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Abstract

Recently, response-adaptive designs have been proposed in randomized

clinical trials to achieve ethical and/or cost advantages by using sequen-
tial accrual information collected during the trial to dynamically update
the probabilities of treatment assignments. In this context, urn models
- where the probability to assign patients to treatments is interpreted as
the proportion of balls of different colors available in a virtual urn - have
been used as response-adaptive randomization rules.
We propose the use of Randomly Reinforced Urn (RRU) models in a simu-
lation study based on a published randomized clinical trial on the efficacy
of home enteral nutrition in cancer patients after major gastrointestinal
surgery. We compare results with the RRU design with those previously
published with the non-adaptive approach. We also provide a code writ-
ten with the R software to implement the RRU design in practice.



In detail, we simulate 10,000 trials based on the RRU model in three set-
ups of different total sample sizes. We report information on the number
of patients allocated to the inferior treatment and on the empirical power
of the t-test for the treatment coefficient in the ANOVA model. We carry
out a sensitivity analysis to assess the effect of different urn compositions.
For each sample size, in approximately 75% of the simulation runs, the
number of patients allocated to the inferior treatment by the RRU design
is lower, as compared to the non-adaptive design. The empirical power of
the t-test for the treatment effect is similar in the two designs.

Keywords: non-adaptive trial design; Randomly Reinforced Urn model; Ran-
domized trials; Response-adaptive randomization; Simulation study.

1 Introduction

In the statistical literature, urn models have been widely studied as mathe-
matical tools to implement randomization in the context of clinical trials (e.g.
see [1, 2]). These designs randomly assign those subjects that sequentially enter
the trial to the treatment arms according to the color of the balls sampled from
a virtual urn. Hence, the probability to assign a patient to a treatment arm is
modelled by the proportion of the different types of balls in the urn. Recently,
interest has been increased in the use of urn models for responses-adaptive de-
signs, in which the probability to sample a ball of a certain type depends on the
treatment performance observed on the subjects previously randomized [3, 4].
These designs are, therefore, able to achieve desirable statistical properties tak-
ing into account the ethical aspects of the clinical experiment (e.g. see [5]). A
popular class of such designs is the Randomly Reinforced Urn (RRU) model,
which has been introduced in [3] for binary treatment responses and extended
in [6] to handle continuous responses. The main asymptotic results on the pro-
portion of subjects assigned to the treatment groups by a RRU design have been
established in [7] and [6]. For the purposes of this paper, we simply remind that
a RRU design assigns patients to the superior treatment with a probability that
converges to one as the sample size increases. For a complete overview on the
RRU designs and its properties, we refer to [8].

Although the theoretical result of assigning most of the patients to the su-
perior treatment is very attractive from the ethical point of view, the RRU
design have rarely been implemented in clinical trials or in simulation studies
based on a real set-up (e.g. see Chapter 12 in [9]). This may depend on some
feasibility issues related to the practical implementation of adaptive designs in
general. A key expertise is also required to implement urn models in clinical
practice, which combines knowledge of the theoretical properties of urn models
and experience in planning and running clinical trials. The substantial lack of
dedicated software in standard statistical packages used in clinical practice is an
additional issue that have prevented a wider use of RRU designs in this field.

The aim of the current paper is to popularize the statistical and ethical ad-
vantages of the RRU design, and of urn schemes in general, and to promote their
use in clinical practice through a dedicated code written in R [10]. In detail,
we will simulate a large number of trials that follow the RRU model starting



from the real-life data collected in a (previously published) Home Enteral Nu-
trition (HEN) randomized trial [11], where a non-adaptive design was originally
adopted. Comparing the performance of the RRU with that of the original non-
adaptive design, we expect that the RRU design will: 1) assign fewer patients
to the inferior treatment; 2) maintain similar inferential properties. This will
turn out in an advantage in terms of both statistical performance and ethical
responsibility.

The paper is structured as follows. Section 2 provides some preliminary
information on the HEN trial and its results [11], introduces the RRU model
as a form of response-adaptive design, and describes how we carried out the
simulations of the RRU design based on the original HEN data. Section 3
provides a comparison of the performance of the RRU versus the non-adaptive
design in the simulation study based on the HEN data. Section 4 provides some
suggestions on tuning parameters and the R codes for the implementation of a
RRU design in the practice of randomized clinical trials. We conclude the paper
with a Discussion (Section 5).

2 Materials and Methods

2.1 A randomized controlled trial of home enteral nutri-
tion versus nutritional counselling

The RRU model was here implemented in a simulation study based on re-
sults from a multicenter, controlled, open-label, two-parallel groups, randomized
clinical trial conducted at the Fondazione IRCCS Istituto Nazionale dei Tumori
(INT), Milan, Italy, and at the European Institute of Oncology, Milan, Italy,
between December 2008 and June 2011 [11]. Malnutrition in gastrointestinal
cancer patients is an independent risk factor for post-operative morbidity and
mortality [12] and a prognostic factor for worst long-term outcome, especially
after major surgery [13]. Therefore, the trial was primary aimed at investigating
the effectiveness of enteral nutrition in limiting weight loss after home discharge
from surgery, in comparison to nutritional counselling.

The enrolled subjects were adult (> 18 years) patients with documented upper
gastrointestinal cancer (esophagus, stomach, pancreas, biliary tract) who were
candidates for major elective surgery and showed a preoperative nutritional
risk score that indicated a potential benefit from any nutritional intervention.
A random permuted block design (stratified for referring center) randomly as-
signed patients before discharge to receive either HEN to cover the basal energy
requirement (experimental group), or nutritional counselling by an expert di-
etitian, including oral supplements only when needed (Control Group - CG),
in a 1:1 ratio. The protocol allowed to remove HEN after two months from
discharge if a weight gain >5% was reported and oral diet was regular and ade-
quate. Therefore, the minimum treatment period in this trial was two months.
The treatment effect was defined as the difference between the mean “weight
change” (weight after two months - weight at baseline) in the HEN and nu-
tritional counselling arms (primary end-point). The total sample size required
to detect a statistically significant treatment effect was of 140 patients (70 per
arm). The sample size was calculated with o = 5% (two-sided) and power
1 — 8 = 80% under the following assumptions derived from a previous pilot



study conducted at INT: baseline standard deviation of the weight distribution
equal to 10 Kg, normality and homogeneity of weight variances across times
of assessment and arms, 5 Kg of expected difference in the two-months mean
weight change of treated versus control patients, and a correlation coefficient
of 0.5 between baseline and two-months weights. The planned efficacy analyses
included one interim and one final analysis, with the interim analysis to be car-
ried out when half of the patients had been followed for at least two months. In
order not to exceed an overall type I error of 5%, the nominal significance level
required by each analysis for the evaluation of efficacy was 2.94%, according to
the Pocok’s procedure [14]. The main analysis on the primary end-point was
conducted with a univariate ANOVA including treatment as the main effect,
after checking that standard ANOVA assumptions were satisfied.

In total, 79 patients were initially randomized; however, as 11 patients had a
missing two-months weight, the final analysis was performed on 68 patients, of
which 33 patients were allocated to the HEN group and 35 to the CG. The
main result of the primary end-point analysis was that the mean weight loss in
the patients undertaking the HEN treatment was significantly lower than that
in the CG, with a treatment effect estimated by the corresponding ANOVA
model coefficient (95% confidence interval) of 3.2 (1.1-5.3) and a p-value from
the corresponding two-sided t-test equal to 0.31% < 2.94%. For this reason,
the trial was stopped at the interim analysis and results from this analysis were
published in [11]. So, the HEN was found to be the superior treatment in this
trial.

2.2 Randomly Reinforced Urn design

We briefly introduce a RRU model for continuous responses to two treat-
ments [6], which has been implemeted in accordance with the design character-
istics of the HEN trial.

Consider a group of patients that sequentially enters a trial and has to be ran-
domly assigned to either treatment R or treatment WW. To model this, we
assume that, before subject i > 1 enters the trial, we have a virtual urn with
R;—1 > 0 red balls and W;_; > 0 white balls. We indicate with (R;—1, W;_1)
the urn composition before subject ¢ > 1 enters the trial. We also set the initial
urn composition balanced (i.e., Ry = Wy), to reflect the 1:1 randomization.
When subject i enters the trial, a ball is sampled from the virtual urn and
he/she is assigned to treatment R if the sampled color is red (X; = 1) or to
treatment W if the sampled color is white (X; = 0). When his/her response
to the assigned treatment is ascertained, we indicate it by &g, if the assigned
treatment is R or by &w; if the assigned treatment is WW. The responses to each
treatment are assumed independent and identically distributed.

The urn is then updated by adding balls of the same color of the sampled one;
in detail, the number of balls added to the urn is represented by the utility func-
tion w, which is a suitable positive monotone increasing function of the response
observed on subject i. Formally, the urn composition is updated as follows:

Ri=R,_1 + X;u(§r;)
(1)
Wi =Wi1 + (1 — Xp)u(€wi),



where we called 'reinforcement’ the quantities u(&g;) and u(Ew;).

The updating rule in (1) implies the single responses are available before the
next patient enters the trial. In the case of 'delayed responses’, we propose here
a variant of the previous design in the same spirit of [15]: the urn updating
is based only on those responses that were available during the time interval
between the arrivals of subject ¢ and i+ 1. Formally, for any i > 1, let us denote
by A; the set of patients whose responses to treatments are available before
subject ¢ arrives. Then, the urn composition is updated as follows:

Ri=Ri1+ ZkE(Ai+1\Ai) Xyu(€rr)
(2)
Wi =W;_1+ ZkE(Ai+1\Ai)(1 = Xp)u§wr),

where (A;4+1 \ A;) refers to those subjects whose responses are available during
the time interval between the arrivals of subject i and ¢ + 1. In case of not
delayed responses, (4,11 \ A;) =1, and hence (1) and (2) are equivalent.

It follows from the RRU design definition that the probability to assign a
subject 7 to the treatment R is the proportion of red balls in the urn at the
moment of his/her entrance in the trial:

R4
S N 3
Ri 1+ Wiy ®)

where the right hand side of the formula indicates the urn proportion at time
i — 1. Hence, the sequence {X;;i > 1} of the subject assignment indicators
is composed by conditionally Bernoulli random variables. In addition, it is
worth noting that the urn proportion changes as far as a new response is made
available; as a consequence, the probability to assign any new subject to one
treatment or to the other depends on the treatment performance, in accordance
with other response-adaptive designs.

P(X; =1|Ri—1,Wi—1) =

Now, define Ng(n) = >_" , X; as the number of subjects assigned to treat-

ment R among the first n patients enrolled in the trial and Ny (n) = n— Ng(n)
as the number of subjects assigned to W.
The main asymptotic result of the RRU design is that the proportion of subjects
assigned to the superior treatment converges to one, as the sample size increases
to infinity. Formally, denoting by mpr := E[u({r1)] and my = E[u(&w1)],
from [6] we have that

) @

NR(TL) as. 1 ifmg > mw,
0 if mg <mwy.

Hence, the RRU design asymptotically targets the superior treatment R. As a
consequence, we expect that, in principle, a RRU design assigns a lower number
of subjects to the inferior treatment with a higher probability, as compared to
a non-adaptive design.

2.3 Simulations of Randomly Reinforced Urn designs

In this subsection, we describe how we simulated the RRU design starting
from the HEN trial data and how we derived the results for comparing the RRU
design with the non-adaptive one. We considered the following main steps:



(i) using the HEN trial dataset [11] described in Subsection 2.1:

(1) we estimated the parameters of the Gaussian distribution of the re-
sponses to the HEN group;

(2) we estimated the parameters of the Gaussian distribution of the re-
sponses in the CG;

(3) we computed the empirical distribution of the difference between ar-
rival times of consecutive subjects;

(ii) we simulated N independent trial samples based on the RRU model; for
each sample, responses to both treatments and intervals between arrival
times were randomly generated from distributions introduced in point (i);

(iii) we computed from these N trials:

(1) the empirical distribution of the number of subjects assigned to the
inferior treatment W;

(2) the empirical power of the corresponding t-test.

The previous steps are detailed in the following.
To start, we considered three alternative set-ups of trial sample sizes equal to:

(a) n=58;
(b) n =68;
(¢) n="18,

where the total sample size 68 of the HEN trial (Section 2.1) was used as the
reference set-up and we moved +15% from that to get other two reasonable
sample sizes.
For each set-up, we performed N = 10,000 simulations of independent trials
based on the RRU design: in each run we have a virtual urn to be sampled
and reinforced as described in Subsection 2.2. Formally, we denote by (R], W)
the urn composition and by R’/(R! + W) the urn proportion in simulation
j=A{1,..,N} at time i € {1,..,n}. -
All the urns start with the same (fixed) initial composition, i.e. (R}, W) =
(Ro, Wy) for any j = {1,.., N}. Then, the urn composition (Rf, Wf) is updated
as in (2):

Rl =Rj_, + Zke(Aij\Az) Xiu(She)

Wi = Wi + Tkecat, v (1~ XDu(Eive)

where X ,i is a Bernoulli random variable with parameter Riq / (1‘2?;71 + ngfl)

and the set Ag here includes all the patients who arrived two months earlier
than subject i. Indeed, in the HEN trial, responses were available only two
months after treatment administration.

In addition, as normality assumptions in the original data were not rejected
(see Subsection 2.1), responses to both treatments were generated as indepen-
dent Gaussian random variables with arm-specific means and variances com-
puted using the HEN dataset and given by: mpr = —0.315 and or = 3.868 for
treatment R (HEN group), my = —3.571 and ow = 4.789 for treatment W
(CG). Formally, we generated the following quantities:



(1) 51%1, o 53%” ~ N (mg, %) potential responses to treatment R (HEN group);
(2) €y ~ N(muw, o2,) potential responses to treatment W (CG),

where either 55%1. or 5%1. is observed, as each subject just receives one treatment.
We also randomly generated the potential arrival times from the corresponding
empirical distribution in the HEN dataset.

For any sample size n (cases (a)-(b)-(c)) and any simulation j = {1,.., N},
we finally reported:

(1) the number of patients N, (n) = >2(1 — X/) assigned to the CG, known
to be the inferior treatment in the HEN trial (Subsection 2.1);

(2) the result I7 € {0,1} of the t-test for equal mean changes at level o = 0.05
(corresponding to the treatment coefficient in the ANOVA model): I7 =0
if the test does not reject Ho, while I7 = 1 if the test rejects Hy.

It is worth noting that Név (n) (and consequently N f%(n)) typically differs across
simulations, because the urn processes are independent and the subjects are
allocated to the treatments depending on the urn-specific path of colors of the
sampled balls. We also estimated the power of the t-test from the N simulated
trials referring to the empirical power 1 — 3 = N—! Ejvzl I

Without loss of generality, we set the u function as: u(xz) = (x + 20)/40.
Since in the HEN trial the response values, x, range in the interval (—20,20),
this function was chosen to map linearly our simulated responses, z, in (0, 1).
We also assumed the initial urn composition to be Ry = Wy = 1 (i.e. one ball
of each color initially put into the urn). However, we carried out a sensitivity
analysis to assess the effect of different initial urn compositions for the different
total sample sizes available. In detail, we considered the cases: Ry = Wy =5 or
Ry = Wy = 10.

To carry out the comparison with the non-adaptive design, we calculated the
number of subjects allocated to the inferior treatment when the non-adaptive
design was assumed. Let us denote this by nw. In case (b) (reference set-
up: n = 68), ny was known to be equal to 35, as in the HEN trial 35 out
of 68 subjects were allocated to the inferior treatment. In addition, we have
to estimate ny in cases (a) and (c). In case (a) (n = 58), we built several
(=~ 10,0000) subsamples of size 58 from the original HEN sample of total size
68; we estimated ny as the mean number of subjects allocated to the CG across
the available samples of size 58. To estimate ny in case (c) (n = 78), we applied
a proportin similar to that found in (b) on the 78 available subjects of this case.
The corresponding nyy were equal to 29 for case (a) and 38 for case (c¢). The
empirical power of the adaptive design was compared with the theoretical power
of the non-adaptive t-test which was computed assuming that the true difference
of the mean weight changes between the two arms is equal to the value obtained
in the HEN trial.

All the analyses have been performed using a specialized code (available upon
request from the authors) within the framework of the open-source statistical
software R [10].



n Nw (n) nw || 1-8]1-8

1% quartile Mean Median 377 quartile

(a) 58 19 25.6 25 31 29 0.88 0.83
(b) 68 22 29.6 29 36 35 || 0.92 | 0.88
(c) 78 25 33.6 33 41 38 0.94 | 0.92

Table 1: Summary statistics (1°* and 3"¢ quartiles, mean, and median) of the empirical
distribution of the number of subjects assigned to the inferior treatment, Nw (n), and
empirical power, 1 — B, of the t-test for equal mean weight changes (corresponding
to the treatment coefficient in the ANOVA model) for the different sample sizes n in
the Randomly Reinforced Urn design, in comparison with the corresponding results
for the non-adaptive design, nyw and 1 — 8. We reported in bold typeface the results
obtained with the same sample size of the original Home Enteral Nutrition trial. The
initial composition of the urns in all simulations was set at: Ry = Wy = 1.

3 Results

In this section we show the performance of the simulated RRU trials based
on the HEN data. Table 1 shows some descriptive statistics of the empirical
distribution of the number of subjects assigned to the inferior treatment, Ny (n),
and the empirical power of the t-test, 1 — B, for the different sample sizes n
and a fixed initial urn composition Ry = Wy = 1, in comparison with the
corresponding results for the non-adaptive design, ny and 1 — 5.

For all sample sizes under consideration [cases (a)-(b)-(c)], the mean and
the median of Ny (n) were smaller than ny, the number of subjects assigned
to the inferior treatment by the non-adaptive design. It follows that the RRU
design provided 50% of probability (or more) to assign fewer subjects to the
inferior treatment, as compared to the non-adaptive design. Although higher
than ny for all the sample sizes considered, the third quartile of Ny (n) in the
RRU design was very close to ny, for any n under consideration. In addition,
the obtained values for the t-test empirical power under the RRU design were
close, but slightly smaller than, the corresponding power values derived in the
non-adaptive design.

Further information on the distribution of Ny (n) is provided by the boxplots
reported in Figure 1. For any sample size, the median of Ny (n) was below the
dashed line indicating the number of subjects assigned to the inferior treatment
by the non-adaptive design. Similarly, we confirmed that, although higher, the
third quartile was closer than the median to the dashed line for the three cases
under consideration. In addition, the probability that Ny (n) was less than
nw was close to 75% for any sample size under consideration. Finally, although
mostly symmetric, the empirical distributions of the number of subjects assigned
to the inferior treatment showed a high level of variability. This variability
increases, as the total sample size increases.

Table 2 shows the results of the sensitivity analysis to different initial urn
compositions. Our analysis was robust with respect to the initial urn composi-
tion chosen. Indeed, the mean and median number of subjects allocated to the
inferior treatment in the RRU design was still below the corresponding number
of subjects in the non-adaptive design, for any n and fixed urn composition
under consideration. In addition, as far as the number of balls initially inserted
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Figure 1: Boxplots of the number of subjects assigned to the inferior treatment
(Control Group) in the three cases reported above each picture: (a) n = 58, (b)
n =68, (¢) n = 78. The dashed line indicated the number of subjects assigned to the
control group in the non-adaptive trial in the three cases.

into the urn increases, for fixed n, the medians increase and, with Ry = Wy = 10,
they almost reached the number of patients assigned to the inferior treatment
in the non-adaptive design, nyy. The empirical power of the t-test was corre-
spondingly higher than in the reference scenario of Ry = Wy = 1 for any n
under consideration, thus making it almost identical to the empirical power in
the non-adaptive design (see column 1 — 3 in Table 1). Similarly, as far as the
number of balls initially inserted into the urn increases, for fixed n, the vari-
ability of Ny (n) decreases and the adaptive design becomes closer and closer
to the non-adaptive one.

4 Practical implementation of the RRU design

In the following, we give some technical details on how to implement a RRU
design in the practice of clinical trials. The initial set-up at the trial start
involves:

e total sample size n;
e initial urn composition (Rg, Wp);
e utility function u.

We highlight that the implementation of the RRU does not require any the-
oretical support or add-on code for sample size calculation. We just suppose



Results

Scenarios Ny (n) 1-4

n  Ro=Wy | 1% quartile Mean Median 3"7 quartile
1 19 25.6 25 31 0.83
58 5 23 27.4 27 31 0.86
10 24 27.9 28 31 0.87
1 22 29.6 29 36 0.88
68 5 27 31.7 32 36 0.91
10 29 32.6 32 37 0.91
1 25 33.6 33 41 0.92
78 5 31 36.1 36 41 0.94
10 33 37.3 37 42 0.94

Table 2: Sensitivity analysis to different urn initial compositions with Ry = Wo: sum-
mary statistics (1°" and 374 quartiles, mean, and median) of the empirical distribution
of the number of subjects assigned to the inferior treatment, Nw (n), and empirical
power, 1 — B , of the t-test for the combination of different available sample sizes n and
urn initial compositions. We reported the reference scenario in bold typeface.

that the trial investigators have calculated a total sample size n according to
some approach, including traditional non-adaptive techniques.

There is no standard approach to choose the initial urn composition. However,
a rule of thumb could be to set Ry and Wy such that: (i) their sum (Ry+ W) is
similar to the mean number of balls added to the urn at any time a new response
is available, and (ii) the initial proportion of balls in the urn, Zy = Ro/(Ro+Wo),
may reflect the a priori belief on which treatment is superior: the better the
treatment R, the higher is Zy. In our simulation study, we always set Ry = Wy
and therefore: Zy = 0.5, meaning that we have no reason to believe a priori
that one treatment is superior. In accordance with the equipoise principle, this
proportion is typically set to Zy = 0.5 in the clinical practice.

The utility function, u, is, in principle, any positive monotone increasing func-
tion that maps the range of continuos responses into a positive bounded interval.
For instance, in our simulation of the HEN trial, since the response values, =z,
range in the interval (—20,20), we set u(z) := (x + 20)/40, in order to obtain
reinforcements in (0, 1).

The RRU design is practically implemented as follows:

e information storing:
The minimal set of information for implementing the RRU design may be
collected in two database. In the former one, we store for each subject (in
rows) the following variables (in columns):
— subject ID;
— date of entry in the study;
— treatment assignment;

— date of response;

response value.

10



In the latter one, we store for each date of subject response (in rows)
the updated urn composition (R, W) (in columns). In the first row, we
have the randomization date of the first patient entered in the study and
(Ro, Wo).

subject randomization:
Equation (3) is implemented in the following R function:

new_subject <- function(R,W){
## (R,W): urn composition
## before the arrival of the new subject

Z <- R/(R+W) ## compute the urn proportion
U <- runif(1,0,1) ## sample a ball from the urn
if (U<=Z) {T <- 'R’} ## if the sampled ball is red,

## assign the subject to treatment 'R’
else if (U>Z) {T <- W’} ## if the sampled ball is white,

## assign the subject to treatment W’
return(T) ## return the treatment assigned to the subject

}

At the arrival of the i*" subject, we assign him/her to treatment calling
the function with the current urn composition:

> new_treatment<-new_subject (R,W)

For instance, if the current urn composition is (R, W) = (20, 25), we may
obtain:

> new_treatment<-new_subject(20,25)
> new_treatment
[1] IIRII

urn updating:
Equation (1) is implemented in the following R function:

new_response <- function(R,W,xi,T,uw){
## (R,W): the urn composition
## at the time the new response is available,
## xi: value of the new response,
## T: treatment associated to the new response (R’ or ’W’)
## u: utility function
if (T=="R’) {R <- R+u(xi)}
## if xi is a response to treatment ’R’,
## we increase the number of red balls in the urn
else if (T=="W’) {W <- W+u(xi)}
### if xi is a response to treatment ’W’,
## we increase the number of white balls in the urn
return(data.frame(R,W))
### return the urn composition after the update

}

11



The utility u has to be specified in a suitable R function. For instance,
in our simulation the utility function is implemented in R as follows:

utility<-function(xi){(xi+20)/40}

When the subject gives his/her response to treatment, we call the new_response ()
function, with the updated information on treatment and response:

> new_urn_comp<-new_response (R,W,xi,new_treatment,utility)

and we obtain the updated urn composition. For instance, if the response
to treatment is xi= 10, we obtain:

> new_urn_comp<-new_response (20,25,10,’R’ ,utility)
> new_urn_comp

R W
1 20.75 25

to be inserted as the new urn composition in the corresponding database,
together with the new date of response.

5 Discussion

The current paper provides scientific and practical support to the diffusion
of the RRU response-adaptive design in randomized clinical trial planning, to
alter the randomization ratio and favor patients allocation to the most effective
treatment. To the best of our knowledge, we are among the first research groups
applying the RRU design in a simulation study based on real-life data from a
randomized trial planned with a non-adaptive design and to compare the RRU
performance with the original results from this trial. The simulation study
gave scientific evidence of the possible advantages achieved with such a design,
in that, as compared to the corresponding non-adaptive design, fewer subjects
were allocated to the inferior treatment with a higher probability and with a
limited loss of power in hypothesis testing. We also showed the possibility of the
practical use of the RRU design by providing the R code for its implementation.

The above results were derived by implementing a modification of the RRU
design proposed in [6] that takes into account the more realistic case of delayed
treatment responses. The adaptive randomization probabilities are determined
based on the data observed thus far. This is a step forward in the modelling
of real-life problems with urn models. Indeed, in the vast majority of medi-
cal research, including oncology, end-points are accessible for the evaluation of
treatment efficacy during a relatively long follow-up period. In all these cases,
our approach does not require suspending patient accrual and thus avoids wast-
ing resources, adding administrative inconvenience and, in the end, having an
infeasible trial.

We acknowledge that sample size, test power and treatment effect size are
three issues to be addressed within the RRU design and related one to the other.
The current application considers the total sample size as a fixed aspect of the
problem. Our choices were in line with the real set-up of the Italian efficacy
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study of HEN for gastrointestinal cancer patients. In particular, we hypothe-
sized the following alternatives: 68 (total sample size of the HEN trial; reference
set-up), together with 58 and 78, obtained by moving +15% from 68. For all
the three settings, our results showed that fewer subjects were allocated to
the inferior treatment CG with a higher probability, as compared to the corre-
sponding non-adaptive design. In detail, in approximately 75% of the 10,000
simulation runs the number of patients allocated to the inferior treatment by
the RRU design is lower than the corresponding one in the non-adaptive de-
sign. For instance, in the reference case of 68 subjects collected in the original
trial, the RRU design provided a median number of patients allocated to the
inferior treatment equal to 29, versus a corresponding number as high as 35 in
the non-adaptive design.

The total sample size is related to the effect size and power in a way that
goes beyond the scope of this paper. Therefore, we did not include in the present
work any theoretical development or add-on code for sample size calculation.
One strategy could be to calculate a reference upper bound for the sample
size by following standard approaches for non-adaptive designs and apply an
adjustment that increases this value and protects from the loss of power expected
with the RRU design. A more refined solution is to consider a trial simulation
investigating the impact of the tuning parameters on total sample size and
corresponding power for the target effect size.

In our application, the differences in the power of the t test for equal mean
changes in the non-adaptive versus adaptive design range from 1% to 6% in
absolute value. Power loss is an expected result, due to the unbalanced ran-
domization ratio that is typical of adaptive designs. However, such loss seems
to be limited and compensated by the expected gain in the number of subjects
assigned to the superior treatment by the RRU design.

The amount of gain in the allocation procedure is related to the estimated
effect size, too. Indeed, the convergence rate to the optimal allocation depends
on the means and variances of the distributions of the responses to treatment,
as proved in [7].

Our simulation study was based on a trial with a differential effect between
competitive treatments. For a high positive difference between the observed and
the target effect size, the adaptive allocation will be strongly unbalanced in favor
of the superior treatment, generating higher and higher loss of power. However,
such loss should be compensated by the gain due to the larger-than-expected
effect size. In the case of no observed effect between treatments, as the sample
size increases to infinity, the stochastic process of the proportions of subjects
assigned to the superior treatment oscillates and does not convergence to 1
anymore. The distribution of this proportion is, indeed, the unique continuous
solution of a functional equation involving unknown probability distributions on
[0, 1], as shown in [16] and [17]. This is still a setting where a RRU design can be
applied because there will be a sort of random selection of the arm “receiving”
more subjects. In addition, although we do not know the exact functional form,
we can still take advantage of the fact that the distribution of the proportion
has no point mass and has lower and upper bounds. For instance, we can
deal with potential outliers by setting sensible thresholds to allow updating of
the urn composition only when the proportion falls within the specified range
(see [18, 19)).

Randomly reinforced urn models suffer from the same feasibility issues that
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prevent a wider application of adaptive designs. Among others, adaptive designs
generally require that information on response to treatment be quickly ascer-
tainable and used as far as it is available, but real-time data collection may be
difficult in practice. In some applications, the response assessment implies a
long follow-up time and, therefore, a new subject is ready for treatment assign-
ment while responses to previously enrolled patients have not been observed
yet. However, our variant of the RRU scheme is able to manage urn updating
when information is available from small blocks of subjects.

In addition, in the practical implementation of a RRU design, we had to face
with the tuning of several parameters, including total sample size, initial urn
composition, and utility function for the urn reinforcement. Our choices were
informed by the real example under consideration, as suggested in Section 4.
However, the R code provided is very general and can be easily modified to cope
with different real-life situations. If we assumed a different form for the utility
function, we could simply insert it in the right hand side of the corresponding
R function utility, with no modifications in the remaining R functions.
Similarly, if we dealt with a binary outcome, the utility function could simply
be equal to the identity function, as the response values lie in [0,1]. At the same
time, we chose our real-life example to adhere, as far as possible, to some extra
feasibility requirements. In detail, both the time interval between consecutive
patient arrivals and the delay of the responses have to be similar in magnitude
to the total study period divided by the total number of patients enrolled. For
instance, in our example, the mean time intervals between consecutive patients
was about 20 days, the mean delay of the responses was approximately 2 months,
and the study lasts for about 4 years.

In conclusion, we provide support to the theoretical and practical use of
RRU designs in randomized clinical trials: significant ethical and cost advan-
tages are obtained over equal randomization, with fewer subjects assigned to
the inferior treatment with a higher probability. Although we are aware of the
many feasibility issues related to adaptive designs in general, we still believe
that the RRU designs represent a valid attempt to develop an adaptive design
in randomized clinical trials.
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