
MOX-Report No. 16/2024

Persistence diagrams for exploring the shape variability of abdominal

aortic aneurysms

Domanin D. A.; Pegoraro M.; Trimarchi S.; Domanin M.; Secchi P.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it



Persistence diagrams for exploring the shape variability of
abdominal aortic aneurysms

Dario Arnaldo Domanin∗, Matteo Pegoraro†, Santi Trimarchi‡§,
Maurizio Domanin‡§, Piercesare Secchi¶

February 12, 2024

Abstract
Abdominal Aortic Aneurysm consists of a permanent dilation in the abodminal portion

of the aorta and, along with its associated pathologies like calcifications and intraluminal
thrombi, is one of the most important pathologies of the circulatory system. The shape of
the aorta is among the primary drivers for these health issues, with particular reference
to all the characteristics which affects the hemodynamics. Starting from the computed
tomography angiography of a patient, we propose to summarize such information using
tools derived from Topological Data Analysis, obtaining persistence diagrams which de-
scribe the irregularities of the lumen of the aorta. We showcase the effectiveness of such
shape-related descriptors with a series of supervised and unsupervised case studies.
Keywords: topological data analysis; abdominal aortic aneurysm; persistent homology.

1. Introduction
One of the main drivers of contemporary medical research is the idea of personalized
medicine, which aims at providing better targeted treatments to improve therapy out-
comes. The achievement of such a challenging task relies primarily on two factors: the
constantly increasing amount of data made available by modern data collecting pipelines,
like medical imaging, and the joint efforts of clinicians and statisticians, trying to unpack
the valuable information contained in the provided data.

The statistical understanding of any phenomenon is always limited by the inter-
pretable methods and algorithms that the analyst can resort to. As a consequence, there
is an increasing need of new and original statistical methods aimed at the analysis of dif-
ferent and heterogeneous kinds of complex data, validated and interpreted by the expert
clinician. In many medical situations, especially those related to imaging data, many
complexities arise because of the difficulty in decoupling interesting variability between
statistical units from that which the clinician considers as ancillary. This problem is at the
root of object oriented data analysis ?, whose foundational principles focus on data repre-
sentation, by embedding the atoms of the statistical analysis in a suitable mathematical
space where their variability of interest can be captured and explored.

In this work we consider the problem of analysing and characterising abdominal aortic
aneurysms (AAAs) eliciting the information contained in the shape of blood vessels with
tools from algebraic topology.
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Abdominal Aortic Aneurysm consists of a permanent dilation of at least 1.5 times
the expected diameter of the abdominal portion of the aorta (see Figure 1a), the biggest
artery of the human body ?, characterized by chronic inflammation processes in the inner
layers with degradation or redistribution of elastin and collagen ? under the haemody-
namical stress ?. Such dilatation can evolve asymptomatically towards the progressive
enlargement of the vessel up to its rupture which is frequently fatal, making it one of the
most prominent pathologies of the circulatory system.

Most of the literature dealing with the analysis of AAAs focuses on the growth rate
of small AAAs ??, in order to prevent their rupture and identify the necessity of surgery,
leveraging on shape-related or biomechanical numerical features. See, for instance, ?????.
Differences between these works appear in the statistical methodology employed for pre-
diction, but, mostly, in the kind of features collected: AAA and intraluminar thrombus’
diameter, volume, axes are considered in most studies; ?, ? and others include also
biomechanical indices - like peak wall stress and peak wall rupture indices - and clinical
variables, showing improved predictions.

The aim of our work is different and is more in line with ?; indeed, we want to
estabilish a new mathematical representation of the geometric complexity of the aorta
and of the surrounding blood vessels. A deep dive on the heuristic power of this new
representation is the main aim of this paper; we leave to future work the assessment of
its predictive power in terms of growth rate of small AAAs. Nevertheless, most of the
information conveyed by morphological and shape related variables is also contained in our
novel representation, which, however, has the extra advantage of summarizing additional
information which is harder to convey in terms of numerical variables; like, for instance,
a quantification of the calcifications along the blood vessels.

To obtain such representation we resort to algebraic topology ? and, in particular, to
persistent homology ?, one of the most diffused frameworks in Topological Data Analysis
(TDA). By introducing a carefully studied and application-driven filtering function, we
are able to synthesize the Computed Tomography Angiographies (CTAs) of patients - a
particular kind of medical images, see Figure 1b - capturing the statistically sufficient
features of their shapes. Moving from a preliminary segmentation pipeline, already well
established and whose goal is to turn CTA images into 3D meshes, we transform them
into mathematical objects called persistence diagrams. Thus, the statistical analysis is
moved from the initial CTA images to their representations embedded in the space of
persistence diagrams. To demonstrate the effectiveness of this representation we propose
a number of analyses characterized by the simplicity of the pipeline, but heavily relying
on the power of the chosen representation.

The approach pursued in this work paves the way for more refined analyses - for
instance on the growth rate of small AAAs - grounded on the same topological repre-
sentation and aimed at providing clinicians with valuable insights and checkpoints to
complement their current analyses. We also foresee applications of analogous filtering
functions to other contexts needing similar shape-dependent characterizations, such as
cerebral aneurysm and the development of the atheromatous plaque in arterial vessels.

1.1 Outline
In Section 2 we give a brief overview of Abdonimal Aortics Aneurysms and their related
pathologies. Then, in Section 3, we concisely describe the segmentation pipeline to obtain
the meshes from the CTA scans. Section 4 is devoted to presenting the (normalized) radial
filtration function and the associated persistence diagrams. Section 5 is entirely focused
on reading patient-related information from persistence diagrams. In Section 6 we propose
a number of data analysis situations which are easily tackled with the use of persistence
diagrams. All the packages and softwares we employ for visualization and analyses are
reported in Section 7. Finally, Section 8 ends the manuscript with a discussion and a
conclusion. The Appendix contains some further technical details.
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(a) Schematic view of the circulatory system with
highlighted the abdominal portion of the aorta,
with both an healthy and aneurysmatic example.
Image from https://www.vascularcures.org/
abdominal-aortic-aneurysms.

(b) Coronal slice of a CTA scan. Different
shades of grey differentiate between different
organs and tissues. This allows both the clini-
cians to see the entire anatomy of the patient
and the algorithm to execute the segmenta-
tion process.

Figure 1: Schematic representation of an Abdominal Aortic Aneurysm and a CTA scan.

2. Abdominal Aortic Aneurysm
Abdominal Aortic Aneurysm is the most common aortic pathology. The incidence of
Ruptured Abdominal Aortic Aneurysm (RAAA) is up to 17.5 per 100,000 person/year in
Western countries ?. It is mainly located between the renal and the iliac arteries, which
can also present dilatations on their owns called iliac aneurysms. The healthy segment of
the abdominal aorta above the dilatation is defined as aortic neck.

Two main features characterize the aneurysm: intraluminal thrombus (ILT), thrombus
for short, and wall calcification. The former is the stratification of several blood particles
in the inner layers, the latter is the accumulation of calcium in the aortic wall responsible
of its stiffening. Both negatively affect the aorta changing its physiological behavior
by modifying the lumen’s structure, the region where the blood flows, with bumps and
irregularities.

Since vessel’s morphology plays a major role in local haemodynamics which, in turn,
determines the development of the AAA ?, ?, in this study we focus on the aortic lumen.
Hence we are only interested in the information directly associated to the shape of the
lumen. For this reason, calcium formations which could occur on the external part of a
thrombus will be disregarded.

3. Data
In this section we outline our complex pipeline for data gathering and pre-processing.

3.1 CTA scans
The most used and effective method for anatomy visualization is Computed Tomography
Angiography. CTA is used to get a visualization of the human body and is realized with
emission of X-rays through a tomograph. A CTA scan consists of a 3-dimensional image
of a region of interest in the form of a volume composed by voxels with different shades
of grey. Each shade is associated to a different tissue, making it possible to distinguish
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not only between fat, bones and muscle but also artery, intraluminal thrombus (ILT) and
calcification - see also Figure 1b.

The data considered in this work consist of 48 CTA scans of the abdominal region, 24
of which picture a pathological aorta. To secure data consistency, the following criteria
have been applied:

• AAA greater than 3.5cm in diameter;

• infrarenal AAA, not extended above the renal arteries, and presence of the aortic neck;

• CTA with high resolution and contrast, to assure high quality data;

• non-minor and non-pregnant patients.

All the CTA scans are provided by Ospedale Maggiore Policlinico. Patients with
healthy aortas have been collected from the Policlinico’s archive while the patients af-
fected by AAA come from the Vascular Surgery Unit. For privacy reasons, all data are
anonymized.

3.2 Segmentation Pipeline
The primary function of a CTA scan in this study is to enable the segmentation of the
aortic lumen, rather than for visualization purposes. Aortic segmentation refers to the
process of obtaining a three-dimensional reconstruction of the lumen via a finite number
of points, as visually described in Figure 2. The product of the segmentation is a mesh,
consisting of a set of vertices, edges and cells that form a net of triangles. Segmentation
is made possible thanks to a pipeline provided by Moxoff 1.

The tract of the vessel considered in this study ranges between the distal renal artery
and the common iliac arteries, including the area eventually affected by the AAA and
iliac aneurysms, using manually selected points - see also Figure 1b. The pipeline used to
perform the segmentation relies mainly on an edge-based technique with the support of
thresholding and region-based methods to improve performances and results. Following
?, thresholding makes an initial guess of the points belonging to the lumen. Then region-
based and edge-based techniques ? help with recognition of the rounded shape of the
vessel, when projected on the coronal plane. In this way, a label is applied to each of the
voxels of the CTA scan creating a volume whose surface is extracted and triangulated.

The resolution of the segmentation (i.e. the average length of the edges) is 1.0mm,
empirically chosen to balance the trade off between accuracy and computational costs.

A by-product of the segmentation is the centreline. Roughly speaking, the centerline
is a continuous curve in space that represents the center of the vessel lumen and makes
for a powerful descriptor of its shape. Among the several methods proposed in the liter-
ature for its identification, we use the algorithm provided by Antiga et al. (2008) within
VMTK, the Vascular Modeling Toolkit2, which generates a mathematical object stable to
perturbations of the vessel’s lumen surface. Identification of the centerline is of greatest
importance for singling out points on the lumen surface considered as peripheral.

4. Object Representation through Persistent Homology
We now describe the mathematical objects used to represent the atoms of our statistical
analysis, that is to represent the meshes obtained from segmentation of the CTAs of the
patients. The key element that drives the upcoming construction is a function defined
on a mesh, called filtering function, with the property that the morphological features we
are interested in appear as local minima and local maxima of this function. In particular,
the filtering function should capture inward and outward bumps of a blood vessel, so it
must be based on some sort of radial distance.

1. https://www.moxoff.com/en/
2. http://www.vmtk.org
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Figure 2: A schematic view of the segmentation process, starting from the CTA scan and
obtaining the final mesh representing the portion of interest of the Aorta and the iliacs.

4.1 Filtrations and Homology
Consider a triangular mesh K ⊂ R3 as the union of the set of its triangles, K2, the set of
its edges, K1, and the set of its vertices K0. This data amounts to a simplicial complex
? which is the combinatorial starting point of persistent homology. Every element in K
is called a simplex: 0-simplex if it is a vertex, 1-simplex if it is an edge and 2-simplex, if
it is a triangle.

To define the radial filtering function f , we start with a function f : K0 → R defined
on the vertices of the mesh, and we suitably extend it to the whole K. Let γ ⊂ R3 be the
centerline of the blood vessel. For every vertex v ∈ K0 define:

f(v) = min
p∈γ

∥ v − p ∥,

that is, the distance of the vertex v from the centreline. For every σ ∈ K1
∪

K2, being it
an edge or a triangle, we extend f as follows:

f(σ) = maxv∈σ∩K0 f(v).

This extension is motivated by the following facts: it is easy to handle computationally
and, by standard topology results ?, it is equivalent to the piecewise linear extension on
the mesh of the f defined on its vertices.

We now use f : K → R to order the vertices, edges and triangles of K into a filtration
of simplicial complexes. For t ∈ R, consider the simplicial complex Kt defined by the
sublevel set

Kt = f−1((−∞, t]).

Since f can assume only a finite number of distinct values, let them be t0 < t1 < ... < tm
to obtain the filtration {Kti} of simplicial complexes, such that

Kt0 ⊂ Kt1 ⊂ . . . ⊂ Ktm = K.
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Some pivotal observations are in order; they can be visualized by looking at Figure 3.
First we define the path connected components of f . An inward bump of the vessel

corresponds to a local minimum of f ; when it appears in the filtration {Kti}, a new
path connected component is “born” in the sublevel sets of f ; see Figure 3a. That path
connected component persists until it is merged with other path connected components,
born at lower local minima. Visually, for this to happen, one needs that the whole inward
bump generated by the local minimum is added to the filtration, so that different path
connected components can meet at local maxima or saddle points. An outwards bump,
instead, produces a loop which surrounds its boundary - see Figure 3b. As the filtration
value increases and the simplicial complexes grow, this loop, which encloses the local
maximum of the outward bump, becomes smaller and smaller, eventually superimposing
to the local maximum itself, and “dying” - see Figure 3b. There is also another way in
which loops are created, as showcased by Figure 3c: the tubular structure of the blood
vessels allows also loops that go around the centerline. Two such loops are equivalent if
they can “slide” on the mesh, superimposing one with the other - like the top and the
bottom black loops in Figure 3c.

Thus, the mesh is transformed through f into the filtration of simplicial complexes
{Kti}; identifying along the filtration “births” and “deaths” of path connected components
and loops, characterizes the blood vessel in terms of the irregularities of its lumen.

Topologically speaking path connected components and loops are captured, respec-
tively, by homology in dimension 0 and 1, which we now formally and briefly define. For
more details see ?.

For notational coherence with the literature, we refer to (oriented) triangles and edges
in a simplicial complex via the set of their vertices enclosed by squared brackets: e.g.
[x0, x1, x2] for a triangle, i.e. a 2-simplex, and [x0, x1] for an edge, i.e. 1-simplex. Given a
simplicial complex Kti , for n = 0, 1, 2 we generate the vector space Cn(Kti) over the field
Z2 = {0, 1}, by considering the set of all finite formal sums of the n-simplices belonging
to Kti . For n = 1, 2, the boundary operators ∂n : Cn(Kti) → Cn−1(Kti) are then defined
by setting

∂n(σ) =

n∑
i=0

σ−i,

when σ is an n-simplex, and by extending linearly to the whole vector space Cn(Kti);
here σ−i is the (oriented) (n − 1)-simplex obtained from σ by deleting its i-th vertex
– e.g. [x0, x1, x2]−1 = [x0, x2]. The boundary operator ∂0 maps C1(Kti) in the trivial
vector space whose only element is 0. We can now introduce the spaces of n-boundaries
and n-cycles of Kti : Zn(Kti) = ker(∂n) are the n-cycles and Bn(Kti) = Im(∂n+1) are
the n-boundaries of Kti . Finally, we define the n-dimensional simplicial homology groups
Hn(Kti) = Zn(Kti)/Bn(Kti). Note that the quotient Zn(Kti)/Bn(Kti) is well defined
since ∂n ◦ ∂n+1 = 0. In particular, linearly independent vectors in H1(Kti) are indepen-
dent loops which are not filled by triangles (see Figure 3, right), and linearly independent
vectors in H0(Kti) are points which are on different path connected components (see Fig-
ure 3, left). Elements in Hn(Kti) are referred to as homology classes or (equivalence)
classes of n-cycles. Tracking down the evolution of H1(Kti) and H0(Kti) along the fil-
tration {Kti} returns the information on the vessel shape we are going to explore in this
paper.

4.2 Normalization
One further step is needed to ensure a fair comparison between filtrations obtained from
vessels of different patients.

As it is often the case with shape analysis, the magnitude or the size difference be-
tween patients can act as a confounding factor to the point of overshadowing the shape
variability, which is the one we are interested in. For instance, different patients can have
different healthy dimensions for the aorta and for the iliacs, making it harder to com-
pare them by contrasting the filtrations and the homology groups generated by the their
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(a) A path connected component created by
an inward bump, in the sublevel set filtra-
tion defined in Section 4.1. Path connected
components created by other inward bumps
merge with each other at saddle points or lo-
cal maxima.

(b) A loop created by an outward bump,
in the sublevel set filtration defined in Sec-
tion 4.1. When the whole bulge is contained
in the filtration, the loop disappears.

(c) Loops gener-
ated by the tubu-
lar structure of the
mesh.

(d) Two persistence diagrams and the optimal matching between them
giving the bottleneck distance.

Figure 3: Path connected components, loops and persistence diagrams.
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respective filtering functions. To avoid this potential bias in the analysis, we resort to
a normalization process, expressing all distance values relative to the healthy size of the
patient’s aorta, i.e. the average neck radius. We recall that the aortic neck is in fact the
first healthy tract of the aorta, right below the distal renal artery. Its diameter is equal
to an healthy aortic diameter, it does not have high variability and it summarizes the size
factor of the aorta, in accordance with the scientific literature ?. So, for each patient,
the filtering function values have been divided by its average neck radius, obtained as
reported in Appendix A.

On top of that, since different portions of the blood vessel are characterized by a differ-
ent relative radius, with respect to the neck’s radius, we can in fact relate the normalized
filtering function values to morphological features of the aorta, see Section 5.

4.3 Persistence Diagrams
Looking at the homology groups obtained from a filtration is not practical for applications,
but there is a very interpretable and concise summary of the information contained in
the sequence of Hn(Kti), called the persistence diagram in dimension n. These are the
objects that we are going to use to represent data.

A persistence diagram is a finite collection of points in R2 - also called persistence pairs
-, with every point p = (b, d) representing the birth and the death of a persistent homology
class. In particular, the birth of an homology class is the first “time t” it appears along the
filtration, while the death time happens when the class merges with another class born
earlier. For example: a local minimum of the filtering function, indicative of a bump in the
vessel, induces a path connected component which is born at the value of the minimum,
Figure 3a; such path connected component carries on, or persists, along the filtration, and
dies when it merges with a path connected component born earlier, therefore associated
to a lower local minimum. The absolute difference between the times of birth and death is
clearly related to the prominence of the bump, and is called persistence of the homological
feature. Note that points can appear multiple times in the same persistence diagram.

4.4 Populations of Persistence Diagrams
Lastly, it is possible to compare and analyize the topological information carried by differ-
ent persistent diagrams by defining suitable metrics, satisfying formal stability results; for
an extensive review see, for instance, ?. It is thus possible to quantify the dissimilarity of
two different diagrams and perform classification, clustering and dimensionality reduction
on populations of diagrams.

To simplify the upcoming formulas, let

D = {(b1, d1), . . . , (bn, dn) | n ∈ N, bi, di ∈ R ∪ {∞}, bi < di} ∪ {(b, d) | b, d ∈ R, b = d}.

represent a persistence diagram. Given two diagrams D1 and D2 and p ≥ 1, the p-
Wasserstein distance between them is:

Wp(D1, D2) =

(
inf
γ

∑
x∈D1

∥ x− γ(x) ∥p∞

)1/p

(1)

where the inf is taken over all bijections γ between diagrams D1 and D2. In other words
we measure the distances between the points of the two diagrams, pairing each point
of a diagram either with a point on the other diagram, or with a point on y = x (see
Figure 3d). Each point can be matched once and only once. The minimal cost of such
matching provides the distance. The case p = ∞ is usually referred to as the bottleneck
distance and has the following form:

W∞(D1, D2) = inf
γ

sup
x∈D1

∥ x− γ(x) ∥∞ .

Note that, to compare two persistence diagrams, we do not need to establish a relationship
between the generating meshes. In particular this means that no alignment or registration
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is needed to proceed with the analysis; this is the ancillary source of variability between
patients we are not interested in.

Finally, let us mention an important stability result ?. Given two filtering functions
f, g : K → R and their respective persistence diagrams D(f), D(g):

W∞(D(f), D(g)) ≤∥ f − g ∥∞,

meaning that persistence diagrams are a faithful representation of the functions, in terms
of the sup-norm.

Closing this section on persistent homology, we point out the existence of represen-
tations alternative to persistence diagrams, for instance persistence landscapes ?, per-
sistence images ?, persistence silhouettes ?, accumulated persistence functions ?. All of
these come with their own properties and stability results and can be used for analyses
which are possibly more refined or more tailored to the application of interest.

5. Reading a persistence diagram
To understand the descriptive power of the persistence diagrams obtained with the pipeline
illustated in the previous section, a parallel reading of the original mesh and the associated
diagrams has been made for every patient in the study, connecting the most important
aortic wall features - such as AAA, calcifications and thrombus - to the diagram points.

All the results contained in the upcoming subsections have been manually verified by
simultaneously looking at the persistence diagram, the simplicial complexes and the CTA
scans, with the support of the collaborating clinicians.

5.1 The Effect of Normalization
We have anticipated in Section 4.2 that normalization is instrumental for comparing
different patients since it allows for the appraisal of the distance from the centerline when
a persistence pair is created or ceases to exist, relatively to the size of the mean aortic neck
radius. Normalization is, in fact, also significant for the identification of the portion of the
aorta where the change in homology occurs, locating it on a specific section of the vessel.
Note that the diameter of the vessel differs along the aorta, especially after the aortic
bifurcation. In fact, the diameter of a healthy abdominal aorta is tipically 17.5± 2.1mm,
larger than that of an healthy iliac artery, 10.85± 1.69mm; see ??. Although significant
differences in the dimension of the aorta for males and females occur, the proportion
between the diameter of the main aorta and that of the iliac branches are similar. Thus:

• when an homology class is born (or dies) at a value close to the mean neck’s radius, i.e. a
value close to 1, the change must be located at the same distance from the centerline as the
aortic mean neck’s radius, hence on the healthy portion of the aorta. The only exception
being an iliac aneurysm, whose presence will be discussed later in Section 5.2;

• in the cohort of the patients considered in this study, the diameter of healthy iliacs is around
40-70 % of the respective aortic mean neck’s radius. Thus, changes in homology located on
the iliac arteries occur when the normalized distance assumes values in the range of [0.4−0.7];

• lastly, patients affected by AAA can instead have a more variable range, up to 7 and more
in the most concerning cases.

Figure 4 depicts a schematic visualization of these facts.

5.2 Notable Pairs
By combining the information given by birth, death, persistence and type of pairs of points
in the persistence diagram, it is possible to identify notable pairs, that is persistence pairs
shared among patients with similar characteristics associated with a specific aortic region.
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Figure 4: A schematic view of the aorta, with the normalized distances from the centerline
made explicit. Image modified from https://prescrivere.blogspot.com/.

5.2.1 Structural Pairs
The first class of points we consider are those associated to an infinite persistence, i.e. such
that d = ∞. These points correspond to features which are born at a certain filtration
value, but which never die, and so persist up to ∞. They indicate structural features
shared by all aortas. In particular, each filtration coming from a correctly segmented
aorta must have exactly three points with infinite persistence: one associated to 0-cycles
and two associated two 1-cycles.

Indeed, the mesh representing the aorta should be homotopy equivalent ? to a finite
cylinder with a hole, which, in turn, is equivalent to an eight figure: two circles glued in one
point, see Figure 5. Roughly speaking, two objects are homotopy equivalent if, starting
from one, it is possible to obtain the other using stretching and bending but not tearing.
Homotopy equivalence preserves homology and so each mesh should feature a connected
component with two independent 1 dimensional loops as can be seen in Figure 5.

These three points, representing the most persistent homological features, can also be
used as indication of the correct representation provided by the mesh itself, proving the
deep connection between the persistence diagram and the aorta. In fact, if a persistence
diagram shows additional points with infinite persistence, this signals an error during
the segmentation phase, such as the creation of non-connected points or the presence of
artificial holes in the mesh.

5.2.2 Iliac aneurysm
Now we tackle the problem of identifying iliac aneurysms; the reader should refer to
Figure 6 and Figure 7 to get a visual description of the content of this section.

Aneurysms can affect one or both the iliac arteries, in the same way as they affect
the abdominal aorta, resulting in a stretch of the wall - see Figure 7c. An iliac aneurysm
can also be associated with calcification (as in Figure 7) and thrombus, just as the AAA.

When the iliacs have comparable diameters there are two connected components born
at similar values, resulting in two classes of 0-cycles that later merge together - as in
Figure 6. The single class of 0-cycles with infinite persistence represents the closest point
of the mesh to the centerline, the very first point appearing in the filtration. This class
is always born at the iliacs, given their smaller radiuses. Moreover, the other iliac’s first
point induces the birth of a secondary early class of 0-cycles with high persistence. These
components will be merged together as the radius value increases (see point “(1)” and
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Figure 5: All the objects in this figure are homotopy equivalent.

“(2)” in Figure 6). For these reasons, each persistence diagram, except the ones with
iliac aneurysm, have a high persistence point with birth coordinate given by the radius at
which the second component is born and death coordinate given by the merging radius.

When an iliac aneurysm is present, it significantly deforms the lumen and so the min-
imal radius of the aneurysmatic iliac is greatly increased - see Figure 7. As a consequence
the first point of the second iliac appears much later in the filtration, often after other
points at the bifurcation region. Thus, instead of having two connected components born
at similar times, we have a component that is expanding until it covers both iliacs. As a
consequence, the absence of this second high persistence point in dimension 0 is a primary
indicator for an iliac aneurysm.

Similarly, any irregularity in the iliacs, inflating their lumen, may have the effect
of delaying the birth of 1-cycles with infinite persistence. For instance, not having two
classes of 1-cycles with infinite persistence born at roughly the same times (i.e. having
roughly the same diameters) implies that one iliac is inflated. The only reasonable cause
for that inflation is the presence of an aneurysm. Thus, if the two classes of 1-cycles with
infinite persistence have a pronounced difference between their birth coordinates or have
birth coordinates which are high (note that a 1-cycle is always going to appear at radius
1, around the neck), this indicates the presence of one or more aneurysms in that region
of the blood vessels.

5.2.3 Abdominal Aortic Aneurysm
We now focus on AAAs, which are obviously distinguished by large radial distances from
the centerline and therefore by high values of birth and death coordinates of their asso-
ciated points on the persistence diagram - see also Figure 8. But more can be said; in
fact, persistence diagrams of patients affected by AAA are characterized by the following
persistence pairs:

1. A notable and highly persistent class of 0-cycles is usually present when patients are affected
by an AAA. These cycles are associated to the sudden increase of the distance from the
centerline when moving form the aortic neck region to that part of the vessel where the
AAA occurs. In fact, the presence of the AAA “splits” the aorta in two parts, separated by
the AAA - see Figure 8. Along the filtration, each part generates a connected component;
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(a) Initial steps of the sublevel set filtration of a patient with healthy iliacs, showing the births of
the iliacs-related persistence pairs: first appear the two local minima of the radial distance located
on the two iliacs - orange (1) and (2) - and then the two loops going around the tubular structure
of the iliacs - blue (1) and (2).

(b) The persistence diagram, in dimension 0 and 1, of an healthy patient, with highlighted the
persistence pairs related to the iliacs, whose labels are coherent with the ones in Figure 6a.

Figure 6: A visualization of the mesh of a healthy aorta with the birth and death of cycles
related to the iliacs highlighted in the associated diagram.
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(a) CTA scan slice of iliacs presenting calcification in the
right iliac and aneurysm in the left. The red portion shows
the lumen restriction created by calcifications and the bulge
created by the aneurysm.

(b) The persistence diagram of a patient with an aortic
aneurysm and an iliac aneurysm. The lack of an early 0-
cycle with high persistence is visible. As is the presence of
one class of high persistence 1-cycles created by the AAA.

(c) Mesh of the lumen of a patient
being affected by calcifications and
aneurysm in the iliacs: the left
one presents a bulge created by the
aneurysm, while the right one is
severely occluded by calcifications.

Figure 7: CTA scan slice, mesh and persistence diagram of the same patient with a calcified
(left) and aneurysmatic (right) iliac.
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those two components merge only when it is possible to have a path across the aneurysm;
see Figure 8.

2. Similarly, the AAA generates also a notable highly persistent class of 1-cycles, associated
with the tubular structure of the neck, which doesn’t appear in healthy patients. As already
mentioned AAA splits the blood vessel in two parts - see Figure 8. Each part has a loop going
around the aorta. Only when all the aneurysm appears in the filtration the loop around the
blood vessel on one side of the aneurysm and the one on the other, can be merged with
each other and become equivalent. One of them therefore dies and the other one persists as
structural persistence pair.

As a consequence, the corresponding point on the persistence diagram is easily recog-
nizable since its birth is around the value 1.0 and its death has the highest value among
all the points with finite persistence. Again, all of this is clearly visible in Figure 8.

To summarize, two main features make the persistence diagram of a patient with
AAA easily distinguishable - see also Figure 8:

1. The presence of persistence pairs borning and dying at high distance values. In fact, no
healthy aorta has a region with a distance from the centerline higher than 1.4, while the
regions of an aneurysmal aorta can exceed the value of 7.0.

2. The presence of at least one 0-cycle and one 1-cycle classes with high persistence in the neck
area (birth around 1).

5.2.4 Calcifications
Calcifications are calcium deposits creating a local thickening of the aortic wall, on the
internal side, resulting in indentations on the lumen’s surface, when in contact with the
calcified wall. Thus, they produce local minima in the filtering function, as showcased in
Figure 9. These inward bumps are picked up as 0-cycles with medium-persistence in the
persistent diagram; see Figure 9b.

5.2.5 Thrombus
Lastly we consider blood vessels affected by a thrombus. A thrombus is often made
by a non-homogeneous substance, which can flake off with the flow of blood creating
wide ledges in the lumen (see Figure 10). It is most likely to be located in the area
affected by AAA, due to the concentration of metabolites associated with inflammation.
Thus, the presence of a pronounced thrombus produces a series of local maxima and/or
minima, which induce 1 and 0 cycles in the persistence diagrams with relatively high birth
coordinates and moderate persistence, see also Figure 12.

5.3 A detailed Example
We now show an example of a concerning patient affected by AAA, iliac aneurysm and
thrombus.

In Figure 11 we report the main steps of the sublevel set filtration of the selected
patient. While in Figure 12 the associated persistence diagram is shown.

• At value 0.3 a 0-cycle of the first iliac appears.

• At value 0.7 a 1-cycle, around that iliac, appears. Note that the 0-cycles expands onto the
other iliac without creating a new path connected component. There is in fact an aneurysm
on the second iliac preventing the tapering of its extremity.

• At value 0.9 a novel 0-cycle appears on the aortic neck. The AAA separates this cycle from
the one appeared in the beginning.

• At value 1.20 a 1-cycle going around the blood vessel appears.
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(a) Two different steps of the sublevel set filtration of a patient affected by AAA: in the first step
we clearly see the two path connected components - orange (1), which is also merged with (2), and
orange (3) - which are separated by the AAA. At very high filtration values the AAA is added
to the filtration and the path connected components merge. A similar phenomenon involves also
1-cycles: on the left, the loop going around the upper portion of the aorta cannot “slide” down
on the mesh and be equivalent to the loop going around the lower portion of the aorta - made by
(1)+(2). This is instead possible on the right, causing the death of loop (3) at high values.

(b) Persistence diagram of the filtration in Figure 8a. We have highlighted the high persistence
path connected component and loop caused by the AAA splitting in two parts the aorta.

Figure 8: The merging phenomena associated to AAA.
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(a) CTA slice of a non-aneurysmal aorta
with presence of calcifications which
creates bump in the lumen of the blood
vessel.

(b) Persistence diagram of the filtration in Figure 9c:
we see a number of persistence pairs with medium per-
sistence, being born in the main body of the aorta -
i.e. with birth value higher than the aortic neck, as a
consequence of the irregularities due to calcifications.

(c) Different time steps of the sublevel set filtration of an aorta without AAA but with calcifications:
calcifications create many medium-sized irregularities and bumps in the lumen which are picked
up by the filtration, creating a number of path connected components arising and persisting for
some time.

Figure 9: Non-aneurysmal aorta with calcifications.

Figure 10: CTA slice of an AAA with thrombus occluding the lumen.
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Figure 11: A patient affected by AAA, iliac aneurysm and thrombus. The filtration
function values are reported in black on the bottom left corner of the aorta. The sublevel
sets are represented by the higlighted portions of the mesh. The numbered features identify
0-dimensional (red) and 1-dimensional cycles associated to points in the diagram appearing
in Figure 12.

• As the distance form the centerline increases - that is, the value of the radial filtration
function increases -, the initial path connected component expands enclosing gradually also
the AAA, connecting to and killing the path connected component and the loop associated
to the neck. On the way, several classes of 1-cycles are created with high birth times; they
are associated to the local maxima of the filtration function created in the aneurysmatic
portion of the aorta by the thrombus.

6. Population Analyses
The previous section discussed how persistent homology translates some relevant aortic
features into persistence pairs shown as points of a persistence diagram. We now explore
the behaviour of these topological summaries at the population level, to understand which
kind of between patients variability can be captured with persistence diagrams.

We present two paradigmatic problems, both characterized by their simplicity: clus-
tering and discrimination or, with different words, unsupervised and supervised classifica-
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Figure 12: The persistence Diagram associated with the mesh shown in Figure 11. Features
labelled as (1) both in dimension 0 and 1 are the structural pairs associated to the iliac
which does not present an aneurysm. In particular, path connected component (1) is born
very early along the filtration and that is because of some inwards bumps due to some
calcifications. Persistence pairs (2) - both in dimension 0 and 1 -, instead, are born very
late, almost at the filtration value of the neck. This is a clear consequence of the iliac
aneurysm. The 1-cycles’ class (3) is generated because of the AAA splitting the blood
vessel in two parts. An in fact it dies at the latest value of the filtration. Then we have a
group of 1-cycles - from (4) to (7) - with medium persistence, which reflect the irregularities
in the lumen caused by some heterogeneous thrombus.
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tion of persistence diagrams. In the initial clustering exercise, we look for a natural strat-
ification of persistence diagrams embedded in a metric space endowed with a Wasserstein
metric. Secondly, we exploit the analysis of Section 5 to introduce a supervised classifica-
tion pipeline aimed at the construction of classifiers identifying patients with: (1) AAA,
(2) calcifications, (3) thrombus, (4) iliac aneurysm.

6.1 Clustering
Throughout the manuscript we argued that irregularities in the aortas are represented
by inward and outward bumps, representing pathologies of different nature, which are
captured separately by 0-cycles or 1-cycles represented as persistence pairs in a persistence
diagram.

Since both the persistent diagrams for classes of 0-cycles and 1-cycles are relevant to
capture shape differences between aortas, we introduce the following family of metrics
between patients Pi and Pj :

dpp(Pi, Pj) = λ ·W p
p (D

0
i , D

0
j ) + (1− λ) ·W p

p (D
1
i , D

1
j ),

where p ≥ 1, λ ∈ [0, 1] and, for k = 0, 1, the persistence diagrams Dk
i , D

k
j are those for

the k-cycles of patient i and j respectively; Wp is the p-Wasserstein distance introduced
in (1). Note that, by setting p = ∞, one obtains the weighted average of the bottleneck
distances between the diagrams. Although different mixing weights are allowed, in the
following we set λ = 0.5 for simplicity. Tailoring the choice of λ could benefit the analysis
of specific classification problems.

Figure 13 depicts the matrices of pairwise distances between patients in the cohort
of our study, when p = ∞ and p = 2 respectively. Statistical units have been ordered so
that healthy patients come before those with an AAA: indeed, H01, . . . , H24 index the
healthy patients whithout AAA while A01, . . . , A24 indicate the patients with AAA. By
visual inspection, it is clear, both in Figure 13b and Figure 13a, that this grouping is very
well captured by both distance matrices. In fact, visualizing a low-dimensional represen-
tations, obtained by MultiDimensional Scaling (MDS), of the metric spaces embedding
the persistence diagrams – see Figure 13d and Figure 13c – we immediately notice how
patients without AAA are clustered together, while the presence of an AAA, by introduc-
ing high persistence points in the persistence diagram, generates a larger variability in the
MDS representation of the persistence diagrams of diseased patients - see Section 5.2.3.

This grouping can indeed be captured by a clustering algorithm. For instance we
report the dendrograms relative to agglomerative hierarchical clustering run with Ward
linkage, in Figure 14b and Figure 14a. Leaves are coloured as in Figure 13d and Figure 13c.

6.2 Supervised classification - AAA
In Section 6.1 we reported an unsupervised algorithmic pipeline which generates a very
clear clusterization of the topological representations of the patients in our study. We
now setup a supervised classification algorithm aimed at discriminating patients with an
AAA from the others.

The dendrograms in Figure 14 justify the use of a very simple algorithm like k-nearest
neighbors (KNN). We report the leave-one-out (l1out) confusion matrices in Figure 15 for
k = 5. We point out that for any choice of k ∈ {1, . . . , 5} we get 97% accuracy, with the
only missclassified patient being always the same one, visibly close to the healthy patients
also in Figure 13. This patient has been checked by the collaborating clinicians and it
has been regarded as having a relatively small AAA.

6.3 Supervised classification - Calcifications
We now want to discriminate patients with calcifications from the others. To do so,
we rely on Section 6.3: therein we showed that calcifications appear as mid-persistence
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(a) Matrix of pairwise p-Wasserstein
distances between persistence dia-
grams, with (p = ∞). Patients are
ordered so that healthy patients come
before non-healthy ones.

(b) Matrix of pairwise p-Wasserstein
distances between persistence dia-
grams, with (p = 2). Patients are
ordered so that healthy patients come
before the ones affected by AAA.

(c) Two dimensional MDS representation of the
matrix in Figure 13a.

(d) Two dimensional MDS representation of the
matrix in Figure 13b.

Figure 13: Pairwise distance matrices and low-dimensional embeddings for the cohort of
patients described in Section 6.1.

(a) Hierarchical clustering dendrogram with the
previously defined Bottleneck distance and Ward
linkage.

(b) Hierarchical clustering dendrogram with the
previously defined 2-Wasserstein distance and
Ward linkage.

Figure 14: Hierarchical clustering dendrograms related to the clustering problem presented
in Section 6.1. Patients in red are affected by AAA, while healthy ones are drawn in green.
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(a) Leave-one-out confusion matrix for the
classification case study presented in Sec-
tion 6.2, starting from the matrix obtained
with the bottleneck distance.

(b) Leave-one-out confusion matrix for the
classification case study presented in Sec-
tion 6.2, starting from the matrix obtained
with the 2-Wasserstein.

Figure 15: Confusion matrices for the classification case study presented in Section 6.2.
Label A is for patients with AAA, H for the ”healthy” ones.

features in the zero dimensional persistence diagram, being local minima of the radial
filtering function.

Thus, for all patients, we count the number of 0 dimensional persistence pairs with
persistence greater than or equal to a threshold and less than ∞. Patients with or without
calcifications have been identified and labelled by looking at their TAC, with the help of
a collaborating clinician; the threshold τp for persistence has been set to 0.1, a value
coherent with Section 5.1. Results are shown in Figure 16: all patients whose count
of filtered persistence pairs exceeds the threshold τc of 3 are classified as affected by
calcification. Both thresholds τp and τc have been selected to maximize leave-one-out
accuracy; the values τp = 0.1 and τc = 3 result in only one leave-one-out missclassified
patient. Maximization has been obtained through grid search; for τp the grid spans a
range from 0.005 to 0.5, with increments of 0.005, while for τc it considers the natural
numbers from 1 up to 20.

Note that, as shown by Figure 16, identifying patients with calcifications is more of
a problem for those without an AAA - the S patients in the left half of Figure 16 - since
almost all patients with an AAA show also the presence of calcifications.

6.4 Supervised classification - Iliac Aneurysm
We now deal with iliac aneurysms. As discussed in Section 5.2.2, we expect an aneurysm in
the iliac area to show up in the persistence diagram in two different ways: 1) the absence
of a class of 0-cycles born on the affected iliac, separately from the one encompassing
the healthy one; 2) one or two classes of 1-cycles with infinite persistence, born at high
times. Since the absence of the second class of 0-cycles is redundant with respect to the
information of the birth of the second class of 1-cycles, we just consider as features for
this classification problem the birth coordinates of the two classes of 1-cycles with infinite
persistence, ordered according to their birth. We call those two variables B1 and B2. The
difference between patients with or without an iliac aneurysm, it’s evident in Figure 17a:
large values of birth for both 1-cycles are associated to the presence of an iliac aneurysm.
In particular the second coordinate, i.e. the largest birth, is the most discriminanting
factor. This is coherent with the fact that having one iliac aneurysm increases the birth
coordinate of the second class of 1-cycles with infinite persistence; while two aneurysms
increase both coordinates. Thus the second feature is always altered by the presence of
an aneurysm at the iliacs.
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Figure 16: Plot related to Section 6.3, representing the counts of the persistence pairs
in dimension 0 with persistence greater than 0.1 to recognize patients with calcifications.
Patients which present calcifications are plotted in orange, the others in blue. There is
clearly correlation between the presence of calcifications and irregularities of the lumen
captured by 0 dimensional homology. And we highlight that this holds true also for healthy
patients, which is arguably the more interesting situation, as most of the patients affected
by AAA present also calcifications. Patients are labelled and ordered as in previous figures.

(a) Scatterplot of the variables B1 and B2 used for classi-
fying patients with iliac aneurysm.

(b) L1out confusion matrix for Iliac
Aneurysm classification. Label AI is for
patients with iliac aneurysm, H for the
others.

Figure 17: Iliac Aneurysm classification, Section 6.4.

We fit a linear discriminant analysis model; by leave-one-out, this predicts correctly
all patients but two. The confusion matrix is reported in Figure 17b. Both misclassified
patients are affected by iliac aneurysms, but classified as healthy by our pipeline: their
aneurysms are indeed not severe, according to the collaborating clinicians.

6.5 Supervised classification - Thrombus
Lastly, we turn to the problem of detecting thrombi, which have been discussed in Sec-
tion 5.2.5. We have argued that thrombi are characterized by irregularities in the lumen,
most likely in the part of the blood vessel which is affected by AAA. Depending on the
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Figure 18: Plot related to Section 6.5, representing the counts of persistence pairs with
medium persistence associated to irregularities of the lumen, trying to exclude bumps
located on the iliacs and on the aortic neck. Patients which present thrombi are plotted in
orange, the others in blue. Again we can see correlation between the presence of thrombi
and irregularities of the lumen captured by the selected points in 0 dimensional homology.

homogeneity of the obstruction, these irregularities might generate local maxima of the
radial filtering function.

We approach thrombus classification by filtering out points in the persistence diagram
and retaining only 0 and 1 dimensional persistence pairs with finite persistence and high
birth coordinates.

In particular, for each diagram, we retain 0-cycles and 1-cycles with birth coordinate
larger than or equal to 1.1 - so that we know we are not on the iliacs and the neck - and
persistence larger then or equal to 0.1 - to filter out smaller and noisy bumps. Disregarding
the label declaring if they are 0-cycles or 1-cycles, the number of cycles retained for each
patient is shown in Figure 18; note that all healthy patients do not present any thrombi.
Thus, we can label as affected by thrombus all patients with at least 2 retained classes of
cycles, obtaining four missclassified patients: A10, A19, A20, A21. In Figure 19 we report
data about two of these patients, to understand the roots of this classification errors. For
instance, patient A20 is without thrombi but is classified as a having one. We can see in
Figure 19a some high persistence features in dimension 1, which are induced by a very
irregular lumen, with multiple aneurysm-like dilations. But no thrombus. Instead patient
A10 is affected by thrombi but classified as not having any. The reason can be clearly seen
in Figure 19d: the thrombus outside the lumen is very homogeneous, resulting in a very
straight and regular lumen, with no bumps. By construction, our methodology is good
at capturing information contained in inwards and outwards bumps, so the persistence
diagrams of patient A10 are similar to those of a healthy patient. However, we do believe
that segmenting also the thrombi from the CTA scans could solve this issue. We leave
this further investigation to future works.

7. Software and Packages
The segmentation pipeline makes use of vmtk 1.4.0 ?, a collection of libraries and tools
for 3D reconstruction and surface data analysis of blood vessels ?.
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(a) Patient A20 missclassified by the analysis in
Section 6.5.

(b) The patient A20 missclassified by the analy-
sis in Section 6.5.

(c) Patient A10 missclassified by the analysis in
Section 6.5.

(d) Patient A10 missclassified by the analysis in
Section 6.5.

Figure 19: Patients missclassified by the analysis in Section 6.5.
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The software used to visualize all the meshes and CTA scans shown in these pages is
Paraview ? version 5.11.0.

Persistence diagrams and related distances are computed using the python library
gudhi ? version 3.8.0, while for clusterization and visualization purposes the libraries
scikit-learn ?, scipy ?, seaborne ? and matplotlib ? have been adopted.

8. Discussion and conclusion
We presented a complex pipeline to work with data obtained from medical imaging of
abdominal aortas, exploiting the tools of topological data analysis. Each reconstructed
mesh of an abdominal aorta is represented by an object called persistence diagram, dis-
playing the 0-cycles and the 1-cycles characterizing a radial filtration function defined on
the mesh. These diagrams are able to concisely summarize many shape-related features
of the blood vessel, related to the irregularities of its lumen, which appear as a conse-
quence of abdominal aortic aneurysms and some related features, like calcifications and
intra-luminar thrombi.

We argue that the proposed representation could lead to advances in the data analysis
of AAAs. To support our claim we exhibit the results of several classification exercises,
built upon a training set of persistent diagrams derived by 48 CTA scans, 24 of which
picture a aneurysmal aorta.

The take home message is that relying on a persistence diagram representation makes
most of these classification exercises almost straightforward, due to the amount of infor-
mation collected by these easy-to-handle mathematical objects. Moreover, because of the
unsettling difference with more classical feature-gathering methods, we devoted a consis-
tent part of this work to stress the interpretability of the rich information displayed by
persistence diagrams.

Natural further developments of this work will tackle the forecasting and regression
problems which have already captured the attention of the medical and statistical com-
munities, like estimating growth rates of AAA, indication to surgery and rupture’s risks.
To that end, persistence diagrams present a number of mathematical advantages, briefly
mentioned in the manuscript, allowing for more refined object oriented data analysis which
will be the focus of our future works.
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Appendix A. Average Neck Radius
Necks average radius has been estimated with the following steps:

1. Linear interpolation of the centerlines points.

2. For a given parameter s = 0.5mm, empirically chosen, starting at the neck seed’s height s0
on the centerline, find the points si at distance s on the curvilinear abscissa.

3. For each of the si points find the planes Pi. orthogonal to the centerline in si. For each of
the planes Pi identified, a fitting ellipse of the mesh points is built, following the Fitzgibbons
approach ??, and its semi-major and semi-minor axes Mi and mi are computed. In some
cases the slice can identify more regions; when this verifies, the ellipse is built using only the
region of points that contains the point si.

4. Starting from the initial seed s0, a check is made for all the planes Pj found. If the two
proposition:

|Mi −Mi+j |
Mi

< 0.10 ∀j = 1, · · · , k with k=10 (5 mm) (2a)

Mi < 22.5mm (2b)

hold, Mi and mi are collected. The first and all the following si that do not respect the
proposition are discarded. k is chosen empirically and the conditions are made in order to
control both the raw AAA’s diameter and its relative growth.

5. The result is the mean of the mean of Mi and mi for each si that is not discarded. In this
way we obtain an accurate approximation of the neck’s radius.
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