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Abstract

We develop a new reduced basis (RB) method for the rapid and reliable approximation of parametrized
elliptic eigenvalue problems. The method hinges upon dual weighted residual type a posteriori error
indicators which estimate, for any value of the parameters, the error between the high-fidelity finite
element approximation of the first eigenpair and the corresponding reduced basis approximation.
The proposed error estimators are exploited not only to certify the RB approximation with respect
to the high-fidelity one, but also to set up a greedy algorithm for the offline construction of a reduced
basis space. Several numerical experiments show the overall validity of the proposed RB approach.
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1. Introduction

The efficient solution of parametrized eigenproblems represents a key numerical challenge in
several contexts of applied interest. Acoustics, optics and structural mechanics are just three broad
fields where eigenproblems are ubiquitous. In several cases, we might be interested to solve this kind
of problems in a range of different settings or scenarios, each one characterized by different material
properties or physical coefficients, source terms and/or their localization, geometrical configura-
tions. This occurs very often in sensitivity analyses, input/output (or system response) evaluations,
as well as in optimization contexts, such as optimal control and optimal design problems. Concern-
ing these latter class, some relevant examples are (i) the control of structural vibrations or (ii) the
design of optical devices. In the former case, the resonant frequencies of a vibrating system might
be pushed away from a specified window by changing the geometry of the structure, or adding
mass to it [26]. In the latter case, the optimal localization of eigenfunctions in an inhomogeneous
medium arises in the design of photonic bandgap structures, which are the optical analogues of
electronic semiconductors. By introducing patterned defects into a photonic bandgap structure, it
is possible to control the propagation of light within the structure [8]. A further relevant application
which requires the efficient solution of eigenproblems is population dynamics, where one may be
interested to, e.g., determining the optimal spatial arrangement of favorable and unfavorable regions
for a species to survive [12].



Motivated by these (and many other) examples, we develop in this work a numerical technique
for the efficient solution of parametrized elliptic eigenproblems, relying on the so-called reduced basis
(RB) method. RB methods enable to solve parametrized partial differential equations (PDEs) in a
very short amount of time – possibly, in a real-time way – by involving very few degrees of freedom,
if compared to usual high-fidelity approximation techniques, such as the Finite Element (FE) or
the Finite Volume (FV) method.

The RB method seeks the solution of a PDE problem within a low-dimensional, problem-
dependent approximation space, whose basis is given by suitably chosen snapshots of the high-
fidelity problem, that is, by PDE solutions computed for selected parameter values. A greedy
algorithm relying on a residual-based a posteriori error estimate is usually exploited to sample the
parameter space efficiently, in order to build reduced spaces of very low dimension. This is a widely
used technique in the RB approximation of parametrized elliptic and parabolic PDEs, featuring a
very efficient offline/online computational procedure. Algebraic structures related to reduced oper-
ators, as well as the reduced basis functions, can be computed during the offline phase, so that the
online evaluation of the reduced problem, for any new parameter value, can be performed in a very
inexpensive way. See e.g. [29] and [28, chapter 19] for several discussions and details.

Despite RB methods have been applied to a huge variety of problems [25] in the last decade –
including heat and mass transfer [31], fluid flows modelled by Stokes [32] and Navier-Stokes [19, 15]
equations, electromagnetism [10], optimal control problems [7, 24], optimal design problems [16, 21]
– the evaluation of efficient RB approximations of parametrized eigenproblems has not been deeply
analyzed. In their pioneering work [17], Rovas, Maday and Patera propose a RB method for the
rapid and reliable approximation of the smallest eigenvalue in the context of parametrized symmet-
ric elliptic eigenvalue problems. They also develop a first a posteriori error estimate (see also [18]),
which provides however a bound just on the eigenvalue and not on the corresponding eigenfunction,
and is employed only in the online phase to certify the RB approximation. Moreover, they consider
a RB space made of the first two eigenfunctions evaluated for a selected set of parameter values,
without taking advantage of any greedy adaptive procedure, to characterize the smallest eigenpair.
Hence, the a posteriori error bound is not employed for the sake of an efficient exploration of the
parameter space during the offline construction of the reduced basis. Further related developments
can be found e.g. in [30, 27]. More recently, a growing interest has been oriented to computational
reduction for large-scale eigenvalue problems: (i) a component-based approach has been introduced
for fast evaluation of parameter-dependent eigenproblems, in the context of the so-called static con-
densation RB method [13], where a posteriori error estimators are provided for eigenvalues only;
(ii) greedy procedures for high-dimensional (non-parametrized) eigenvalue problems in the context
of the so-called proper generalized decomposition methods [1] have been explored in [6], without
considering a posteriori error analysis. As a matter of fact, developing sharp and inexpensive a
posteriori error estimates for eigenpairs seems to be a critical aspect, which makes the RB approx-
imation of parametrized eigenproblems a challenging task.

The goal of this paper is to develop a new RB method for the rapid and effective approxima-
tion of parametrized elliptic eigenvalue problems. The method hinges upon the use of reliable and
computable dual weighted residual (DWR) type error estimators. Indeed, in the same spirit of the
work by Heuveline and Rannacher [11] (see also [4]), we provide a posteriori estimates for the error
between the high-fidelity (FE) smallest eigenpair (λh(µ), uh(µ)) and the corresponding RB approx-
imation (λN (µ), uN (µ)), for any parameter value µ ∈ D ⊂ RP . Moreover, the reliability of the
error estimates is proved. We take advantage of this result not only to certify the RB approximation
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with respect to the high-fidelity one, but also to set a greedy algorithm for the efficient construction
of a low-dimensional reduced basis space. In particular, we develop an offline/online strategy to
deal with both the assembling of the reduced algebraic structures and the evaluation of (dual norms
of) residuals in a very efficient way. The efficacy of the whole computational framework is assessed
through several numerical test cases where affinely and non-affinely parametrized eigenproblems
are considered; the empirical interpolation method [2] is used to recover an (approximate) affine
parametric expression in case of non-affinely parametrized operators.

The structure of the paper is as follows. In Sect. 2 we introduce the parametrized elliptic
eigenvalue problem together with its high-fidelity FE approximation. In Sect. 3 we introduce the
reduced basis approximation and a greedy algorithm for the efficient assembling of reduced basis
spaces. In Sect. 4, relying on the dual weighted residual theory, we introduce our a posteriori
error estimates for the parametrized eigenvalue problem and prove their reliability. We also discuss
the efficient evaluation of some problem-dependent quantities appearing in our error estimates.
Finally, in Sect. 5 several numerical results, related to both affinely and non-affinely parametrized
eigenproblems, assess the computational efficacy of our RB approach.

2. Parametrized elliptic eigenvalue problems

Our goal is to provide a very fast and reliable numerical approximation for the following gen-
eralized eigenvalue problem: given µ ∈ D ⊆ RP , being D a given parameter space, find a pair
(λ, u) = (λ(µ), u(µ)) such that {

−∆u = λε(µ)u in Ω ⊂ R2,

u = 0 on ∂Ω,
(2.1)

subject to the normalization constraint ∫
Ω
ε(µ)u2 dx = 1,

where, for any µ ∈ D, ε(µ) ∈ L∞(Ω) is a strictly positive function. Moreover, we assume that
there exist ε0, ε∞ ∈ R+ such that 0 < ε0 ≤ ε(x;µ) ≤ ε∞ for a.e. x ∈ Ω. In particular, denoting
by {λ(n)(µ)}n∈N the sequence of the eigenvalues of problem (2.1) sorted in ascending order, we
are interested in determining the smallest eigenvalue λ(1)(µ) and the corresponding eigenfunction
u(1)(µ), for any µ ∈ D. After presenting the properties of the continuous problem (2.1), in this
section we introduce and analyze its high-fidelity discretization based on the Galerkin-FE method.

2.1. Parametrized formulation and high-fidelity approximation
From the theory of symmetric elliptic operators (see, e.g., [9]), problem (2.1) is well posed,

all its eigenvalues are strictly positive, and the multiplicity of λ(1) is one, so that the eigenpair
(λ(1)(µ), u(1)(µ)) is univocally determined, for each µ ∈ D. Let us introduce the space V = H1

0 (Ω)
and the bilinear forms a(·, ·) : V × V → R and b(·, ·;µ) : V × V ×D → R defined by

a(ψ1, ψ2) = (∇ψ1,∇ψ2), b(ψ1, ψ2;µ) = (ε(µ)ψ1, ψ2) ∀ψ1, ψ2 ∈ V, ∀µ ∈ D.
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In these definitions, and throughout the whole paper, we denote by (·, ·) and ‖ · ‖ the L2(Ω) inner
product and the induced norm, respectively. Moreover, for any ϕ ∈ L2(Ω), we also define the norm
‖ϕ‖b =

√
b(ϕ,ϕ), which is equivalent to the L2 norm ‖ · ‖, since

√
ε0‖ψ‖ ≤ ‖ψ‖b ≤

√
ε∞‖ψ‖.

The weak formulation of problem (2.1) reads as follows: given µ ∈ D, find λ = λ(µ) ∈ R and
u = u(µ) ∈ V such that

a(u, ψ) = λb(u, ψ;µ) ∀ψ ∈ V,
b(u, u;µ) = 1.

(2.2)

It is worth recalling that the first eigenvalue of a problem of the form (2.2) minimizes its Rayleigh
quotient, i.e.

λ(1)(µ) = min
ψ∈V

a(ψ,ψ)

b(ψ,ψ;µ)
, (2.3)

and that the other eigenvalues are such that

λ(n)(µ) = min
ψ∈V (n)

a(ψ,ψ)

b(ψ,ψ;µ)
.

that is, they satisfy property (2.3) on the lower-dimensional subspaces V (n) =
(
span{u(1), . . . , u(n−1)}

)⊥b ,
where the orthogonality has to be meant with respect to the bilinear form b.

Remark 2.1. From now on, when no misunderstanding occurs, the principal eigenpair (λ(1), u(1))
will be denoted by (λ, u).

2.2. High-fidelity approximation of the problem
Let us now introduce the high-fidelity approximation of the eigenproblem (2.2) by considering

a Galerkin-FE approximation. To this end, let us introduce a FE subspace Vh ⊂ V of dimension
dim(Vh)= Nh where Vh = H1

0 (Ω) ∩Xr
h(Ω) and

Xr
h(Ω) = {ψh ∈ C0(Ω): ψh|K ∈ Pr(K) ∀K ∈ Th}.

Here we denote by Th a conforming and regular triangulation of the domain Ω and by Pr(K) the
set of polynomials on K ∈ Th with degree not greater than r. The high-fidelity approximation of
problem (2.2) reads as follows: given µ ∈ D, find uh = uh(µ) ∈ Vh and λh = λh(µ) ∈ R such that

a(uh, ψh) = λhb(uh, ψh;µ) ∀ψh ∈ Vh,
b(uh, uh;µ) = 1.

(2.4)

Denoting by {λ(n)
h }n∈N the sequence of the eigenvalues of problem (2.4), sorted in ascending

order, we are interested to compute λh = λ
(1)
h and the corresponding eigenfunction uh = u

(1)
h . In

particular, we assume that the partition Th is sufficiently fine so that λh is simple like its continuous
counterpart λ. Moreover, let us denote by {ϕi}Nhi=1 a basis of Vh; the algebraic formulation of problem
(2.4) reads as follows:

AUh = λhB(µ)Uh,

UT
hB(µ)Uh = 1,

(2.5)
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where
Aij = a(ϕj , ϕi), Bij(µ) = b(ϕj , ϕi;µ), i, j = 1, . . . , Nh

and Uh = Uh(µ) is the vector of the degrees of freedom of uh(µ), that is, we can express uh =∑Nh
i=1(Uh)iϕi. Moreover, let us denote by M the L2 mass matrix, whose elements are given by

Mij = (ϕj , ϕi), i, j = 1, . . . , Nh.

We point out that solving problem (2.5) might entail severe computational costs, since A and B(µ)
are Nh ×Nh matrices, where the dimension Nh can be very larger. Moreover, since B depends on
the parameter µ, its assembling is in principle required for any new value of µ ∈ D. In Sect. 3 we
will come back on both these issues.

To conclude this section, we provide bounds for the discrete eigenvalue λh. Since Vh ⊂ V =
H1

0 (Ω), it is easy to check that, for any µ ∈ D,

λh(µ) = inf
ψh∈Vh

a(ψh, ψh)

b(ψh, ψh;µ)
≥ inf

ψ∈V

a(ψ,ψ)

b(ψ,ψ;µ)
= λ(µ). (2.6)

Thus, the discrete eigenvalue λh is always an upper bound for the continuous eigenvalue λ. Moreover,
we have that

λ ≤ λh ≤
χh
ε0

(2.7)

by recalling that b(ψh, ψh;µ) ≥ ε0(ψh, ψh) for any µ and denoting by χh the principal eigenvalue
of the following problem:

(∇zh,∇ψh) = χh(zh, ψh) ∀ψh ∈ Vh. (2.8)

Remark 2.2. We point out that χh is related to the discrete Poincaré constant cΩ,h fulfilling the
following inequality:

‖ψh‖ ≤ cΩ,h‖∇ψh‖ ∀ψh ∈ Vh.

Indeed, exploiting the formulation of problem (2.8) in terms of Rayleigh quotient, we obtain that
χh = 1/c2

Ω,h; hence, the bounds (2.7) can be rewritten as

λ ≤ λh ≤
1

ε0c2
Ω,h

.

2.3. Affine expansion and empirical interpolation
In view of setting an efficient RB method, we require a further assumption on the parametrized

bilinear form b(·, ·;µ). In fact, a generic dependence of the weight function ε on the parameter µ
has been considered so far. From now on, we assume that the parametric dependence of the problem
coefficients is affine, namely, that in our case we can express

ε(x;µ) =

Q∑
k=1

Θk(µ)εk(x) (2.9)

so that, consequently,

b(·, ·;µ) =

Q∑
k=1

Θk(µ)bk(·, ·) =

Q∑
k=1

Θk(µ)(εk(x) ·, ·). (2.10)
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An affine dependence like (2.10) is a key property to be fulfilled in order to reduce the computational
effort entailed by the assembling of µ-dependent operators. In fact, the µ-independent forms bk(·, ·)
can be assembled once for all, then evaluating the form b(·, ·;µ) for different values of µ just requires
the evaluation of the scalar functions Θk(µ), k = 1, . . . , Q.

In general, the dependence of the weight function ε on µ can be nonlinear, so that finding
an expression under the form (2.9) is not straightforward. To address this kind of problems, the
so-called empirical interpolation method (EIM) has been introduced in [2], and subsequently used
in several applications of the RB method (see, e.g., [29, 21] for further details). Such a technique
enables to recover (at least in an approximate way) an affine expression of µ-dependent functions
operators; in our case, we end up with

ε(x;µ) = ε̃(x;µ) + δ(x;µ) =

Q∑
k=1

Θk(µ)εk(x) + δ(x;µ) (2.11)

where ε̃ denotes the EIM approximation of ε and ‖δ(·;µ)‖L∞(Ω) ≤ εEIMtol , for any µ ∈ D, with εEIMtol

a small, prescribed tolerance.
We can easily characterize the effect of the EIM approximation in terms of the approximation

error on the high-fidelity FE eigenvalues. Let us consider two instances of problem (2.4), one with
the weight function ε and one with its EIM approximation ε̃. Moreover, let us denote by λh and
λ̃h the principal eigenvalue of the two corresponding problems, respectively. Thanks to Bauer-Fike
theorem [14], it is straightforward to show that

min
n
|λ̃h(µ)− λh(µ)| ≤ |||A|||

ε0 |||M |||
‖ε̃(µ)− ε(µ)‖L∞(Ω) + o(‖ε̃(µ)− ε(µ)‖L∞(Ω)),

for any µ ∈ D, where |||·||| denotes a generic induced matrix norm. Therefore, by imposing a
sufficiently small tolerance εEIMtol on the EIM approximation of ε, we can easily control the influence
of such approximation on the error in the computed eigenvalues.1

3. The reduced basis approximation

The RB method builds up the solution of a parametrized PDE as a Galerkin solution of a reduced
problem, obtained by projecting the original problem onto a low dimensional subspace, whose basis
functions are obtained from the snapshot solutions, i.e. the solutions of the high-fidelity PDE
problem, evaluated for a suitably chosen set of parameter values.

Let us consider the first eigenfunction uh(µ(i)), i = 1, . . . , N , obtained by solving problem (2.4)
for N � Nh different parameter values µ(i), and introduce the linear space

VN = span{uh(µ(1)), . . . , uh(µ(N))} ⊂ Vh.

The RB approximation is obtained by projecting problem (2.2) onto the space vN and thus it reads
as follows: given µ ∈ D, find uN = uN (µ) ∈ VN and λN = λN (µ) ∈ R such that

a(uN , ψN ) = λNb(uN , ψN ;µ) ∀ψN ∈ VN ,
b(uN , uN ;µ) = 1.

(3.1)

1For the mesh of about 8500 elements used in the numerical tests of this paper, and taking the Euclidean matrix
norm as |||·|||, we have |||A||| / |||M ||| ' 5 · 103.
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Remark 3.1. In what follows, we assume that also for problem (3.1) the first eigenvalue λN (µ) =

λ
(1)
N (µ) is simple. A sufficient condition to ensure this property is, for instance, that λN (µ) and the

second eigenvalue λ(2)
N (µ) converge to their FE counterparts, namely λN (µ) → λh(µ), λ

(2)
N (µ) →

λ
(2)
h (µ) for N →∞, for any µ ∈ D.

Remark 3.2. Since VN is a subspace of Vh, it is easy to see that, for any µ ∈ D,

λN (µ) = inf
ψN∈VN

a(ψN , ψN )

b(ψN , ψN ;µ)
≥ inf

ψh∈Vh

a(ψh, ψh)

b(ψh, ψh;µ)
= λh(µ).

Thus, the RB eigenvalue λN is always an upper bound for the high-fidelity eigenvalue λh, and
together with (2.6), we end up with the following relation,

λN (µ) ≥ λh(µ) ≥ λ(µ) ∀µ ∈ D.

Let us denote by {ζi}Ni=1 an orthonormal basis for the space VN , N = 1, . . . , Nmax; then, problem
(3.1) can be equivalently rewritten as

ANUN = λNBN (µ)UN ,

UT
NBN (µ)UN = 1,

where
(AN )ij = a(ζj , ζi), (BN )ij(µ) = b(ζj , ζi;µ)

and UN (µ) ∈ RN is the vector of degrees of freedom corresponding to the RB solution uN (µ) =∑N
i=1 (UN (µ))iζi.
In order to build up the reduced basis {ζi}Ni=1, we take advantage of a greedy algorithm, for

which the availability of a posteriori error estimate ∆rel
N (µ) on the relative error, fulfilling

‖∇uN (·;µ)−∇uh(·;µ)‖
‖∇uN (·;µ)‖

≤ ∆rel
N (µ) ∀µ ∈ D, (3.2)

plays a crucial role (see Sect. 4). In particular, given a finite sample Ξtrain ⊂ D of (very large)
dimension ntrain, at each iteration N the greedy algorithm selects as snapshot, among all possible
candidates µ ∈ Ξtrain, the one with largest associated a posteriori error bound ∆rel

N (µ) and add it
to the space VN (see Algorithm 3.1). A Gram-Schmidt orthonormalization of the selected snapshot
at each step, with respect to previously selected basis functions, is performed to obtain orthonormal
basis functions.

Since each step of Algorithm 3.1 requires the evaluation of ∆rel
N (µ) for any µ ∈ Ξtrain, it is

crucial that this computation could be carried out inexpensively and independently of any quantity
related with the high-fidelity approximation uh(µ). This issue will be addressed in Sect. 4.3.

Remark 3.3. Other criteria than (3.2) can be chosen for the selection of the retained snapshots
during the greedy algorithm. For instance, one could choose to evaluate the L2 relative error in the
eigenfunction, or to consider the relative error in the eigenvalue; however, as we will see in Theorem
4.2, both these quantities can be bounded by suitable powers of ∆rel

N (µ).
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Algorithm 3.1 Greedy algorithm to build up the reduced space VN
Given Ξtrain ⊂ D, tol > 0,maxit ∈ N,µ1 ∈ Ξtrain
Initialize Z = ∅, N = 1
while N < maxit and maxµ∈Ξtrain ∆rel

N (µN ) > tol do
Compute the solution uh(µN ) to problem (2.4)
ζN = uh(µN )−

∑N−1
i=1 (uh(µN ), ζi), ζN = ζN/‖ζN‖

Z = Z ∪ {ζN}
µN+1 = argmaxµ∈Ξtrain ∆rel

N (µ)
N = N + 1

end while
VN = span(Z), Nmax = N

The construction of the RB space is actually performed at an algebraic level. At each step, the
vector ζN of the degrees of freedom corresponding to the N -th basis function, N = 1, . . . , Nmax,
is computed and stored as a column of a rectangular matrix Z. This matrix allows to write the
algebraic operators involved in the reduced-order problem (3.1) in terms of those defining problem
(2.5), as follows

AN = ZTAZ, BN (µ) = ZTB(µ)Z.

Clearly, ZZT represents the projector from Vh to VN . In order to setup a very efficient RB method,
assembling and solving the RB problem must be a very cheap operation. Indeed, assembling the
matrix AN , which actually is µ-independent, is straightforward. On the other hand, in the case
of the µ-dependent matrix BN (µ), we can rely on the assumption of affine parametric dependence
(2.10), which can be expressed from an algebraic standpoint as

B(µ) =

Q∑
k=1

Θk(µ)Bk,

where Bk
ij = bk(ζj , ζi). This reflects on the RB matrix BN (µ), which indeed can be expressed as

BN (µ) =

Q∑
k=1

Θk(µ)Bk
N , Bk

N = ZTBkZ.

Like the matrix AN , the matrices Bk
N are µ-independent and can be assembled once for all in the

offline phase. Therefore, for any new value of µ in the online phase, assembling BN (µ) requires
only the evaluation of the scalar functions Θk(µ) and the linear combination of the Q matrices
Bk
N∈ RN×N , which is a very inexpensive operation.

4. A posteriori error estimates

As shown in Sect. 3, the construction of a RB approximation through a greedy algorithm relies on
suitable a posteriori error estimates. The goal of this section is to construct DWR type a posteriori
estimates for the approximation error between the RB solution (uN (µ), λN (µ)) to problem (3.1)
and the high-fidelity solution (uh(µ), λh(µ)) to problem (2.4). To this aim, we follow some ideas
employed in [11] (see also [4]). For the sake of simplicity, hereafter the dependence on µ will be
often omitted.
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4.1. Main result and preliminaries for its proof
The DWR method (see, e.g., [3] for a general introduction) aims at estimating the error with

respect to output functionals depending on the solution of a differential problem. Therefore, let
j : Vh → R be a functional of interest, and let us define the related dual problem: given µ ∈ D
and the solution (λh(µ), uh(µ)) to problem (2.4), find wh = wh(µ) ∈ Vh such that{

a(ψh, wh)− λh(µ)b(ψh, wh;µ) = j(uh(µ))b(ψh, uh;µ)− j(ψh) ∀ψh ∈ Vh,
b(wh, uh(µ);µ) = 0.

(4.1)

In order to prevent the dual solution wh(µ) from having a component in the eigenspace associated
to λh we require wh(µ) to be b-orthogonal to uh(µ), that is b(wh(µ), uh(µ);µ) = 0. In this way,
the dual problem (4.1) has a unique solution.

Starting from the solution (λN (µ), uN (µ)) of problem (3.1), we can introduce the RB approxi-
mation of problem (4.1) as follows:

a(ψN , wN )− λN (µ)b(ψN , wN ;µ) =

j(uN (µ))b(ψN , uN (µ);µ)− j(ψN ) ∀ψN ∈ VN ,
b(wN , uN (µ);µ) = 0,

(4.2)

where the solution wN clearly depends on µ. Moreover, let us introduce the primal and the dual
residuals2, that is, the residual of the RB approximation for both the primal (3.1) and the dual
(4.2) RB problems:

r(λN , uN ;µ)(ψh) = a(uN , ψh)− λNb(uN , ψh;µ) ∀ψh ∈ Vh,
r∗(λN , uN , wN ;µ)(ψh) = a(ψh, wN )− λNb(ψh, wN ;µ)

− j(uN )b(ψh, uN ;µ) + j(ψh) ∀ψh ∈ Vh,
respectively. Let us denote by

‖r(λN , uN ;µ)‖V ′h = sup
ψh∈Vh

r(λN , uN ;µ)(ψh)

‖∇ψh‖
,

‖r∗(λN , uN , wN ;µ)‖V ′h = sup
ψh∈Vh

r∗(λN , uN , wN ;µ)(ψh)

‖∇ψh‖
,

the dual norm (with respect to the Hilbert space Vh, endowed with the H1-seminorm) of both the
primal and the dual residual, respectively. Before stating the main result of the paper, we need to
introduce a further assumption.

Assumption 4.1 (Saturation condition). For any µ ∈ D, and for any sufficiently large N ,

max{ |λN (µ)− λh(µ)| , ‖uN (µ)− uh(µ)‖b } < 1, (4.3)

Although it might look quite restrictive, this assumption is instrumental for the proof of our
main result, and it generally holds in the numerical tests we performed, for which a very rapid
convergence is shown to occur – that is, the eigenvalue error rapidly decreases to values smaller
than 1, for increasing N .

The main result is stated in the following theorem:

2The dual residual will not be explicitly used in the present paper: it is employed in the proof of Proposition 4.4.
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Theorem 4.2. Let (λh(µ), uh(µ)) and (λN (µ), uN (µ)) be the solutions to problems (2.4) and (3.1),
respectively, and let us define the following (inf-sup) stability factor:

βh(µ) = inf
ψh∈W̃h(µ)

sup
ϕh∈W̃h(µ)

a(ψh, ϕh)− λh(µ)b(ψh, ϕh;µ)

‖∇ψh‖‖∇ϕh‖
, (4.4)

where W̃h(µ) = Vh/span{uh(µ)}. Under Assumption 4.1, for a sufficiently large N the following
inequalities hold:

|λh(µ)− λN (µ)| ≤ ∆h
N,λ = C1‖r(λN , uN ;µ)‖2V ′h , (4.5a)

‖uh(µ)− uN (µ)‖ ≤ 1
√
ε0
‖uh(µ)− uN (µ)‖b

≤ ∆h
N,0 =

1
√
ε0
C2‖r(λN , uN ;µ)‖V ′h , (4.5b)

‖∇(uh(µ)− uN (µ))‖ ≤ ∆h
N,1 = C3‖r(λN , uN ;µ)‖V ′h . (4.5c)

where
C1 = C1(cΩ,h, ε∞, λh(µ), βh(µ)),

C2 = C2(cΩ,h, ε∞, λh(µ), βh(µ)),

C3 = C3(cΩ,h, ε∞, λh(µ), βh(µ)).

Moreover, (4.5a)-(4.5c) still hold by replacing λh with λN in the constants C1, C2, C3, thus yielding
the a posteriori error bounds ∆N,λ, ∆N,0, ∆N,1, respectively.

The estimates (4.5a)–(4.5c) share a similar structure with many a posteriori error bounds for
RB problems, as they consist in the product between (a suitable power of) the dual norm of the
residual, and a scalar factor which depends on the inverse of the (inf-sup) stability factor. The error
bound ∆N = ∆N,1 will be employed, after normalization by ‖∇uN (·;µ)‖, in the implementation of
the greedy Algorithm 3.1 for the construction of the RB space. In particular, the efficient evaluation
of the (dual norms of) residuals relies on the affine expansion of µ-dependent operators, as shown,
e.g., in [29]. The issue of the evaluation of µ-dependent stability factors βh(µ) will be instead
addressed in Sect. 4.3.

The proof of Theorem 4.2, which will be presented in Sect. 4.2, is divided in four parts and
exploits two auxiliary results, whose proofs can be found in [11, Proposition 2,3]:

Proposition 4.3. For any µ ∈ D, let (λN , uN ) be a generalized eigenpair of (3.1) and (λh, uh) an
associated eigenpair of (2.4). Then, the following identity holds:

(λh − λN )(1− σh) = r(λN , uN ;µ)(uh − ψN ) ∀ψN ∈ VN , (4.6)

where σh = 1
2‖uh − uN‖

2
b = 1

2b(uh − uN , uh − uN ;µ).

Proposition 4.4. For any µ ∈ D, given a linear functional j : Vh → R and the solution wh of the
associated dual problem (4.1), the following identity holds for any ψN ∈ VN :

j(uh − uN ) = r(λN , uN ;µ)(wh − ψN )

+(λh − λN )b(uh − uN , wh;µ) +
1

2
j(uh)‖uh − uN‖2b .

(4.7)

Employing the results of this section, we now prove Theorem 4.2. We will implicitly assume that
βh(µ) > 0 for any µ ∈ D; the validity of this assumption will be discussed in Sect. 4.3. Moreover, for
the sake of simplicity, the dependence of the residual r(λN , uN ;µ)(·) on the RB eigenpair (λN , uN )
and the parameter µ will be understood.
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4.2. Proof of Theorem 4.2
Proof. Inspired by the result in [11, Proposition 4], we consider four steps.

(i) We start with an intermediate estimate for the eigenvalue error. Taking ψN = uN in (4.6) and
using Cauchy-Schwarz inequality, we obtain

|λh − λN | ≤
1

1− σh
‖r‖V ′h‖∇(uh − uN )‖ ≤ 2‖r‖V ′h‖∇(uh − uN )‖, (4.8)

where the last inequality holds under Assumption 4.1, which in fact implies σh < 1
2 .

(ii) Then, we provide an intermediate estimate for the H1-seminorm of the eigenfunction error.
To this aim, we apply the DWR technique to the functional

j(ψh) = (∇(uh − uN ),∇ψh) ∀ψh ∈ Vh.

The dual problem (4.1) associated to this functional reads as follows: find wh ∈ Vh such that
a(ψh, wh)− λhb(ψh, wh) = (∇(uh − uN ),∇uh)b(ψh, uh)

−(∇(uh − uN ),∇ψh) ∀ψh ∈ Vh,
b(wh, uh) = 0.

(4.9)

By exploiting the error representation formula (4.7), we obtain

‖∇(uh − uN )‖2 = r(wh − ψN ) + (λh − λN )b(uh − uN , wh)

+
1

2
(∇(uh − uN ),∇uh)‖uh − uN‖2b .

(4.10)

For the right-hand side of (4.9)1, we have

(∇(uh − uN ),∇uh)b(ψh, uh)− (∇(uh − uN ),∇ψh)

≤ (‖∇uh‖‖ψh‖b‖uh‖b + ‖∇ψh‖) ‖∇(uh − uN )‖

≤
(
cΩ,h

√
ε∞λh + 1

)
‖∇(uh − uN )‖‖∇ψh‖,

where in the last inequality we have exploited Poincaré inequality in Vh (with constant cΩ,h >
0), and the fact that uh is a solution of problem (2.4) such that ‖uh‖b = 1.

Thanks to Nečas’ Theorem [23], the solution wh to (4.9) satisfies the following stability esti-
mate:

‖∇wh‖ ≤
1 + cΩ,h

√
ε∞λh

βh
‖∇(uh − uN )‖.

Hence, the second term in the right-hand side of (4.10) can be controlled as follows:

|(λh − λN )b(uh − uN , wh)|

≤ cΩ,h
√
ε∞

1 + cΩ,h

√
ε∞λh

βh
|λh − λN |‖uh − uN‖b‖∇(uh − uN )‖.

(4.11)
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Let us now consider the third term in (4.10). It is easy to see that

1

2
(∇(uh − uN ),∇uh)‖uh − uN‖2b ≤

1

2
‖∇(uh − uN )‖‖∇uh‖‖uh − uN‖2b

=

√
λh
2
‖∇(uh − uN )‖‖uh − uN‖2b ,

where we have exploited the fact that uh is the solution to problem (2.4), so that ‖∇uh‖2 =
λhb(uh, uh) = λh. Since the residual vanishes for any ψN ∈ VN , we can also control the
residual term in (4.10) as follows:

|r(wh − ψN )| = |r(wh)| ≤ ‖r‖V ′h‖∇wh‖

≤
1 + cΩ,h

√
ε∞λh

βh
‖r‖V ′h‖∇(uh − uN )‖.

(4.12)

By replacing (4.11)–(4.12) in (4.10), we end up with the following intermediate estimate:

‖∇(uh − uN )‖

≤
1 + cΩ,h

√
ε∞λh

βh

(
‖r‖V ′h + cΩ,h

√
ε∞|λh − λN |‖uh − uN‖b

)
+

√
λh
2
‖uh − uN‖2b .

(4.13)

(iii) This step follows the same arguments exploited in point (ii), but now applied to the functional

j(ψh) = b(uh − uN , ψh) ∀ψh ∈ Vh.

In this case the dual problem reads: find wh ∈ Vh such that
a(ψh, wh)− λhb(ψh, wh) = b(uh − uN , uh)b(ψh, uh)

−b(uh − uN , ψh) ∀ψh ∈ Vh,
b(wh, uh) = 0.

The right-hand side of the first equation satisfies the following inequality:

b(uh − uN , uh)b(ψh, uh)− b(uh − uN , ψh)

≤
(
‖uh‖2b + 1

)
‖uh − uN‖b‖ψh‖b ≤ 2cΩ,h

√
ε∞‖uh − uN‖b‖∇ψh‖,

and then, due to Nečas’ Theorem, the dual solution satisfies the following stability estimate:

‖∇wh‖ ≤
2cΩ,h

√
ε∞

βh
‖uh − uN‖b.

Employing once again the error representation formula (4.7), we obtain

‖uh − uN‖b ≤
2cΩ,h

√
ε∞

βh

(
‖r‖V ′h + cΩ,h

√
ε∞|λh − λN |‖uh − uN‖b

)
+

1

2
‖uh − uN‖2b

≤
2cΩ,h

√
ε∞

βh

(
‖r‖V ′h + cΩ,h

√
ε∞|λh − λN |

)
+

1

2
‖uh − uN‖b
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thanks to Assumption 4.1. Finally, we get

‖uh − uN‖b ≤
4cΩ,h

√
ε∞

βh

(
‖r‖V ′h + cΩ,h

√
ε∞|λh − λN |

)
. (4.16)

(iv) We can now obtain the a posteriori error bounds (4.5a)–(4.5c) by properly combining the
intermediate results obtained in (i)-(iii), namely (4.8), (4.13), and (4.16). Starting from (4.8)
and introducing two constants η1, η2 > 0 and γ1 = 1 + cΩ,h

√
ε∞λh, γ2 = 4cΩ,h

√
ε∞, we have

|λN − λh| ≤ 2‖r‖V ′h‖∇(uh − uN )‖
(4.13)
≤ 2‖r‖V ′h

[
γ1

βh
‖r‖V ′h +

γ1cΩ,h
√
ε∞

βh
|λh − λN |‖uh − uN‖b

+

√
λh
2
‖uh − uN‖2b

]
≤ 2

γ1

βh
‖r‖2V ′h +

1

η1
|λh − λN |2

+

(
η1

γ2
1c

2
Ω,hε∞

β2
h

‖r‖2V ′h +
√
λh‖r‖V ′h

)
‖uh − uN‖2b

(4.3)
≤

(
2
γ1

βh
+ η1

γ2
1c

2
Ω,hε∞

β2
h

)
‖r‖2V ′h +

1

η1
|λh − λN |2

+
√
λh‖r‖V ′h‖uh − uN‖b

(4.16)
≤

(
2
γ1

βh
+ η1

γ2
1c

2
Ω,hε∞

β2
h

)
‖r‖2V ′h +

1

η1
|λh − λN |2

+
γ2

√
λh

βh
‖r‖V ′h

(
‖r‖V ′h + cΩ,h

√
ε∞|λh − λN |

)
≤

(
2
γ1

βh
+ η1

γ2
1c

2
Ω,hε∞

β2
h

+
γ2

√
λh

βh
+ η2

γ2
2c

2
Ω,hε∞λh

4β2
h

)
‖r‖2V ′h

+

(
1

η1
+

1

η2

)
|λh − λN |2.

By taking η1 = η2 = 4, exploiting again (4.3), and substituting the expressions of γ1, γ2, we
obtain:

|λN − λh| ≤ 2

(
2

1 + 3cΩ,h

√
ε∞λh

βh

+4
c2

Ω,hε∞ + 2c3
Ω,hε∞

√
ε∞λh + 5c4

Ω,hε
2
∞λh

β2
h

)
‖r‖2V ′h

= C1(cΩ,h, ε∞, λh, βh)‖r‖2V ′h .

(4.17)

Once the eigenvalue error is controlled thanks to (4.17), an error bound on the eigenfunction
(with respect to the b-norm) directly follows from (4.16) and (4.3):

‖uh − uN‖b ≤
4cΩ,h

√
ε∞

βh

(
‖r‖V ′h + cΩ,h

√
ε∞
√
|λh − λN |

)
≤

4cΩ,h
√
ε∞

βh

(
1 + cΩ,h

√
ε∞C1(cΩ,h, ε∞, λh, βh)

)
‖r‖V ′h

= C2(cΩ,h, ε∞, λh, βh)‖r‖V ′h .
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This latter inequality, together with (4.13)-(4.17) and Assumption 4.1, provides the following
estimate on the H1-norm error of the eigenfunction:

‖∇(uh − uN )‖ ≤
(

1 + cΩ,h

√
ε∞λh

βh
+

√
λh
2

C2

+cΩ,h
√
ε∞

1 + cΩ,h

√
ε∞λh

βh
min{

√
C1, C2}

)
‖r‖V ′h

= C3(cΩ,h, ε∞, λh, βh)‖r‖V ′h .

Since the constants C1, C2, C3 are increasing in their argument λh, and λh is lower than λN
(see Remark 3.2), we can replace λh with λN in the expressions of C1, C2, C3.

Finally, the estimate (4.5b) follows employing the following relation, holding for any ψ ∈ L2(Ω),

‖ψ‖b =

√∫
Ω
εψ2dΩ ≥

√
ε0‖ψ‖.

4.3. Efficient evaluation of the (inf-sup) stability factor
In principle, to obtain an efficiently computable error bound, we would need to provide an

inexpensive, Nh-independent estimate of the stability factor βh(µ), which enters in the constants
C1, C2, C3 appearing in (4.5a)-(4.5c). This is a key issue in the context of a posteriori error bounds
for RB methods, as recently pointed out in [20]. In this respect, we first prove that βh(µ) > 0
for any µ ∈ D and then show a possible way to compute a cheap, µ-dependent approximation
of this quantity. We underline that we will be able to provide an approximation, rather than a
lower bound, of the stability factor. However, in Sect. 5 we will numerically show that the resulting
approximation is able to enhance the computational efficiency of our RB approach without spoiling
its performance.

First of all, let us remark that the space W̃h(µ) = Vh/span{uh(µ)} appearing in the definition
(4.4) of the (inf-sup) stability factor βh(µ) is not trivial to build up. Nevertheless, it is isomorphic
to Wh(µ) = span{uh(µ)}⊥b (where the orthogonality has to be considered in the sense of the form
b), so that we can replace W̃h(µ) with Wh(µ) in (4.4). We can also remark that a lower bound
βLBh (µ) to βh(µ) is given by

βh(µ) = inf
ψh∈Wh(µ)

sup
ϕh∈Wh(µ)

a(ψh, ϕh)− λh(µ)b(ψh, ϕh;µ)

‖∇ψh‖‖∇ϕh‖

≥ inf
ψh∈Wh(µ)

a(ψh, ψh)− λh(µ)b(ψh, ψh;µ)

‖∇ψh‖2
= βLBh (µ),

that is, by the principal eigenvalue of the bilinear form a(·, ·) − λh(µ)b(·, ·;µ) in the space Wh(µ)
endowed with the H1(Ω) seminorm. We can show that βLBh (µ) depends just on the first two
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eigenvalues λ(1)
h (µ), λ

(2)
h (µ) of problem (2.4). In fact,

βLBh (µ) = inf
ψh∈Wh(µ)

a(ψh, ψh)− λ(1)
h b(ψh, ψh;µ)

‖∇ψh‖2

= inf
ψh∈Wh(µ)

[
1− λ(1)

h

b(ψh, ψh;µ)

‖∇ψh‖2

]
= 1− λ(1)

h sup
ψh∈Wh(µ)

b(ψh, ψh;µ)

‖∇ψh‖2

= 1− λ(1)
h

(
inf

ψh∈Wh(µ)

‖∇ψh‖2

b(ψh, ψh;µ)

)−1

= 1−
λ

(1)
h (µ)

λ
(2)
h (µ)

> 0.

(4.18)

This latter quantity is positive since the first eigenvalue λ(1)
h (µ) is simple; this also ensures that

βh(µ) > 0 for any µ ∈ D. Nevertheless, evaluating the lower bound (4.18) for any µ ∈ Ξtrain
when constructing the reduced space through a greedy procedure (relying on the a posteriori error
estimate ∆N,1(µ)) is out of reach. In fact, this operation would require ntrain solutions to the high-
fidelity problem, thus entailing a computational cost which is even larger than the computation of
the snapshots for constructing the reduced basis3. Moreover, whenever interested to use the error
bounds (4.5a)-(4.5c) to certify online the RB approximation, relying on the solution of a high-fidelity
problem for estimating the stability factor would be too much expensive.

For these reasons, we replace the lower bound βLBh with the corresponding RB quantity

β̃N (µ) = 1−
λ

(1)
N (µ)

λ
(2)
N (µ)

, (4.19)

where λ(1)
N = λN and λ(2)

N are the first and the second eigenvalue of problem (3.1), respectively.
Although not rigorous, the error estimates obtained by replacing βh(µ) with β̃N (µ) in (4.5a)-

(4.5c) are very efficient to compute, since β̃N is far less expensive to evaluate than βLBh , and is a very
close approximation to the stability factor. We will show in Sect. 5.1.2 that β̃N (µ), for sufficiently
large N , yields a very good estimate for βLBh (µ), and that this latter is a lower bound very close
to βh(µ). As a matter of fact, the approximation (4.19) of the stability factor allows to obtain a
posteriori error bounds which can be evaluated very efficiently, without spoiling their reliability.

Remark 4.5. Since the estimates in Theorem 4.2 involve the inf-sup constant βh, which depends
on both the first and the second eigenvalue, we could in principle consider as basis functions of VN
not only the first eigenfunctions, for different values of µ, but also the second ones. This choice
was adopted in the pioneering work [17], where the reduced space results from the Gram-Schmidt
orthonormalization of the set {u(1)

h (µi), u
(2)
h (µi)}Nmax/2i=1 . In Sect. 5.1.1 we will see that no practical

convenience actually comes from this choice.

Remark 4.6. We point out that the constants C1, C2, C3 appearing in the error bounds (4.5a)-
(4.5c) not only involve the inf-sup constant βh, but also ε∞, λN , and cΩ,h. The first two quantities
are not expensive to compute, since ε∞ is a prescribed datum and the RB eigenvalue λN just requires
the solution of the RB problem. Evaluating the discrete Poincaré constant cΩ,h just requires an
additional solution to problem (2.4), with ε ≡ 1, thanks to (2.8) and Remark 2.2.

3We recall that the greedy procedure actually computes just N snapshots, corresponding to the retained parameter
values at each iteration.
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5. Numerical results

In this section we present some numerical results assessing the theoretical analysis developed so
far. By considering three different test cases, we show the convergence properties of the RB space
VN for increasing values of N , inspect the behavior of the (inf-sup) stability factors, and assess the
computational performance of the a posteriori error estimates introduced in this work. We take into
account different kinds of parametric dependence ε = ε(µ), arising in applications from different
fields. The design of the first test case stems from the field of photonic bandgap structures, where
the localization of the eigenfunctions induces a local barrier to the transit of light waves with a
wavelength equal to the corresponding eigenvalue (see, e.g., [8]). The other two test cases deal
with a nonlinear dependence ε = ε(µ), and come from the design of acoustic waveguides, anechoic
chambers and soundproof barriers, where the localization of some eigenfunction in specific regions of
the domain leads to the dissipation of sound waves whose wavelength is equal to the corresponding
eigenvalue [22, 33]. In all these cases, the space VN is built through the greedy Algorithm 3.1. The
high-fidelity approximation of the problem is obtained employing piecewise linear finite elements on
a computational mesh made of about 8500 elements; finer meshes have also been taken into account,
but no relevant differences have been noticed in the numerical results.

Given any test parameter set Ξ∗ ⊂ D, we define the following quantities, which will be employed
to present the convergence results throughout this section:

Errrel1 = avg
µi∈Ξ∗

‖∇uh(µi)−∇uN (µi)‖
‖∇uN (µi)‖

, Resrel1 = avg
µi∈Ξ∗

‖r(λN (µi), uN (µi);µi)‖V ′h
‖∇uN (µi)‖

Errrel0 = avg
µi∈Ξ∗

‖uh(µi)− uN (µi)‖
‖uN (µi)‖

, Resrel0 = avg
µi∈Ξ∗

‖r(λN (µi), uN (µi);µi)‖V ′h
‖uN (µi)‖

Errrelλ = avg
µi∈Ξ∗

|λh(µi)− λN (µi)|
|λN (µi)|

, Resrelλ = avg
µi∈Ξ∗

‖r(λN (µi), uN (µi);µi)‖2V ′h
|λN (µi)|

,

∆rel
N,1 = avg

µi∈Ξ∗

∆N,1(µi)

‖∇uN (µi)‖
, ∆rel

N,0 = avg
µi∈Ξ∗

∆N,0(µi)

‖uN (µi)‖
, ∆rel

N,λ = avg
µi∈Ξ∗

∆N,λ(µi)

|λN (µi)|

where ∆N,1,∆N,0,∆N,λ are defined in (4.5); avg
µi∈Ξ∗

denotes the average on Ξ∗.

5.1. Test case 1. Four-bump weight function
In this first case, we consider the parameter µ as a point belonging to D = [µmin, µmax]4 =

[10−5, 10−2]4 ⊂ R4, with each of its component taking values in the same range. Each compo-
nent µj of µ is associated to a function εj(x), thus yielding the parametrized weight function
ε(µ) =

∑4
j=1 µjεj . The functions εj considered in this test case are chosen as follows:

εj(x, y) = 0.01 + cos(π(x− x0,j))
2 cos(π(y − y0,j))

2 e−7[(x−x0,j)2+(y−y0,j)2] (5.1)

with x0 = (−0.4, 0.4, 0.4,−0.4), y0 = (−0.4,−0.4, 0.4, 0.4), and are plotted in Fig. 1. The admissible
parameter range has been chosen in order to treat weight functions ε of the same magnitude of those
arising in photonic crystals applications (see, e.g., [8]).
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Figure 1: The four weight functions εj(x), j = 1, . . . , 4.

Remark 5.1. In definition (5.1), we implicitly set ε0 = 0.01, ε∞ = 1. A strictly positive value
for ε0 has been chosen in order to prevent inconsistencies with the theoretical assumptions made in
Sect. 2. Very similar results can be obtained by considering weight functions ε that vanish in some
regions of the domain.

In this case, obtaining an affine expansion of the bilinear form b(·, ·;µ) under the form (2.10)
is straightforward, because the choice (5.1) of the weight functions naturally yields the expansion
(2.9) with Q = 4 terms. In order to give an insight on the RB space built by the greedy algorithm,
we show in Fig. 2 some basis functions ζn.

Once the RB space has been built, we evaluate the RB approximation online, for different
parameter values in the admissible range. In Fig. 3 we report the RB solution uN (µ) and the
corresponding FE solution uh(µ) for two representative values of µ. We can see that the relative
L∞-error on the eigenfunction is on the order of 10−5 – this holds for each parameter combination we
considered online – thus assessing the goodness of the approximation obtained with just Nmax = 27
basis functions.

5.1.1. Convergence tests
In order to assess the validity of the a posteriori error estimates derived in Theorem 4.2, we

report some convergence results with respect to the dimension N of the RB space. Aiming at
giving, for each N , an evaluation of the RB approximation properties, uniformly on the parameter
set D, we introduce a test set Ξ∗ made of 100, randomly chosen elements of D: for each µ ∈ Ξ∗

and for each N ∈ {1, 2, . . . , Nmax}, the approximate eigenpair (λN (µ), uN (µ)) is computed as the
principal solution of the reduced problem (3.1) on the space VN = {ζ1, . . . , ζN}, with ε =

∑4
j=1 µjεj .

Throughout this subsection, we consider the residual-based quantities Resrelα , α = 0, 1, λ as
(relative) error indicators, temporarily neglecting the contribution of the constants C1, C2/

√
ε0, C3

defined in (4.5): the evaluation of the rigorous error bounds ∆rel
N,α, α = 0, 1, λ, which involves the

approximation of the stability factor βh(µ), will be addressed in the next subsection. In particular,
we employ the estimator Resrel1 in the basis selection and in the stopping criterion of the greedy
algorithm, i.e. we apply Algorithm 3.1 with Resrel1 in the place of the generic estimator ∆rel

N .
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(a) n = 1, µ = 10−3 · (2.0, 0.3, 4.8, 4.8) (b) n = 2, µ = 10−3 · (0.3, 9.2, 0.1, 0.5)

(c) n = 5, µ = 10−3 · (2.7, 2.0, 1.9, 1.6) (d) n = 20, µ = 10−3 · (1.1, 2.7, 2.2, 4.7)

Figure 2: Orthonormalized basis functions ζn for some values of n ∈ {1, Nmax = 27}.

In Fig. 4 (left) we compare the L2 and H1 norms of the errors on the eigenfunction, to the
residual norm ‖r‖V ′h , while in Fig. 4 (right) we compare the error on the eigenvalue to ‖r‖2V ′h .These
plots are obtained in the online phase, once the final RB space VNmax = {ζ1, ζ2, . . . , ζNmax} has been
completely built. We can observe that the (dual norm of) residuals are very accurate in predicting
the trend of the errors. Moreover, the error on the eigenvalue goes with the square of the error on
the eigenfunction, according to our estimates. This is similar to what happens for linear outputs
of the solution of elliptic PDEs (see, e.g., [29]). Finally, we point out that the dependence of the
errors on the dimension N is exponential; this is consistent with other theoretical results on the a
priori convergence of greedy algorithms for parametrized elliptic PDEs [5].

We also built the RB space by considering both the first and the second eigenfunction (see
Remark 4.5). This choice does not yield significant improvements in the RB approximation of the
solution to problem (2.4): the number of basis functions necessary to fulfill the stopping criterion
of the greedy algorithm is much higher (2Nmax = 36 functions, obtained in 18 iterations, against
the 27 basis functions obtained when retaining only u(1)

h at each step) and the convergence of the
error is even slower, as one can see by comparing Fig. 5 with Fig. 4.

5.1.2. Inspecting the inf-sup constant βh
Let us now explore the effects on the RB algorithm of employing the approximated stability

factor β̃N (µ) in the computation of the a posteriori error bound ∆N (see Sect. 4.3).
First of all, let us evaluate the lower bound βLBh (µ) over the test sample Ξ∗. As we can see from
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(a) RB solution uN (µ1) (b) FE solution uh(µ1) (c) uh(µ1)− uN (µ1)

(d) RB solution uN (µ2) (e) FE solution uh(µ2) (f) uh(µ2)− uN (µ2)

Figure 3: Comparison between RB and FE solutions obtained for µ1 = (0.01, 0.01, 0.01, 0.01), µ2 =
(0.00001, 0.01, 0.001, 0.007). The relative error ‖uN − uh‖L∞(Ω)/‖uh‖L∞ is of order of 10−5.
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Figure 4: Error convergence and related error bounds as functions of N ∈ {1, Nmax}. In the greedy
Algorithm 3.1, the estimator Resrel1 is employed, in the place of ∆rel

N , and the errors are compared
to the estimators Resrel1 , Resrel0 , Resrelλ , i.e. setting to 1 the constants C1,

C2√
ε0
, C3 appearing in

∆N,λ,∆N,0,∆N,1.
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Figure 5: Relative errors and corresponding error bounds as functions of N ∈ {1, Nmax}. For each
retained parameter value during the greedy algorithm, the first two eigenfunctions are included in
the RB space. In the greedy Algorithm 3.1, the estimator Resrel1 is employed, in the place of ∆rel

N ,
and the errors are compared to the estimators Resrel1 , Resrel0 , Resrelλ , i.e. setting to 1 the constants
C1,

C2√
ε0
, C3 appearing in ∆N,λ,∆N,0,∆N,1.

Fig. 6(a), the lower bound undergoes slight variations with respect to the parameters µ. We then
compare the estimate β̃N (µ) with βLBh (µ): by taking the mean and the standard deviation over
Ξ∗, and plotting these two quantities as functions of N (Fig. 6(b)), we can see that β̃N (µ) provides
(i) a positive estimate to the lower bound, and (ii) a very good approximation to βLBh (µ). This is
rather evident by observing that the standard deviations of βLBh (µ) and β̃N (µ) over Ξ∗ are about
one tenth of the mean values. We can see that β̃N (µ) is a reliable approximation of βLBh (µ) for
N > 4, both in the mean value and in the standard deviation (this latter evaluated with respect
to µ variations). Hence, β̃N (µ) represents a good (and inexpensive) approximation of the (lower
bound of the) inf-sup constant βh(µ), which is indeed used in the error estimates (4.5).

Then we investigate the impact of the use of β̃N (µ) on the construction of the RB space, and
on the consequent online evaluation of the RB approximation. The convergence results reported
in Fig. 7 (and similarly for the ones presented in the following sections) are obtained basing the
basis selection and the stopping criterion of the greedy algorithm on the relative error estimator
∆rel
N (µ) = ‖r(µ)‖V ′h/β̂(µ)‖∇uN (µ)‖, where β̂ stands for either the rigorous lower bound βLBh

(Fig. 7(a)-(b)) of the inf-sup constant, or its surrogate β̃N (Fig. 7(c)-(d)). We find an almost exact
correspondence between the results reported in these plots – negligible discrepancies are due to the
two different error bounds – so that we can confirm that estimating the (inf-sup) stability factor
by means of (4.19) is absolutely acceptable, and yields very accurate error bounds. Therefore, the
computable quantity β̃N (µ) seems to be a very good candidate to replace the (computationally
unaffordable) stability factor βh(µ), and hence in the following sections we always employ β̃N in
the computation of the estimator ∆N .
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(a) Values of βLBh (µ) computed over Ξ∗ = {µi : i =
1, · · · , 100}
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β̃N (µ) over Ξ∗, as functions of N

Figure 6: Comparison between βLBh (µ) and β̃N (µ).

5.2. Test cases 2 and 3. A two-phase drum
In this section we consider a weight function of the form

ε(x;µ) = ε1χΩ1(µ)(x) + ε2χΩ2(µ)(x), (5.2)

with Ω1(µ)∩Ω2(µ) = ∅, Ω1(µ)∪Ω2(µ) = Ω = (−1, 1)2, for any admissible µ. The localization of the
eigenvalues corresponding to weight functions of the form (5.2) has interesting applications, such as
the design of acoustic waveguides [22] or the study of fractal cavities [33] related to the construction
of anechoic chambers or acoustic barriers. In this latter case, for example, Ω1 could represent the
region occupied by the barrier, while in Ω2 there is only air. Considering weight functions of the
form (5.2) brings some further difficulties in solving the problem, due to the nonlinear dependence
of ε on µ. Indeed, as stated in Sect. 2.3, the efficiency of the RB approximation stems from the
general assumption that the dependence of the problem coefficients on the parameter is affine. In
this case we exploit EIM to obtain an affine expansion of the function ε(x;µ), where x and µ
appear as separable variables (see Sect. 2.3). This yields an approximate expression ε̃(x,µ) as in
(2.11) made by the sum of Q terms. As the quality of the EIM approximation of a function can
be highly compromised in presence of sharp jumps, we modified in advance the function ε defined
in (5.2), introducing a linear transition between ε1 and ε2 in a narrow region around the interface
separating Ω1 and Ω2. In each test case, an EIM expansion of 100 terms is considered, obtained
by requiring the EIM error to be below a tolerance εEIMtol = 10−3. Numerical tests performed with
EIM expansions made by a larger number of terms did not yield significantly different results.

Considering the problem obtained through the EIM-approximation of the weight function ε,
we can exploit the greedy Algorithm 3.1 to build up the reduced space VN , basing the choice of
the basis functions on the error estimator ∆N (µ) = ‖r(λN (µ), uN (µ);µ)‖V ′h/β̂(µ)‖∇uN (µ)‖, as
suggested by the results of the previous section.

In the following, we consider the performance of the RB algorithm dealing with two different
types of interface separating Ω1 and Ω2.
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(b) exact βLBh (µ), eigenvalues
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(c) approximation β̃N (µ), eigenvectors
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Figure 7: Errors and related error bounds obtained by considering the exact lower bound βLBh (µ)

(top) and the approximation β̃N (µ) (bottom) in the place of the stability factor βh(µ).

5.2.1. Test Case 2. Sinusoidal interface
As a first kind of interface separating Ω1(µ) and Ω2(µ), we consider the graph of the function

x = µ1 sin(µ2πy) + µ3 sin(µ4πy),

with the parameters µ = (µ1, µ2, µ3, µ4) ranging in D = ([0.1, 0.2] × [1, 8])2. By choosing ε1 =
0.1, ε2 = 0.2, using definition (5.2) and introducing a linear transition between ε1 and ε2, we
obtain the weight function ε, reported in the left column of Fig. 8 for different values of µ. This
function is then approximated by means of the empirical interpolation method, and all the results
which follow are based on the approximated weight function ε̃. We point out that both the FE
solution to (2.4) and its RB approximation are obtained considering the EIM-approximated weight
function ε̃. Hence, the discussion which follows does not deal with the error associated to the EIM
approximation.

In Fig. 8 we can see that the maximum of the first eigenfunction lays in the domain Ω2, which
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is characterized by a higher value of ε. The figure also shows low sensitivity of the eigenfunction to
changes of µ: for higher frequencies of the sinusoidal interface, the maximum of the eigenfunction
tends to lay on the line y = 0, while for lower frequencies, it slightly moves down, towards values of
y where the fraction of the domain occupied by Ω2 is larger. The RB approximation of dimension
N = 50 is very close to the FE solution (with a relative error on the order of 10−3).

(a) µ1 = (0.2, 1, 0.1, 1) (b) RB solution ũN (µ1) (c) ũh(µ1)− ũN (µ1)

(d) µ2 = (0.2, 1, 0.1, 8) (e) RB solution ũN (µ2) (f) ũh(µ2)− ũN (µ2)

(g) µ3 = (0.2, 8, 0.1, 8) (h) RB solution ũN (µ3) (i) ũh(µ3)− ũN (µ3)

Figure 8: Weight functions ε(µ) (left), RB approximations (center) and errors between RB and
FE approximations (right) obtained with the EIM-approximated weight functions ε̃(µ), for spe-
cific values of µ: µ1 = (0.2, 1, 0.1, 1), µ2 = (0.2, 1, 0.1, 8), µ3 = (0.2, 8, 0.1, 8). The relative error
‖ũN − ũh‖L∞(Ω)/‖ũh‖L∞ (see (c)-(f)-(i)) is of order 10−4.

Good agreement with the theoretical results of the previous section is found also in the conver-
gence graphs of Fig. 9, where the quadratic effect of the eigenvalue can be noticed, too. However,
in this case the convergence is much slower than in the case of the four-bumps ε considered in
Sect. 5.1. The error in the eigenfunction is about exp(−0.031N), whereas in the the four-bump
case we had found a much faster convergence (exp(−0.24N), see Fig. 7). This might be related
to the more complex dependence ε = ε(µ), yielding a much more complex parameterization of the
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problem through the EIM expansion (Q = 100 terms instead of Q = 5 as in the four-bump case).
In Fig. 10 we also report the behaviors of the lower bound βLBh (µ) and of the estimate β̃N (µ).

The convergence of (the mean value of) β̃N towards βLBh is much slower than in the previous case
(see Fig. 6(b)): this is in accordance to the slower convergence already noticed in the solution error.
On the other hand, negligible differences of βLBh (µ) and β̃N (µ) with respect to µ can be remarked:
actually, their standard deviations in the test parameter space Ξ∗ are almost equal to zero. In order
to inspect the error introduced by EIM, we solved the FE problem (2.4) with the exact weight
function ε, for different values of µ: the results (not reported for brevity) are indeed very similar
to the ones shown in Fig. 8, with an L∞ relative discrepancy smaller than 1%.
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Figure 9: Errors and related error bounds with respect to he RB space dimension N ∈ {1, Nmax}.
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Figure 10: Comparison between βLBh and β̃N .

5.2.2. Test Case 3. Spiral interface
In this section we study the performance of the RB approximation in a case in which the

eigenfunction is more sensitive to the variation of the parameters. To this aim, we consider an
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interface between the subregions Ω1 and Ω2 that is no more the graph of a function. More precisely,
it is built up using spiral functions of the type

ρ(θ) =

(
θ − µ1

π − µ1

)µ2+1

, θ ∈ {µ1, π}, (5.3)

with ρ =
√
x2 + y2, θ = arctan(y/x), and then modifying them to obtain shapes like those reported

on the left column of Fig. 11, where ε is plotted.
We set ε1 = 1, ε2 = 10 and a linear transition is introduced between the two values, as in the

previous section. For the interface described by (5.3), the first parameter µ1 (ranging in [0.1, 0.8])
sets the slope of the curve in (x, y) = (0, 0), while µ2 (ranging in [0, 4]) basically shrinks the curve
in the x direction. The EIM is then applied to linearize the dependence on µ of the resulting weight
function ε.

In this case, the eigenfunction is actually quite sensitive to parameter variations, as showed in
Fig. 11, where we can also observe that the RB solution, obtained with N = 126 basis functions,
provides a very good approximation to the corresponding FE solution.

Looking at the convergence plots of Fig. 12, we point out that the convergence speed is on the
order of that of the sinusoidal-interface case (cf. Fig. 9). This is consistent with the discussion in
Sect. 5.2.1, where the slowness of the convergence has been blamed to the complexity introduced
by the EIM. The similarity with the previous test case can be seen also in the rate of convergence
of β̃N towards the inf-sup constant lower bound βLBh .

Conclusions

In this paper we developed a new RB method for the rapid and reliable approximation of para-
metrized elliptic eigenvalue problems. The method relies on dual weighted residual type a posteriori
error indicators which estimate, for any value of the parameters, the error between the high-fidelity
finite element approximation of the first eigenpair and the corresponding reduced basis approxi-
mations. We proved that the proposed error estimators are reliable. Moreover, the a posteriori
error estimators have been exploited not only to certify the RB approximation with respect to the
high-fidelity one, but also to set up a very efficient greedy algorithm for the offline construction of
a RB space. In this way, we were able to approximate a parametrized elliptic eigenvalue problem
by relying on a very low-dimensional subspace, thus yielding a remarkable computational speedup.
Several numerical experiments (with affine and non-affine parametrization) showed the validity of
the proposed RB approach.

25



(a) µ = (0.1, 0) (b) RB solution ũN (µ1) (c) ũh(µ1)− ũN (µ1)

(d) µ = (0.1, 4) (e) RB solution ũN (µ2) (f) ũh(µ2)− ũN (µ2)

(g) µ = (0.8, 0) (h) RB solution ũN (µ3) (i) ũh(µ3)− ũN (µ3)

(j) µ = (0.8, 4) (k) RB solution ũN (µ4) (l) ũh(µ4)− ũN (µ4)

Figure 11: Weight functions ε(µ) (left), RB approximations (center) and errors between RB and
FE approximations (right) obtained with the EIM-approximated weight functions ε̃(µ), for specific
values of µ: µ1 = (0.1, 0), µ2 = (0.1, 4), µ3 = (0.8, 0), µ4 = (0.8, 4). The L∞ relative error (see
(c)-(f)-(i)-(l)) is of order 10−7-10−6.
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