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Abstract

The parallel Schwarz method (PSM) is an overlapping Domain
Decomposition (DD) method to solve partial differential equations
(PDEs). Similarly to classical nonoverlapping DD methods,
the PSM admits a substructured formulation, that is, it can
be formulated as an iteration acting on variables defined
exclusively on the interfaces of the overlapping decomposition.
In this manuscript, spectral coarse spaces are considered to improve the
convergence and robustness of the substructured PSM. In this frame-
work, the coarse space functions are defined exclusively on the interfaces.
This is in contrast to classical two-level volume methods, where the
coarse functions are defined in volume, though with local support. The
approach presented in this work has several advantages. First, it allows
one to use some of the well-known efficient coarse spaces proposed
in the literature, and facilitates the numerical construction of efficient
coarse spaces. Second, the computational work is comparable or lower
than standard volume two-level methods. Third, it opens new inter-
esting perspectives as the analysis of the new two-level substructured
method requires the development of a new convergence analysis of general
two-level iterative methods. The new analysis casts light on the opti-
mality of coarse spaces: given a fixed dimension m, the spectral coarse
space made by the first m dominant eigenvectors is not necessarily the
minimizer of the asymptotic convergence factor. Numerical experiments
demonstrate the effectiveness of the proposed new numerical framework.
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1 Introduction

Consider a linear problem of the form Au = f , which we assume well posed in a
vector space V . To define a two-level method for the solution to this problem, a
one-level method and a coarse-correction step are required. One-level Schwarz
methods are generally based on a splitting technique: the operator A : V → V
is decomposed as A = M − N , where M : V → V is assumed invertible and
represents the preconditioner. This splitting leads to a stationary iteration,
namely uk+1 = M−1Nuk + M−1f , for k = 0, 1, . . . , and to a preconditioned
system M−1Au = M−1f . These are strongly related, since the stationary
iteration, if it converges, produces the solution of the preconditioned system;
see, e.g., [1] and references therein. Therefore, DD methods can be used as
stationary iterations or preconditioners; see, e.g., [2–6]. Unfortunately, one-
level DD methods are in general not scalable and a coarse correction step is
often desirable. See, e.g., [7–12] for exceptions and detailed scalability and
non-scalability analyses.

A two-level method is characterized by the combination of a one-level
method, defined on V , and a coarse correction step, performed on a coarse
space Vc. The coarse space Vc is finite dimensional and it must satisfy the con-
dition dimVc � dimV . The mappings between V and Vc are realized by a
restriction operator R : V → Vc and a prolongation operator P : Vc → V . In
general, the restriction of A : V → V on Vc is defined as Ac = RAP , which is
assumed to be an invertible matrix.

Now, we distinguish two cases: a two-level stationary method and a two-
level preconditioning method. In the first case, a stationary method is used as
first-level method. After each stationary iteration, which produces an approx-
imation uapp, the residual r = f − Auapp is mapped from V to Vc, the coarse
problem Ace = Rr is solved to get e ∈ Vc, and the coarse correction step is
defined as unew = uapp +Pe. This correction provides the new approximation
unew. By repeating these operations iteratively, one gets a two-level station-
ary method. The preconditioner corresponding to this method is denoted by
Ms,2L. Notice that this idea is very closely related to two-grid methods. In the
second case, the first-level method is purely a preconditioner M−1. The cor-
responding two-level preconditioner, denoted by M2L, is generally obtained in
an additive way: the one-level preconditioner M−1 is added to the coarse cor-
rection matrix PA−1

c R. When used with appropriate implementations, the two
preconditioners M2L and Ms,2L require about the same computational effort
per Krylov iteration. However, their different structures can lead to different
performances of Krylov methods.
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The literature about two-level DD methods is very rich. See, e.g., [7, 12–
19], for references considering two-level Schwarz stationary methods, and, e.g.,
[20–32], for references considering two-level Schwarz preconditioners, and, e.g.,
for references considering two-level substructuring preconditioners [31, 33–35].
See also general classical references as [4–6] and [36, 37].

For any given one-level Schwarz method (stationary or preconditioning),
the choices of Vc, P and R influence very strongly the convergence behavior of
the corresponding two-level method. A common choice would be to use as a
coarse space the span of the dominant eigenfunctions of the one-level iteration
operator G := M−1N . Such a coarse space, and more generally coarse spaces
obtained as the span of some given functions, are usually called spectral coarse
spaces to distinguish them from geometric coarse spaces built implicitly using
coarser meshes as in a multigrid framework.

In a more general context, fundamental results are presented in [38]: for a
symmetric and positive definite A, it is proved that the coarse space of size
m that minimizes the energy norm of the two-level iteration operator is the
exactly the spectral coarse space made by the first m dominant eigenfunctions
of G. The sharp result of [38] provides a concrete (optimal) choice of Vc min-
imizing the energy norm of the two-level operator associated to a symmetric
and positive definite A.

Unfortunately, computing the eigenfunctions of the one-level method is
often unfeasible, and thus several works have proposed other spectral coarse
spaces which are cheaper to obtain, but still contain information about the
slow eigenspace of the one-level method.

As a matter of fact, focusing on a Schwarz iterative procedure, error and
residual have generally very special forms. The error is harmonic, in the sense
of the underlying PDE operator, in the interior of the subdomains (excluding
the interfaces). Moreover, it is predominant in the overlap. The residual is
predominant on the interfaces and zero outside the overlap. For examples and
more details, see, e.g., [13, 17]. This difference motivated, sometimes implicitly,
the construction of different coarse spaces. On the one hand, many references
use different techniques to define coarse functions in the overlap (where the
error is predominant), and then extending them on the remaining part of the
neighboring subdomains; see, e.g., [22–26, 28–30, 33]. On the other hand, in
other works the coarse space is created by first defining basis function on the
interfaces, and then extending them (in different ways) on the portions of the
neighboring subdomains; see, e.g., [7, 12, 13, 15, 17–21, 27, 28]. For a good,
compact and complete overview of several of the different coarse spaces, we
refer to [28, Section 5]. For other different techniques and related discussions,
see, e.g., [4, 14–16, 31, 39].

This work differs from the existing literature as we introduce for the first
time two-level Schwarz substructured methods. These are two-level stationary
iterative methods, based on the Schwarz iteration, and the term “substruc-
tured” indicates that both the one-level iteration and coarse spaces are defined



Springer Nature 2021 LATEX template

4 Spectral coarse spaces for the substructured parallel Schwarz method

on the interfaces (or skeletons).1 As in this manuscript we consider coarse
spaces obtained as the span of certain interface functions, we call our two-level
substructured Schwarz methods as Spectral 2-level Substructured (S2S) meth-
ods. With this respect, they are defined in the same spirit as two-level methods
whose coarse spaces are extensions in volume of interfaces basis functions.

Our S2S framework can accommodate several choices for the coarse space,
e.g., as the span of the one-level (substructured) Schwarz iteration operator,
or as the ones proposed in several papers as [17, 18, 27, 28]. From a numeri-
cal point of view, the S2S framework has several advantages if compared to a
classical two-level Schwarz methods defined in volume. Since the coarse space
functions are defined on the interfaces, less memory storage is required. For a
three-dimensional problem with mesh size h, a discrete interface coarse func-
tion is an array of size O(1/h2). This is much smaller than O(1/h3), which is
the size of an array corresponding to a coarse function in volume. For this rea-
son the resulting interface restriction and prolongation operators are smaller
matrices, and thus the corresponding interpolation operations are cheaper to
be performed. Therefore, assuming that the one-level stationary iteration step
and the dimension of the coarse space are the same for a S2S method and a
method in volume, each S2S iteration is generally computationally less expen-
sive. In terms of iteration number, our S2S methods perform similarly or faster
than other two-level methods that use the same DD smoother. Notice also,
that the pre-computation part, that consists mainly in constructing the coarse
space Vc and assembling the operators P , R and Ac requires the same compu-
tational effort of a method in volume. Moreover, the substructured feature of
the S2S framework allows us to introduce two new procedures, based on a PCA
and neural networks, to numerically build an efficient coarse space Vc. Direct
numerical experiments will show that the coarse spaces generated by these two
approaches either outperform the spectral coarse space and other commonly
used coarse spaces, or they lead to a very similar convergence behavior.

In our substructured framework, the matrix A is non-symmetric. Thus the
optimality result of [38] does not hold. Relying on our previous work [41], we
provide a new general convergence analysis based on an infinite-matrix rep-
resentation of two-level operator which covers our substructured formulation.
This analysis has a rather general applicability, it can be used to tackle non-
symmetric problems, and allows us to show, surprisingly, in which cases a
spectral coarse space is not (asymptotically) optimal. Indeed, even for sym-
metric matrices, [38] provides an optimality result for the norm of the iteration
operator, which is generally only an upper bound for the asymptotic conver-
gence factor. Specifically, we show that a spectral coarse space made of the
first m dominant eigenfunctions of G is not necessarily the coarse space of
dimension m minimizing the spectral radius of two-level operator based on the

1Notice that the term “substructured” refers very often to DD methods that are defined on
non-overlapping subdomains; see, e.g., [5, 6]. However, in this work it indicates methods are
purely defined on the interfaces, independently of the type of (overlapping or non-overlapping)
decomposition of the domain; see, e.g., [40, Section 5].



Springer Nature 2021 LATEX template

Spectral coarse spaces for the substructured parallel Schwarz method 5

Schwarz iteration. We show this both theoretically and numerically, using prin-
cipal component analysis (PCA) and deep neural networks to build numerically
more efficient coarse spaces.

This paper is organized as follows. In Section 2, we formulate the classical
parallel Schwarz method in a substructured form. This is done at the contin-
uous level and represents the starting point for the S2S method introduced in
Section 3. A detailed convergence analysis is presented in Section 4. Section 5
discusses both PCA-based and deep neural networks approaches to numerically
create an efficient coarse space. Extensive numerical experiments are presented
in Section 6, where the robustness of the proposed methods with respect to
mesh refinement and physical (jumping) parameters is studied. We present our
conclusions in Section 7. Finally, in the Appendix important implementation
details are discussed.

2 Substructured Schwarz methods

Consider a bounded Lipschitz domain Ω ⊂ Rd for d ∈ {2, 3}, a general
second-order linear elliptic operator L and a function f ∈ L2(Ω). Our goal is
to introduce new domain decomposition methods for the efficient numerical
solution of the general linear elliptic problem

Lu = f in Ω, u = 0 on ∂Ω, (1)

which we assume to be uniquely solved by a u ∈ H1
0 (Ω).

To formulate our methods we need to fix some notation. Given a bounded
set Γ with boundary ∂Γ, we denote by ρΓ(x) the function representing the

distance of x ∈ Γ from ∂Γ. We can then introduce the H
1/2
00 (Γ) the space

H
1/2
00 (Γ) := {v ∈ H1/2(Γ) : v/ρ

1/2
Γ ∈ L2(Γ)}, (2)

which is also known as the Lions-Magenes space; see, e.g., [5, 42, 43]. Notice

that H
1/2
00 (Γ) can be equivalently defined as the space of functions in H1/2(Γ)

such that their extensions by zero to a superset Γ̃ of Γ are in H1/2(Γ̃) [43].
Next, consider a decomposition of Ω into N overlapping Lipschitz subdo-

mains Ωj , that is Ω = ∪j∈IΩj with I := {1, 2, . . . , N}. For any j ∈ I, we define
the set of neighboring indexes Nj := {` ∈ I : Ωj ∩ ∂Ω` 6= ∅}. Given a j ∈ I,
we introduce the substructure of Ωj defined as Sj := ∪`∈Nj

(
Ωj ∩ ∂Ω`

)
, that

is the union of all the portions of ∂Ω` with ` ∈ Nj .2 Notice that the sets Sj
are open and their closures are Sj = Sj ∪∂Sj , with ∂Sj := ∪`∈Nj

(
∂Ωj ∩∂Ω`

)
.

Figure 1 provides an illustration of substructures corresponding to a com-
monly used decomposition of a rectangular domain. The substructure of Ω is
defined as S := ∪j∈ISj . We denote by E0

j : L2(Sj) → L2(S) the extension by

zero operator. Now, we consider a set of continuous functions χj : Sj → [0, 1],

2Notice that the substructure of a subdomain is sometimes called “skeleton”; see, e.g., [11].
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Ω

Ωj

Ωj

Sj

Fig. 1 Decomposition of a rectangular Ω into nine overlapping subdomains (left), and
representation of the substructure Sj for the central subdomain (right).

j = 1, . . . , N , such that

χj(x) ∈


(0, 1] for x ∈ Sj ,
{1} for x ∈ Sj \ ∪`∈NjS`,
{0} for x ∈ ∂Sj \ ∂Ω,

and
∑

j∈I E0
j χj ≡ 1, which means that the functions χj form a partition of

unity on S. Further, we assume that the functions χj , j ∈ I, satisfy the

condition χj/ρ
1/2
Sj ∈ L∞(Sj).

For any j ∈ I, we define Γint
j := ∂Ωj ∩

(
∪`∈NjΩ`

)
and introduce the

following trace and restriction operators

τj : H1(Ωj)→ H1/2(Sj) and τ int
j : H1/2(S)→ H1/2(Γint

j ).

It is well known that (1) is equivalent to the domain decomposition system

Luj = fj in Ωj , uj =
∑
`∈Nj

E0
` (χ`τ`u`) on Γint

j , uj = 0 on ∂Ωj \ Γint
j , (3)

where fj ∈ L2(Ωj) is the restriction of f on Ωj (see, e.g., [5]). Notice that, since
τ`u` ∈ H1/2(S`), the properties of the partition of unity functions χ` guarantee

that χ`τ`u` lies in H
1/2
00 (S`) and E0

` (χ`τ`u`) ∈ H1/2
00 (S). Moreover, for ` ∈ Nj

it holds that τ int
j E0

` (χ`τ`u`) ∈ H1/2
00 (Γint

j ) if Γint
j ( ∂Ωj , and τ int

j E0
` (χ`τ`u`) ∈

H1/2(Γint
j ) if Γint

j = ∂Ωj .

Given a j ∈ I such that ∂Ωj \ Γint
j 6= ∅, we define the extension operator

Ej : H
1/2
00 (Γint

j )× L2(Ωj)→ H1(Ωj) as w = Ej(v, fj), where w solves

Lw = fj in Ωj , w = v on Γint
j , w = 0 on ∂Ωj \ Γint

j (4)

for v ∈ H
1/2
00 (Γint

j ). Otherwise, if Γint
j ≡ ∂Ωj , we define Ej : H1/2(Γint

j ) ×
L2(Ωj)→ H1(Ωj) as w = Ej(v, fj), where w solves

Lw = fj in Ωj , w = v on Γint
j , (5)
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for v ∈ H1/2(Γint
j ). The DD system (3) can be then written as

uj = Ej(0, fj) + Ej
(
τ int
j

∑
`∈Nj

E0
` (χ`τ`u`), 0

)
, j ∈ I. (6)

If we define vj := χjτjuj , j ∈ I, then system (6) becomes

vj = gj +
∑
`∈Nj

Gj,`(v`), j ∈ I, (7)

where gj := χjτjEj(0, fj) and the operators Gj,` : H
1/2
00 (S`) → H

1/2
00 (Sj) are

defined as
Gj,`(·) := χjτjEj

(
τ int
j E0

` (·), 0
)
. (8)

System (7) is the substructured form of (3). The equivalence between (3) and
(7) is explained by the following theorem.

Theorem 1 (Equivalence between (3) and (7)) Let uj ∈ H1(Ωj), j ∈ I, solve (3),

then vj := χjτj(uj), j ∈ I, solve (7). Let vj ∈ H1/2(Sj), j ∈ I, solve (7), then

uj := Ej(τ int
j

∑
`∈Nj E

0
` (v`), fj), j ∈ I, solve (3).

Proof The first statement is proved before Theorem 1, where the substructured sys-
tem (7) is derived. To obtain the second statement, we use (7) and the definition of
uj to write vj = χjτjEj(τ int

j

∑
`∈Nj E

0
` (v`), fj) = χjτjuj . The claim follows by using

this equality together with the definitions of uj and Ej . �

Take any function w ∈ H1
0 (Ω) and consider the initialization u0

j := w|Ωj ,
j ∈ I. The parallel Schwarz method (PSM) is given by

Lunj = fj in Ωj , u
n
j =

∑
`∈Nj

E0
` (χ`τ`u

n−1
` ) on Γint

j , unj = 0 on ∂Ωj \ Γint
j , (9)

for n ∈ N+, and has the substructured form

vnj = gj +
∑
`∈Nj

Gj,`(v
n−1
` ), j ∈ I, (10)

initialized by v0
j := χjτj(u

0
j ) ∈ H

1/2
00 (Sj). Notice that the iteration (10) is well

posed in the sense that vnj ∈ H
1/2
00 (Sj) for j ∈ I and n ∈ N. Equations (10)

and (7) allow us to obtain the substructured PSM in error form, that is

enj =
∑
`∈Nj

Gj,`(e
n−1
` ), j ∈ I, (11)
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for n ∈ N+, where enj := vj − vnj , for j ∈ I and n ∈ N. Equation (7) can be

written in the matrix form Av = b, where v = [v1, . . . , vN ]>, b = [g1, . . . , gN ]>

and the entries of A are

[A]j,j = Id,j and [A]j,` = −Gj,`, j, ` ∈ I, j 6= `, (12)

where Id,j are the identities on L2(Sj), j ∈ I. Similarly, we define G as

[G]j,j = 0 and [G]j,` = Gj,`, j, ` ∈ I, j 6= `,

and hence write (10) and (11) as vn = Gvn−1 + b and en = Gen−1,
respectively, where vn := [vn1 , . . . , v

n
N ]> and en := [en1 , . . . , e

n
N ]>. Notice that

G = I −A, where I := diagj=1,...,N (Id,j). Moreover, if we define

H := H
1/2
00 (S1)× · · · ×H1/2

00 (SN ),

then one can clearly see that A : H → H and G : H → H.
It is a standard result that the PSM iteration vn = Gvn−1 + b converges;

see, e.g., [11] for a convergence result of the PSM in a substructured form, [8–
10, 12, 40] for other convergence results and [4, 6] for standard references. The
corresponding limit is the solution to the problem Av = b.

3 S2S: Spectral two-level substructured
Schwarz method

The idea of the S2S method is to use a coarse space Vc defined as the span of
certain linearly independent functions defined on the skeletons of the subdo-
mains Ωj , for j ∈ I. Consider the space H, endowed with an inner product
〈·, ·〉, and a set of m > 0 linearly independent functions ψψψk, k = 1, . . . ,m.

Notice that each ψψψk has the form ψψψk = [ψ1
k, . . . , ψ

N
k ]>, where ψjk ∈ H

1/2
00 (Sj)

for j ∈ I. We define the coarse space Vc as

Vc := span{ψψψ1, . . . ,ψψψm}.

To define a two-level method, we need restriction and prolongation operators.
Once the coarse space Vc is constructed, the choice of these operators follows
naturally. We define the prolongation operator P : Rm → H and the restriction
operator R : H → Rm as

Pv :=

m∑
k=1

vkψψψk, and Rh :=
[
〈ψψψ1,h〉, · · · , 〈ψψψm,h〉

]>
, (13)

for any v = (v1, . . . , vm)> ∈ Rm and h ∈ H. Notice that, if the functions ψψψk
are orthogonal, P is the adjoint operator of R and we have that RP = Im,
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Algorithm 1 Two-level substructured domain decomposition method

Require: u0 (initial guess)
1: un = Gun−1 + b, n = 1, . . . , n1 (DD pre-smoothing steps)
2: r = b−Aun1 (compute the residual)
3: Solve Acuc = Rr (solve the coarse problem)
4: u0 = un1 + Puc (coarse correction)
5: un = Gun−1 + b, n = 1, . . . , n2 (DD post-smoothing steps)
6: Set u0 = un2 (update)
7: Repeat from 1 to 6 until convergence

Output: u0.

where Im is the identity matrix in Rm×m. The restriction of the operator A
on Vc is the matrix Ac ∈ Rm×m obtained in a Galerkin manner, Ac = RAP .

With the operators P , R and Ac in hands, our two-level method is defined
as a classical two-level strategy applied to the substructured problem (7) and
using the domain decomposition iteration (10) as a smoother. This results in
Algorithm 1, where n1 and n2 are the numbers of the pre- and post-smoothing
steps. The well posedness of Algorithm 1 is proved in the next lemma.

Lemma 1 (Well posedness of S2S) Consider the inner product space (H, 〈·, ·〉), a
set of linearly independent functions {ψψψk}k=1,...,m, for some m > 0, and let Vc :=
span{ψψψ1, . . . ,ψψψm} be a finite-dimensional subspace of H. Let P and R be defined as
in (13) (with 〈·, ·〉). If Ac = RAP is invertible and the initialization vector u0 is
chosen in H, then un2 (computed at Step 5 of Algorithm 1) is in H.

Proof It is sufficient to show that for a given u0 ∈ H all the steps of Algorithm 1 are
well posed. Since b ∈ H, G : H → H and A : H → H, Step 1 and Step 2 produce un1

and r in H. Step 3 is well posed because Ac is assumed to be invertible. Since Vc is
a subset of H, Puc and u0 in Step 4 lie in H. Clearly, the element un2 produced by
Step 5 is also in H. Therefore, by induction Algorithm 1 is well posed in H. �

The key hypothesis of Lemma 1 is the invertibility of the coarse matrix Ac.
An equivalent characterization of this property is proved in Section 4.1. This
result (and the discussion thereafter) allows us to obtain the invertibility of
Ac if, e.g., Vc is a spectral coarse space. Moreover, it is worth to remark that,
the pseudo-inverse of Ac can be used in case Ac is not invertible; see [38].

Let us now turn our attention to the coarse space Vc. We distinguish two
general classes of coarse space functions: global and local coarse functions.
Global coarse functions refer to functions defined directly on the global skele-
ton of Ω. An ideal choice of global coarse functions would be to define Vc as
the span of of the dominating eigenfunctions of the one-level operator G. In
the context of multigrid methods, this choice is extensively discussed in [38],
where the authors prove that, if A and the preconditioner corresponding to
the one-level iteration are symmetric, the spectral coarse space minimizes the
energy norm of T . This sharp result provides a concrete optimal choice of Vc
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minimizing the energy norm of T , but it is generally an upper bound for the
asymptotic convergence factor ρ(T ) and does not extend to the non-symmetric
case (the substructured matrix A is non-symmetric), as we will see in Section
4.2. Moreover, we will show in Section 5 two numerical approaches, based on
a PCA approach and neural networks, for the construction of global coarse
space functions. These are generally different from the spectral ones and may
lead to a better convergence.

Another possibility is to build local coarse functions using eigenfunctions
of the local operators Gj . However, the eigenfunctions of Gj (or G) are known
only in very special cases and their numerical computation could be quite
expensive. To overcome this problem one could define Vc as the span of some
Fourier basis functions, that could be obtained by solving a Laplace-Beltrami
eigenvalue problem on each interface (or skeleton); see, e.g., [27, 28]. In this

case, assuming that local basis functions ψjk ∈ H
1/2
00 (Sj) (endowed with inner

product 〈·, ·〉j) are available, the coarse space Vc can be constructed as

Vc := spanj∈I,k=1,...,m̂

{
ej ⊗ ψjk

}
,

for some positive integer m̂, where ⊗ denotes the standard Kronecker product
and ej , for j ∈ I, are the canonical vectors in RN . In this case prolongation
and restriction operators defined in (13) are

P

v1

...
vN

 =

[
m̂∑
k=1

v1
kψ

1
k, · · ·

m̂∑
k=1

vNk ψ
N
k

]>
,

R

h1

...
hN

 =
[
〈ψ1

1 , h1〉1, · · · , 〈ψ1
m̂, h1〉1, · · · 〈ψN1 , hN 〉N , · · · , 〈ψNm̂ , hN 〉N

]>
,

(14)

for any v1, . . . ,vN ∈ Rm̂ and any (h1, . . . , hN ) ∈ H. We wish to remark, that
the choice of the inner product 〈·, ·〉 (or 〈·, ·〉j for j ∈ I) in the definition of
P and R is arbitrary. One possible choice is the classical H1/2 inner product.
However, this could be too expensive from a numerical point of view. Another
possibility would be to consider the classical L2 inner product, which is the
choice we make in our implementations.

A detailed convergence analysis that covers our S2S method, is presented
in Section 4. This is based on the general structure of a two-level iteration
operator. A direct calculation reveals that one iteration of the S2S method can
be written as

unew = Gn2(I − PA−1
c RA)Gn1uold + M̃b, (15)
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where I is the identity operator over H; see, also, [13, 15, 37]. Here, M̃ is an
operator which acts on the right-hand side vector b. Such operator can be
regarded as the preconditioner corresponding to our two-level method. In error
form, the iteration (15) becomes

enew = Teold with T := Gn2(I − PA−1
c RA)Gn1 , (16)

where enew := u− unew and eold := u− uold. Hence, to prove convergence of
the S2S method we study the operator T .

4 Convergence analysis

In this section, we provide convergence results for two-level iterative methods
in a general framework that covers the setting of the S2S domain decomposition
method presented in Section 3.

Let (X , 〈·, ·〉) be a complex3 inner-product space and Ax = b a linear
problem, where the operator A : X → X is bijective and b ∈ X is a given
vector. Consider a set of m > 0 linearly independent functions {ψψψk}k=1,...,m,
and denote by Vc the finite-dimensional subspace of X defined as the span of
the functions {ψψψk}k=1,...,m. We denote by P : Cm → X and R : X → Cm
the prolongation and restriction operators defined as in (13), and define the
matrix Ac := RAP ∈ Cm×m. Given a smoothing operator G : X → X , a two-
level iterative method (as the one defined in Algorithm 1) is characterized by
the iteration operator T : X → X defined by

T := Gn2(I− PA−1
c RA)Gn1 , (17)

where I : X → X is the identity operator. In what follows the properties of T
are analyzed. In particular, the invertibility of Ac is characterized in Section
4.1, the convergence (spectral) properties of T are discussed in the case of
global coarse functions in Section 4.2 and in the case of local coarse functions
in Section 4.3.

4.1 Invertibility of the coarse matrix

The well-posedness of a two-level method (like the S2S) is essentially related to
the invertibility of the coarse operator Ac. Even though one could replace the
inverse of Ac with its pseudo-inverse, as discussed in, e.g., [38], in our analysis
we will assume that Ac is invertible. The next Lemma provides an equivalent
characterization for the invertibility of Ac.

3The hypothesis of a complex inner-product space is general and has the goal of dealing with
possibly complex eigenvectors of non-symmetric A and G. Nevertheless, the analysis presented in
this section is valid also in the (more commonly used) real case.
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Lemma 2 (Invertibility of a coarse operator Ac) Let PVc : X → Vc be a projection
operator onto Vc. The coarse matrix Ac = RAP has full rank if and only if PVc(Av) 6=
0 ∀v ∈ Vc \ {0}.

Proof We first show that if PVc(Av) 6= 0 for any v ∈ Vc \ {0}, then Ac = RAP has
full rank. This result follows from the rank-nullity theorem, if we show that the only
element in the kernel of Ac is the zero vector. To do so, we recall the definitions of P
and R given in (13). Let us now consider a vector z ∈ Cm . Clearly, Pz = 0 if and only
if z = 0. Moreover, for any z ∈ Cm the function Pz is in Vc. Since A is invertible, then
APz = 0 if and only if z = 0. Moreover, by our assumption it holds that PVc(APz) 6=
0. Now, we notice that Rw 6= 0 for all w ∈ Vc \ {0}, and Rw = 0 for all w ∈ V ⊥c ,
where V ⊥c denotes the orthogonal complement of Vc in X with respect to 〈·, ·〉. Since
(X , 〈·, ·〉) is an inner-product space, we have APz = PVc(APz)+(I−PVc)(APz) with

(I− PVc)(APz) ∈ V ⊥c . Hence, RAPz = RPVc(APz) 6= 0 for any non-zero z.
Now we show that, if Ac = RAP has full rank, then PVc(Av) 6= 0 for any

v ∈ Vc\{0}. We proceed by contraposition and prove that if there exists a v ∈ Vc\{0}
such that Av ∈ V ⊥c , then Ac = RAP has not full rank. Assume that there is a
v ∈ Vc \ {0} such that Av ∈ V ⊥c . Since v is in Vc, there exists a nonzero vector z
such that v = Pz. Hence APz ∈ V ⊥c . We can now write that Acz = R(APz) = 0,
which implies that Ac has not full rank. �

The following example shows that the invertibility of A does not necessarily
imply the invertibility of Ac.

Example 1 Consider the invertible matrix A :=
[
0 1
1 0

]
. Let us denote by e1 and

e2 the canonical vectors in R2, define Vc := span{e1}, and consider the classical
scalar product for R2. This gives V ⊥c := span{e2}. The prolongation and restriction
operators are P = e1 and R = P>. Clearly, we have that Ae1 = e2, which implies
that PVc(Av) = 0 for all v ∈ Vc. Moreover, in this case we get Ac = RAP = 0, which
shows that Ac is not invertible.

Notice that, if A(Vc) ⊆ Vc, then it holds that PVc(Av) 6= 0 ∀v ∈ Vc \ {0},
and Ac is invertible. The condition A(Vc) ⊆ Vc is satisfied for operators of
the form A = I −G, as for instance those defined in (12), if the functions ψψψk
are eigenfunctions of G. However, it represents only a sufficient condition for
the invertibility of Ac. As the following example shows, there exist invertible
operators A that do not satisfy this condition, but lead to invertible Ac.

Example 2 Consider the invertible matrix A :=

[
1 0 0
0 1 1
0 1 0

]
. Let us denote by e1, e2

and e3 the three canonical vectors in R3, define Vc := span{e1, e2}, and consider the
classical scalar product for R3. This gives V ⊥c := span{e3}. The prolongation and
restriction operators are P = [e1, e2] and R = P>, and we get Ac = RAP = I, where
I is the 2 × 2 identity matrix. Now, we notice that Ae2 = e2 + e3, which implies
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that PVc(Ae2) 6= 0 and PV ⊥c (Ae2) 6= 0. Hence Vc is not invariant under A, but Ac is
invertible.

4.2 Global coarse functions

In this section, we study general convergence properties of the operator T. The
first theorem characterizes the relation between the kernel of T and the coarse
space Vc.

Theorem 2 (Kernel of T, coarse space Vc) Let P and R be defined as in (13) by
linearly independent functions ψψψ1, . . . ,ψψψm such that Ac = RAP is invertible. For any
ψψψ ∈ X it holds that

[I− PA−1
c RA]ψψψ = 0 ⇔ ψψψ ∈ Vc := span{ψψψ1, . . . ,ψψψm}. (18)

Proof Assume that ψψψ ∈ Vc. This implies that there exists a vector z such that
ψψψ = Pz. Hence, we can compute

[I− PA−1
c RA]ψψψ = ψψψ − PA−1

c RAψψψ = Pz− PA−1
c RAPz = Pz− Pz = 0.

Let us now prove the reverse, that is [I − PA−1
c RA]ψψψ = 0 ⇒ ψψψ ∈ Vc. We

proceed by contraposition and assume that ψψψ /∈ Vc, that is there exists a nonzero
ψψψb ∈ V ⊥c such that ψψψ = ψψψa +ψψψb with ψψψa ∈ Vc. Since ψψψa ∈ Vc, we already know that
[I− PA−1

c RA]ψψψa = 0. Hence, it holds that

[I− PA−1
c RA]ψψψ = [I− PA−1

c RA](ψψψa +ψψψb) = ψψψb︸︷︷︸
∈V ⊥c

−PA−1
c RAψψψb︸ ︷︷ ︸
∈Vc

6= 0. (19)

�

To continue our analysis we construct a matrix representation of the oper-
ator T defined in (17). From now on, for the sake of simplicity, we set n1 = 1
and n2 = 0. We further consider the following assumptions:
(H1) Vc is the span of m linearly independent functions {pk}mk=1 ⊂ X , which

are used to define the operators P and R as in (13).
(H2) The operators A and G have the same linearly independent eigenvectors

{ψψψk}∞k=1, The corresponding eigenvalues of A and G are denoted by λ̃k
and λk, respectively.

(H3) The eigenvalues λk satisfy |λk| ∈ (0, 1), |λk| ≤ |λk−1| for all k.
(H4) There exists an index m̃ ≥ m such that Vc ⊆ span {ψψψk}m̃k=1.

Remark 1 Notice that the hypothesis (H2) is valid in the context of our S2S method,
where the operators A and G satisfy the relation A = I − G. Hence, they have the
same eigenvectors. Moreover, the hypothesis (H3) is satisfied if G corresponds to a
classical parallel Schwarz method, as in the case of our S2S method. The classical
damped Jacobi method is another important instance that satisfies (H2) and (H3).
Moreover, if one supposes that the vectors {ψψψk}∞k=1 in (H2) are orthogonal or X is
finite dimensional, then (H2) and (H4) imply Vc ∩ span {ψψψk}∞k=m̃+1 = {0}.
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Let us now construct a matrix representation of the operator T. Since Vc ⊆
span {ψψψk}m̃k=1, the structure of T allows us to obtain that the set span {ψψψk}m̃k=1

is invariant, that is Tψψψj ∈ span {ψψψk}m̃k=1 for any j = 1, . . . , m̃. Similarly, a

direct calculation reveals that Tψψψj = λjψψψj −
∑m̃

`=1 xj−m̃,`ψψψ` for j ≥ m̃ +
1 for some coefficients xj . Therefore, for any ψψψj there exist at most m̃ + 1

nonzero coefficients t̃j,` such that Tψψψj = t̃j,jψψψj +
∑m̃

`=1, 6̀=j t̃j,`ψψψ`. If we order

the coefficients t̃j,` into an infinite matrix denoted by T̃ , we obtain that

T̃ =

[
T̃m̃ 0
X Λm̃

]
,

Λm̃ = diag (λm̃+1, λm̃+2, . . . ),

T̃m̃ ∈ Cm̃×m̃, [X]j,` = xj,`, ` = 1, . . . , m̃, j = 1, 2, . . .
(20)

The infinite matrix T̃ can be regarded as a linear operator acting on the space
of sequences. The matrix representation (20) turns to be very useful to analyze
the convergence properties of the operator T. Now, we can compute by an
induction argument that

T̃n =

[
T̃nm̃ 0
Pn Λnm̃

]
with Pn =

n∑
j=1

Λn−jm̃ XT̃ j−1
m̃ . (21)

If the matrix T̃m̃ is nilpotent with degree q ∈ N+, that is T̃ pm̃ = 0 for all p ≥ q,
then we get for n > q that

Pn =

q∑
j=1

Λn−jm̃ XT̃ j−1
m̃ +

n∑
j=q+1

Λn−jm̃ XT̃ j−1
m̃ = Λnm̃

q∑
j=1

Λ−jm̃ XT̃ j−1
m̃ .

Thus, by defining Xq :=
∑q

j=1 Λ−jm̃ XT̃ j−1
m̃ , one gets for n > q that

T̃n = Tn−1
a Tb with Ta :=

[
0 0
0 Λm̃

]
, Tb :=

[
0 0

Λm̃Xq Λm̃

]
. (22)

Let us begin with a case where the linear operators A and G are bounded
and self-adjoint, and the functions {ψψψk}∞k=1 form an orthonormal basis with
respect to an inner product 〈〈·, ·〉〉 (not necessarily equal to 〈·, ·〉) such that
(X , 〈〈·, ·〉〉) is a Hilbert space. We denote by ‖ · ‖X the norm induced by 〈〈·, ·〉〉,
and by

‖S‖X := sup
‖v‖X=1

‖Sv‖X for any S ∈ L(X ), (23)

the corresponding operator norm. Notice that, since A and G are bounded, T
is bounded as well. Thus, we can study the asymptotic convergence factor ρ(T)

defined as lim
n→∞

‖Tn‖1/nX = ρ(T); see, e.g., [44, Chapter 17]. Since we assumed



Springer Nature 2021 LATEX template

Spectral coarse spaces for the substructured parallel Schwarz method 15

that {ψψψk}∞k=1 are orthonormal with respect to 〈〈·, ·〉〉, a direct calculation4

allows one to prove that ‖T‖X = ‖T̃‖`2 , where

‖S‖`2 := sup
‖v‖`2=1

‖Sv‖`2 for any S ∈ L(`2). (24)

Hence, we obtain ρ(T) = lim
n→∞

‖Tn‖1/nX = lim
n→∞

‖T̃n‖1/n`2 . Notice that since T

is a bounded operator and ‖T‖X = ‖T̃‖`2 , the operator T̃ is bounded in the

‖ · ‖`2 norm. Thus, the submatrices X, Λm̃ and T̃m̃ are bounded in the ‖ · ‖`2
norm as well. Therefore, Ta and Tb are also bounded in the ‖ · ‖`2 norm. Thus,
equation (22) allows us to estimate ρ(T):

ρ(T) = lim
n→∞

‖T̃n‖1/n`2 ≤ lim
n→∞

(‖Tn−1
a ‖`2‖Tb‖`2)1/n ≤ lim

n→∞
|λm̃+1|(n−1)/n‖Tb‖1/n`2

= |λm̃+1|.

Now, recalling (24), one obtains for n > q that

‖T̃n‖`2 = sup
‖v‖`2=1

‖T̃nv‖`2 ≥ ‖T̃nem̃+1‖`2 = |λm̃+1|n,

where em̃+1 ∈ `2 is the m̃+ 1-th canonical vector. This estimate implies that

ρ(T) = lim
n→∞

‖T̃n‖1/n`2 ≥ |λm̃+1|, and thus ρ(T) = |λm̃+1|. Using Theorem 2,

it is possible to see that the matrix T̃m̃ is nilpotent with degree q = 1, if
Vc = span {ψψψk}m̃k=1. In this case |λm̃+1| = |λm+1|. We can summarize these
findings in the next theorem.

Theorem 3 (Convergence of a two-level method) Let the hypotheses (H1), (H2),
(H3) and (H4) be satisfied, A and G be self-adjoint, and assume that the functions
{ψψψk}∞k=1 form an orthonormal basis with respect to an inner product 〈〈·, ·〉〉 such that

(X , 〈〈·, ·〉〉) is a Hilbert space. If T̃m̃ is nilpotent (e.g., if Vc = span {ψψψk}m̃k=1), then

ρ(T) = lim
n→∞

‖Tn‖1/nX = |λm̃+1| < 1,

where ‖ · ‖X is the operator norm defined in (23).

In the case of a spectral coarse space, the expression of T̃ in (20) simplifies.
The following result holds.

Theorem 4 (The matrix T̃ for self-adjoint A and G and a spectral coarse space)
Let the hypotheses (H1), (H2), (H3) and (H4) be satisfied. If the functions {ψψψk}∞k=1

4‖T‖2X = sup
‖v‖X=1

‖Tv‖2X = sup
‖w‖

`2
=1

‖T
∑
j

wjψψψj‖
2
X = sup

‖w‖
`2

=1

∑
j,k,i,p

wjwi t̃j,k t̃i,p〈〈ψψψk,ψψψp〉〉 =

sup
‖w‖

`2
=1

∑
j,k,i

wjwi t̃j,k t̃i,k = sup
‖w‖

`2
=1

‖T̃‖2
`2
.
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form an orthonormal basis for (X , 〈〈·, ·〉〉), the operators A and G are self adjoint, and
Vc = span {ψψψk}mk=1 with m̃ = m, then

T̃ =

[
0 0
0 Λm̃

]
,

where Λm̃ is defined in (20).

Proof Since Vc = span {ψψψk}mk=1, Theorem 2 implies that T̃m̃ = 0. Thus, to obtain
the result, it is sufficient to show that all the components of the submatrix X (see
(20)) are zero. These components are xj,` = t̃j,` for j > m̃ and ` ≤ m̃. Thus, we

assume that j > m̃ and ` ≤ m̃, recall the formula Tψψψj = t̃j,jψψψj +
∑m̃
k=1,k 6=j t̃j,kψψψk,

and multiply this by ψψψ` to obtain 〈〈ψψψ`,Tψψψj〉〉 = t̃j,`. Since A and G are self adjoint,

one obtains by a direct calculation that [I−PA−1
c RA]∗ = [I−APA−1

c R]. Using this
property and recalling the structure of T, we can compute

t̃j,` = 〈〈ψψψ`,Tψψψj〉〉 = 〈〈ψψψ`, [I− PA−1
c RA]Gψψψj〉〉 = λj〈〈 [I− PA−1

c RA]∗ψψψ`,ψψψj〉〉

= λj〈〈 [I− APA−1
c R]ψψψ`,ψψψj〉〉.

Now, since [I − APA−1
c R]ψψψ` ∈ span {ψψψk}m̃k=1 as ` ≤ m̃, the orthogonality of the

functions {ψψψk}∞k=1 and the hypothesis (H4) imply that 〈〈 [I−APA−1
c R]ψψψ`,ψψψj〉〉 = 0.

Hence, the result follows. �

Theorem 4 implies directly that

‖T‖X = ρ(T) = |λm+1|.

Let us now assume that A is positive definite, and thus there exists a unique

positive square root operator A1/2 such that A1/2ψψψj = λ̃
1/2
j ψψψj , [45, Theorem

6.6.4]. A straight calculation leads to ‖S‖A = ‖A1/2SA−1/2‖X (see, e.g.,
[46, Section C.1.3] for a finite-dimensional matrix counterpart). Notice that,

as for T and T̃ , we can obtain the matrix representation Λ̃1/2T̃ Λ̃−1/2 of
A1/2TA−1/2, where T̃ is defined in (20) and Λ̃ = diag (λ̃1, λ̃2, . . . ). Thus, as for

‖T‖X = ‖T̃‖`2 , one can prove that ‖A1/2TA−1/2‖X = ‖Λ̃1/2T̃ Λ̃−1/2‖`2 . Hence,

we get ‖T‖A = ‖Λ̃1/2T̃ Λ̃−1/2‖`2 . Now, if it holds that Vc = span {ψψψk}mk=1, then
Theorem 4 implies that

‖T‖A = ‖Λ̃1/2T̃ Λ̃−1/2‖`2 = ‖Λm̃‖`2 = |λm+1| = ρ(T).

It has been proved in [38, Theorem 5.5], that this result is optimal in the
sense that, if A and G are symmetric and positive (semi-)definite, then the
coarse space Vc = span {ψψψk}mk=1 minimizes the energy norm of the two-level
operator T. Clearly, if A has positive and negative eigenvalues (even though it
remains symmetric), this result is no longer valid. In this case, as we are going
to see in Theorem 6, the coarse space Vc = span {ψψψk}mk=1 is not necessarily
(asymptotically) optimal.
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The situation is very different if the functions {ψψψk}∞k=1 are not orthogonal
and A is not symmetric. To study this case, we work in a finite-dimensional
setting and assume that X = CN = span {ψψψk}Nk=1. Thus, both T and T̃ are

matrices in CN×N and it holds that TV = V T̃>, where V = [ψψψ1, . . . ,ψψψN ]. This

means that T and T̃ are similar matrices and, thus, have the same spectrum.
Hence, using Theorem 2 we obtain a finite-dimensional counterpart of Theorem
3, which does not require the orthogonality of {ψψψk}Nk=1.

Theorem 5 (Convergence of a two-level method in finite-dimension) Assume that
X = CN and let the hypotheses (H1), (H2), (H3) and (H4) be satisfied. If Vc =
span {ψψψk}mk=1 (with m = m̃ < N), then

ρ(T) = ρ(T̃ ) = |λm+1| < 1.

The coarse space Vc = span {ψψψk}mk=1 is not necessarily (asymptotically)
optimal. A different choice can lead to better asymptotic convergence or even
to a divergent two-level method. To show these results, we consider an analysis
based on the perturbation of functions belonging to the coarse space Vc =
span {ψψψk}mk=1. We have seen in Theorem 2, that an eigenvector of G is in
the kernel of the two-level operator T if and only if it belongs to Vc. Assume
that the coarse space cannot represent exactly one eigenvector ψψψ of G. How
is the convergence of the method affected? Let us perturb the coarse space Vc
using the eigenvector ψψψm+1, that is Vc(ε) := span {ψψψj + εψψψm+1}mj=1. Clearly,
dimVc(ε) = m for any ε ∈ R. In this case, (21) holds with m̃ = m + 1 and

T̃ ∈ CN×N becomes

T̃ (ε) =

[
T̃m̃(ε) 0
X(ε) Λm̃

]
, (25)

where we make explicit the dependence on ε. Notice that ε = 0 clearly
leads to T̃m̃(0) = diag (0, . . . , 0, λm+1) ∈ Cm̃×m̃, and we are back to the

unperturbed case with T̃ (0) = T̃ having spectrum {0, λm+1, . . . , λN}. Now,

notice that minε∈R ρ(T̃ (ε)) ≤ ρ(T̃ (0)) = |λm+1|. Thus, it is natural to ask
the question: is this inequality strict? Can one find an ε̃ 6= 0 such that
ρ(T̃ (ε̃)) = minε∈R ρ(T̃ (ε)) < ρ(T̃ (0)) holds? If the answer is positive, then we
can conclude that choosing the coarse vectors equal to the dominating eigen-
vectors of G is not an optimal choice. Moreover, one could ask an opposite
question: can one find a perturbation of the eigenvectors that leads to a diver-
gent method (ρ(T̃ (ε)) > 1)? The next key result provides precise answers to
these questions in the case m = 1.

Theorem 6 (Perturbation of Vc) Let (ψψψ1, λ1), (ψψψ2, λ2) and (ψψψ3, λ3) be three eigen-
pairs of G, Gψψψj = λjψψψj such that 0 < |λ3| < |λ2| ≤ |λ1|, ‖ψψψj‖2 = 1, j = 1, 2, and

denote with λ̃j the eigenvalues of A corresponding to ψψψj . Assume that both λj and
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λ̃j are real for j = 1, 2 and λ̃1λ̃2 > 0. 5 Define Vc := span {ψψψ1 + εψψψ2} with ε ∈ R,
and γ := 〈ψψψ1,ψψψ2〉 ∈ [−1, 1]. Then

(A) The spectral radius of T̃ (ε) is ρ(T̃ (ε)) = max{|λ(ε, γ)|, |λ3|}, where

λ(ε, γ) =
λ1λ̃2ε

2 + γ(λ1λ̃2 + λ2λ̃1)ε+ λ2λ̃1

λ̃2ε2 + γ(λ̃1 + λ̃2)ε+ λ̃1

. (26)

(B) Let γ = 0. If λ1 > λ2 > 0 or 0 > λ2 > λ1, then min
ε∈R

ρ(T̃ (ε)) = ρ(T̃ (0)).

(C) Let γ = 0, If λ2 > 0 > λ1 or λ1 > 0 > λ2, then there exists an ε̃ 6= 0 such that

ρ(T̃ (ε̃)) = |λ3| = min
ε∈R

ρ(T̃ (ε)) < ρ(T̃ (0)).

(D) Let γ 6= 0. If λ1 > λ2 > 0 or 0 > λ2 > λ1, then there exists an ε̃ 6= 0 such that

|λ(ε̃, γ)| < |λ2| and hence ρ(T̃ (ε̃)) = max{|λ(ε̃, γ)|, |λ3|} < ρ(T̃ (0)).

(E) Let γ 6= 0. If λ2 > 0 > λ1 or λ1 > 0 > λ2, then there exists an ε̃ 6= 0 such that

ρ(T̃ (ε̃)) = |λ3| = min
ε∈R

ρ(T̃ (ε)) < ρ(T̃ (0)).

(F) The map γ 7→ λ(ε, γ) has a vertical asymptote at γ∗(ε) = − ε2λ̃2+λ̃1

ε(λ̃1+λ̃2)
for any

ε2 6= − (λ2λ̃1)(λ̃1+λ̃2)

λ1λ̃2
2+λ̃2

1λ2
. Thus there exits a neighborhood I(γ∗) such that ∀γ ∈

I(γ∗), λ(ε, γ) /∈ (−1, 1).

Proof Since m = 1, a direct calculation allows us to compute the matrix

T̃m̃(ε) =

λ1 − λ1λ̃1(1+εγ)
g −ελ1λ̃1(1+εγ)

g

−λ2λ̃2(ε+γ)
g λ2 − (ελ2λ̃2)(ε+γ)

g

 ,
where g = λ̃1 + εγ[λ̃1 + λ̃2] + ε2λ̃2. The spectrum of this matrix is {0, λ(ε, γ)}, with
λ(ε, γ) given in (26). Hence, point (A) follows recalling (25).

To prove points (B), (C), (D) and (E) we use some properties of the map ε 7→
λ(ε, γ). First, we notice that

λ(0, γ) = λ2, lim
ε→±∞

λ(ε, γ) = λ1, λ(ε, γ) = λ(−ε,−γ). (27)

Second, the derivative of λ(ε, γ) with respect to ε is

dλ(ε, γ)

dε
=

(λ1 − λ2)λ̃1λ̃2(ε2 + 2ε/γ + 1)γ

(λ̃2ε2 + γ(λ̃1 + λ̃2)ε+ λ̃1)2
. (28)

Because of λ(ε, γ) = λ(−ε,−γ) in (27), we can assume without loss of generality
that γ ≥ 0.

Let us now consider the case γ = 0. In this case, the derivative (28) becomes
dλ(ε,0)
dε =

(λ1−λ2)λ̃1λ̃22ε

(λ̃2ε2+λ̃2
1)2

. Moreover, since λ(ε, 0) = λ(−ε, 0) we can assume that

ε ≥ 0.

Case (B). If λ1 > λ2 > 0, then
dλ(ε,0)
dε > 0 for all ε > 0. Hence, ε 7→ λ(ε, 0)

is monotonically increasing, λ(ε, 0) ≥ 0 for all ε > 0 and, thus, the minimum of
ε 7→ |λ(ε, 0)| is attained at ε = 0 with |λ(0, 0)| = |λ2| > |λ3|, and the result follows.

5The hypothesis λ̃1λ̃2 > 0 is not restrictive. The same calculations can be performed for λ̃1λ̃2 <

0, as the sign of the product only influences the sign of the derivative
dλ(ε,0)
dε .
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Analogously, if 0 > λ2 > λ1, then
dλ(ε,0)
dε < 0 for all ε > 0. Hence, ε 7→ λ(ε, 0) is

monotonically decreasing, λ(ε, 0) < 0 for all ε > 0 and the minimum of ε 7→ |λ(ε, 0)|
is attained at ε = 0.

Case (C). If λ1 > 0 > λ2, then
dλ(ε,0)
dε > 0 for all ε > 0. Hence, ε 7→ λ(ε, 0) is

monotonically increasing and such that λ(0, 0) = λ2 < 0 and limε→∞ λ(ε, 0) = λ1 >
0. Thus, the continuity of the map ε 7→ λ(ε, 0) guarantees the existence of an ε̃ > 0

such that λ(ε̃, 0) = 0. Analogously, if λ2 > 0 > λ1, then
dλ(ε,0)
dε < 0 for all ε > 0 and

the result follows by the continuity of ε 7→ λ(ε, 0).

Let us now consider the case γ > 0. The sign of
dλ(ε,γ)
dε is affected by the term

f(ε) := ε2 + 2ε/γ + 1, which appears at the numerator of (28). The function f(ε)
is strictly convex, attains its minimum at ε = − 1

γ , and is negative in (ε̄1, ε̄2) and

positive in (−∞, ε̄1) ∪ (ε̄2,∞), with ε̄1, ε̄2 = − 1∓
√

1−γ2

γ .

Case (D). If λ1 > λ2 > 0, then
dλ(ε,γ)
dε > 0 for all ε > ε̄2. Hence,

dλ(0,γ)
dε > 0,

which means that there exists an ε̃ < 0 such that |λ(ε̃, γ)| < |λ(0, γ)| = |λ2|. The
case 0 > λ2 > λ1 follows analogously.

Case (E). If λ1 > 0 > λ2, then
dλ(ε,γ)
dε > 0 for all ε > 0. Hence, by the continuity

of ε 7→ λ(ε, γ) (for ε ≥ 0) there exists an ε̃ > 0 such that λ(ε̃, γ) = 0. The case
λ2 > 0 > λ1 follows analogously.

Case (F). It is sufficient to observe that the denominator of λ(ε, γ) is equal to zero
for γ = γ∗, while the numerator is nonzero and finite. Hence, limγ→γ∗ |λ(ε, γ)| = +∞.
As the map γ 7→ λ(ε, γ) is continuous in (−∞, γ∗) ∪ (γ∗,+∞), the result follows.

�

Theorem 6 and its proof say that, if the two eigenvalues λ1 and λ2 have
opposite signs (but they could be equal in modulus), then it is always possi-
ble to find an ε 6= 0 such that the coarse space Vc := span{ψψψ1 + εψψψ2} leads to
a faster method than Vc := span{ψψψ1}, even though both are one-dimensional
subspaces. In addition, if λ3 6= 0 the former leads to a two-level operator T
with a larger kernel than the one corresponding to the latter. The situation is
completely different if λ1 and λ2 have the same sign. In this case, the orthog-
onality parameter γ is crucial. If ψψψ1 and ψψψ2 are orthogonal (γ = 0), then one
cannot improve Vc := span{ψψψ1} by a simple perturbation using ψψψ2. However,
if ψψψ1 and ψψψ2 are not orthogonal (γ 6= 0), then one can still find an ε 6= 0 such

that ρ(T̃ (ε)) < ρ(T̃ (0)).
Notice that, if |λ3| = |λ2|, Theorem 6 shows that one cannot obtain a

ρ(T ) smaller than |λ2| using a one-dimensional perturbation. However, if one
optimizes the entire coarse space Vc (keeping m fixed), then one can find
coarse spaces leading to better contraction factor of the two-level iteration,
even though |λ3| = |λ2|.

Theorem 6 has another important meaning. If the eigenvectors ψψψj are not
orthogonal and one defines the coarse space Vc using approximations to ψψψj ,
then the two-level method is not necessarily convergent. Even though the
one-level iteration characterized by G is convergent, a wrong choice of coarse
functions can lead to a divergent iteration. This phenomenon is observed
numerically in Section 6. However, the analysis performed in Theorem 6
suggests a remedy to this situation.
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Corollary 1 (Correction of perturbed coarse space functions) Let the hypotheses
of Theorem 6 be satisfied. For any r ∈ N it holds that

GrVc = span {ψψψ1 + εrψψψ2} ,

with εr =
λr2
λr1
ε. Moreover, if the coarse space Vc is replaced by GrVc (hence ε is

replaced by εr), there exists an r̂ ∈ N such that ρ(εr̂, γ) < 1 for any γ ∈ [−1, 1].

Proof By computing

GrVc = Grspan {ψψψ1 + εψψψ2} = span

{
ψψψ1 +

λr2
λr1
εψψψ2

}
,

one obtains the first statement. The second statement follows from Theorem 6, which
guarantees that ρ(0, γ) = |λ2| < 1. Since the map ε 7→ ρ(ε, γ) is continuous and
|λ2|/|λ1| < 1, there exists a sufficiently large r ∈ N such that ρ(εr, γ) < 1 holds.

�

Corollary 1 has the following important consequence. If some “bad-
convergent” eigenvectors of G are not sufficiently well represented by the coarse
space functions, one can apply r smoothing steps to the coarse space func-
tions. The new space GrVc is a better approximation to the “bad-convergent”
eigenfunctions of G. Therefore, one can replace Vc by GrVc to improve the
convergence properties of the two-level method.

4.3 Local coarse functions

In this section, we consider an operator G having the block form

G =

[
0 G1

G2 0

]
and defined on the space X := X̂ × X̂ , where X̂ is a Hilbert space endowed by
an inner product ((·, ·)). The corresponding operator A is A = I−G. Moreover,
we assume that the operators Gj , j = 1, 2, have the same eigenvectors {ψk}∞k=1

forming an orthonormal basis of X̂ with respect to ((·, ·)). The eigenvalues
of Gj , for j = 1, 2, are denoted by θj(k). This is exactly the structure of
the substructured domain decomposition problem introduced in Section 2 and
corresponding to two subdomains, as the following examples show.

Example 3 Consider a rectangle Ω := (−L1, L2) × (0, L̃), L̃, L1, L2 > 0 that is

decomposed as Ω = Ω1 ∪ Ω2 by two overlapping subdomains Ω1 := (−L1, δ)× (0, L̃)

and Ω2 := (−δ, L2) × (0, L̃) for some 0 < δ < min(L1, L2). The two interfaces are

Γ1 := {δ}×(0, L̃) and Γ2 := {−δ}×(0, L̃). If L = −∆, then the Schwarz operators G1

and G2 are diagonalized by the sine-Fourier functions ψk(y) = sin(kyπ/L̃), for k =

1, 2, . . . The eigenvalues of Gj are θj(k) = sinh
(
kπ

L̃
(Lj − δ)

)
/ sinh

(
kπ

L̃
(Lj + δ)

)
,

for j = 1, 2; see, e.g., [1, 47].
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Example 4 Consider a disc Ω of radius r and centered in the origin. One can
decompose Ω as the union of two overlapping subdomains Ω1 and Ω2, where Ω1 is a
disc of radius r1 < r and centered in the origin, and Ω2 is an annulus of external
radius equal to r and internal radius r2 ∈ (r1, r). If L = −∆ + η with η > 0, then
the two Schwarz operators G1 and G2 are diagonalized by periodic Fourier functions
defined on circles; see, e.g., [48].

Now, we assume that Vc := (span{ψ1, ψ2, · · · , ψm})2 ⊂ X . Prolongation
and restriction operators are given (as in (14)) by

P

[
v
w

]
:=

[ m∑
j=1

(v)jψj,
m∑
j=1

(w)jψj

]>
, R

[
f
g

]
:=
[
((ψ1,f)), ···,((ψm,f)),((ψ1,g)), ···,((ψm,g))

]>
.

(29)
The restriction of A onto the coarse space Vc is Ac = RAP . Notice that,
since in this case A(Vc) ⊆ Vc, Theorem 2 guarantees that the operator Ac is
invertible. Now, we study the spectral properties of T defined in (17).

Theorem 7 (Convergence of the two-level method with local coarse space func-
tions) Consider the coarse space Vc = (span{ψ1, ψ2, · · · , ψm})2 and the operators
P and R defined in (29). All pairs (ψk, ψ`) with k, ` ≤ m are in the kernel of the
operator T. Moreover, for any S ∈ L(X ) denote by ‖S‖op := sup

‖v‖∞=1
‖Sv‖∞, where

‖v‖∞ := maxj=1,2 ‖vj‖, with ‖vj‖2 = ((vj , vj)). If the eigenvalues θj(k), j = 1, 2,
are in absolute value non-increasing functions of k, then the spectral radius of T,

ρ(T) := lim
n→∞

‖Tn‖
1
n
op, is given by

ρ(T)=

{
|θ1 (m+1)θ2 (m+1)|

n1 +n2
2 , if n1 ,n2 are both even or odd,

|θ1 (m+1)θ2 (m+1)|
n1 +n2−1

2 max{|θ1 (m+1)|,|θ2 (m+1)|}, otherwise.

Proof Let us suppose that both n1 and n2 are even. The other cases can be treated

similarly. For n1 even we define πn1(k) := θ
n1
2

1 (k)θ
n1
2

2 (k) and study the action of the

operator T on a vector [ψk, ψ`]
>:

T
[
ψk
ψ`

]
= Gn2(I− PA−1

c RA)Gn1

[
ψk
ψ`

]
.

We begin with the case k ≤ m and ` ≤ m. First, let us compute the action of the oper-
ator RAGn1 on [ψk, ψ`]

>. Since the operators Gj are diagonalized by the basis {ψk}k

one obtains Gn1

[
ψk
ψ`

]
=

[
πn1(k)ψk
πn1(`)ψ`

]
. The action of A on [πn1(k)ψk, π

n1(`)ψ`]
> is

A

[
πn1(k)ψk
πn1(`)ψ`

]
=

[
Id −G1

−G2 Id

] [
πn1(k)ψk
πn1(`)ψ`

]
=

[
πn1(k)ψk
πn1(`)ψ`

]
−
[
πn1(`)θ1(`)ψ`
πn1(k)θ2(k)ψk

]
.

Since A is invertible and has the form A = I−G, the eigenvalues θj(k) must different

from one. Hence, the product A [πn1(k)ψk, π
n1(`)ψ`]

> 6= 0. Now, the application of

the restriction operator R on A [πn1(k)ψk, π
n1(`)ψ`]

> gives us

RA
[
πn1(k)ψk
πn1(`)ψ`

]
=

[
πn1(k)ek
πn1(`)e`

]
−
[
πn1(`)θ1(`)e`
πn1

1 (k)θ2(k)ek

]
= Λ

[
πn1(k)ek
πn1(`)e`

]
,
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where ek and e` are canonical vectors in Rm and Λ :=

[
I −θ1(`)I

−θ2(k)I I

]
, with I

the m×m identity matrix. We have then obtained

RAGn1

[
ψk
ψ`

]
= Λ

[
πn1(k)ek
πn1(`)e`

]
. (30)

Now, by computing

Ac
[
πn1(k)ek
πn1(`)e`

]
=RA

[
πn1(k)ψk
πn1(`)ψ`

]
=R

[
πn1(k)ψk−πn1(`)θ1(`)ψ`
πn1(`)ψ`−πn1(k)θ2(k)ψk

]
=Λ

[
πn1(k)ek
πn1(`)e`

]
one obtains the action of A−1

c on Λ

[
πn1(k)ek
πn1(`)e`

]
, that is[

πn1(k)ek
πn1(`)e`

]
= A−1

c Λ

[
πn1(k)ek
πn1(`)e`

]
. (31)

Using (30) and (31) we have

(I−PA−1
c RA)Gn1

[
ψk
ψ`

]
=

[
πn1(k)ψk
πn1(`)ψ`

]
− PA−1

c Λ

[
πn1(k)ek
πn1(`)e`

]
=

[
πn1(k)ψk
πn1(`)ψ`

]
− P

[
πn1(k)ek
πn1(`)e`

]
=

[
πn1(k)ψk
πn1(`)ψ`

]
−
[
πn1(k)ψk
πn1(`)ψ`

]
= 0.

(32)

This means that all the pairs (ψk, ψ`) with k ≤ m and ` ≤ m are in the kernel of T.
The result for n1 odd follows by similar calculations.

Next, let us consider the case k > m and ` ≤ m. Recalling that the basis {ψk}k
is orthonormal, one has

RAGn1

[
ψk
ψ`

]
= R

([
πn1(k)ψk
πn1(`)ψ`

]
−
[
πn1(`)θ1(`)ψ`
πn1(k)θ2(k)ψk

])
=

[
0 −θ1(`)I
0 I

] [
0

πn1(`)e`

]
.

Similarly as before, we compute

Ac
[

0
πn1(`)e`

]
= RA

[
0

πn1(`)ψ`

]
= R

[
−πn1(`)θ1(`)ψ`

πn1(`)ψ`

]
=

[
0 −θ1(`)I
0 I

] [
0

πn1(`)e`

]
,

which implies that [
0

πn1(`)e`

]
= A−1

c

[
0 −θ1(`)I
0 I

] [
0

πn1(`)e`

]
.

Thus, we have

T
[
ψk
ψ`

]
= Gn2

([
πn1(k)ψk
πn1(`)ψ`

]
− PA−1

c

[
0 −θ1(`)I
0 I

] [
0

πn1(`)e`

])
= Gn2

([
πn1(k)ψk
πn1(`)ψ`

]
− P

[
0

πn1(`)e`

])
=

[
πn1+n2(k)ψk

0

]
.

(33)

For the remaining case k > m and ` > m, the same arguments as before imply that

T
[
ψk
ψ`

]
= Gn2(I− PA−1

c RA)Gn1

[
ψk
ψ`

]
= Gn2Gn1

[
ψk
ψ`

]
=

[
πn1+n2(k)ψk
πn1+n2(`)ψ`

]
. (34)

We can now study the norm of T. To do so, we first use (32), (33) and (34), and
that {ψk, ψ`}k,` is a basis of X , to write

Tv = T
[∑∞

k=1 ckψk∑∞
`=1 d`ψ`

]
=

[∑∞
k=m+1 π

n1+n2(k)ckψk∑∞
`=m+1 π

n1+n2(`)d`ψ`

]
,
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for any v ∈ X . Since |θ1(k)| and |θ2(k)| are non-increasing functions of k, |π(k)|
is also a non-increasing function of k. Therefore, using that the basis {ψk, ψ`}k,` is
orthonormal, we get

‖T‖op = sup
‖v‖∞=1

‖Tv‖∞ ≤ max
(
|πn1+n2(k)|, |πn1+n2(`)|

)
= |πn1+n2(m+ 1)|.

This upper bound is achieved at v = [ψm+1, 0]>. Hence, ‖T‖op = |πn1+n2(m+ 1)|.
Now, a similar direct calculation leads to ‖Tn‖op = |πn(n1+n2)(m+1)|, which implies

that ρ(T) = lim
n→∞

(‖Tn‖op)1/n = |πn1+n2(m+ 1)|. �

Theorems 2, 5 and 7 show that the choice of the basis functions to construct
Vc can affect drastically the convergence of the method. On the one hand, an
inappropriate choice of Vc can lead to a two-level method that performs as the
corresponding one-level method. On the other hand, a good choice of Vc can
even make convergent a non-converging stationary method; see, e.g., [13].

5 Numerical construction of the coarse space

The construction of a good coarse space Vc is not an easy task. Several works
rely on the solution of generalized eigenvalue problems on the interfaces; see,
e.g., [13, 17, 18, 21, 28]. Despite one could re-use these techniques to build a
coarse space for the S2S method, see the S2S-HEM method discussed in Section
6, we now present two alternative numerical approaches for the generation of
coarse space functions. The first one relies on the principal component analysis
(PCA) and share some similarities with some of the strategies presented in [38,
49]. The second approach is based on modeling the two-level iteration operator
as a deep neural network where the coarse space functions are regarded as
variables to be optimized. A similar approach has been presented in the context
of multigrid methods in [50]. We refer to [51] for a recent review of altenative
ways to combine machine learning and DD methods.

We remark that the S2S framework facilitates the use of these two numer-
ical techniques which could be even numerically unfeasible if applied to a
two-level volume method. Indeed, at the discrete level, the substructured
coarse functions are much shorter vectors than the corresponding volume ones.
This means that, for the PCA approach, one has to compute the SVD decom-
position of a much smaller matrix, while for the deep neural network approach,
the neural net has much less parameters to optimize.

5.1 A PCA approach for coarse space generation

The idea that we present in this section is to construct an approximation of
the image of the smoother Gr, for some positive integer r. In fact, the image of
Gr contains information about the “bad converging” eigenvectors of G. Notice
that im(Gr) = im(GrX) for any surjective matrix X. Therefore, the idea is
to construct a coarse space using the information contained in GrX, for some
randomly chosen matrix X. Clearly, if ρ(G) < 1 and r is large, then one expects
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that the slowest convergent eigenvectors are predominant in GrX. Notice also
the relation of this idea with the perturbation Theorem 6 and Corollary 1.

Motivated by these observations, we use a principal component analysis
(PCA), also known as proper orthogonal decomposition (POD); see, e.g., [52]
and references therein. We consider the following procedure.

1. Consider a set of q linearly independent randomly generated vectors
{sk}qk=1 ⊂ RNs , where Ns is the number of degrees of freedom on the
interfaces, and define the matrix S = [s1, · · · , sq]. Here, q ≈ m and m is
the desired dimension of the coarse space.

2. Use the vectors sk as initial vectors and perform r smoothing steps to
create the matrix W = GrS. This computation can be performed in
parallel, applying G to each column of S separately. Further, we assume
that r is “small”.

3. Compute the SVD of W : W = UΣV >. This is cheap (O(q(Ns)2)) because
W ∈ RNs×q is “small”, since q is “small” and vk are interface vectors.

4. Since the left-singular vectors (corresponding to the non-zero singular
values) span the image of W , we define Vc := span{uj}mj=1 and P :=
[u1, · · · ,um].

We wish to remark that, in light of Theorem 6 and Corollary 1, one can
also use approximations of the eigenfunctions of G (if available) in the matrix
S (in step 1 above). A numerical study of the above procedure is presented in
Section 6. To qualitatively describe the obtained coarse space, we prove the
following bound.

Lemma 3 (Approximation of the random generated coarse space) Consider a full

rank orthogonal matrix X ∈ RN
s×Ns and its decomposition X = [S, S̃]. Let W =

Gr[S, 0] and P` = U`Σ`V
>
` be the rank-` SVD of W (` ≤ m), where (Σ`)j,j = σj ,

j = 1, . . . , `, are the singular values of W . Then, it holds that

‖P` −GrX‖2 ≤ σ`+1 + ‖Gr‖2.

Proof Using the triangle inequality, we get

‖P` −Gr(X)‖2 ≤ ‖P` −Gr[S, 0]‖2 + ‖Gr[S, 0]−GrX‖2.

The first term on the right-hand side is equal to σ`+1 by the best approximation
properties of the SVD. The second term can be bounded as ‖Gr[S, 0] − GrX‖2 ≤
‖Gr‖2‖[S, 0]−X‖2, and a direct calculation of ‖[S, 0]−X‖2 = ‖[0, S̃]‖2 leads to the

result as S̃>S̃ = INs−q. �

Despite its very simple proof, Lemma 3 allows us to describe the quality
of the created coarse space. Larger values of q and ` lead to a smaller error
in the approximation of the image of G. Moreover, a smoother G with good
contraction properties, namely ‖G‖2 � 1, leads to a better approximation.
Clearly, one can improve the approximation by enlarging r at the cost of extra
subdomain solves.
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5.2 Generating the coarse space by deep neural networks

Theorem 6 shows that the spectral coarse space obtained by the first dominant
eigenvector of G is not necessarily the one-dimensional coarse space minimizing
ρ(T). Now, we wish to go beyond this one-dimensional analysis and optimize
the entire coarse space Vc keeping its dimension m fixed. This is equivalent
to optimize the prolongation operator P whose columns span Vc. Thus, we
consider the optimization problem

min
P∈RNs×m

ρ(T (P )). (35)

To solve approximately (35), we follow the approach proposed by [50]. Due
to the Gelfand formula ρ(T ) = limk→∞

k
√
‖T k‖F , we replace (35) with the

simpler optimization problem minP ‖T (P )k‖2F for some positive k. Here, ‖ · ‖F
is the Frobenius norm. We then consider the unbiased stochastic estimator [53]

‖T k‖2F = trace
(
(T k)>T k

)
= Ez

[
z>(T k)>T kz

]
= Ez

[
‖T kz‖22

]
,

where z ∈ RNs is a random vector with Rademacher distribution, i.e.
P(zi = ±1) = 1/2. Finally, we rely on a sample average approach, replacing
the unbiased stochastic estimator with its empirical mean such that (35) is
approximated by

min
P∈RNs×m

1

N

N∑
i=1

‖T (P )kzi‖2F , (36)

where zi are a set of independent, Rademacher distributed, random vectors.
The action of T onto the vectors zi can be interpreted as the feed-forward
process of a neural net, where each layer represents one specific step of the
two-level method, that is the smoothing step, the residual computation, the
coarse correction and the prolongation/restriction operations. In our setting,
the weights of most layers are fixed and given, and the optimization is per-
formed only on the weights of the layer representing the prolongation step. The
restriction layer is constraint to have as weights the transpose of the weights
of the prolongation layer. To solve (36), we rely on the stochastic gradient
algorithm which requires at each iteration to compute k times the action of
T . The optimization parameters are heuristically tuned to a learning rate of
0.1, a mini-batch of ten vectors zi, maximum 20000 epochs, and the optimiza-
tion is stopped when the loss functions increases for 5 consecutive updates.
Each stochastic gradient iteration is expensive as it is equivalent to perform k
iterations of the two-level method. Hence, the proposed deep neural network
approach is not computationally efficient to build coarse spaces, unless one
considers an offline-online paradigm or a many query context. We will use this
approach in Section 6 to go beyond the result of Theorem 6 and show numeri-
cally that given an integer m, a spectral coarse made by the first m dominant
eigenvectors of G is not necessarily the asymptotic optimal coarse space of
dimension m.
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6 Numerical experiments

This section is concerned with the numerical validation of the framework pro-
posed in this manuscript. We first consider a Poisson equation in 2D and 3D
rectangular boxes and we show the convergence behavior of the S2S method
with different coarse spaces and of the SHEM method [17]. In this simplified
setting, we also report the computational time and memory storage require-
ments of the S2S and SHEM methods. We then solve a Poisson problem with
many-subdomain decompositions and discuss a further way to build a sub-
structured coarse space, that is, using the SHEM interface functions. Next,
we focus on a diffusion problem with highly jumping coefficients and validate
Theorem 6 showing how a perturbed coarse space can affect the convergence
of the methods.

For the sake of completeness, let us recall that the SHEM coarse space
is defined as the union of a multiscale and of a spectral coarse space. The
multiscale coarse space is built solving for each internal vertex vk of the
nonoverlapping decomposition Ω = ∪Ni=1Ω̃i, a homogeneous boundary value

problem on each of the edges Γi,j := ∂Ω̃i ∩ ∂Ω̃j , which have the vertex vk

as extreme, imposing a Dirichlet boundary condition equal to 1 on the vertex
vk and zero on the opposite vertex. The solutions of these interface boundary
value problems φki,j are then extended (through the PDE operator, see eq (14)

in [27]) on both subdomains Ω̃i and Ω̃j and set to zero on the rest of Ω.
The spectral coarse space is obtained by solving localized eigenvalue prob-

lems on each of the internal edges Γi,j , and then extending a certain number

of the eigenfunctions harmonically on both Ω̃i and Ω̃j and zero otherwise (see
eq (15) in [27]).

6.1 Poisson equation in 2D and 3D rectangular boxes

Let us consider a rectangular domain Ω = Ω1∪Ω2, where Ω1 = (−1, δ)× (0, 1)
and Ω2 = (−δ, 1)× (0, 1), and a Poisson equation −∆u = f with homogeneous
Dirichlet boundary condition on ∂Ω. Given an integer ` ≥ 2, we discretize
each subdomain with a standard second order finite difference scheme with
Ny = 2` − 1 points in the y direction and Nx = Ny points in the x direction.
The overlap has size 2δ with δ = Novh, where h is the mesh size and Nov ∈ N.
In our computations, we consider f = 1 and initialize the iterations with a
random initial guess.

Figure 2 shows the relative error decay for several methods. Specifically, we
compare the one-level parallel Schwarz method (Gs (Schwarz) in the figures),
a S2S method with a coarse space made by eigenfunctions of G (S2S-G), a S2S
method with a coarse space made of eigenfunctions of the operators Gj (S2S-
Gj), a S2S method with a coarse space obtained with the PCA procedure (S2S-
PCA), a S2S method with coarse space obtained using deep neural networks
(S2S-DNN), and the spectral volume method based on the SHEM coarse space
(SHEM), see [27]. For the PCA coarse space, we average the relative error decay
over 30 realizations and the parameters for the PCA procedure are q = 2 dimVc
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Fig. 2 Convergence curves for ` = 6 which corresponds to 7875 unknowns. On the top row,
Nov = 2 while on the bottom row Nov = 4. In the left panels dimVc = 4, while in the right
panels dimVc = 16.

and r = 2, where dimVc is the desired size of the spectral coarse space. For
the deep neural network approach, the parameters are N = Ns and k = 4.

Figure 2 shows that most of the spectral methods have a very similar con-
vergence. Indeed, we have numerically observed that the S2S-G, the S2S-Gj
and the SHEM methods all have the same spectral radius in this simplified
setting. We remark that the S2S-PCA method has on average the same conver-
gence behavior as the other two-level methods, even tough sometimes it could
be slightly different (faster or slower). The S2S-DNN method outperforms the
others. In this particular setting, the eigenvalues of G are λj = ±√µj , where
µj > 0, ∀j = 1, . . . , Ns are the eigenvalues of G1 = G2, and A is symmetric.
Hence, we are under the assumptions of point (C) of Theorem 6, and Figure 2
confirms that a spectral coarse space is not necessarily the coarse space leading
to the fastest convergence.

As we claimed that the deep neural network approach is computationally
expensive, it is worth remarking that the PCA approach builds a coarse space
as efficient as the spectral ones performing q · r subdomains solves in paral-
lel, instead of solving eigenvalue problems as required by all others two-level
methods, either locally (as the S2S-Gj and SHEM methods) or on the whole
skeleton (as the S2S-G method).

Next, we compare the computational costs required by the S2S method
and a spectral volume method in Table 1. For simplicity we assume n1 =
1, n2 = 0. Let Av = M − N be a volume matrix of size Nv × Nv and A
be the substructured matrix of size Ns × Ns, P and R the substructured
restriction and prolongation operators, while Pv and Rv are the corresponding
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G2S G2S C.C. Volume two-level Volume C.C.

vn+ 1
2 = Ghv

n + bh O(γs(Nsub)) u
n+ 1

2
v = Nunv +M−1bv O(γs(Nsub))

rn+ 1
2 = bh −Ahvn+ 1

2 O(γc(Nsub)) r
n+ 1

2
v = bv −Avu

n+ 1
2

v O((Nv)γm)

vn+1
c = A−1

2h (Rrn+ 1
2 ) O(γc(m)) un+1

vc = A−1
vc (Rvr

n+ 1
2

v ) O(γc(m))

vn+1 = vn+ 1
2 + Pvn+1

c O(Ns) un+1
v = u

n+ 1
2

v + Pvu
n+1
vc O(Nv)

Table 1 Computational cost (C.C.) per iteration. Notice that the smoother in volume is
written as a standard stationary method based on the splitting Av = M −N .

volume operators. On each subdomain, we suppose to have Nsub unknowns
and m is the dimension of the coarse space. The cost of the smoothing step
is equal in both case to γs(Nsub), where γs depends on the choice of the
linear solver, e.g. for a Poisson problem, γs(Nsub) = Nsub log(Nsub) if a fast
Poisson solver is used, or γs(Nsub) = bNsub for sparse banded matrices with
bandwidth b; see, e.g., [54]. Further, the cost of solving the coarse problem
is identical as well, equal to γc(m), where m is the size of the coarse space
and γc depends on the linear solver used. The coarse matrices are usually
small, fully dense, matrices so that it is reasonable to factorize them using an
LU decomposition. In a standard implementation, the S2S method requires to
perform subdomain solves when computing the residual, as the matrix vector
multiplication with the matrix A is needed. To avoid this extra-cost, in the
Appendix 8 we show two alternative algorithms to implement smartly the S2S
method, where the residual is computed cheaply and the two applications of
the smoothing operators per iteration are avoided. We further show that these
two alternatives have the same convergence behavior of Algorithm 1.

The main advantage of the S2S method is that the restriction and prolon-
gation operators are performed on the substructures, with objects which are
smaller than the corresponding volume counterparts. Thus the S2S method
naturally requires less memory storage. For instance, given a coarse space of
dimension m, the restriction and prolongation operators are matrices of size
m × Ns and Ns ×m where Ns is the number of unknowns on the substruc-
tures. The corresponding volume objects have size m×Nv and Nv×m, where
Nv is the number of unknowns on the whole domain. Thus the S2S method
presents advantages both from memory storage and from the computational
time point of view, due to smaller number of floating point operations.

We now discuss the cost of the off-line computation phases. To build prolon-
gation and restriction operators in the volume case, one needs to define some
functions, usually by solving eigenvalue problems, along the interfaces between
non-overlapping subdomains or in the overlap region between overlapping sub-
domains. These functions are then extended in the interior of the subdomains
and this extension costs γs(Nsub). Notice that the way of extending these func-
tions is not unique and we refer to [28, Section 5] for an overview. In the
substructured framework, we have analyzed theoretically several ways among
which a global eigenvalue problem (S2S-G), local eigenvalue problems (S2S-
Gj), and randomized approaches using either PCA (S2S-PCA), or deep neural
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Nv 6075 56699 488187

dim Vc 4 16 64

S2S-G 0.1175 3.09 157.62
SHEM 0.1065 3.16 158.34

Nv 6075 56699 488187

dim Vc 4 16 64

S2S-G 0.0288 0.49 16.24
SHEM 0.77 14.51 749.84

Table 2 On the left, time in seconds required by the S2S-G and SHEM methods to reach
a relative error smaller than 10−8 for increasing number of unknowns Nv and dimension of
coarse space Vc. The overlap parameter is constant Nov = 4. On the right, memory usage
expressed in megabyte to store restriction and prolongation operators of S2S and SHEM.

networks (S2S-DNN). The relative costs of these approaches with respect to
the volume ones are difficult to estimate as they depend on the features of the
problem at hand. Nevertheless, for any method used to generate the interface
functions, we do not need to perform any extension step in the substructured
framework. Besides the approaches studied theoretically, we emphasize that
one can use the interface functions computed in a volume method as a basis for
the S2S coarse space. In this way one avoids the extension step and exploits at
best the intrinsic substructured nature of the S2S method. In the next section
we show numerical results where we used the SHEM interface functions as a
basis for the S2S method (called the S2S-HEM method).

To conclude, we consider a Poisson equation on a three-dimensional box
Ω = (−1, 1) × (0, 1) × (0, 1) decomposed into two overlapping subdomains
Ω1 = (−1, δ)×(0, 1)×(0, 1) and Ω2 = (−δ, 1)×(0, 1)×(0, 1). Table 2 shows the
computational times to reach a relative error smaller than 10−8, and the com-
putational memory required to store the restriction and interpolation operators
in a sparse format in Matalb for the S2S method and the SHEM method. The
experiments have been performed on a workstation with 8 processor cores Intel
Core i7-6700 CPU 3.40GHz and with 32 GB of RAM. We remark that the
S2S method requires drastically less memory than the SHEM method, which
becomes inefficient for large problems from the memory point of view. Con-
cerning computational times, we observe that the two methods are equivalent
in this setting. The substructured restriction and prolongation operators are
faster than the volume ones, since to compute the action for instance of the
substructured prolongation operator on the largest problem takes about 7·10−4

seconds compared to 3 · 10−2 seconds of the volume prolongation. However,
the bottleneck here is represented by the two, very large, subdomain solves. A
many subdomain decomposition and a parallel implementation on a high per-
formance programming language should make more evident the advantage of
using substructured coarse spaces in terms of computational time.

6.2 Decomposition into many subdomains

In this section, we consider a Poisson equation in a square domain Ω decom-
posed into M ×M nonoverlapping square subdomains Ω̃j , j = 1, ...,M2 = N .

Each subdomain Ω̃j contains Nsub := (2` − 1)2 interior degrees of freedom.

The subdomains Ω̃j are extended by Nov points to obtain subdomains Ωj



Springer Nature 2021 LATEX template

30 Spectral coarse spaces for the substructured parallel Schwarz method

Ω Ω Ωj

Fig. 3 The domain Ω is divided into nine non-overlapping subdomains (left). The center
panel shows how the diagonal non-overlapping subdomains are enlarged to form overlapping
subdomains. On the right, we zoom on the central subdomain to show the local discrete
substructure formed by the degrees of freedom lying on the blue segments.

which form an overlapping decomposition of Ω. Each discrete local substruc-
ture is made by one-dimensional segments. Figure 3 provides a graphical
representation.

Figure 4 compares several versions of the S2S method to the SHEM method.
Specifically, we consider a S2S method with a coarse space made by eigenfunc-
tions of G (S2S-G), a S2S method with a coarse space obtained with the PCA
procedure (S2S-PCA), and a S2S method with a coarse space which is inspired
by the SHEM coarse space (S2S-HEM, that is S2S Harmonically Enriched Mul-
tiscale) and a S2S method with a coarse space obtained with the deep neural
network approach (S2S-DNN).

In more detail, we create the HEM coarse space by computing harmonic
functions and solving interface eigenvalue problems on each one-dimensional
segment that forms the local discrete substructure, similarly to the SHEM
coarse space [27]. However notice that the SHEM method extends these inter-
face functions into the interior of the nonoverlapping subdomains as the
method is naturally defined in volume. We do not need to perform this extra
step of extending the functions in the neighboring subdomains. We report that
we have also tried to build the a coarse space by simply restricting the volume
functions of the SHEM coarse space onto the substructures and we observed a
similar behavior compared to the HEM coarse space. For the PCA approach,
we generated q = 2×dimVc random vectors and we set r = 2. The result we
plot is averaged over 30 different random coarse spaces. For the deep neural
network, we used k = 4 and N = Ns.

The size of the coarse space is set by the SHEM coarse space. In the top-
left panel, we consider only multiscale functions without solving any eigenvalue
problem along the interfaces. In the top-right panel, we include the first eigen-
functions on each interface, and on the bottom-central panel we include the
first and the second eigenfunctions. In all cases we observe that the methods
have a similar convergence, which is slightly faster for the substructured meth-
ods for smaller coarse spaces. As we already remarked, S2S-G is not necessarily
the fastest.
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Fig. 4 Convergence behavior of the different methods for a Laplace equation with N = 16,
` = 4 and Nov = 2. The dimension of the coarse space is 36 (top-left), 84 (top-right), 132
(bottom).

Fig. 5 Decomposition of Ω into 16 subdomains with two different patterns of channels.

6.3 Diffusion problem with jumping diffusion coefficients

In this paragraph, we test the S2S method for the solution of a diffu-
sion equation −div(α∇u) = f in a square domain Ω := (0, 1)2 with
f := sin(4πx) sin(2πy) sin(2πxy). The domain Ω is decomposed into 16 non-
overlapping subdomains and we suppose α = 1 everywhere except in some
channels where α takes the values large values. Each non-overlapping subdo-
main is discretized with Nsub = 22` cells and enlarged by Nov cells to create
an overlapping decomposition with overlap δ = 2Novh. We use a finite-volume
scheme and we assume that the jumps of the diffusion coefficients are aligned
with the cell edges. We consider two configurations represented in Figure 5.

We first aim to validate numerically Theorem 6. We consider the two chan-
nels configuration with α = 5 · 103, ` = 4, N = 4. The first five eigenvalues
are λ1 = 0.999, λ2 = −0.9989, λ3 = −0.99863,λ4 = 0.99861 and λ5 = 0.2392.
We consider the coarse space Vc := {ψψψ1 + εψψψ2}, where γ = 〈ψψψ1,ψψψ2〉 ≈ 10−15

so that the two eigenvectors are orthogonal. As λ1 and λ2 have opposite
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Fig. 6 Plot of the function ε 7→ |λ(ε, 0)| on the left panel, comparison between ρ(T (ε)) and
the first eigenvalues on the right panel.

signs, point (C) of Theorem 6 guarantees the existence of an ε̃ such that
ρ(T (ε̃)) = |λ3| < |λ2|. Figure 6 confirms on the left panel that |λ(ε, 0)| reaches
a zero for two values of ε. The right panel clearly shows that for several values
of ε, ρ(T (ε)) = |λ3|. It is interesting to remark that, in this setting, choosing
ε = 0 (that is, a standard spectral coarse space) is actually the worse choice,
as for any ε 6= 0 ρ(T (ε)) ≤ |λ2| as the proof of point (C) of Theorem 6 shows.

Second, we build the coarse space Vc := {ψψψ1 + εψψψ5}, where ψψψi i = 1, 5
are the first and fifth eigenfunctions of G and ε = 0.01. Figure 7 shows that
the S2S method method with this specific choice of coarse space is diverging.
Computing the spectral radius, we obtain ρ(T ) = 1.2322. In this setting, we
have γ = −0.5628 which replaced into the expression of λ(γ, ε), together with
the values of λ1 and λ5, leads to λ(γ, ε) = 1.2322 = ρ(T ). Indeed λ(γ, ε)
has a vertical asymptote in γ∗ = −0.1404 as shown on the right panel of
Figure 7. We can restore the convergence of the S2S method by a sufficient
decrease of ε, that is by reducing the perturbation in the coarse space. In a
numerical implementation, this is obtained by performing r ≥ 1 iterations of
the smoother G on the coarse space (see Corollary 1). Indeed it holds that

GrVc = Grspan {ψψψ1 + εψψψ5} = span

{
ψψψ1 +

λr5
λr1
εψψψ5

}
.

Applying twice the smoother in the case at hand, we get a new “smoothed”

coarse space where the perturbation has size ε∗ =
λ2
5

λ2
1
ε = 5.73 · 10−4 so that

now λ(γ, ε∗) = −0.0080. We remark that λ(γ, ε∗) is the convergence factor
of T on span {ψψψ1 + ε∗ψψψ5}, so that the convergence of the S2S method is now
determined by second largest eigenvalue of T , i.e. λ2 = −0.9990 as Figure 7
shows.

We then investigate the performances of the S2S methods and we com-
pared them with the SHEM coarse space in the multiple channel configuration.
We set ` = 4, N = 16, which correspond to Nv = 4096 degrees of freedom,
and Nov = 2. Table 3 shows the number of iterations to reach a relative error
smaller than 10−8 for the S2S-G, S2S-PCA, S2S-HEM and SHEM methods.
The relative error is computed with respect to the first iterate. We consider
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Fig. 7 Convergence curves for a S2S method with the coarse space Vc := {ψψψ1 + εψψψ5} (left)
and plot of the function λ(γ, 0.01) (right).

α S2S-G S2S-PCA S2S-EHM SHEM

102 11-9-7 14-8-7 15-8-7 16-10-8

104 11-9-7 13-9-7 10-9-7 16-10-8

106 12-10-8 18-9-7 12-9-8 16-10-8

α S2S-G S2S-PCA S2S-EHM SHEM

102 10-9-7 11-8-7 15-9-7 12-12-8

104 10-9-7 11-9-7 11-10-7 12-12-8

106 10-9-7 14-8-7 11-10-7 13-10-7
Table 3 For each spectral method and value of α, we report the number of iterations to
reach a relative error smaller than 10−8 with a coarse space of dimension 84 (left), 132
(center) and 180 (right). The discretization parameters are Nv = 4096 and Nov = 2. The
top table refers to a two-channels configuration, the bottom table refers to the multiple
channel configuration depicted in Figure 5.

coarse spaces of dimensions 84, 132 and 180, which, for the SHEM and S2S-
HEM methods, correspond to multiscale coarse spaces enriched by respectively
the first, second and third eigenvectors of the interface eigenvalues problems.
For the PCA coarse space, we set q = 2Nc and r = 6 if α = 106, r = 4 if
α = 104 and r = 2 if α = 102. We remark that for smaller values of r, the
S2S-PCA method diverges. This increase in the value of r can be explained
noticing that for the multichannel configuration, the smoother G has several
eigenvalues approximately 1 for large values of α. Thus the PCA procedure,
which essentially relies on a power method idea to approximate the image of
G, suffers due to the presence of several clustered eigenvalues, and hence does
not provide accurate approximations of the eigenfunctions of G. Similarly also
the HEM coarse space obtained by solving on each segment of a skeleton an
eigenvalue problem could lead to a divergent method. Thus, to improve this
coarse space, we apply few iterations of the smoother to obtain a better Vc.
Tables 3 and 4 report the number of iterations to reach a tolerance of 10−8

when the algorithms are used either as stationary methods or as precondition-
ers. We remark that all spectral methods have very similar performance, and
all methods are robust with respect to the strength of the jumps.
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α S2S-G S2S-PCA S2S-EHM SHEM

102 7-5-4 8-5-4 7-5-4 7-6-4

104 5-5-4 6-5-5 5-5-4 7-6-4

106 5-5-3 5-4-3 5-4-4 7-6-4

α S2S-G S2S-PCA S2S-EHM SHEM

102 7-5-4 8-6-5 8-6-4 7-6-4

104 7-7-4 8-6-5 7-7-5 7-5-5

106 8-6-6 9-6-6 7-7-6 7-5-5
Table 4 Number of iterations performed by GMRES preconditioned by different methods
and for several value of α to reach a relative error smaller than 10−8 with a coarse space of
dimension 84 (left), 132 (center) and 180 (right). The discretization parameters are
Nv = 4096 and Nov = 2. The top table refers to a two-channels configuration, the bottom
table refers to the multiple channel configuration depicted in Figure 5.

7 Conclusions

In this work we introduced a new computational framework of two-level sub-
structured Schwarz methods. This is called S2S and is based on coarse spaces
defined exclusively on some interfaces provided by the overlapping decomposi-
tion of the domain. We presented a broader convergence analysis for two-level
iterative methods, which covers the proposed substructured framework as a
special case. The analysis pushes forward the current understanding of asymp-
totic optimality of coarse spaces. From the computational point of view, we
have discussed approaches based on the PCA and deep neural networks for the
numerical computation of efficient coarse spaces. Finally, the effectiveness of
our new methods is confirmed by extensive numerical experiments, where sta-
tionary elliptic problems (with possibly highly jumping diffusion coefficients)
are efficiently solved.
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9 Appendix

In this Appendix, important implementation details of our substructured two-
level methods are discussed. We reformulate Algorithm 1 in equivalent forms
that are computationally more efficient. This is essential to make our methods
computationally equal or more efficient than other existing strategies.

As already remarked in Section 6, a naive implementation of Algorithm 1
would lead to a quite expensive method as the computation of the residual
involves a matrix multiplication with A, which requires to perform subdomain
solves. Hence, one would need two subdomain solves per iteration. To avoid
this extra cost, we use the special form of the matrix A = I −G and propose
two new versions of Algorithm 1. These are called S2S-B1 and S2S-B2 and
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Algorithm 2 S2S-B1

Require: u0.
1: u1 = Gu0 + b,
2: v = Gu1,
3: r = b− u1 + v,
4: d = A−1

c Rr,
5: u0 = u1 + Pd,
6: Iterations:
7: u1 = v + P̃d + b,
8: v = Gu1,
9: r = b− u1 + v,

10: d = A−1
c Rr,

11: u0 = u1 + Pd,
12: Repeat from 7 to 11 until conver-

gence.
Output: u0.

Algorithm 3 S2S-B2

Require: u0.
1: v = Gu0,
2: r = b− u0 + v,
3: d = A−1

c Rr,
4: u1 = v + P̃d + b,
5: Repeat from 1 to 4 until conver-

gence.
Output: u0.

given by Algorithm 2 and Algorithm 3. The relations between S2S, S2S-B1
and S2S-B2 are given in the following theorem.

Theorem 8 (Equivalence between S2S, S2S-B2 and S2S-B1)

(a) Algorithm 2 generates the same iterates of Algorithm 1.

(b) Algorithm 3 corresponds to the stationary iterative method un = G(I −
PA−1

c RA)un−1 + M̃b, where G(I − PA−1
c RA) is the iteration matrix and M̃

the relative preconditioner. Moreover, Algorithm 3 and Algorithm 2 have the
same convergence behavior.

Proof For simplicity, we suppose to work with the error equation and thus b = 0.
We call ũ0 the output of the first five steps of Algorithm 2 and with û0 the output
of Algorithm 1. Then given a initial guess u0, we have

ũ0 = u1 +PA−1
c R(−u1 +v) = Gu0 +PA−1

c R(−AGu0) = (I−PA−1
c RA)Gu0 = û0.

Similar calculations show that also steps 6-10 of S2S-B1 are equivalent to an iteration
of 1. For the second part of the Theorem, we write the iteration matrix for Algorithm
3 as

u1 = v + P̃d = Gu0 +GPA−1
c R(−Au0) = G(I− PA−1

c RA)u0.

Hence, Algorithm 3 performs a post-smoothing step instead of a pre-smoothing step
as Algorithm 2 does. The method still has the same convergence behavior since the
matrices G(I− PA−1

c RA) and (I− PA−1
c RA)G have the same eigenvalues.6 �

Notice that Algorithm 2 requires for the first iteration two applications of
the smoothing operator G, namely two subdomains solves. The next iterations,
given by Steps 6-10, need only one application of the smoothing operator G.
Theorem 8 (a) shows that Algorithm 2 is equivalent to Algorithm 1. This

6Given two matrices A and B, AB and BA share the same non-zero eigenvalues.
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means that each iteration after the first one of Algorithm 2 is computationally
less expensive than one iteration of a volume two-level DD method. Since two-
level DD methods perform generally few iteration, it could be important to get
rid of the expensive first iteration. For this reason, we introduce Algorithm 3,
which overcomes the problem of the first iteration. Theorem 8 (b) guarantees
that Algorithm 3 is exactly an S2S method with no pre-smoothing and one
post-smoothing step. Moreover, it has the same convergence of Algorithm 2.

We wish to remark that, the reformulations S2S-B1 and S2S-B2 require to
store the matrix P̃ := GP , which is anyway needed in the assembly phase of
the coarse matrix, hence no extra cost is required, if compared to a volume
two-level DD method. Finally, we stress that these implementation tricks can
be readily generalized to a general number of pre- and post-smoothing steps.
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