

er
ro

r

 

 

linear RSM

quadratic RSM

RBF interpolant

kriging

Figure 6: Errors between the high-fidelity and the surrogate cp distributions corre-
sponding to µ̄ = [14.3451, 0.3655], for N = 7 (left) and N = 100 (right) computed
output values.
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Figure 7: Error bound between the reduced basis and the high-fidelity approximations
(in blue), and true errors between the high-fidelity and the surrogate distributions in
the case µ̄ = [14.3451, 0.3655] for N = 7 computed output values.

averaging the results over the train sample. We observe that the quadratic in-
terpolant can be in fact as accurate as the RB output – and in any case more
efficient if n ≈ N since the evaluation µ→ sRSM,1

N (µ) requires just O(n2) opera-
tions whereas the online RB evaluation µ→ sRB

N (µ) entails O(N3) operations –
while the RBF and the kriging outputs may be even more accurate than the RB
output. However, as already remarked in [49], in higher parameter dimensions
it is not possible to perform efficient approximations based on surrogate models,
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mainy due to:

(i) the difficulty arising from the sampling stage for the construction of the
surrogate model – whereas the greedy algorithm for the RB space con-
struction seeks for the best candidate snapshot automatically;

(ii) the complexity of any interpolation procedure, which in general is not an
easy task, as well as the lack of sharp and rigorous error bounds for the
output interpolants.
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