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Abstract

Reduction strategies, such as model order reduction (MOR) or reduced
basis (RB) methods, in scientific computing may become crucial in appli-
cations of increasing complexity. In this paper we review the reduced basis
method (built upon a high-fidelity “truth” finite element approximation)
for a rapid and reliable approximation of parametrized partial differential
equations, and comment on their potential impact on applications of indus-
trial interest. The essential ingredients of RB methodology are: a Galerkin
projection onto a low-dimensional space of basis functions properly selected,
an affine parametric dependence enabling to perform a competitive Offline-
Online splitting in the computational procedure, and a rigorous a posteriori
error estimation used for both the basis selection and the certification of the
solution. The combination of these three factors yields substantial compu-
tational savings which are at the basis of an efficient model order reduction,
ideally suited for real-time simulation and many-query contexts (e.g. opti-
mization, control or parameter identification). After a brief excursus on the
methodology, we focus on linear elliptic and parabolic problems, discussing
some extensions to more general classes of problems and several perspec-
tives of the ongoing research. We present some results from applications
dealing with heat and mass transfer, conduction-convection phenomena,
and thermal treatments.

∗Corresponding Author, E-mail: gianluigi.rozza@epfl.ch

1



1 Introduction and Motivation

Although the increasing computer power makes the numerical solution problems
of very large dimensions that model complex phenomena essential, a computa-
tional reduction is still determinant whenever interested in real-time simulations
and/or repeated output evaluations for different values of some inputs of interest.
For a general introduction on the development of the reduced basis methods we
refer to [1, 2, 3].
In this work we review the reduced basis (RB) approximation and a posteriori
error estimation methods for the rapid and reliable evaluation of engineering
outputs associated with elliptic and parabolic parametrized partial differential
equations (PDEs). In particular, we consider a (say, single) output of interest
s(µ) ∈ R expressed as a functional of a field variable u(µ) that is the solution of
a partial differential equation, parametrized with respect to the input parameter
p-vector µ; the input parameter domain – i.e. the set of all possible inputs – is
a subset D of R

p. The input-parameter vector typically characterizes physical
properties and material, geometrical configuration, or even boundary conditions
and force fields or sources. The outputs of interest are physical quantities or in-
dexes used to measure and assess the behavior of a system, i.e. related to fields
variables or fluxes, as for example domain or boundary averages of the field vari-
ables, or other quantities such as energies, drag forces, flow rates, etc. For the
sake of simplicity, we consider throughout the paper the case of a linear output
of a field variable, i.e s(µ) = l(u(µ)) for a suitable linear operator l(·). Finally,
the field variables u(µ) that link the input parameters to the output depend on
the selected PDE models and may represent temperature or concentration, dis-
placements, potential functions, distribution functions, velocity or pressure. We
thus arrive at an input-output relationship µ→ s(µ), whose evaluation requires
the solution of a parametrized PDE.

The reduced basis methodology we recall in this paper is motivated by, and
applied within two particular contexts: the real-time context (e.g., in-the-field
robust parameter-estimation, or nondestructive evaluation); and the many-query
context (e.g., design or shape optimization, optimal control or multi-model/scale
simulation). Both are crucial in view of more widespread application of nu-
merical methods for PDEs in engineering practice and more specific industrial
processes. They also feature a remarkable challenge to classical numerical tech-
niques, such as – but not limited to – the finite element (FE) method; in fact,
classical FE approximations may require big computational efforts (and also
data/memory management) when the dimension N of the discretisation space
becomes large. This makes unaffordable both real-time and many-query simu-
lations: hence, looking also for computational efficiency in numerical methods
becomes mandatory.

The real-time and many-query contexts are often much better served by a
model reduction technique such as the reduced basis approximations and associ-

2



ated a posteriori error bound estimation revised in this work. We note, however,
that the RB methods do not replace, but rather build upon and are measured
– as regards accuracy – relative to, a finite element model: the reduced basis
approximates not the exact solution but rather a “given” finite element dis-
cretization of (typically) very large dimension N , indicated as a high-fidelity
truth approximation. In short, we promote an algorithmic collaboration rather
than a computational competition between RB and FE methods.

In this paper we shall focus on the case of linear functional outputs of affinely
parametrized linear elliptic and parabolic coercive partial differential equations.
This kind of problems – relatively simple, yet relevant to many important ap-
plications in transport (e.g., steady/unsteady conduction, convection-diffusion),
mass transfer, and more generally in continuum mechanics – proves a convenient
expository vehicle for the methodology, with the aim of stressing on the potential
impact on possible industrial applications, dealing with optimization for devices
and/or processes, diagnosis, control.

We provide here a short table of contents for the remainder of this review
paper. For a wider framework on the position occupied by reduced basis method
compared with other reduced order modelling (ROM) techniques and their cur-
rent developments and trends, see [1]. After a brief historical excursus, we
present in Sect. 2 the state of the art of the reduced basis method, present-
ing the essential components of this approach. We describe the affine linear
elliptic and parabolic coercive settings in Sect. 3, discussing briefly admissible
classes of piecewise-affine geometry and coefficients. In Sect. 4 and 5 we present
the essential components of the reduced basis method: RB Galerkin projection
and optimality; greedy sampling procedures; an Offline-Online computational
stratagem. In Sect. 6 we recall rigorous and relatively sharp a posteriori error
bounds for RB approximations of field variables and outputs of interest. In
Sect. 7 we briefly discuss several extensions of the methodology to more general
and difficult classes of problems and applications, while in Sect. 8 we introduce
three “working examples” which shall serve to illustrate the RB formulation and
its potential. In the last Sect. 9 we provide some future perspectives.
Although this paper focuses only on the affine linear elliptic and parabolic co-
ercive cases – in order to allow to catch all the main ingredients – the reduced
basis approximation and associated a posteriori error estimation methodology
is much more general; nevertheless, many problems can successfully be faced in
the even simplest affine case.

2 State of the art of the methodology

In this section we briefly review the current landscape starting from a brief
historical excursus, introduce the essential RB ingredients and provide several
references for further inquiry.
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2.1 Computational opportunities and collaborations

The development of the reduced basis methodology can be viewed as a response
to the issues described before, to address a significative computational reduction
and improvement in computational performances. However, the parametric real-
time and many-query contexts represent also computational opportunities, since
an important role in the RB paradigm and computational stratagem is played
by the parametric setting. In particular:

(i) Our attention is restricted to a typically smooth and rather low-dimen-
sional parametrically induced manifold M, spanned by the set of fields engen-
dered as the input varies over the parameter domain: e.g. in the elliptic case

M = {u(µ) ∈ X : µ ∈ D},

where X is a suitable functional space. Clearly, generic approximation spaces
are unnecessarily rich and hence unnecessarily expensive within the parametric
framework. Our approach is premised upon a classical finite element method
“truth approximation” space XN ⊂ X of (typically very large) dimension N ;
the RB method consists in a low-order approximation of the “truth” manifold
MN given by

MN = {uN (µ) ∈ XN : µ ∈ D}. (1)

Several classical RB proposals focus on the truth manifold MN ; much of what
we present shall be relevant to any of these reduced basis spaces/approximations.

(ii) Under suitable assumptions, the parametric setting enables to decouple
the computational effort in two stages: a very extensive (parameter independent)
pre-processing performed Offline once that prepares the way for subsequent very
inexpensive calculations performed Online for each new input-output evaluation
required. In the real-time or many-query contexts, where the goal is to achieve a
very low marginal cost per input-output evaluation, we can accept an increased
“Offline” cost – not tolerable for a single or few evaluations – in exchange for
greatly decreased “Online” cost for each new/additional input-output evaluation.

2.2 A brief historical path

Reduced Basis discretization is, in brief, a Galerkin projection on an N -dimen-
sional approximation space that focuses on the parametrically induced manifold
MN . We restrict the attention to the Lagrange reduced basis spaces, which
are based on the use of “snapshot” FE solutions of the PDEs, corresponding
to certain (properly selected) parameter values, as global approximation basis
functions previously computed and stored; other possible approaches, such as
Taylor [4] or Hermite spaces [5], take into account also partial derivatives of
these basis solutions.

Initial ideas grew out of two related research topics dealing with linear/non-
linear structural analysis in the late 70’s: the need for more effective many-query
design evaluation and more efficient parameter continuation methods [6, 7, 8].
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Figure 1: In the case of a single parameter, the parametrically induced manifoldMN ⊂
XN is a one-dimensional filament; the bullets represent the FE solutions used as basis
functions. Indeed, the red dotted line denotes all the possible RB solutions, obtained
as combinations of the basis functions.

The first work presented in these early somewhat domain-specific contexts were
soon extended to (i) general finite-dimensional systems as well as certain classes
of ODEs/PDEs [9, 10, 11, 12], and (ii) a variety of different reduced basis approx-
imation spaces – in particular Taylor and Lagrange and more recently Hermite
expansions. The next decade saw further expansion into different applications
and classes of equations, such as fluid dynamics and, more specifically, the in-
compressible Navier-Stokes equations, [13, 14, 15, 16].

However, in these early methods, the approximation spaces tended to be
rather local and typically low-dimensional in parameter (often a single physical
parameter), due also to the absence of a posteriori error estimators and effective
sampling procedures. It is clear that in higher-dimensional parameter domains
the ad hoc reduced basis predictions “far” from any sample points can not neces-
sarily be trusted, and hence a posteriori error estimators combined with efficient
parametric space exploration techniques are crucial to guarantee reliability, ac-
curacy and efficiency.

Much current effort in the last ten years in the RB framework has thus been
devoted to the development of (i) a posteriori error estimation procedures –
and in particular rigorous error bounds for outputs of interest – and (ii) effec-
tive sampling strategies, in particular for higher dimensional parameter domains
[17, 18]. The a posteriori error bounds are of course mandatory for rigorous
certification of any particular RB Online output prediction. Not only, an a pri-
ori theory for RB approximations is also available, dealing with a class of single
parameter coercive problems [19] and more recently extended also to the multi-
parameter case [20].
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However, the error estimators also play an important role in effective (greedy)
sampling procedures [18, 1]: they allow us to explore efficiently the parameter
domain in search of most representative “snapshots,” and to determine when we
have just enough basis functions. We note here that greedy sampling methods
are similar in objective to, but very different in approach from, more well-known
Proper Orthogonal Decomposition (POD) methods [21]; the former are usually
applied in the (multi -dimensional) parameter domain, while the latter are most
often applied in the (one-dimensional) temporal domain. An efficient combi-
nation of the two techniques greedy-POD in parameter-time has been proposed
[22, 23] and is currently used for the treatment of parabolic problems [24]; see
Sect. 5.2.

Concerning instead computational reduction and decoupling stratagems, early
work on the RB method certainly exploited – but not fully – the Offline-Online
procedure. In particular, early RB approaches did not fully decouple the un-
derlying FE approximation – with space of very high dimension N – from the
subsequent reduced basis projection and evaluation – of very low dimension N .
Consequently, the computational savings provided by RB treatment (relative to
classical FE evaluation) were typically rather modest [7, 4, 10] despite the very
small size of the RB linear systems. Much work has thus been devoted to full
decoupling of the FE and RB spaces through Offline-Online procedures, above
all concerning the efficient a posteriori error estimation: the complexity of the
Offline stage depends on N ; the complexity of the Online stage – solution and/or
output evaluation for a new value of µ – depends only on N and Q (used to
measure the parametric complexity of the operator and data, as defined below).
In this way, in the Online stage we can reach the accuracy of a high-fidelity FE
model but at the very low cost of a reduced-order model.

In the context of affine parameter dependence, in which the operator is
expressible as the sum of Q products of parameter-dependent functions and
parameter-independent operators (see Sect. 3), the Offline-Online idea is quite
self-apparent and has been naturally exploited [25, 16] and extended more re-
cently in order to obtain efficient a posteriori error estimation. In the case of
nonaffine parameter dependence the development of Offline-Online strategies is
even more challenging and only in the last few years effective procedures have
been studied and applied [26] to allow more complex parametrizations; clearly,
Offline-Online procedures are an important element both in the real-time and
the many-query contexts. We recall that also historically [9] RB methods have
been built upon, and measured (as regards accuracy) relative to, underlying
finite element discretizations. However, spectral element approaches [27, 28], fi-
nite volume [22], and other traditional discretization methods may be considered
too.
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2.3 Essential RB components

The essential components of the reduced basis method, which will be analyzed
in detail along the next sections, can be summarized as below.

(i) Rapidly convergent global reduced basis (RB) approximations – (Galerkin)
projection onto a (Lagrange) space XN

N spanned by solution of the governing
partial differential equation at N (optimally) selected points SN in the param-
eter set D. Typically, N will be small, as we focus attention on the (smooth)
low-dimensional parametrically-induced manifold of interest. The RB approx-
imations to the field variable and output will be denoted uN (µ) and sN (µ),
respectively.

(ii) Rigorous a posteriori error estimation procedures that provide inexpen-
sive yet sharp bounds for the error in the RB field-variable approximation,
uN (µ), and output(s) approximation, sN (µ). Our error indicators are rigor-
ous upper bounds for the error (relative to the FE truth field uN (µ) and output
sN (µ) = l(uN (µ)) approximation, respectively) for all µ ∈ D and for all N .
Error estimators are also employed during the greedy procedure [1] to construct
optimal RB samples/spaces ensuring an efficient and well-conditioned RB ap-
proximation.

(iii) Offline/Online computational procedures – decomposition stratagems
which decouple the generation and projection stages of the RB approximation:
very extensive (µ-independent) pre-processing performed Offline once that pre-
pares the way for subsequent inexpensive calculations performed Online for each
new input-output evaluation required.

3 Elliptic & parabolic parametric PDEs

We introduce the formulation of affinely parametrized linear elliptic/parabolic
coercive problems; the methodology addressed in this work is intended for heat
and mass convection/conduction problems. For the sake of simplicity, we con-
sider only compliant outputs, referring to Sect. 7 for the treatment of general
(non-compliant) outputs and the extensions to other classes of equations.

3.1 Elliptic coercive parametric PDEs

We consider the following problem: Given µ ∈ D ⊂ R
p, evaluate the output of

interest
s(µ) = ℓ(u(µ)), (2)

where u(µ) ∈ X(Ω) satisfies

a(u(µ), v;µ) = f(v), ∀ v ∈ X(Ω). (3)

Ω is a suitably regular bounded spatial domain in R
d (for d = 2 or 3), X = X(Ω)

is a suitable Hilbert space; a(·, ·;µ) and f(·; µ) are the bilinear and linear forms,
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respectively, associated with the PDE. We shall exclusively consider second-order
PDEs, and hence (H1

0 (Ω))ν ⊂ X(Ω) ⊂ (H1(Ω))ν , where ν = 1 (respectively,
ν = d) for a scalar (respectively, vector) field; here L2(Ω) is the space of square
integrable functions over Ω, H1(Ω) = {v|v ∈ L2(Ω),∇v ∈ (L2(Ω))d}, H1

0 (Ω) =
{v ∈ H1(Ω)|v∂Ω = 0}. We denote by (·, ·)X the inner product associated with
the Hilbert space X, whose induced norm ‖ · ‖X =

√
(·, ·)X is equivalent to the

usual (H1(Ω))ν norm. Similarly, (·, ·) and ‖ · ‖ denote the L2(Ω) inner product
and induced norm, respectively.

We shall assume that the bilinear form a(·, ·; µ): X ×X → R is continuous
and coercive over X for all µ in D, i.e.

γ(µ) := sup
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X‖v‖X
< +∞, ∀ µ ∈ D, (4)

∃ α0 > 0 : α(µ) := inf
w∈X

a(w,w; µ)

‖w‖2X
≥ α0, ∀ µ ∈ D. (5)

Finally, f(·) and ℓ(·) are linear continuous functionals over X; we assume –
solely for simplicity of exposition – that f and ℓ are independent of µ. Under
these standard hypotheses on a and f , (3) admits a unique solution. for the
sake of simplicitya, we shall further presume for most of this paper that we
are in “compliance” case [1]. In particular, we assume that (i) a is symmetric
– a(w, v;µ) = a(v, w;µ), ∀w, v ∈ X, ∀µ ∈ D – and furthermore (ii) ℓ = f .
We shall make one last assumption, crucial to Offline-Online procedures, by
assuming that the parametric bilinear form a is “affine” in the parameter µ: for
some finite Qa, a(·, ·;µ) can be expressed as

a(w, v; µ) =

Q∑

q=1

Θq
a(µ) aq(w, v), (6)

for given smooth µ-dependent functions Θq
a, 1 ≤ q ≤ Qa, and continuous µ-

independent bilinear forms aq, 1 ≤ q ≤ Qa (in the compliant case the aq are
additionally symmetric). Under this assumption, MN defined by (1) lies on a
smooth p-dimensional manifold in XN . In actual practice, f may also depend
affinely on the parameter: in this case, f(v;µ) may be expressed as a sum of Qf

products of µ-dependent functions and µ-independent X-bounded linear forms.
As we shall see in the following, the assumption of affine parameter dependence
is broadly relevant to many instances of both property and geometry parametric
variation. Nevertheless, this assumption may be relaxed [26], as detailed in
Sect. 7.

aThis assumption will greatly simplify the presentation while still exercising most of the
important RB concepts; furthermore, many important engineering problems are in fact “com-
pliant”.
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3.2 Parabolic coercive parametric PDEs

We also consider the following parabolic model problem: Given µ ∈ D ⊂ R
p,

evaluate the output of interest

s(t;µ) = ℓ(u(t; µ)), ∀ t ∈ I = [0, tf ] (7)

where u(µ) ∈ C0(I;L2(Ω)) ∩ L2(I;X) is such that

m

(
∂u

∂t
(t;µ), v; µ

)
+ a(u(t;µ), v; µ) = g(t)f(v), ∀v ∈ X, ∀t ∈ I, (8)

subject to initial condition u(0;µ) = u0 ∈ L
2(Ω); g(t) ∈ L2(I) is called control

function. In addition to the previous assumptions (4)-(6), we shall assume that
a(·, ·;µ) – which represents convection and diffusion – is time-invariant; more-
over, m(·, ·;µ) – which represents “mass” or inertia – is assumed to be time-
invariant, symmetric, and continuous and coercive over L2(Ω), with coercivity
constant

∃ σ0 : σ(µ) := inf
w∈X

m(w,w;µ)

‖w‖2X
≥ σ0, ∀ µ ∈ D. (9)

Finally, we assume that also m(·, ·;µ) is “affine in parameter”, i.e. it can be
expressed as

m(w, v;µ) =

Qm∑

q′=1

Θq′

m(µ)mq′(w, v) , (10)

for given smooth parameter-dependent functions Θq′
m, 1 ≤ q′ ≤ Qm, and continu-

ous parameter-independent bilinear forms mq′ , 1 ≤ q′ ≤ Qm, for suitable integer
Qm.

3.3 Parametrized formulation

We now describe a general class – through not the most general one – of elliptic
and parabolic problems which honors the hypotheses previously introduced; for
simplicity we consider a scalar field (ν = 1) in two space dimension (d = 2). We
shall first define an “original” problem (subscript o), posed over the parameter-
dependent domain Ωo = Ωo(µ); we denote Xo(µ) a suitable Hilbert space defined
on Ωo(µ). In the elliptic case, the original problem reads as follows: Given
µ ∈ D, evaluate

so(µ) = lo(uo(µ)) ,

where uo(µ) ∈ Xo(µ) satisfies

ao(uo(µ), v;µ) = fo(v),∀v ∈ Xo(µ) .

In the same way, for the parabolic case we have: Given µ ∈ D, evaluate

so(t;µ) = lo(uo(t;µ)) ,
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being uo(µ) ∈ C0(I;L2(Ω)) ∩ L2(I;Xo(µ)) such that

m

(
∂uo

∂t
(t;µ), v;µ

)
+ a(uo(t;µ), v;µ) = g(t)f(v), ∀v ∈ Xo(µ), ∀t ∈ I,

The RB framework requires a reference (µ-independent) domain Ω in order to
compare, and combine, FE solutions that would be otherwise computed on dif-
ferent domains and grids. For this reason, we need to map Ωo(µ) to a reference
domain Ω = Ωo(µref ), µref ∈ D, in order to get the “transformed” problem
(2)-(3) or (7)-(8) – which is the point of departure of RB approach – for el-
liptic and parabolic case, respectively. The reference domain Ω is thus related
to the original domain Ωo(µ) through a parametric mapping T (·;µ), such that
Ωo(µ) = T (Ω; µ). It remains to place some restrictions on both the geometry
(i.e. on Ωo(µ)) and the operators (i.e. ao, mo, fo, lo) such that (upon mapping)
the transformed problem satisfies the hypotheses introduced above – in partic-
ular, the affinity assumption (6),(10). To this aim, a domain decomposition is
useful [1].

We first consider the class of admissible geometries. In order to build a
parametric mapping related to geometrical properties, we introduce a conforming
domain decomposition of Ωo(µ),

Ωo(µ) =

Ldom⋃

l=1

Ωl
o(µ), (11)

consisting of mutually nonoverlapping open subdomains Ωl
o(µ), s.t. Ωl

o(µ) ∩
Ωl′

o (µ) = ∅, 1 ≤ l < l′ ≤ Ldom. If related to geometrical properties used as
input parameters (e.g. lengths, thicknesses, diameters or angles) the definition
of parametric mappings can be done in a quite intuitive fashionb. In the fol-
lowing we will identify Ωl = Ωl

o(µref), 1 ≤ l ≤ Ldom, and denote (11) the “RB
triangulation”; it will play an important role in the generation of the affine rep-
resentation (6),(10). Hence, original and reference subdomains must be linked
via a mapping T (·; µ) : Ωl → Ωl

o(µ), 1 ≤ l ≤ Ldom, such that

Ωl
o(µ) = T l(Ωl;µ), 1 ≤ l ≤ Ldom; (12)

these maps must be individually bijective, collectively continuous, and such that
T l(x;µ) = T l′(x; µ), ∀ x ∈ Ωl ∩ Ωl′ , for 1 ≤ l < l′ ≤ Ldom.
Here we consider the affine case, where the transformation is given, for any
µ ∈ D and x ∈ Ωl, by

T l
i (x,µ) = C l

i(µ) +

d∑

j=1

Gl
ij(µ)xj , 1 ≤ i ≤ d (13)

bThese regions can represent different material properties, but they can also be used for
algorithmic purposes to ensure well-behaved mappings.
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for given translation vectors Cl : D → R
d and linear transformation matrices

Gl : D → R
d×d. The linear transformation matrices can effect rotation, scaling

and/or shear and have to be invertible. The associated Jacobians can be defined
as J l(µ) = |det (Gl(µ))|, 1 ≤ l ≤ Ldom.

We next introduce the class of admissible operators. We may consider the
associated bilinear forms

ao(w, v;µ) =

Ldom∑

l=1

∫

Ωl
o(µ)

[
∂w

∂xo1

∂w

∂xo2
w

]
Ko,l(µ)




∂v

∂xo1

∂v

∂xo2

v


 (14)

where Ko,l : D → R
3×3, 1 ≤ l ≤ Ldom, are prescribed coefficientsc. In the

parabolic case, we also may consider

mo(w, v;µ) =

Ldom∑

l=1

∫

Ωl
o(µ)

wMo,l(µ)v (15)

where Mo,l : D → R represents the identity operator. Similarly, we require that
fo(·) and lo(·) are written as

fo(v) =

Ldom∑

l=1

∫

Ωl
o(µ)

Fo,l(µ)v, lo(v) =

Ldom∑

l=1

∫

Ωl
o(µ)

Lo,l(µ)v,

where Fo,l : D → R and Lo,l : D → R, for 1 ≤ l ≤ Ldom, are prescribed
coefficients. By identifying u(µ) = uo(µ) ◦ T (·;µ) in the elliptic case (resp.
u(t;µ) = uo(t; µ)◦T (·; µ) ∀t > 0 in the parabolic case), and tracing (14) back on
the reference domain Ω by the mapping T (·;µ), it follows that the transformed
bilinear form a(·, ·; µ) can be expressed as

a(w, v;µ) =

Ldom∑

l=1

∫

Ωl

[
∂w

∂x1

∂w

∂x2
w

]
Kl(µ)




∂v

∂x1

∂v

∂x2

v


 (16)

where Kl : D → R
3×3, 1 ≤ l ≤ Ldom, is a parametrized tensor given by

Kl(µ) = J l(µ)Gl(µ)Ko,l(µ)(Gl(µ))T

cHere, for 1 ≤ l ≤ Ldom, Ko,l : D → R
3×3 is a given SPD matrix (which in turn ensures

coercivity of the bilinear form): the upper 2 × 2 principal submatrix of Ko,l is the usual
tensor conductivity/diffusivity; the (3, 3) element of Ko,l represents the identity operator (“mass
matrix”) and is equal to Mo,l; and the (3, 1), (3, 2) (and (1, 3), (2, 3)) elements of Ko,l – which
we can choose here as zero thanks to the current restriction to symmetric operators – permit
first derivative terms to take into consideration transport/convective terms.
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and Gl : D → R
3×3 is given by

Gl(µ) =

(
(Gl(µ))−1 0

0 1

)
, 1 ≤ l ≤ Ldom.

In the same way, the transformed bilinear form m(·, ·;µ) can be expressed as

m(w, v;µ) =

Ldom∑

l=1

∫

Ωl

wMl(µ)v (17)

where Ml : D → R, 1 ≤ l ≤ Ldom, Ml(µ) = J l(µ)Mo,l(µ). The transformed
linear forms can be expressed similarly as

f(v) =

Ldom∑

l=1

∫

Ω

Fl(µ)v, l(v) =

Ldom∑

l=1

∫

Ω

Ll(µ)v,

where Fl : D → R and Ll : D → R are given by Fl = J l(µ)Fo,l(µ), Ll =
J l(µ)Lo,l(µ), for 1 ≤ l ≤ Ldom. Hence, the original problem has been reformu-
lated on a reference configuration, resulting in a parametrized problem where the
effect of geometry variations is traced back onto its parametrized transformation
tensors. The affine formulation (6) (resp. (6) and (10)) can then be derived by
simply expanding the expression (16) (and (17)) in terms of the subdomains Ωl

and the different entries of K l
ij . This results, for example, in

a(w, v;µ) = K11
1 (µ)

∫

Ω1

∂w

∂x1

∂v

∂x1
+K12

1 (µ)

∫

Ω1

∂w

∂x1

∂v

∂x2
+ · · · (18)

The affine representation is now clear: for each term in (18) the (parameter-
independent) integral represents aq(w, v), while the (parameter-dependent) pref-
actor represents Θq(µ); the bilinear form m admits a similar treatment. The
process by which we map this original problem to the transformed problem can
be largely automated [1]. There are many ways in which we can relax the given
assumptions and thus treat an even broader class of problems; for example, we
may consider “elliptical” or “curvy” triangular subdomains [1]; we may consider
non-time-invariant bilinear forms a and m; we may consider coefficient functions
K, M which are polynomial in the spatial coordinate (or more generally approx-
imated by the Empirical Interpolation Method [26]). Some generalizations will
be addressed in Sect. 7 and can be pursued by modification of the method pre-
sented in Sect. 4: in general, increased complexity in geometry and operator
will result in more terms in affine expansions – larger – with a corresponding
increase in the reduced basis (Online) computational costs.

4 The Reduced Basis Method

We discuss in this section all the details related to the construction of the reduced
basis approximation in both the elliptic and the parabolic case, for rapid and
reliable prediction of engineering outputs associated with parametrized PDEs.
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4.1 Elliptic case

We assume that we are given a FE approximation space XN of (typically very
large) dimension N . Hence, the FE discretization of problem (2)-(3) [29, 30] is
as follows: given µ ∈ D, evaluate

sN (µ) = ℓ(uN (µ)), (19)

where uN (µ) ∈ XN satisfies

a(uN (µ), v;µ) = f(v), ∀ v ∈ XN . (20)

We then introduce, given a positive integer Nmax, an associated sequence of
(what shall ultimately be reduced basis) approximation spaces: forN = 1, . . . , Nmax,
XN

N is a N -dimensional subspace of XN ; we further suppose that they are nested
(or hierarchical), i.e. XN

1 ⊂ XN
2 ⊂ · · ·X

N
Nmax

⊂ XN ; this condition is funda-
mental in ensuring (memory) efficiency of the resulting RB approximation. We
recall from Sect. 2 that there are several classical RB proposals – Taylor, La-
grange, and Hermite spaces – as well as many different approaches, such as POD
spaces. Even if we focus on Lagrange RB spaces, much of what is presented in
this paper – in particular, concerning the discrete formulation, Offline-Online
procedures and a posteriori error estimation – shall be relevant to any of these
RB spaces/approximations, even if they are not of immediate application in in-
dustrial problems (where we want to preserve the Offline-Online procedure and
hierarchical spaces).

In order to define a (hierarchical) sequence of Lagrange spaces XN
N , 1 ≤ N ≤

Nmax, we first introduce a “master set” of properly selected parameter points
µn ∈ D, 1 ≤ n ≤ Nmax. We then define, for given N ∈ {1, . . . , Nmax}, the
Lagrange parameter samples

SN = {µ1, . . . ,µN} , (21)

and associated Lagrange RB spaces

XN
N = span{uN (µn), 1 ≤ n ≤ N} ; (22)

the uN (µn), 1 ≤ n ≤ Nmax, are often referred to as “(retained) snapshots” of the
parametric manifold MN and are obtained by solving the FE problem (20) for
µn, 1 ≤ n ≤ Nmax. It is clear that, if indeed the manifold is low-dimensional and
smooth, then we would expect to well approximate any member of the manifold
– any solution uN (µ) for some µ in D – in terms of relatively few retained
snapshots. However, we must ensure that we can choose a good combination of
the available retained snapshots; represent the retained snapshots in a stable RB
basis, efficiently obtain the associated RB basis coefficients; and finally choose
the retained snapshots (i.e., the sample SNmax) in an optimal way. The sampling
strategy used to build the set SN will be discussed in Sect. 5.
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4.1.1 Galerkin Projection

For our particular class of equations, Galerkin projection is arguably the best
approach. Given µ ∈ D, evaluate (recalling the compliance assumption)

sNN (µ) = f(uNN (µ)), (23)

where uNN (µ) ∈ XN
N ⊂ X

N (or more precisely, uN
XN

N
(µ) ∈ XN

N ) satisfies

a(uNN (µ), v;µ) = f(v), ∀ v ∈ XN
N . (24)

We immediately obtain the classical optimality result in the energy normd:

|||uN (µ)− uNN (µ)|||µ ≤ inf
w∈XN

N

|||uN (µ)− w|||µ ; (25)

in the energy norm, the Galerkin procedure automatically selects the best com-
bination of snapshots; moreover, we have that

sN (µ)− sNN (µ) = |||uN (µ)− uNN (µ)|||2
µ
, (26)

i.e. the output converges as the “square” of the energy error. Although this latter
result depends critically on the compliance assumption, extension via adjoint
approximations to the non-compliant case is possible; we discuss this further in
Sect. 7.

We now consider the discrete equations associated with the Galerkin ap-
proximation (24). First of all, we apply the Gram-Schmidt process to snapshots
uN (µn), 1 ≤ n ≤ Nmax, to obtain mutually (·, ·)X–orthonormal basis functions
ζNn , 1 ≤ n ≤ Nmax. Then, the RB solution can be expressed as:

uNN (µ) =
N∑

m=1

uNN m(µ)ζNm ; (27)

by taking v = ζNn , 1 ≤ n ≤ N , into (24) and using (27), we obtain the RB
“stiffness” equations

N∑

m=1

a(ζNm , ζ
N
n ; µ) uNN m(µ) = f(ζNn ), (28)

for the RB coefficients uNN m(µ), 1 ≤ m,n ≤ N ; we can subsequently evaluate
the RB output as

sNN (µ) =

N∑

m=1

uNN m(µ)f(ζNm ) . (29)

dUnder the coercivity and the symmetry assumptions, the bilinear form a(·, ·; µ) defines a
(energy) scalar product given by ((w, v))µ := a(w, v; µ) ∀w, v ∈ X; the induced energy norm

is given by |||w|||µ = ((w, w))
1/2
µ .
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4.1.2 Offline-Online Procedure

The system (28) is nominally of small size: a set ofN linear algebraic equations in
N unknowns. However, the formation of the stiffness matrix, and indeed the load
vector, involves entities ζNn , 1 ≤ n ≤ N, associated with our N -dimensional FE
approximation space. Fortunately, we can appeal to affine parameter dependence
to construct very efficient Offline-Online procedures. In particular, system (28)
can be expressed, thanks to (6), as

N∑

m=1

( Q∑

q=1

Θq(µ) aq(ζNm , ζ
N
n )

)
uNN m(µ) = f(ζNn ),

for 1 ≤ n ≤ N . The equivalent matrix form is




Qa∑

q=1

Θq
a(µ)Aq

N


uN (µ) = fN , (30)

where (uN (µ))m = uNN m(µ) and

(Aq
N )mn = aq(ζNm , ζ

N
n ), (fN )n = f(ζNn ),

for 1 ≤ m,n ≤ Nmax. Since each basis function ζNn belongs to the FE space XN ,
they can be written as

ζNn =
N∑

i=1

ζNn iφi, 1 ≤ n ≤ Nmax,

i.e. as a linear combination of the FE basis functions {φi}
N
i=1; therefore, the

RB “stiffness” matrix can be assembled once the corresponding FE “stiffness”
matrix has been computed. Then, by denoting

Z = [ ζ1 | . . . | ζN ] ∈ R
N×N , 1 ≤ N ≤ Nmax,

we have that
Aq

N = ZTAq
NZ, fN = ZTFN ,

being
(Aq

N )ij = aq(φj , φi), (FN )i = f(φi)

the structures given by the FE discretization. In this way, computation entails an
expensive µ-independent Offline stage performed only once and an Online stage
for any chosen parameter value µ ∈ D. During the former the FE structures
{Aq

N }
Qa
q=1 and FN , as well as the snapshots {uN (µn)}Nmax

n=1 and the corresponding

orthonormal basis {ζNn }
Nmax

n=1 , are computed and stored. In the latter, for any
given µ, all the Θa

q(µ) coefficients are evaluated, and theN×N linear system (30)
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is assembled and solved, in order to get the RB approximation uNN (µ). Then, the
RB output approximation is obtained through the simple scalar product (38).
Although being dense (rather than sparse as in the FE case), the system matrix
is very small, with a size independent of the FE space dimension N .

The Online operation count is O(QN2) to get and O(N3) to invert the matrix
in (30), and finally O(N) to effect the inner product (38). The Online storage is
– thanks to the hierarchy assumption – only O(QN2

max)+O(Nmax): for any given
N , we may extract the necessary RB N ×N matrices (respectively, N -vectors)
as principal submatrices (respectively, principal subvectors) of the correspond-
ing Nmax × Nmax (respectively, Nmax) quantities. The Online (marginal) cost
(operation count and storage) to evaluate µ→ sNN (µ) is thus independent of N .

4.2 Parabolic case

We next introduce the finite difference in time and finite element (FE) in space
discretization [29, 30] of the parabolic problem (8). We first divide the time
interval I into K subintervals of equal length ∆t = tf/K and define tk = k∆t,
0 ≤ k ≤ K and define the FE approximation space XN . Hence, given µ ∈ D,
we look for uN k(µ) ∈ X, 0 ≤ k ≤ K, such that

1

∆t
m(uN k(µ)− uN k−1(µ), v;µ) + a(uN k(µ), v;µ)

= g(tk)f(v), ∀v ∈ XN , 1 ≤ k ≤ K, (31)

subject to initial condition (uN 0, v) = (u0, v),∀v ∈ X
N . We then evaluate the

output (recalling the compliance assumption): for 0 ≤ k ≤ K,

sN k(µ) = f(uN k(µ)). (32)

We shall sometimes denote uN k(µ) as uN (tk; µ) and sN k(µ) as sN (tk; µ) to
more clearly identify the discrete time levels. Under the coercivity assumption
(9) of the bilinear form a(·, ·;µ) and the smoothness assumption of Θq

a,m(µ)
coefficients,

MN K = {uN k(µ) : 1 ≤ k ≤ K, µ ∈ D}, (33)

the analogous entity of (33) in the parabolic case, lies on a smooth (p + 1)-
dimensional manifold in XN .

Equation (31) – Backward Euler-Galerkin discretization of (8) – shall be
our point of departure: we shall presume that ∆t is sufficiently small and N is
sufficiently large such that uN (tk;µ) and sN (tk;µ) are effectively indistinguish-
able from u(tk; µ) and s(tk;µ), respectively. The development readily extends
to Crank-Nicholson or higher order discretization; for purposes of exposition, we
consider the simple Backward Euler approach.

The RB approximation in this case [31, 24] is based on RB spaces XN
N ,

1 ≤ N ≤ Nmax, generated by a sampling procedure which combines spatial
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snapshots in time and parameter – uN k(µ) – in an optimal fashion (see Sect. 5).
Given µ ∈ D, we now look for uk

N (µ) ∈ XN
N , 0 ≤ k ≤ K, such that

1

∆t
m(uk

N (µ)− uk−1
N (µ), v;µ) + a(uk

N (µ), v; µ)

= g(tk)f(v), ∀v ∈ XN
N , 1 ≤ k ≤ K, (34)

subject to (u0
N (µ), v) = (uN 0, v),∀v ∈ XN

N . We then evaluate the associated
output: for 0 ≤ k ≤ K,

sk
N (µ) = f(uk

N (µ)). (35)

We shall sometimes denote uk
N (µ) as uN (tk;µ) and sk

N (µ) as sN (tk;µ) to more
clearly identify the discrete time levels. (Note that all the RB quantities should
bear a N – XN

N , u
N k
N (µ), sN k

N (µ) – since the RB approximation is defined in
terms of the truth discretization; however, for clarity of exposition, we shall
typically suppress this superscript.)

We now develop the algebraic equations associated with (34)-(35). First of
all, the RB approximation uk

N (µ) ∈ XN
N shall be expressed as

uk
N (µ) =

N∑

m=1

uk
N m(µ)ζNm , (36)

given a set of mutually (·, ·)X orthogonal basis functions ζNn ∈ XN , 1 ≤ n ≤
Nmax, and corresponding (hierarchical) RB spaces

XN = span{ ξn, 1 ≤ n ≤ N }, 1 ≤ N ≤ Nmax.

By taking v = ζNn , 1 ≤ n ≤ N , into (34) and using (36), we obtain:

1

∆t

N∑

m=1

m(ζNm , ζ
N
n ;µ)uk

N m(µ) +

N∑

m=1

a(ζNm , ζ
N
n ;µ) uk

N m(µ)

= f(ζNn ) +
1

∆t

N∑

m=1

m(ζNm , ζ
N
n ;µ)uk−1

N m(µ), (37)

for the RB coefficients uNN m(µ), 1 ≤ m,n ≤ N ; we can subsequently evaluate
the RB output as

sk
N (µ) =

N∑

m=1

uk
N m(µ)f(ζNm ) . (38)

The equivalent matrix form is




Qa∑

q=1

Θq
a(µ)Aq

N +
1

∆t

Qm∑

q=1

Θq
m(µ)Mq

N


uN (µ) = fN +

1

∆t

Qm∑

q=1

Θq
m(µ)Mq

N , (39)
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Figure 2: Comparison between the finite element and the reduced basis approximation
frameworks: δτN is the marginal computational time for a single FE field/output ap-
proximation, while δτN is the marginal computational time for a single RB field/output
(Online) evaluation, provided the data structures assembled and stored during the Of-
fline stage (courtesy A. T. Patera, http://augustine.mit.edu).

where (uk
N (µ))m = uk

N m(µ) and

(Mq
N )mn = mq(ζNm , ζ

N
n ), 1 ≤ m,n ≤ Nmax;

other terms are the same as in the elliptic case (see Sect. 4.1.1-4.1.2). Moreover,
also the RB mass terms can be computed from the FE mass terms as

Mq
N = ZTMq

NZ, where (Mq
N )ij = mq(φj , φi),

being {φi}
N
i=1 the basis of the FE space XN .

The Offline-Online procedure is now straightforward; in particular, the un-
steady case is very similar to the steady case discussed before. There are a
few new twists: as regards storage, we must now append to the elliptic Offline
dataset an affine development for the mass matrix Mq

N , 1 ≤ q ≤ Qm associated
with the unsteady term; as regards computational complexity, we must multiply
the elliptic operation counts by K to arrive at O(KN3) (in fact, O(KN2) for
a linear time-invariant system) for the Online operation count, where K is the
number of time steps (recall that in actual practice the “truth” is discrete in
time). Thus, the Online evaluation of sN (µ) remains independent of N even in
the unsteady case.
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5 Sampling strategies

We now review two sampling strategies used for the construction of RB spaces:
a greedy procedure for the elliptic case and a combined POD-greedy procedure
for the parabolic case. Let us denote by Ξ a finite sample of points in D, which
shall serve as surrogates for D in the calculation of errors (and error bounds)
over the parameter domain.

5.1 Elliptic case

We denote the particular samples which shall serve to select the RB space –
or “train” the RB approximation – by Ξtrain. The cardinality of Ξtrain will be
denoted |Ξtrain| = ntrain. We note that although the “test” samples Ξ serve
primarily to understand and assess the quality of the RB approximation and
a posteriori error estimators, the “train” samples Ξtrain serve to generate the
RB approximation. The choice of ntrain and Ξtrain thus have important Offline
and Online computational implications. Moreover, let us denote ǫ∗tol a chosen
tolerance for the stopping criterium of the greedy algorithm.
The greedy sampling strategy can be implemented as follows:

S1 = {µ1}; compute uN (µ1);

X1 = span{uN (µ1)};
for N = 2 : Nmax

µN = arg maxµ∈Ξtrain
∆N−1(µ);

εN−1 = ∆N−1(µ
N );

if εN−1 ≤ ǫ
∗
tol

Nmax = N − 1;

end;

compute uN (µN );

SN = SN−1 ∪ {µ
N};

XN = XN
N−1 ∪ span{uN (µN )};

end.

As we shall describe in detail in Sect. 6, ∆N (µ) is a sharp, (asymptotically)
inexpensive a posteriori error bound for ‖uN (µ)− uN

XN
N

(µ)‖X .

Roughly, at iteration N the greedy algorithm appends to the retained snap-
shots that particular candidate snapshot – over all candidate snapshots uN (µ),
µ ∈ Ξtrain – which is (predictede by the a posteriori error bound to be the) least
well approximated by (the RB prediction associated to) XN

N−1. We refer to [32]
for a general analysis of the greedy algorithm and related convergence rates.

eClearly the accuracy and cost of the a posteriori error estimator ∆N (µ) are crucial to the
success of the greedy algorithm.
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5.2 Parabolic case

The temporal evolution case is quite different: the greedy approach [31] can
encounter difficulties best treated by incorporating elements of the POD selection
process [22]. Our sampling method thus combine the POD in tk – to capture
the causality associated with the evolution equation – with the greedy procedure
in µ [31, 18, 1] – to treat efficiently the higher dimensions and more extensive
ranges of parameter variation.
To begin, we summarize the basic POD optimality property: given J elements
wj ∈ X

N , 1 ≤ j ≤ J , POD({w1, . . . , wJ},M) returnsM < J (·, ·)X -orthonormal
functions {χm, 1 ≤ m ≤ M} such that the space PM = span{χm, 1 ≤ m ≤ M}
is optimal, i.e.

PM = arg inf
YM⊂span{wj,1≤j≤J}

(
1

J

J∑

j=1

inf
v∈YM

‖wj − v‖
2
X

)1/2

,

where YM denotes an M -dimensional linear space.
To initiate the POD-greedy sampling procedure we must specify Ξtrain, an

initial sample S∗ = {µ∗
0} and a tolerance ǫ∗tol. The algorithm depends on two

suitable integers M1 and M2 (the criterium behind their setting is addressed
later) and reads as follows:

Set Z = ∅, S∗ = {µ∗
0}, µ∗ = µ∗

0;

While N ≤ Nmax,0

{χm, 1 ≤ m ≤M1} =

POD({uN (tk,µ∗), 1 ≤ k ≤ K},M1) ;
Z ← {Z, {χm, 1 ≤ m ≤M1}} ;

N ← N +M2 ;

{ξn, 1 ≤ n ≤ N} = POD(Z, N) ;

XN = span{ξn, 1 ≤ n ≤ N} ;

µ∗ = arg maxµ∈Ξtrain
∆N (tK = tf ;µ)

S∗ ← {S∗, µ∗} ;

end.

Set XN = span{ξn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax.

As we shall describe in detail in Sect. 6, ∆N (tk; µ) provides a sharp inexpensive
a posteriori error bound for ‖uN (tk;µ)−uN

XN
N

(tk;µ)‖X . In practice, we exit the

POD-greedy sampling procedure at N = Nmax ≤ Nmax,0 for which a prescribed
error tolerance is satisfied: to wit, we define

ǫ∗N,max = max
µ∈Ξtrain

∆N (tK ;µ),

and terminate when ǫ∗N,max ≤ ǫ∗tol. Note, by virtue of the final re–definition,
the POD-greedy generates hierarchical spaces XN , 1 ≤ N ≤ Nmax, which is
computationally very advantageous.
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We choose M1 to satisfy an internal POD error criterion based on the usual
sum of eigenvalues and ǫ∗tol; we choose M2 ≤ M1 to minimize duplication in
the RB space. It is important to note that the POD-greedy method readily
accommodates a repeat µ∗ in successive greedy cycles – new information will
always be available and old information rejected; in contrast, a pure greedy ap-
proach in both t and µ [31], though often generating good spaces, can “stall.”
Furthermore, since the POD is conducted in only one (time) dimension – with
the greedy addressing the remaining (parameter) dimensions – the procedure
remains computationally feasible even for large parameter domains and very
extensive parameter train samples (and in particular in higher parameter di-
mensions).

Concerning the computational aspects, the crucial point is that the operation
count for the POD-greedy algorithm is additive and not multiplicative in ntrain

and N ; in contrast, in a pure POD approach, we would need to evaluate the FE
“truth” solution at the ntrain candidate parameter values. As a result, in the
POD-greedy approach we can take ntrain relatively large: we can thus anticipate
RB spaces and approximations that provide rapid convergence uniformly over
the parameter domain.

6 A posteriori error estimation

Effective a posteriori error bounds for field variables and outputs of interest
are crucial for both the efficiency and the reliability of RB approximations. As
regards efficiency , a posteriori error estimation permits us to (inexpensively)
control the error, as well as to minimize the computational effort by controlling
the dimension of the RB space. Not only, in the greedy algorithm the application
of error bounds (as surrogates for the actual error) allows significantly larger
training samples Ξtrain ⊂ D and a better parameter space exploration at greatly
reduced Offline computational cost. Concerning reliability , a posteriori error
bounds allows a confident exploitation of the rapid predictive power of the RB
approximation. By means of an efficient a posteriori error bound, we can make
up for an error quantification for each new parameter value µ in the online
stage and thus can make sure that feasibility (and safety/failure) conditions are
verified.

The motivations for error estimation in turn place requirements on the error
bounds. First, the error bounds must be rigorous – valid for all N and for all
parameter values in the parameter domain D: non-rigorous error “indicators”
may suffice for adaptivity during basis assembling, but not for reliability. Second,
the bounds must be reasonably sharp: an overly conservative error bound can
yield inefficient approximations (N too large) or even dangerous suboptimal
engineering results (unnecessary safety margins). And third, the bounds must
be very efficient : the Online operation count and storage to compute the RB
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error bounds – the marginal average cost – must be independent of N (and
commensurate with the cost associated with the RB output prediction).

6.1 Elliptic case

Let us now consider a posteriori error bounds for the field variable uNN (µ) and the
output sNN (µ) in the elliptic case (23)-(24). We introduce two basic ingredients
of our error bounds: the error residual relationship and coercivity lower bounds.

6.1.1 Basic ingredients

The central equation in a posteriori theory is the error residual relationship. In
particular, it follows from the problem statements for uN (µ), (20), and uNN (µ),
(24), that the error e(µ) := uN (µ)− uNN (µ) ∈ XN satisfies

a(e(µ), v;µ) = r(v;µ), ∀ v ∈ XN . (40)

Here r(v; µ) ∈ (XN )′ (the dual space to XN ) is the residual,

r(v;µ) := f(v;µ)− a(uNN (µ), v;µ), ∀ v ∈ XN . (41)

Indeed, (40) directly follows from the definition (41), f(v;µ) = a(uN (µ), v;µ),
∀ v ∈ XN , bilinearity of a, and the definition of e(µ). It shall prove convenient
to introduce the Riesz representation of r(v;µ): ê(µ) ∈ XN satisfies

(ê(µ), v)X = r(v; µ), ∀ v ∈ XN . (42)

This allows us to write the error residual equation (40) as

a(e(µ), v;µ) = (ê(µ), v)X , ∀ v ∈ XN (43)

and it follows that the dual norm of the residual can be evaluated through the
Riesz representation:

‖r( · ; µ)‖(XN )′ := sup
v∈XN

r(v;µ)

‖v‖X
= ‖ê(µ)‖X ; (44)

this shall prove to be important for the Offline-Online stratagem developed in
Sect. 6.1.3 below.

As a second ingredient, we need a positive lower bound αN
LB(µ) for αN (µ),

the FE coercivity constantf defined as

αN (µ) = inf
w∈XN

a(w,w;µ)

‖w‖2X
; (45)

fAs we assumed that the bilinear form is coercive and the FE approximation spaces are
conforming, it follows that αN (µ) ≥ α(µ) ≥ α0 > 0, ∀µ ∈ D.
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hence, we introduce

0 < αN
LB(µ) ≤ αN (µ) ∀µ ∈ D, (46)

where the online computational time to evaluate µ → αN
LB(µ) has to be inde-

pendent of N in order to fulfill the efficiency requirements on the error bounds
articulated before. An efficient algorithm for the computation of αN

LB(µ) is
given by the so-called Successive Constraint Method (SCM), widely analyzed
in [33, 1, 34]. Moreover, the SCM algorithm – which is based on the succes-
sive solution of suitable linear optimization problems – has been developed for
the special requirements of the RB method; it thus features an efficient Offline-
Online strategy, making the Online calculation complexity independent of N –
a fundamental requisite.

6.1.2 Error Bounds

We define error estimators for the energy norm and output as

∆N (µ) := ‖ê(µ)‖X
/
(αN

LB(µ))1/2 , (47)

and
∆s

N (µ) := ‖ê(µ)‖2X
/
αN

LB(µ) , (48)

respectively. We next introduce the effectivities associated with these error es-
timators as

ηN (µ) := ∆N (µ)
/
|||uN (µ)− uNN (µ)|||µ ,

and
ηs

N (µ) := ∆s
N (µ)

/
(sN (µ)− sNN (µ)) ,

respectively. Clearly, the effectivities are a measure of the quality of the proposed
estimator: for rigor, we shall insist upon effectivities ≥ 1; for sharpness, we
desire effectivities as close to unity as possible. We can proveg [1] that for any
N = 1, . . . , Nmax, the effectivities satisfy

1 ≤ ηen
N (µ) ≤

√
γ(µ)

αN
LB(µ)

, ∀ µ ∈ D , (49)

1 ≤ ηs
N (µ) ≤

γ(µ)

αN
LB(µ)

, ∀ µ ∈ D , (50)

γ(µ) being defined in (4). It is important to observe that the effectivity upper
bounds, (49) and (50), are independent of N , and hence stable with respect to
RB refinement .

gSimilar results can be obtained for the a posteriori error bounds in the X norm.
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6.1.3 Offline-Online for ‖ê(µ)‖X computation

The error bounds of the previous section are of no utility without an accompa-
nying Offline-Online computational approach.

The computationally crucial component of all the error bounds of the pre-
vious section is ‖ê(µ)‖X , the dual norm of the residual. To develop an Offline-
Online procedure we first expand the residual (41) according to (27) and (6):

r(v;µ) = f(v)− a
( N∑

n=1
uNNn(µ) ζNn , v;µ

)

= f(v)−
N∑

n=1
uNNn(µ) a(ζNn , v;µ)

= f(v)−
N∑

n=1
uNNn(µ)

Q∑
q=1

Θq(µ) aq(ζNn , v).

(51)

If we insert (51) in (42) and apply linear superposition, we obtain

(ê(µ), v)X = f(v)−

Q∑

q=1

N∑

n=1

Θq(µ) uNNn(µ) aq(ζNn , v),

or

ê(µ) = C +

Q∑

q=1

N∑

n=1

Θq(µ) uNNn(µ) Lq
n ,

where (C, v)X = f(v), ∀ v ∈ XN , i.e. C is the Riesz representation of f , and
(Lq

n, v)X = −aq(ζNn , v), ∀ v ∈ XN , 1 ≤ n ≤ N , 1 ≤ q ≤ Q, i.e. Lq
n is the

Riesz representation of Aq
n ∈ (XN )′ defined as Aq

n(v) = aq(ζNn , v), ∀v ∈ XN .
We denote the C, Lq

n, 1 ≤ n ≤ N , 1 ≤ q ≤ Q, as FE “pseudo”–solutions, i.e.
solutions of “associated” FE Poisson problems. We thus obtain

‖ê(µ)‖2X

= (C, C)X +
Q∑

q=1

N∑
n=1

Θq(µ) uNNn(µ)
{

2(C,Lq
n)X

+
Q∑

q′=1

N∑
n′=1

Θq′(µ) uNNn′(µ) (Lq
n,L

q′

n′)X

}
,

(52)

from which we can directly calculate the requisite dual norm of the residual
through (44).

The Offline-Online decomposition is now clear. In the Offline stage we form
the µ-independent quantities. In particular, we compute the FE “pseudo”–
solutions C,Lq

n, 1 ≤ n ≤ Nmax, 1 ≤ q ≤ Q, and store (C, C)X , (C,Lq
n)X ,

(Lq
n,L

q′

n′)X , 1 ≤ n, n′ ≤ Nmax, 1 ≤ q, q′ ≤ Q. The Offline operation count
depends on Nmax, Q, and N .
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In the Online stage, given any “new” value of µ – and Θq(µ), 1 ≤ q ≤ Q,
uNN n(µ), 1 ≤ n ≤ N – we simply retrieve the stored quantities (C, C)X , (C,Lq

n)X ,

(Lq
n,L

q′

n′)X , 1 ≤ n, n′ ≤ N , 1 ≤ q, q′ ≤ Q, and then evaluate the sum (52). The
Online operation count, and hence also the marginal cost, is O(Q2N2) – and
independent of N .h

6.2 Parabolic case

In this section we deal with a posteriori error estimation in the reduced basis
context for affinely parametrized parabolic coercive PDEs. As for the elliptic
case, to construct the a posteriori error bounds we need two ingredients. The
first ingredient is the dual norm of the residual

εN (tk; µ) = sup
v∈XN

rN (v; tk;µ)

‖v‖X
, 1 ≤ k ≤ K, (53)

where rN (v; tk;µ) is the residual associated with the RB approximation (34)

rN (v; tk;µ) = g(tk)f(v)−
1

∆t
m
(
uk

N (µ)− uk−1
N (µ), v;µ

)
(54)

− a
(
uk

N (µ), v;µ
)
, ∀v ∈ XN , 1 ≤ k ≤ K.

The second ingredient is a lower bound for the coercivity constant αN (µ), 0 <
αN

LB(µ) ≤ αN (µ), ∀µ ∈ D.
We can now define our error bounds in terms of these two ingredients; in

fact, it can readily be proven [31, 22] that for all µ ∈ D and all N ,

|||uN k(µ)− uk
N (µ)|||µ ≤ ∆k

N (µ), (55)

|sN k(µ)− sk
N (µ)| ≤ ∆s k

N (µ), 1 ≤ k ≤ K, (56)

where ∆k
N (µ) ≡ ∆N (tk;µ) and ∆s k

N (µ) ≡ ∆s
N (tk;µ) are given by

∆k
N (µ) =

(
∆t

αN
LB(µ)

k∑

k′=1

ε2N (tk
′
; µ)

)1/2

, (57)

∆s k
N (µ) = (∆k

N (µ))2 . (58)

(We assume for simplicity that uN 0 ∈ XN ; otherwise there will be an additional
contribution to ∆k

N (µ)).
Even if based on the same components as in the elliptic case, now the

Construction-Evaluation procedure for the error bound is a bit more involved.
The necessary computations for the Offline and Online stages – by construction

hIt thus follows that the a posteriori error estimation contribution to the cost of the greedy
algorithm of Sect. 5 is O(QNmaxN

·)+O(Q2N2
maxN )+O(ntrainQ2N3

max): we may thus choose
N and ntrain independently (and large).
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rather similar to the elliptic case – are discussed in details e.g. in [24]. We
consider here only the decomposition for the dual norm of the residual [31]. We
first invoke duality, our RB expansion, the affine parametric dependence of a
and m, and linear superposition to express

ε2N (tk;µ) = Qff
N +

N∑

n=1




Qa∑

q=1

Θq
a(µ)uk

N n(µ)Qfa
N nq +

1

∆t

Qm∑

q′=1

Θq′

m(µ)φk
N n(µ)Qfm

N nq′




+

N,N∑

n,n′=1




Qa,Qa∑

q,q′=1

Θq
a(µ)Θq′

a (µ)uk
N n(µ)uk

N n′(µ)Qaa
N nn′qq′

+
1

(∆t)2

Qm,Qm∑

q,q′=1

Θq
m(µ)Θq′

m(µ)φk
N n(µ)φk

N n′(µ)Qmm
N nn′qq′

+
1

∆t

Qa,Qm∑

q,q′=1

Θq
a(µ)Θq′

m(µ)uk
N n(µ) φk

N n′(µ)Qam
N nn′qq′

N,N∑

n,n′=1


 , (59)

for 1 ≤ k ≤ K, where φk
N n(µ) := uk

N n(µ) − uk−1
N n (µ) and Qff

N = (zf , zf )X ,

Qfa
N nq = 2(za

nq, z
f )X , 1 ≤ q ≤ Qa, 1 ≤ n ≤ N , Qfm

N nq = 2(zm
nq, z

f )X , 1 ≤ q ≤
Qm, 1 ≤ n ≤ N , Qaa

N nn′qq′ = (za
nq, z

a
n′q′)X , 1 ≤ q, q′ ≤ Qa, 1 ≤ n, n′ ≤ N ,

Qam
N nn′qq′ = 2(za

nq, z
m
n′q′)X , 1 ≤ q ≤ Qa, 1 ≤ q′ ≤ Qm, 1 ≤ n, n′ ≤ N , and

Qmm
N nn′qq′ = (zm

nq, z
m
n′q′)X , 1 ≤ q, q′ ≤ Qm, 1 ≤ n, n′ ≤ N . Here the zf , za

nq,
zm
nq′ are solutions to time–independent and µ–independent “Poisson” problems:

(zf , v)X = f(v), ∀v ∈ XN , (za
nq, v)X = −aq(ξn, v), ∀v ∈ XN , 1 ≤ n ≤ N ,

1 ≤ q ≤ Qa, and (zm
nq′ , v)X = −mq′(ξn, v), ∀v ∈ X

N , 1 ≤ n ≤ N , 1 ≤ q′ ≤ Qm.
The Construction-Evaluation decomposition is now clear. In the µ-indepen-

dent construction stage we find zf , za, zm, and the inner productsQff
Nmax

, Qfa
Nmax

,

Qfm
Nmax

, Qaa
Nmax

, Qmm
Nmax

, andQam
Nmax

at (considerable) computational cost O(Q·aQ
·
m

N ·maxN
·). In the µ-dependent Evaluation stage – performed many times – we

simply perform the sum (59) from the stored inner products in O((1 +QmN +
QaN)2) operations per time step and hence O((1+QmN+QaN)2K) operations
in total. The crucial point, again, is that the cost and storage in the Evaluation
phase – the marginal cost for each new value of µ – is independent of N : thus
we can not only evaluate our output prediction but also our rigorous output
error bound very rapidly in the parametrically interesting contexts of real-time
or many-query investigation.

7 Extensions to more general problems

We now briefly discuss some extensions of the reduced basis methodology pre-
sented in Sect. 4 to address more general classes of problems, also to face indus-
trial problems of a certain degree of complexity.
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7.1 Non-compliant problems

For the sake of simplicity, we addressed in Sect. 4 the RB approximation of
affinely parametrized coercive problems in the compliant case. We now consider
the elliptic case and the more general non-compliant problem: given µ ∈ D, find

s(µ) = ℓ(u(µ)) , (60)

where u(µ) ∈ X satisfies

a(u(µ), v;µ) = f(v), ∀ v ∈ X . (61)

We assume that a is coercive and continuous (and affine, (6)) but not necessarily
symmetric. We further assume that both ℓ and f are bounded functionals but
we no longer require ℓ = f .i Following the methodology (and the notation)
addressed in Sect. 4, we can readily develop an a posteriori error bound for
sN (µ): by standard arguments [1, 2]

|sN (µ)− sNN (µ)| ≤ ||ℓ||(XN )′∆N (µ)

where |||uN (µ)−uNN (µ)|||µ ≤ ∆N (µ) and ∆N (µ) is given by (47). We denote the
method already illustrated as “primal-only”. Although for many outputs primal-
only is perhaps the best approach (each additional output, and associated error
bound, is a simple “add-on”), this approach has two deficiencies:

(i) we loose the “quadratic convergence” effect (26) for outputs (unless ℓ = f
and a is symmetric);

(ii) the effectivities ∆s
N (µ)/|s(µ)−sN (µ)| may be unbounded: if ℓ = f then we

know, from (26), that |s(µ)− sN (µ)| ∼ ||ê(µ)||2X and hence ∆s(µ)/|s(µ)−
sN (µ)| ∼ 1/||ê(µ)||X → ∞ as N → ∞, i.e. the effectivity of the output
error bound (48) tends to infinity as (N → ∞ and) uNNpr(µ) → uN (µ).
We may expect similar behavior for any ℓ “close” to f : the failing is that
(48) does not reflect the contribution of the test space to the convergence
of the output.

The introduction of RB primal-dual approximation will take care of the pre-
vious issue – and ensure a stable limit N → ∞. We thus introduce the dual
problem associated to ℓ, that reads as follows: find ψ(µ) ∈ X such that

a(v, ψ(µ);µ) = −ℓ(v), ∀ v ∈ X ;

ψ is denoted the “adjoint” or “dual” field. Let us define the RB spaces for the
primal and the dual problem, respectively:

XN ,pr
Npr

= span
{
uN (µk,pr) ≡ ζNk , 1 ≤ k ≤ Npr

}
,

iTypical output fuctionals correspond to the “integral” of the field u(µ) over an area or line
(in particular, boundary segment) in Ω. However, by appropriate lifting techniques, “integrals”
of the flux over boundary segments can also be considered.
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XN ,du
Ndu

= span
{

ΨN (µk,du), 1 ≤ k ≤ Ndu

}
;

for 1 ≤ Npr ≤ Npr,max, 1 ≤ Ndu ≤ Ndu,max. For our purposes a single FE space
suffices for both the primal and dual, even if in actual practice the FE primal
and dual spaces may be different. The resulting RB approximation uNNpr

∈

XN ,pr
Npr

,ΨNdu
∈ Xdu

Ndu
solve

a(uNNpr
(µ), v;µ) = f(v), ∀v ∈ XN ,pr

Npr
,

a(v,ΨN
Ndu

(µ);µ) = −ℓ(v), ∀v ∈ XN ,du
Ndu

;

then, the RB output can be evaluated as [35]

sNNpr,Ndu
(µ) = ℓ(uNNpr

)− rpr(ΨN
Ndu

;µ)

where
rpr(v; µ) = f(v)− a(uNNpr

, v;µ),

rdu(v;µ) = −ℓ(v)− a(v,ΨN
Ndu

;µ)

are the primal and the dual residual. In particular, in the non-compliant case,
the output error bound takes the form

∆s
N (µ) ≡

‖rpr( · ;µ)‖(XN )′

(αN
LB(µ))1/2

‖rdu( · ;µ)‖(XN )′

(αN
LB(µ))1/2

, (62)

We thus recover the “quadratic” output effect; note that the Offline-Online
procedure is very similar to the “primal-only” case, but now we need to do
everything both for primal and dual; moreover, we need to evaluate both a
primal and a dual residual for the a posteriori error bounds, but at a reasonable
computational cost and by reusing the same computational framework built and
set for the “primal-only” approach. Error bounds related to the gradient of
computed quantities, such as velocity and pressure in potential flows problems,
have been addressed in [36].

For parabolic problems, the treatment of non-compliant outputs follows the
same strategy; we only remark that the dual problem in this case shall evolve
backward in time [31].

7.2 Non-affine problems

The assumption of affine parametric dependence – expressed by conditions (6)
and (10) – is of fundamental importance in order to exploit the Offline-Online
stratagem and then minimize the marginal cost associated with each input-
output evaluation. However, also non-affine problems, i.e. problems in which
conditions (6) and (10) are not still valid, can be efficiently treated in the reduced
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basis framework. In this case, we rely on the Empirical Interpolation Method
(EIM) [26, 37, 38], which is an interpolation method for parametric functions
based on adaptively chosen interpolation points and global shape functions.

In practice, if the problem is not affinely parametrized (e.g. when the geo-
metric transformation (12) has a more general expression than in (13), or the
physical coefficients appearing in the tensor Ko,l are non-affine functions of x
and µ), the parametrized tensors in (16) and (17) depend both on the parameter
µ and the spatial coordinate x. In this case, the operators can not be expressed
as in (18) – and ultimately as (6) and (10). Hence, we need an additional
pre-processing, before the FE assembling stage, in order to recover the affinity
assumption. According to EIM, each component K l

ij(x,µ) is approximated by
an affine expression given by

K̃ l
ij(x,µ) =

Ka
ijl∑

k=1

βijl
k (µ)ηijl

k (x) + εijla (x,µ); (63)

the same approximation is set up for the components of the M l
ij(x,µ) tensor in

the parabolic case:

M̃ l
ij(x,µ) =

Km
ijl∑

k=1

γijl
k (µ)φijl

k (x) + εijlm (x,µ). (64)

All the coefficients βijl
k ’s, γijl

k ’s, ηijl
k ’s and φijl

k ’s are efficiently computable scalar
functions and the error terms are guaranteed to be under some tolerance,

‖εijla (·;µ)‖∞ ≤ ε
EIM
tol , ‖εijlm ‖∞ ≤ ε

EIM
tol , ∀µ ∈ D.

In this way, we can identify the µ-dependent coefficients in the developments
(63),(64) as the coefficients Θq

a(µ) (resp. Θq
m(µ)) in (6) and (10), i.e. Θq

a(µ) =

βijl
k (µ), Θq

m(µ) = γijl
k (µ), being q a condensed index for (i, j, k, l), while the µ-

independent functions will be treated as pre-factors in the integrals which give
the µ-independent bilinear forms aq(w, v) (resp. mq(w, v)).
We refer the reader to [26] and [39] for details on EIM procedures for non-affine
problems. The non-affine treatment is really important since many problems in-
volving more complex geometrical parametrizations and/or more complex phys-
ical instances (i.e. non homogeneous or non isotropic properties in materials)
are hold by non-affine parametric dependence.

7.3 Non-coercive problems

The reduced basis framework can be effectively applied also to problems involv-
ing operators which do not satisfy the (quite strict) coercivity assumption [18];
this is the case, for example, of the (Navier)-Stokes problem, where stability is in
fact fulfilled in the more general sense of the inf-sup condition [29]. For the sake
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of simplicity, we restrict our considerations to the elliptic (scalar) case (2)-(3).
We assume that the (parametrized) bilinear form a(·, ·;µ) : X1 × X2 → R is
continue and satisfies the more general inf-sup condition:

∃β0 > 0 : β(µ) := inf
w∈X1

sup
v∈X2

a(w, v; µ)

||w||X1 ||v||X2

≥ β0 ∀µ ∈ D. (65)

In this case the finite element (and thus the subsequent reduced basis) approx-
imation is based on a more general Petrov-Galerkin approach. Given two FE
spaces X1,N ⊂ X1,X2,N ⊂ X2, the FE approximation uN (µ) ∈ X1,N satisfies

a(uN (µ), v,µ) = f(v), ∀v ∈ X2,N ,

and the output can be evaluated asj

sN (µ) = l(uN (µ)).

In order to have a stable FE approximation, we require that exists β0 ≥ 0 such
that

βN (µ) = inf
w∈X1, N

sup
v∈X2, N

a(w, v;µ)

||w||X1 ||v||X2

≥ β0 ∀µ ∈ D. (66)

This condition can be reformulated in terms of the so-called inner supremizer
operator Tµ : X1,N → X2,N ,

(Tµw, v)X2 = a(w, v;µ), ∀w, v ∈ X2,N ;

by Cauchy-Schwarz inequality and taking v = Tµw, we have that for any w ∈
X1,

a(w, Tµw; µ) ≥ β||w||X1 ||Tµw||X2 .

The reduced basis approximation inherits the same Petrov-Galerkin structure;
in order to guarantee its stability, we need to introduce two different spaces (note
that the second is µ-dependent):

X1
N = span {u(µn), 1 ≤ n ≤ N} ,

X2, µ
N = span {Tµu(µn), 1 ≤ n ≤ N} ,

for 1 ≤ N ≤ Nmax; then uNN (µ) ∈ X1
N satisfies

a(uNN (µ), v; µ) = f(v), ∀v ∈ X2, µ
N ,

and
sN (µ) = l(uN (µ)).

jWe pursue here just a primal approximation, however we can readily extend the approach
to a primal-dual formulation as described for coercive problems in Sect. 7.1.
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If we define

βN (µ) ≡ inf
w∈X1

N

sup
v∈X2, µ

N

a(w, v; µ)

||w||X1 ||v||X2

, (67)

we obtain

||uN (µ)− uNN (µ)||X ≤

(
1 +

γ

βN (µ)

)
inf

wN∈X1
N

||uN (µ)− wN ||X1
,

which is the analogue of (25) for non-coercive problems. In this case we can
show that βN (µ) ≥ βN (µ), ∀µ ∈ D; this property, which yields the stability
of the RB approximation, is not automatically satisfied by a (simple) Galerkin
formulation; hence, we need to enforce this property through the introduction of
a Petrov-Galerkin framework. Observe that approximation is provided by X1

N

and stability (through βN ) by X2, µ
N .

The Offline-Online computational strategem, as well as the a posteriori error
estimation, are based on the same arguments described in Sect. 6 for the coercive
case; we remark that also the inner supremizer operator can be written in the
affine form under the affinity assumption (6) on a(·, ·;µ). In particular, from
(67), we can easily prove that

∆N (µ) ≡
||ê(µ)||X
βLB
N (µ)

,

where βLB
N (µ) is a lower bound of inf-sup constant (66) and can be computed

by means of the same SCM procedure used for the lower bound of coercivity
constants [34, 40].

An interesting case of noncoercive problems is given by Stokes problems
where approximation stability is guaranteed by the fullfillment of an equivalent
inf-sup stability condition on the pressure term with RB approximation spaces
properly enriched [41, 42]. Error bounds can be developed in the general non-
coercive framework [40] or with a penalty setting [43].

8 Working examples

Reduced basis methods have already been and may be applied in many problems
of industrial interest: material sciences and linear elasticity [44, 17, 45, 46], heat
and mass transfer [47, 48, 49, 50], acoustics [51], potential flows [36], micro-fluid
dynamics [40], electro-magnetism [52]; for examples of implementation of some
worked problems in the mentioned fields, see [53, 54] for a versatile setting.
In many of these problems there are physical or engineering parameters which
characterize the problem but also geometrical parameters holding a Cartesian
geometrical setting; this configuration is quite typical for industrial devices,
and plants and related constructions and products. More complex geometrical
parametrizations will be briefly considered in Sect. 9, involving for example
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biomedical devices and/or aerodynamic shapes.
We discuss in this sectionk three working examples of industrial interest, dealing
with different heat or mass transfer problems. The first example deals with
forced steady heat conduction/convection; the second application deals with a
transient heat treatment, while the third one is an example of a (simple) coupled
problem, dealing with the transient evolution of the concentration field near the
surface of a body immersed into a fluid flowing across a channel. All numerical
details concerning the construction of RB spaces and computational costs are
reported in Tab. 1.

8.1 A “Couette-Graetz” conduction-convection problem

This problem deals with forced steady heat convection combined with heat con-
duction in a straight duct, whose walls can be kept at fixed temperature or
insulated or characterized by heat exchange. The flow has an imposed tempera-
ture at the inlet and a known convection field (a Couette flow, i.e. a given linear
velocity profile [55]). From the engineering point of view, this example describes
a class of heat transfer problems in fluidic devices with a versatile configuration.
In particular, Péclet number as a measure of axial transport velocity field (mod-
eling the physics of the problem) and the length of the non-insulated portion of
the duct are only two of the possible parameters to be varied in order to extract
average temperatures. Also discontinuities in Neumann boundary conditions
(different heat fluxes) and thermal boundary layers are interesting phenomena
to be studied.

We consider the physical domain Ωo(µ) shown in Fig. 3; all lengths are non-
dimensionalized with respect to a unity length h̃ (dimensional channel width);
moreover, let us denote k̃ the dimensional (thermal) conductivity coefficient for
the air flowing in the duct, ρ̃ its density and c̃p the specific heat capacity under
constant pressure. We introduce the (thermal) diffusion coefficient D̃ = k̃/ρ̃c̃p,
as well as the Péclet number, given by the ratio Pe = Ũ h̃/D̃, being Ũ the
reference dimensional velocity for the convective field. We consider here P = 2
parameters: µ1 is the length of the non-insulated bottom portion of the duct
(unity heat flux), while µ2 represents the Péclet number; the parameter domain
is given by D = [1, 10]× [0.1, 100].

The solution u(µ), defined as the non-dimensional temperature u(µ) =
(τ − τin)/τin (where τ is the dimensional temperature, τin is the dimensional
temperature of the air at the inflow and in the first portion of the duct) satisfies

kAll over the section, Ωo(µ) denotes the original (physical) domain, whose generic point is
indicated as x = (x1, x2); for the sake of simplicity, we formulate all the problems in the original
domain, but remove all the subscripts o. Moreover, a tilde ˜ denotes dimensional quantities,
while the absence of a tilde signals a non-dimensional quantity.
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(0, 0) (1, 0) (1 + µ1, 0)

(1 + µ1, 1)(1, 1)(0, 1)

Figure 3: “Couette-Graetz” conduction-convection problem: parametrized geometry
and domain boundaries.

the following steady advection-diffusion equation:




−
1

µ2
∆u(µ) + x2

∂

∂x1
u(µ) = 0, in Ωo(µ)

1

µ2

∂u

∂n
(µ) = 0, on Γ1 ∪ Γ3

1

µ2

∂u

∂n
(µ) = 1, on Γ2

u(µ) = 0, on Γ4 ∪ Γ5 ∪ Γ6,

with summation (i, j = 1, 2) over repeated indices; hence, we impose the tem-
perature at the top walls and in the “inflow” zone of the duct (Γ6), while we
consider an insulated wall (zero heat flux on Γ1 and Γ3) or heat exchange at a
fixed rate (i.e. unity on Γ2) on other boundaries. We note that the forced con-
vection field is given by a linear velocity profile x2Ũ (Couette type flow). The
output of interest is the average temperature of the fluid on the non-insulated
portion of the bottom wall of the duct, given by

s(µ) := Tav(µ) =
1

µ1

∫

Γ2

u(µ).

This problem is then mapped to the fixed reference domain Ω and discretized
by piecewise linear finite elements; the dimension of the corresponding space is
N = 5433. Since we are in a noncompliant case, a further dual problem has to
be solved in order to obtain better output evaluations and related error bounds,
see Sect. 7.1. In particular, we show in Fig. 4 the lower bound of the coercivity
constant of the bilinear form associated to our problem.

We plot in Fig. 5 the convergence of the greedy algorithm for the primal and
the dual problem, respectively; with a fixed tolerance ǫ∗tol = 10−2, Npr,max = 21
andNdu,max = 30 basis have been selected, respectively. In Fig. 6 the selected pa-
rameter values SNpr for the primal and SNdu

for the dual problems, respectively,
are shown; in each case Ξtrain is a uniform random sample of size ntrain = 1000.
Moreover, in Fig. 7 some representative solutions (computed for N = Nmax) for
selected values of parameters are reported.
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Figure 4: “Couette-Graetz” conduction-convection problem: lower bound of the coer-
civity constant αN

LB(µ) as a function of µ.
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Figure 5: “Couette-Graetz” conduction-convection problem: relative errors
maxµ∈Ξtrain

(∆Npr
(µ)/‖uNNpr

(µ)‖X) and maxµ∈Ξtrain
(∆Ndu

(µ)/‖ψN
Ndu

(µ)‖X) as a func-

tion of Npr and Ndu for the RB approximations computed during the greedy procedure,
for the primal (left) and the dual (right) problem, respectively. Here Ξtrain is a uniform
random sample of size ntrain = 1000 and the RB tolerance is ǫ∗tol = 10−2.

The thermal boundary layer looks very different in the four cases. In partic-
ular, higher variations of temperature, as well as large gradients along the lower
wall – are remarkable for higher Péclet number, when forced convection dom-
inates steady conduction; moreover, the standard behavior of boundary layer
width – usually given by O(1/Pe) – is captured correctly. In Fig. 8 the RB
evaluation (for N = Nmax) of the output of interest is reported as a function
of the parameters, as well as the related error bound. As we can see, for low
values of µ2 (Péclet number) the dependence of the output on µ1 (geometrical
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Figure 6: “Couette-Graetz” conduction-convection problem: selected parameter values
SNpr

for the primal (left) and SNdu
for the dual (right) in the parameter space.
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Figure 7: “Couette-Graetz” conduction-convection problem: representative solutions
for µ = (1, 0.1), µ = (1, 100) (top), µ = (10, 0.1), µ = (10, 100) (bottom).

aspect) is rather modest; for high values of µ2, instead, the output shows a larger
variations wih respect to µ1. In the same way, for longer/shorter channels the
dependence on the Péclet number is higher/lower.
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8.2 A transient thermal treatment problem

This problem considers a transient thermal treatment on a sectional slice of a
railroad rail. Heat treatment is a method used to alter the physical, and some-
times chemical, properties of a material, which involves the use of heating or
chilling, normally to extreme temperatures, to achieve a desired result such as
hardening or softening of a material. Heat treatment techniques include an-
nealing, case hardening, precipitation strengthening, tempering, and quenching.
Although the most common application is metallurgical, heat treatments are
also used in the manufacturing of many other materials.

We consider here P = 2 parameters: µ2 is a geometrical parameter represent-
ing the thickness of the web connecting the top and the bottom of the railroad
rail slice (see Fig. 9), while µ1 denotes the non-dimensional Biot number, given
by Bi ≡ h̃cd̃/k̃. We assume that the railroad rail slice has thermal conductivity
k̃ and we characterize the heat transfer coefficient between the railroad section
and the fluid surrounding the railroad rail slice itself by a heat transfer coeffi-
cient h̃c; moreover, d̃ denotes the height of the slice of the railroad rail. The
parameter domain is given by D = [0.01, 10]× [0.02, 0.2].
The (non-dimensional) temperature distribution is denoted u(µ) (the depen-
dence of time is omitted for sake of simplicity) and is defined in terms of dimen-
sional temperature as u(µ) = (τ − τinit)/(τenv− τinit) where τ is the dimensional
temperature, τinit the initial dimensional temperature (at t = 0) and τenv is the
dimensional temperature of the fluid surrounding the railroad slice (at every
time) and the (asymptotic) temperature at the end of the treatment.

฀

฀

฀

฀

฀

฀

Figure 9: Heat treatment problem: parametrized geometry and domain boundaries.

The governing equation for u(µ, t) is the following time-dependent linear
PDE: for t ∈ [0, T ],





∂u(µ)

∂t
−∆u(µ) = 0 in Ωo(µ),

u(µ, t = 0) = 0 in Ωo(µ),
∂u

∂n
+ µ1u(µ) = µ1g(t) on ∂Ωo(µ).
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The inhomogeneous Robin conditions correspond to the heat exchange between
the railroad rail slice section and the fluid used for the thermal treatment. Here
the control input g(t) is a function of time t; the problem considers any square-
integrable function for g(t). In practice, the PDE is replaced by a discrete-
time (backward Euler [30]) approximation with time-steps of size ∆t = 0.005.
Note that the final time is T = 0.75 and that the number of time-steps is
nt = 150; the spatial discretization is made by piecewise linear finite elements,
whose corresponding space dimension is N = 16737. Our output of interest is
the average temperature all over the piece of railroad rail slice, given by

s(µ) =

∫ T

0

(
h(t)

∫

Ωo(µ)
u(µ)

)
dt,

where h(t) is a function of time t; the problem considers any function (including
Dirac delta) for h(t).

In Fig. 10 we plot the lower bound of the coercivity constant of the bilinear
form associated to the problem. As in the previous case, a further dual problem
has to be solved in order to obtain better output evaluations and related error
bounds. We show in Fig. 11 the convergence of the greedy algorithm for the
primal and the dual problem, respectively; with a fixed tolerance ǫ∗tol = 10−2,
Npr,max = 22 and Ndu,max = 6 basis have been selected, respectively.
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Figure 10: Heat treatment problem: lower bound of the coercivity constant αN
LB(µ) as

a function of µ.

In Fig. 12-13 some representative solutions for selected values of parameters
are reported, for both t = ∆t and t = T . In particular, two different heat
treatments have been investigated: heating and cooling process. In the first
case, we have imposed a thermal flux g(t) = 10t, while in the second case
g(t) = −10t. We can remark more sensible variations of temperature all over
the body for larger values of µ1 (Biot number); moreover, the behavior of the
temperature changes strongly between narrower and larger configurations.

Concerning the output (68), two cases have been taken into account: a dis-
tributed (in time) output – corresponding to h(t) = 1 – given by the integral of
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Figure 11: Heat treatment problem: relative errors maxµ∈Ξtrain
(∆Npr

(µ)/
‖uNNpr

(µ)‖X) and maxµ∈Ξtrain
(∆Ndu

(µ)/‖ψN
Ndu

(µ)‖X) as a function of Npr and Ndu

for the RB approximations computed during the greedy procedure, for the primal (left)
and the dual (right) problem, respectively. Here Ξtrain is a uniform random sample of
size ntrain = 1000 and the RB tolerance is ǫ∗tol = 10−2.

the temperature in time and space, and a concentrated (in time) output – cor-
responding to h(t) = δ(t) – given by the spatial integral of temperature at each
timestep. In Fig. 14-15 the RB evaluation (for N = Nmax) of these two outputs
of interest are reported, as well as the related error bounds. Higher values of the
output are obtained with larger values of the two parameters; moreover, keeping
the geometry fixed, variations w.r.t. Biot number in output values are of about
one order of magnitude.

8.3 A transient (coupled) diffusion-transport problem around a
cylinder

The problem represents the transient evolution of a concentration field near the
surface of a body (a 2D cylinder section) immersed into a fluid flowing into
a channel. The mass (e.g. of oxygen or drug) can be released or absorbed
through the body surface within the surrounding fluid. This is a well-known
mass transfer problem in the design and sizing of substances diffusers used for
many industrial, civil and, more recently, biomedical applications (drug and/or
oxygen release, stent design); in the same way, it can be seen as an heat transfer
problem through an heat exchanger [56].
The problem is described by the coupling of an unsteady mass (or heat) trans-
fer phenomenon (or substance release) by diffusion (or conduction) into a body
and by transport (or convection) phenomena inside the field where the fluid is
flowing; the transport field is given, for example, by a potential solution (see,
for example, [55]).
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Figure 12: Heat treatment problem (heating): representative solutions for µ =
(10, 0.02) and µ = (10, 0.2), at time t = ∆t (top) and t = T (bottom).
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39



0

2

4

6

8

10

0

0.05

0.1

0.15

0.2
0

0.5

1

1.5

 

µ1

RB Output sN(µ)

µ2
 

0.2

0.4

0.6

0.8

1

1.2

0

2

4

6

8

10

0

0.05

0.1

0.15

0.2
0

2

4

6

 

µ1

Output error bound −log10(∆N
s (µ))

µ2
 

2

2.5

3

3.5

4

4.5

Figure 14: Heat treatment problem: RB distributed output (left) and related error
bound (right) as functions of µ in the parameter space.
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We consider the physical domain Ωo(µ) shown in Fig. 16, non-dimensionalized
with respect to R̃, the unit radius of the cylinder immersed in the fluid. More-
over, we denote D̃ the dimensional mass diffusion coefficient, Ũ a reference
dimensional velocity for transport field, and we introduce the Péclet number as
Pe = Ũ R̃/D̃, while time is non-dimensionalized by the quantity R̃2/D̃.

In this problem the boundary segments Γ1, Γ7 are curved (all other boundary
segments are straight lines) and they represent the semi-circular section of the
cylinder immersed in the flow (thanks to symmetry the problem can be simplified
by considering just “half” configuration). The segments Γ1, Γ7 are given by the
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Figure 16: Diffusion-transport problem around a cylinder: parametrized geometry and
domain boundaries.

parametrization
[
x1

x2

]
=

[
0
0

]
+

[
1 0
0 1

] [
1 0
0 1

] [
cos (t)
sin (t)

]
,

where for Γ1, t ∈ [π, 3π/2], for Γ7, t ∈ [π/2, π].
We consider here only one parameter µ1, the Péclet number, which is given

by the ratio between the transport and diffusion terms; the parameter domain
is given by D = [0.1, 100]. The solution is characterized by the (adimensional)
concentration u(µ, t) = (c − cinit)/cinlet, being c the dimensional concentration,
cinit the initial dimensional concentration (at t = 0), and inlet the dimensional
concentration imposed at the inflow (at every time step). The governing equation
for u(µ, t) is the following time-dependent linear PDE: for t ∈ [0, T ],

∂u(µ)

∂t
−

1

µ1
∆u(µ)

+ (vr sin(θ)− vθ cos(θ))
∂

∂x1
u(µ)

+ (vr sin(θ) + vθ cos(θ))
∂

∂x2
u(µ) = 0 in Ωo(µ),

u(µ, t = 0) = 0 in Ωo(µ),

u(µ) = 0 on Γ3 ∪ Γ4 ∪ Γ5,

1

µ1

∂u

∂n
(µ) = 0 on Γ2 ∪ Γ6,

1

µ1

∂u

∂n
(µ) = g(t) on Γ1 ∪ Γ7;

the control input g(t) is a (square-integrable) function of time t. The potential
velocity field (ideal inviscid fluid) is given in polar coordinates by (vr, vθ), being
[55]

vr = −

(
1−

r20
r2

)
cos(θ),

41



vθ =

(
1 +

r20
r2

)
sin(θ),

where r =
√
x2

1 + x2
2, r0 = R̃ = 1 and θ = arcsin

(
x2/
√
x2

1 + x2
2

)
.

In practice, the PDE is replaced by a discrete-time (backward Euler) ap-
proximation with time steps of size ∆t = 0.01; note that the final time is T = 1
and that the number of time steps is nt = 100. The spatial discretization is
made by piecewise linear finite elements, whose corresponding space dimension
is N = 13976.

Our output of interest is the average concentration on the cylinder surface,
given by

s(µ) =
1

T

1

π

∫ T

0
h(t)

(∫

Γ1

u(µ) +

∫

Γ7

u(µ)

)
dt , (68)

where h(t) may be a function of time t. As for the two previous cases, we deal
with a non-compliant problem, for which the dual problem has to be introduced
and solved. In Fig. 17 we plot the lower bound of the coercivity constant of the
bilinear form associated to the problem. We show in Fig. 11 the convergence
of the greedy algorithm for the primal and the dual problem, respectively; with
a fixed tolerance ǫ∗tol = 10−2, Npr,max = 17 and Ndu,max = 17 basis have been
selected, respectively.

10−1 100 101 102

10−4

10−3

10−2

10−1

100

Lower bound coercivity constant αLB(µ)

Figure 17: Diffusion-transport problem around a cylinder: lower bound of the coercivity
constant αN

LB(µ) as a function of µ1.

In Fig. 19-20 some representative solutions at time t = T , for selected values
of the parameter, are shown. Two different cases have been analyzed, concerning
the mass transfer through the cylindrical body: in the first case, we have imposed
a mass flux g(t) = 10t (substance release by the cylinder), while in the second
case g(t) = −10t (substance absorption through the cylinder). In any case,
higher values of concentration and higher gradients are obtained for larger Peclet
numbers: absorption or release are more effective when transport dominates over
diffusion.
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Figure 18: Diffusion-transport problem around a cylinder: relative errors
maxµ∈Ξtrain

(∆Npr
(µ)/‖uNNpr

(µ)‖X) and maxµ∈Ξtrain
(∆Ndu

(µ)/‖ψN
Ndu

(µ)‖X) as a func-

tion of Npr and Ndu for the RB approximations computed during the greedy procedure,
for the primal (left) and the dual (right) problem, respectively. Here Ξtrain is a uniform
random sample of size ntrain = 1000 and the RB tolerance is ǫ∗tol = 10−2.
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Figure 19: Diffusion-transport problem around a cylinder: representative solutions for
µ1 = 0.1 and µ1 = 100 at time t = T , g(t) = 10t.

In the following Fig. 21 the behavior of the (RB evaluation of) output (68)
is shown, as well as the related error bounds (magnified by a factor 10), in the
case of heat emission (Fig. (19)); we have considered a concentrated (in time)
output (corresponding to h(t) = δ(t)), given by the (spatial) average of the
concentration on the cylinder at each timestep. According to the behavior of
solutions, we obtain higher values of the output when µ1 increases.
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Figure 20: Diffusion-transport problem around a cylinder: representative solutions for
µ1 = 0.1 and µ1 = 100 at time t = T , g(t) = −10t.
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Figure 21: Diffusion-transport problem around a cylinder: RB concentrated outputs
and related error bounds as functions of time t, for µ1 = 0.1, 1, 100.

8.4 Computational aspects

We conclude this section by discussing some computational aspects related to
the three numerical examples presented above, and showing how reduced basis
techniques allow a substantial reduction of computational work. We recall that,
in order to obtain a rapid and reliable procedure, we are interested in (i) the
minimization of the (marginal) cost associated with each input-output evalua-
tion as well as in (ii) the possibility to provide a certification of each reduced
approximation, both with respect to the corresponding finite element approxi-
mation.
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All the details are reported in Tab. 1. Compared to the corresponding FE
approximation, RB Online evaluations of field variables and outputs enable a
computational speedup, defined as S = tFE/t

online
RB , of about two orders of mag-

nitude. In particular, the average time over 2500 Online output evaluations is
of 0.107 for the first Couette-Graetz problem, of 0.198 for the second heat treat-
ment problem, as well as of 0.158 for the third diffusion-transport problem. Note
that the times related to the RB Online evaluation take into account also the
a posteriori error estimation for solution and output. This great computational
advantage is due, basically, to the reduction in linear system dimensions, and
finally in the huge dimensional reduction – N vs. N – between RB spaces and
corresponding FE spaces. For the three cases considered, this ratio goes from
260 (first case) to 820 (third case).

In the end, we take into account also the time spent for the Offline con-
struction and storage; this allows to determine the break-even point, given by
QBE = toffline

RB /tFE . In particular, we obtain a break-even point of O(102) in
the three cases, which can be considered acceptable whenever interested either
in the real-time context, or in the limit of many queries.

Approximation data Problem 1 Problem 2 Problem 3

Number of parameters P 2 2 1
Affine op. components Qa 4 9 2
Affine rhs components Qf 1 3 1

FE space dim. N 5433 16737 13976
RB primal space dim. Npr

max 21 22 17
RB dual space dim. Ndu

max 30 6 17

RB construction toffline
RB (s) 362.8 s 6733.2 s 2794.2 s

RB evaluation tonline
RB (s) 0.107s 0.198s 0.158 s

FE evaluation tFE (s) 14.3 41.6 30.2
Computational speedup S 133 210 191
Break-even point QBE 26 161 93

Table 1: Numerical details for the test cases presented. RB spaces have been built
by means of the greedy procedure, using a tolerance εRB

tol = 10−2 and a uniform RB
greedy train sample of size ntrain = 1000. A comparison of the computational times
between the Online RB evaluations and the corresponding FE simulations is reported.
Here toffline

RB is the time of the Offline RB construction and storage, tonline
RB is the time

of an Online RB computation, while tFE is the time for a FE computation, once FE
matrices are built. A single timestep is considered in the parabolic cases.

9 Perspectives and ongoing research

We end this review paper dedicated to applications of reduced basis method in
an industrial framework by putting current methodology development in per-
spective.

45



9.1 Extension to complex problems

Growing research areas are devoted to the following kind of problems.
(i) Non-linear problems: the reduced basis framework and related model–

reduction approaches are well developed for linear parametrized partial differ-
ential equations. They can be effectively applied also to non-linear problems
[37, 57, 58], even if this in turn introduces both numerical and theoretical com-
plications, and many open research issues are still to be faced. Classical prob-
lems arising in applied sciences are, for example, Navier-Stokes/Boussinesq and
Burgers’ equations in fluid mechanics [16, 18, 59, 17, 60, 47, 48] and nonlinear
elasticity in solid mechanics.

First of all, computational complexity is increasing at both the Offline and
the Online stage: we need to solve non-linear problems of big dimension O(N )
during the RB space generation, as well as non-linear problems of reduced di-
mension O(N) for each Online evaluation; in both the cases, classical iterative
procedure – such as fixed point or Newton-type algorithms – can be used. A pos-
teriori error bounds introduced for linear problems can be effectively extended
to steady non-linear problems (see e.g. [61] for steady incompressible Navier-
Stokes equations). However, the most important challenge deals with the relia-
bility and/or the certification of the methodology in the unsteady – parabolic –
problems [23, 62]: in these cases exponential instability seriously compromises
a priori and a posteriori error estimates, yielding to bounds which are limited
to modest (final) times and modest Reynolds numbers. More precisely, stability
considerations limit the product of the final time and the Reynolds number [63].

(ii) Problems dealing with (homogeneous or even heterogeneous) couplings in
a multiphysics setting and based on domain decomposition techniques: a domain
decomposition approach [29, 64] combined with reduced basis method has been
successfully applied in [27, 28, 65] and further extensions are foreseen [66]. A
coupled multiphysics setting has been proposed for simple fluid-structure inter-
action problems [67, 68].

(iii) Optimal control [69, 70, 71, 72], shape optimization, inverse and de-
sign problems [73, 74] as many-query applications have been and are subject
to extensive research, which is of interest also in an industrial context. One
of the main goals of this field is the study of efficient techniques to deal with
geometrical parameters, in order to keep the number of parameters reasonable
but also to guarantee versatility in the parametrization in order to treat and
represent complex shapes. Recent works [75, 76, 77, 78] deal with free-form de-
formation techniques combined with empirical interpolation in bio-medical and
aerodynamic problems.

(iv) Another growing field is related with the development and application of
the reduced basis methodology to the quantification of uncertainty [79, 24, 80].
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9.2 Efficiency improvement in RB methodology

The efforts are also aimed at improving the computational performance in 3D
settings to have a more efficient implementation of the Offine “construction
stage” (e.g. on high-performance parallel supercomputers) and more and more
attractive real-time applications such as the ones currently available on smart-
phones [81].

Improvements in the efficiency of parameters space exploration are also cru-
cial; see for example modified greedy algorithms and combined adaptive tech-
niques [82], such as “hp” RB method [83, 84]. At the same time, (i) improve-
ments in the a posteriori error bounds for non-affine problems [38]; (ii) reduction
of the complexity of the parametrized operators and more efficient estimation of
lower bounds of stability factors (i.e. coercivity or inf-sup constants) for com-
plex non-affine problems [85]; or (iii) more specialized RB spaces [86] are under
investigation.
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