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Abstract

In this paper we propose a full model order reduction (MOR) strategy for two-way Dirichlet-Neumann
parametric coupled models solved with domain-decomposition sub-structuring methods. At the high-fidelity
level, we split the coupled model and its domain in two sub-models with Dirichlet and Neumann interface
conditions, respectively, and two sub-domains with a common interface. The high-fidelity solution is, then,
found sub-iterating between the sub-models finite element (FE) solutions until interface convergence is reached.
At the reduced-order level, we apply reduced basis (RB) algorithms to define a low dimensional representation
of the sub-problems solutions on each sub-domains. Moreover, we define a reduced order representation
of the Dirichlet and Neumann interface conditions through the discretized empirical interpolation method
(DEIM), achieving a fully reduced order representation of the DD techniques implemented. The interface
DEIM reduction is also employed to interpolate or project interface data when non-conforming FE interface
discretization is considered. The coupled model reduced solution is found sub-iterating between the reduced
order sub-models until convergence of the approximated high-fidelity interface solutions. The (MOR) scheme
is numerically verified on both steady and unsteady Dirichlet-Neumann coupled models with two test cases.

Keywords: Two-way coupled models, Dirichlet-Neumann, Reduced order models, Discrete empirical
interpolation, Interface non-conformity, Domain-decomposition

1. Introduction

The ROM represented represents an efficient numerical strategy to handle parametrized coupled problems
that are set on domains split in two (or several) subdomains, considering finite element schemes as high-fidelity
FOM.

2. Two-way Dirichlet-Neumann coupled problem

In this Section we present the formulation of the parametrized two-way coupled model objective of this
work. The model is solved at the high-fidelity level using domain-decomposition techniques based on finite
element method. To this end, we defined in a d-dimensional domain Ω, being d = 2, 3, a parametrized second
order elliptic model in Subsection 2.1 and a corresponding parametrized parabolic model in Subsection 2.2.
Moreover, we split Ω in two sub-domains and solve the Dirichlet-Neumann two-way coupled models by means
of iterative sub-structuring methods, whose algebraic formulations are derive in the corresponding Subsections.
We remark that the proposed strategy can be applied on more complex parametrized models.
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The reduced technique will, then, rely on the application of projection-based ROM on the derived coupled
model finite element algebraic formulation. In particular, when the interface grids are non-conforming, we
choose the following training strategy: (i) we solve the coupled model considering on both sub-domains the
same discretization, those of the first interface grids; (ii) we solve again the coupled model discretizing the
two sub-domains according to the second interface grids; (iii) we storage the master solution and Dirichlet
interface data computed in (i), and the slave solution and Neumann data found in (ii); (iv) we used the
stored quantities as snapshots to trained the reduced order coupled model; (v) we solve the ROM with
non-conforming interface grids. To summarize, the FOMs are solved twice in the conforming case, while the
ROMs are solved once in the non-conforming case.

Thus, in this Subsections 2.1 and 2.2, we present the high fidelity formulation in the conforming case
while, in Subsection 2.3, the non-conforming formulation is derived as basic setup for the interface reduction.

Suppose, therefore, that Ω is an open domain with Lipschitz boundary ∂Ω. We denote ∂ΩD and ∂ΩN

suitable disjoint subsets of ∂Ω such that ∂ΩD ∩ ∂ΩN = ∂Ω. Through the splitting of Ω, we define two
non-overlapping subdomains Ω1 and Ω2 with Lipschitz boundary ∂Ωi, i = 1, 2, such that Ω = Ω1 ∪ Ω2, and
with a common interface Γ := Ω1 ∩ Ω2. Moreover, for each i = 1, 2, we indicate with ∂Ωi,D = ∂ΩD ∩ ∂Ωi

and ∂Ωi,N = ∂ΩN ∩ ∂Ωi. Finally, we denote the problem and the corresponding solution set in Ω1 as master
model and master solution, and the ones set in Ω2 as slave model and slave solution.

2.1. Steady coupled model
Let us start with a steady parameter dependent two-way coupled model. We consider a set of parameters

µ ∈Pd, d ≥ 1 and we search for u(µ) in Ω such that
L(µ)u(µ) = f(µ) in Ω
u(µ) = gD(µ) on ∂ΩD

∂L(µ)u(µ) = gN (µ) on ∂ΩN ,

(1)

where L(µ) is a second order elliptic operator, f(µ), gD(µ) and gN (µ) are functions defined in Ω, ∂ΩD and
∂ΩN , respectively, and ∂L(µ)u(µ) is the conormal derivative associated with the operator L(µ) on ∂Ω.

We set
V = H1

∂ΩD
(Ω) = {v ∈ H1(Ω) | v = 0 on ∂ΩD}, (2)

and we define, for each µ ∈Pd, the bilinear form a(·, ·;µ) : V × V → R associated to L(µ), and the linear
functional F(·;µ) : V → R, such that

F(v;µ) = (f(µ),v)L2(Ω) + 〈gN (µ),v〉∂ΩN
.

Here, (·, ·)L2(Ω) and 〈·, ·〉∂ΩN
are the inner product in L2(Ω) and the duality paring between H1/2(∂ΩN ) and

H−1/2(∂ΩN )), respectively.
Then, integrating by part, problem (1) reads: find u(µ) ∈ H1(Ω) with u(µ) = gD(µ) on ∂ΩD such that

a(u,v;µ) = F(v;µ) ∀v ∈ V. (3)

Hereon, we suppose that the solution of problem (3) exists and is unique.
A domain decomposition scheme based on iterative sub-structuring method [2, 3] is, then, apply to coupled

model (1). We introduce the two sequences of functions {uk
1(µ)} and {uk

2(µ)} generated starting from the
initial guess u0

1(µ) and u0
2(µ), that will converge to u1(µ) and u2(µ), respectively. Then, given λ0, for each
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k ≥ 0 we search for uk
1(µ) in Ω1 and uk

2(µ) in Ω2 such that
L(µ)uk+1

1 (µ) = f(µ) in Ω1

uk+1
1 (µ) = λk on Γ

uk+1
1 (µ) = gD(µ) on ∂Ω1,D

∂L(µ)uk+1
1 (µ) = gN (µ) on ∂Ω1,N

(4a)
(4b)
(4c)
(4d)

and 
L(µ)uk+1

2 (µ) = f(µ) in Ω2

∂L(µ)uk+1
1 (µ) + ∂L(µ)uk+1

2 (µ) = 0 on Γ
uk+1

2 (µ) = gD(µ) on ∂Ω2,D

∂L(µ)uk+1
2 (µ) = gN (µ) on ∂Ω2,N

(5a)
(5b)
(5c)
(5d)

with
λk+1 := θuk+1

2|Γ
+ (1− θ)λk,

being θ a positive acceleration parameter. Hereon, we consider θ = 1, so that the Dirichlet interface conditions
of equation (4b) are

uk+1
1 (µ) = uk+1

2 (µ) on Γ.

To get the weak formulations of problems (4) and (5), we first define, for each i = 1, 2, the local spaces

Vi = {v ∈ H1(Ωi) | v = 0 on ∂Ωi,D} and V 0
i = {v ∈ Vi | v = 0 on Γ}, (6)

and the space of traces of the elements of V on the interface Γ, meaning

Λ = {λ ∈ H1/2(Γ) | ∃v ∈ V : v|Γ = λ}. (7)

Moreover, let ai(·, ·;µ) and Fi(·;µ), i = 1, 2, be the restriction of the bilinear form a and of the linear
functional F to Ωi, than the weak formulation of (4) and (5) become: for each k ≥ 0, find uk+1

i (µ) ∈ H1(Ωi),
with uk+1

i|∂Ωi,D
(µ) = gD(µ), such that:®

a1(uk+1
1 (µ),v0

1;µ) = F1(v0
1;µ) ∀v0

1 ∈ V 0
1 ,

uk+1
1 (µ) = uk

2(µ) on Γ,
(8)

and ®
a2(uk+1

2 (µ),v0
2;µ) = F2(v0

2;µ) ∀v0
2 ∈ V 0

2 ,

a2(uk+1
2 (µ),R2η;µ) = F2(R2η; (µ)) + F1(R1η; (µ))− a1(uk+1

1 (µ),R1η;µ) ∀η ∈ Λ.
(9)

Here
Ri : Λ→ Vi, s.t. (Riη)|Γ = η ∀η ∈ Λ (10)

denote any possibile linear and continuous lifting operator from the interface Γ to Ωi. Indeed, if 〈·, ·〉Γ is the
duality between Λ and its dual Λ′, by counter-integration by parts, the interface equations of (9) is equivalent
to

〈∂L1µu1(µ) + ∂L2µu2(µ),η〉Γ = 0 ∀η ∈ Λ, (11)

which corresponds to the the Neumann conditions in (5b).
Then, we search for the algebraic formulation of problems (8) and (9). To this end, we define two

discretizations Th1 and Th2 on the domains Ω1 and Ω2 induced by a global partition Th = ∪mTm of the
domain Ω. Thi can be made of simplices (traingles of tetrahedra) or quads (quadrilaterals or hexahedra),
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depending on a positive parameter h > 0. Furthermore, we assume that for any Tm ∈ Th, ∂Tm ∩ ∂Ω fully
belongs to ∂ΩD or ∂ΩN , while the interface Γ do not cut any Tm ∈ Th. This means that the two triangulations
Th1 and Th2 are conforming at the interface Γ.

Remark 1. Please note that h = h1 = h2. However, in Section 4 we will consider different hi to denote the
non-conforming nature of the two discretization Thi

. Thus, for the sake of notation, in this Section we will
write in any case h1 and h2 and define the relative spaces.

We define the finite element approximation spaces for each partition Thi
as

Xqi

hi
= {v ∈ C0(Ωi) : v|Ti,m

∈ Qqi ,∀Ti,m ∈ Thi},

in which Qqi are the quads spaces and qi are chosen integers.
The finite dimensional spaces to define the discrete formulation of the exploited problems will, then, be

Vhi
= {v ∈ Xqi

hi
: v|∂Ωi,D

= 0}, V 0
hi

= {v ∈ Vhi
,v|Γ = 0}, i = 1, 2, (12)

and the spaces of traces on Γ as

Yhi = {λ = v|Γ,v ∈ Xhi} and Λhi = {λ = v|Γ,v ∈ Vhi .} (13)

Moreover, we define the corresponding space dimensions, i.e. Ni = dim(Vhi
), N0

i = dim(V 0
hi

), Ni,Y = dim(Yhi
)

and Ni,Λ = dim(Λhi
).

Then, for i = 1, 2, we set the linear and continuous discrete lifting operator

Rhi : Λhi → Vhi , s.t. (Rhiηhi)|Γ = ηhi , ∀ηhi ∈ Λhi . (14)

In practical implementation, Rhi
ηhi

is a finite element interpolant that imposes the same values of ηhi
on

the FE nodes of Γ and zeros on any other FE node of Thi\Γ.
Therefore, with an abuse of notation over ui and gD, we can write the discrete weak forms of (8) and (9):

for each k ≥ 0, i = 1, 2, find uk+1
i (µ) ∈ Xhi

, with uk+1
i (µ) = gD(µ) on ∂Ωi,D, such that:®

a1(uk+1
1 (µ),v0

h1
;µ) = F1(v0

h1
;µ) ∀v0

h1
∈ V 0

h1
,

uk+1
1 (µ) = uk

2 on Γ,
(15)

and®
a2(uk+1

2 (µ),v0
h2

;µ) = F2(v0
h2

;µ) ∀v0
h2
∈ V 0

h2
,

a2(uk+1
2 (µ),R2ηh2 ;µ) = F2(R2ηh2 ;µ) + F1(R1ηh1 ;µ)− a1(uk+1

1 (µ),R1ηh1 ;µ) ∀ηhi
∈ Λhi

.
(16)

Assuming that ∂Γi ∩ ∂Ωi,D = 0, if we define the discrete residual functional rk+1
hi

(µ) by

rk+1
hi

(µ) = ai(uk+1
i (µ),Riηhi

;µ)−Fi(Riηhi
µ) for any ηhi

∈ Λhi
, i = 1, 2, (17)

the second equation of (16) is equivalent to

〈rk+1
h2

(µ) + rk+1
h1

(µ),ηhi
〉Γ = 0 for any ηhi

∈ Λhi . (18)

Note that rk+1
hi
∈ Yhi represent the residuals at the interface Γ and they are the discrete approximations of

the conormal derivatives ∂Li(µ)ui(µ), i.e. the discrete fluxes across the interface. We refer to [4] for a more
complete analysis of the residual representation.

To get the algebraic formulation of (15) and (16), we need to define three set of basis functions. First, we
call {ψ(j)

i }
Ni,Y

j=1 the Lagrange basis functions of Yhi
. Moreover, we set {φ(j)

i }
Ni,Y

j=1 as the canonical dual basis
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of Y ′hi
, the dual space of Yhi , such that

〈φ(j)
i ,ψ

(k)
i 〉 = (φ(j)

i ,ψ
(k)
i )L2(Γ) = δjk, j, k = 1, . . . , Ni,Y .

By expanding rhi ∈ Y ′hi
with respect to the dual basis, we then get

rhi
(x;µ) =

Ni,Y∑
j=1

r(j)
i (µ)φ(j)

i (x), ∀x ∈ Γ, i = 1, 2. (19)

However, in practical implementation, we compute the coefficients r(j)
i (µ) considering the discrete and

continuous lifting operators

Ri = Rhi : Yhi → Xqi

hi
, s.t. (Riλi)|Γ = λi,

i.e. Ri is the operator that coincides with the lifting operator Rhi
of (14) when restricted to Λhi

. Specifically,
if λi = η(j) is the jth Lagrange basis function of Γ, then Riη

(j) represents the Lagrange basis function of
Xhi whose restriction on Γ is η(j). In practical implementation, this can be obtained setting to zero the
values of Riλi at all nodes of Thi not belonging to Γ. Then, we can write

r(j)
i (µ) = ai(ui(µ),Riη

(j)
i ;µ)−Fi(Riη

(j)
i µ) j = 1, . . . , Ni,Y , for any i = 1, 2.

Moreover, we denote by {ϕ(j)
i }

Ni
j=1 the Lagrange basis functions of Vhi

, i = 1, 2, so that we can represent
each vhi ∈ Vhi as

vhi
=

Ni∑
j=1

v(j)
i ϕ

(j)
i with vNi

= (v(1)
i , . . . ,v(Ni)

Ni
)T ∈ RNi .

Therefore, the solution is approximated by

ui(µ) =
Ni∑

j=1
u(j)

i (µ)ϕ(j)
i .

Hereon, we will denote uNi
(µ) and rNi

(µ) the vectors of unknown coefficients u(j)
i (µ) and r(j)

i (µ), respectively.
However, to define the algebraic formulation, it is useful to consider local vectors and matrices. In

particular, we define the following set of indices associated to the nodes xi ∈ Thi
:

IΩi
= {1, . . . , N i},

Ii = {j ∈ IΩi
: xj ∈ Ωi\(∂ΩD,i ∪ Γ̊)}

IΓ = {j ∈ IΩi
: xj ∈ Γ}

IDi
= {j ∈ IΩi

: xj ∈ ∂ΩD,i}.

(20)

Then, for each i = 1, 2, we set the local stiffness matrices

Akj
i (µ) = ai(ϕ(j)

i ,ϕ
(k)
i ;µ), k, j ∈ IΩi

,

so that with
Aii(µ) = Ai(Ii, Ii;µ)

we indicate the submatrix of Ai(µ) with rows and columns of Ai(µ) whose indices belong to Ii, i.e.
the internal nodes of Ωi. Similarly, we can define AΓi,Γi

(µ) = Ai(IΓ, IΓ;µ), Ai,Γi
(µ) = Ai(Ii, IΓ;µ),

AΓ,i(µ) = Ai(IΓ, Ii;µ) and Ai,D(µ) = Ai(Ii, IDi
;µ).
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Moreover, if (fNi
)k(µ) = Fi(ϕ(k)

i ;µ), j, k = 1, . . . , Ni, we set

fi(µ) = fNi
(Ii;µ), fΓi

(µ) = fNi
(IΓ;µ),

ui(µ) = uNi
(Ii;µ), uΓi

(µ) = uNi
(IΓ;µ).

Then, the algebraic form of (15) is: for each k ≥ 0, find uk+1
1 (µ) solution of®

A11(µ)uk+1
1 (µ) = f1(µ)− A1,D(µ)g1,D(µ)− A1,Γ1(µ)uk+1

Γ1
(µ)

uk+1
Γ1

(µ) = uk+1
Γ2

(µ),
(21)

where g1,D(µ) = [gD(xj
1;µ)]j∈ID1

.
In practical implementation, we do a lifting operation over the complete vector solution uN1(µ), i.e. we

write
uN1(µ) = ũN1(µ) + gD(µ) + uΓ1(µ), (22)

where ũN1(µ) has null elements in correspondence to the Dirichlet and interface DoFs, while gD(µ) and
u1Γ1

(µ) are the vectors with all elements equal to zero except that in the Dirichlet and interface DoFs,
respectively. Then, problem (21) as{

A1(µ)ũk+1
N1

(µ) = f1(µ)− A1(µ)gD(µ)− A1(µ)uk+1
1Γ1

(µ)
uk+1

1Γ1
(µ) = uk+1

2|Γ1
(µ).

(23)

Moreover, we can write the algebraic formulation of problem (16) as: for each k ≥ 0, find uk+1
2 (µ) such

that®
A22(µ)uk+1

2 (µ) + A2,Γ2(µ)uk+1
Γ2

(µ) = f2(µ)− A2,D(µ)g2,D(µ)
AΓ2,2(µ)uk+1

2 (µ) + AΓ2,Γ2(µ)uk+1
Γ2

(µ) = fΓ2(µ) + fΓ1(µ)− AΓ1,1(µ)uk+1
1 (µ)− AΓ1,Γ1(µ)uk+1

Γ1
(µ),

where g2,D(µ) = [gD(xj
2;µ)]j∈ID2

, as before. Note that

rk+1
N1

(µ) = AΓ1,1(µ)uk+1
1 (µ) + AΓ1,Γ1(µ)uk+1

Γ1
(µ)− fΓ1(µ).

Then, summing up the two equations, we get®
A2(µ)uk+1

N2
(µ) = f2(µ) + rk+1

N2
(µ)

rk+1
N2

(µ) = −rk+1
N1

(µ),
(24)

that corresponds to the final formulation used in practical implementation. Note that rN1(µ) can be equally
written as

rk+1
N1

(µ) =
Ä
A1(µ)uk+1

N1
(µ)− f1(µ)

ä
|Γ
. (25)

Remark 2. The derive formulation is true if ∂Γ ∩ ∂ΩD 6= 0, otherwise new index set and corresponding
local matrices must be added. See [2, 4] for a detailed description.
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2.2. Unsteady coupled model
With the same notation of Subsection 2.1, we consider the following unsteady parameter dependent

model: for each µ ∈Pd, find u(t;µ) ∈ Ω× {0, T} such that
∂u(t;µ)

∂t + L(µ)u(t;µ) = f(t;µ) in Ω× {0, T}
u(t;µ) = gD(t;µ) on ∂ΩD × {0, T}
∂L(µ)u(t;µ) = gN (t;µ) on ∂ΩN × {0, T}
u(0;µ) = u0(µ) on Ω× {0}

(26)

being L(µ) a second order elliptic operator time-independent, f(t;µ), gD(t;µ) and gN (t;µ) functions defined
in Ω× {0, T}, ∂ΩD × {0, T} and ∂ΩN × {0, T}, respectively. As before, ∂L(µ) is the conormal derivative of
the operator L(µ) on ∂Ω.

Remark 3. Here the elliptic operator L(µ) is considered as time-independent but the reduced order model
presented in this work can be easily extended to the time dependent case.

Similar consideration as for the steady case (see Subsection 2.1) can be stated for this time-dependent
model. Thus, in this Subsection we will introduce the weak formulation and the high fidelity discretization of
problem (26) using a FE domain-decomposition staggered method.

In particular, with the same sub-structuring algorithm [2] used for the steady case, for each t ∈ (0, T}
we define two sequences of function {uk

1(t;µ)} and {uk
2(t;µ)} generated from the initial guess u0

1(t;µ) and
u0

2(t;µ) and converging to u1(t;µ) and u1(t;µ), respectively. For each µ ∈Pd, t ∈ (0, T} and k ≥ 0, we
then search for uk

1(t;µ) ∈ Ω1 and uk
2(t;µ) ∈ Ω2 solutions of:

∂uk+1
1 (t;µ)
∂t

+ L(µ)uk+1
1 (t;µ) = f(t;µ) in Ω1 × {0, T}

uk+1
1 (t;µ) = uk

2(t;µ) on Γ× {0, T}
uk+1

1 (t;µ) = gD(t;µ) on ∂Ω1,D × {0, T}
∂L(µ)uk+1

1 (t;µ) = gN (t;µ) on ∂Ω1,N × {0, T}
uk+1

1 (0;µ) = u0|Ω1
(µ) on Ω1 × {0}

(27a)

(27b)
(27c)
(27d)
(27e)

and 

∂uk+1
2 (t;µ)
∂t

+ L(µ)uk+1
2 (t;µ) = f(t;µ) in Ω2 × {0, T}

∂L(µ)uk+1
1 (t;µ) + ∂L(µ)uk+1

2 (t;µ) = 0 on Γ× {0, T}
uk+1

2 (t;µ) = gD(t;µ) on ∂Ω2,D{0, T}
∂L(µ)uk+1

2 (t;µ) = gN (t;µ) on ∂Ω2,N{0, T}
uk+1

2 (0;µ) = u0|Ω2
(µ) on Ω2 × {0}

(28a)

(28b)
(28c)
(28d)
(28e)

Defining the function spaces Vi, V 0
i , and Λhi

as in (6) and (7), respectively, the weak formulation
of (27) and (28) can be derived as: for each t ∈ (0, T}, for each k ≥ 0, find uk+1

i (t;µ) ∈ H1(Ω), with
uk+1

i|∂Ωi,D
(t;µ) = gD(t;µ), such that


∫

Ω1

∂uk+1
1 (t;µ)

∂t v0
1dΩ1 + a1(uk+1

1 (t;µ),v0
1;µ) = F1(v0

1;µ) ∀v0
1 ∈ V 0

1

uk+1
1 (t;µ) = uk

2(t;µ) on Γ
uk+1

1 (0;µ) = u0|Ω1
(µ)

(29)
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and 

∫
Ω2

∂uk+1
2 (t;µ)

∂t v0
2dΩ2 + a2(uk+1

2 (t;µ),v0
2;µ) = F2(v0

2;µ) ∀v0
2 ∈ V 0

2∫
Ω2

∂uk+1
2 (t;µ)

∂t R2ηdΩ2 + a2(uk+1
2 (t;µ),R2η;µ) = F2(R2η; (µ))+

+F1(R1η; (µ))−
∫

Ω1

uk+1
1 (t;µ)

∂t R1ηdΩ1 − a1(uk+1
1 (t;µ),R1η;µ) ∀η ∈ Λ

uk+1
2 (0;µ) = u0|Ω2

(µ).

(30)

Here ai(·, ·;µ) and Fi(·;µ) are the bilinear form associated to L(µ) and the usual linear functional. As
for the steady case, Ri denotes the linear and continuous lifting operator from Γ to Ωi, so that the second
equation of (30) corresponds to the Neumann interface conditions, i.e.

〈∂L(µ)uk+1
1 (t;µ) + ∂L(µ)uk+1

2 (t;µ),η〉Γ = 0 ∀η ∈ Λ, t ∈ ×(0, T},

where 〈·, ·〉Γ is the duality between Λ and its dual space Λ′.
Considering the same FE spatial discretization as for the steady case (see Subsection 2.1), for each

time instant t, the high fidelity formulations of problems (29) and (30) are represented by two dynamical
systems. Indeed, if we set the spaces Vhi

, V 0
hi
, Yhi

and Λhi
as in (12) and (13), with an abuse of notation

over uk+1
i (t;µ), we can write the Galerking approximation of problems (29) and (30) as: for each t ∈ (0, T},

for each k ≥ 0, search for uk+1
i (t;µ) ∈ Xhi

, i = 1, 2, with uk+1
i (µ) = gD(µ) on ∂Ωi,D, such that

∫
Ω1

∂uk+1
1 (t;µ)

∂t v0
h1
dΩ1 + a1(uk+1

1 (t;µ),v0
h1

;µ) = F1(v0
h1

;µ) ∀v0
h1
∈ V 0

h1

uk+1
1 (t;µ) = uk

2(t;µ) on Γ
uk+1

1 (0;µ) = u0|Ω1
(µ)

(31)

and 

∫
Ω2

∂uk+1
2 (t;µ)

∂t v0
h2
dΩ2 + a2(uk+1

2 (t;µ),v0
h2

;µ) = F2(v0
h2

;µ) ∀v0
h2
∈ V 0

h2∫
Ω2

∂uk+1
2 (t;µ)

∂t R2ηh2dΩ2 + a2(uk+1
2 (t;µ),R2ηh2 ;µ) = F2(R2ηh2 ;µ)+

+F1(R1ηh1 ;µ)−
∫

Ω1

∂uk+1
1 (t;µ)

∂t R1ηh1dΩ1 − a1(uk+1
1 (t;µ),R1ηh1 ;µ) ∀ηh1 ∈ Λh1

uk+1
2 (0;µ) = u0|Ω2

(µ).

(32)

To get the algebraic formulation, we consider the set of Lagrange basis functions {ϕ(j)
i }

Ni
j=1 of Vhi

, i = 1, 2.
Then, for each t ∈ (0, T}, we write the Galerkin representation of a vector vhi

∈ Vhi
as

vi(x, t) =
Ni∑

j=1
v(j)

i (t)ϕ(j)
i (x) with vNi(t) = (v(1)

i (t), . . . ,v(Ni)
i (t))T ∈ RNi .

Moreover, we introduce the mass matrices (Mi)k,j =
∫

Ωi
ϕ

(j)
i ·ϕ

(k)
i dΩi. Using the notation of the previous

Section for the local matrices, we can then write Mii = Mi(Ii, Ii), Mi,Γi = Mi(Ii, IΓ) and MΓi,i = Mi(IΓ, Ii).
Then, problem (31) becomes: for each k ≥ 0 and t ∈ (0, T}, find uk+1

N1
(t;µ) such that:

M11
d

dt
uk+1

1 (t;µ) + A11(µ)uk+1
1 (t;µ) = f1(t;µ)−M1,D

d

dt
g1,D(t;µ)− A1,D(µ)g1,D(t;µ)

−M1,Γ1

d

dt
uk+1

Γ1
(t;µ)− A1,Γ1(µ)uk+1

Γ1
(t;µ),

uk+1
Γ1

(t;µ) = uk
Γ2

(t;µ)
uk+1

1 (0;µ) = u0|Ω1
(µ).

(33)

However, as for the steady case, considering the lifting operation (22), for each t ∈ (0, T}, in practical
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implementation we solve the following system:
(
M1

d
dt + A1(µ)

)
ũk+1

N1
(t;µ) = f1(t;µ)−

(
M1

d
dt + A1(µ)

)
gD(t;µ)−

(
M1

d
dt + A1(µ)

)
uk+1

Γ1
(t;µ)

uk+1
Γ1

(t;µ) = uk
Γ2

(t;µ)
ũk+1

N1
(0;µ) = ũ0,N1(µ),

(34)

where ũ0,N1(µ) = u0|Ω1
(µ)− u0|Γ1

(µ).
Similarly, problem (32) is: for each k ≥ 0 and t ∈ (0, T}, find uk+1

N2
(t;µ), such that

M22
d

dt
uk+1

2 (t;µ) + A22(µ)uk+1
2 (t;µ) + M2,Γ2

d

dt
uk+1

Γ2
(t;µ) + A2,Γ2(µ)uk+1

Γ2
(t;µ)

= f2(t;µ)−M2,D
d

dt
g2,D(t;µ)− A2,D(µ)g2,D(t;µ)

MΓ2,2
d

dt
uk+1

2 (t;µ)+MΓ2,Γ2

d

dt
uk+1

Γ2
(t;µ) + AΓ2,2(µ)uk+1

2 (t;µ) + AΓ2,Γ2(t;µ)uk+1
Γ2

(t;µ) =

fΓ2(t;µ) + fΓ1(t;µ)−MΓ1,1
d

dt
uk+1

1 (t;µ)−MΓ1,Γ1

d

dt
uk+1

Γ1
(t;µ)

− AΓ1,1(µ)uk+1
1 (t;µ)− AΓ1,Γ1(µ)uk+1

Γ1
(t;µ)

uk+1
2 (0;µ) = u0|Ω2

(µ)

(35)

Furthermore, we define the set of Lagrange basis functions of Y ′hi
, i.e. {φ(j)

i }
Ni,Y

j=1 , and we write the
residual rhi

∈ Y ′hi
with respect to them, as for the steady case:

rhi(t,x;µ) =
Ni,Y∑
j=1

r(j)
i (t;µ)φ(j)

i (x), ∀x ∈ Γi, i = 1, 2,

where the coefficients r(j)
i (t;µ) can be obtained through

r(j)
i (t;µ) =

∫
Ωi

∂uk+1
i (t;µ)
∂t

Riηhi
dΩi + ai(ui,Riη

(j)
i ;µ)−Fi(Riη

(j)
i µ) j = 1, . . . , Ni,Y , i = 1, 2. (36)

The algebraic formulation of problem (32) is finally found summing up the equations of (35), as for the
steady case, i.e. 

(
M2

d
dt + A2

)
uk+1

N2
(t;µ) = f2(t;µ) + rk+1

N2
(t;µ)

rk+1
N2

(t;µ) = −rk+1
N1

(t;µ)
uk+1

N2
(0;µ) = u0,N2(µ),

(37)

where u0,N2(µ) = u0Ω2
(µ) and rk+1

N1
(t;µ) can be computed as

rk+1
N1

(t;µ) =
Å
M1

d

dt
uk+1

N1
(t;µ) + A1(µ)uk+1

N1
(t;µ)− f1(µ)

ã
|Γ
. (38)

The time discretization can instead be handled using different numerical schemes [2, 5, 6]. In this work
we consider a backward differentiation formula (BDF). Indeed, calling n the index accounting for a fixed
time instant tn = n∆t, we set the total number of selected time instants as Nt and with ∆t = T

Nt
the time

step, so that we can approximate

ui(tn;µi) ' un
i (µi) ∀n = 0, . . . , Nt.
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The time derivative is, therefore,

∂un+1
i (µi)
∂t

' un+1
i (µi)− un

i (µi)
∆t ∀n = 0, . . . , Nt − 1.

Finally, we can define a new formulation of (34) and (37), the one used in the reduction step, i.e.: for
each k ≥ 0, n = 0, . . . , Nt − 1, find un+1,k+1

Ni
(µ) ∈ RNi , such that

Å
M1

∆t + A1(µ)
ã

ũn+1,k+1
N1

(µ) =fn+1
1 (µ)−

Å
M1

∆t + A1(µ)
ã

gn+1
D (µ)

−
Å
M1

∆t + A1(µ)
ã

un+1,k+1
1Γ1

(µ) +
Å
M1

∆t + A1(µ)
ã

ũn
N1

(µ)

un+1,k+1
Γ1

(µ) = un+1,k
Γ2

(µ)
ũ0,k+1

N1
(0;µ) = ũ0,N1(µ),

(39)

and 
(M2

∆t + A2
)
un+1,k+1

N2
(µ) = fn+1

2 (µ) +
(M2

∆t + A2
)
un

N2
(µ) + rn+1,k+1

N2
(µ)

rn+1,k+1
N2

(µ) = −rn+1,k+1
N1

(µ)
u0,k+1

N2
(µ) = u0,N2(µ),

(40)

where rn+1,k+1
Ni

are the residual at time instant tn. Hereon, with an abuse of notation, we will call ui and ri

the algebraic counterpart of uNi and rNi .

2.3. Non-conforming discretization
In this Subsection we present the algebraic formulations of both steady and unsteady coupled models

when interface non-conforming is considered. The principal difference with respect to previous descriptions is
in the interpolation or projection of the interface conditions.

We define, therefore, two a-priori independent and different discretizations on Ωi through two families of
triangulations Th1 = ∪mT1,m in Ω1 and Th2 = ∪mT2,m in Ω2, meaning that different simplices or quads, or
both of them, can be used to create the two meshes. Moreover, different mesh size h1 and h2 or different
polynomial degrees p1 or p2 can be considered. Then, we call Γ1 and Γ2 the internal interfaces induced by
Th1 and Th2 of Ω1 and Ω2, respectively: we talk of signal interpolation if Γ1 = Γ2 and of signal projection if
Γ1 6= Γ2.

The FE spaces Xqi

hi
, Vhi , V 0

hi
, Yhi and Λhi , and their relative dimensions can be defined as in Subsection

2.1. The same can be done also for the linear and continuous discrete lifting operator Rhi .
We need, instead, to introduce two independent interpolation or projection operators able to exchange

information between the independent grids on the interface Γ, namely

Π12 : Yh2 → Yh1 and Π21 : Yh1 → Yh2 .

In the non-conforming case, if Γ1 and Γ2 coincide, such operators could be the classical Lagrange interpolation
operators, while when the mesh are conforming Πjk are the identity operators. Instead, if the mesh are
non-conforming and Γ1 6= Γ2, Π12 and Π21 could be e.g. Rescaled Localized Radial Basis Function, as for
the INTERNODES [4, 17, 18].

Therefore, in the steady case, recalling the discrete weak formulations 15 and 16 of the two sub-problems,
we can define the Dirichlet and Neumann interface conditions as: for each k ≥ 0,

uk+1
1 (µ) = Π12uk

2(µ) (41)

and
a2(uk+1

2 (µ),R2ηh2 ;µ) = F2(R2ηh2 ;µ) + Π21
Ä
F1(R1ηh1 ;µ)− a1(uk+1

1 (µ),R1ηh1 ;µ)
ä
, (42)
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respectively. Moreover, according to (17), we can substitute equation (42) with

rk+1
N2

= −Π21rk+1
N1

on Γ2. (43)

In a similar way, since the discrete weak formulation of the time-dependent sub-problems are 31 and 32,
we get the Dirichlet and Neumann interface data for the unsteady case: for each t ∈ (0, T} and k ≥ 0

uk+1
1 (t;µ) = Π12uk

2(t;µ) (44)

and∫
Ω2

∂uk+1
2 (t;µ)
∂t

R2ηh2dΩ2 + a2(uk+1
2 (t;µ),R2ηh2 ;µ) = F2(R2ηh2 ;µ)

+ Π21

Ç
F1(R1ηh1 ;µ)−

∫
Ω1

∂uk+1
1 (t;µ)
∂t

R1ηh1dΩ2 − a1(uk+1
1 (t;µ),R1ηh1 ;µ)

å
.

(45)

As before, according to the residual definition (36), we can write (45) as

rk+1
N2

(t;µ) = −Π21rk+1
N1

(t;µ) on Γ2. (46)

Remark 4. When ∂Γi∩∂Ωi,D 6= 0, the residual rNi should be corrected to take into account the interpolation
process on all the degrees of freedom of Γi, including those on ∂Γi (see e.g. [4]). Even if the reduced technique
presented in this paper will work in both cases, hereon we will consider only the ∂Γi ∩ ∂Ωi,D = 0 one.

To get an algebraic representation of the residuals, we need to use the interface mass matrices MΓi
, that

we define through the Lagrange basis functions of Yhi
, i.e {ψ(j)

i }
Ni,Y

j=1 . Indeed, we can set

(MΓi)jk = (ψ(k)
i ,ψ

(j)
i )L2(Γi), j, k = 1, . . . , Ni,Y , i = 1, 2.

Considering the canonical dual basis of Y ′hi
, it can be seen [19] that Y ′hi

and Yhi are the same finite
dimensional linear space and

φ
(j)
i =

Ni,Y∑
k=1

(M−1
Γi

)kjψ
(j)
k , j = 1, . . . , Ni,Y .

Therefore, by expanding rNi ∈ Y ′hi
with respect to the dual basis (19), we can finally express the residual

through a corresponding vector in the dual space Y ′hi
, meaning

rNi
(x;µ) =

Ni,Y∑
j=1

Ñ
Ni,Y∑
k=1

(M−1
Γi

)jkr(k)
i (µ)

é
ψ

(j)
i (x) =

Ni,Y∑
j=1

z(j)
i (µ)ψ(j)

i (x) ∀x ∈ Γi, i = 1, 2.

Calling zi(µ) = (z(1)
i (µ), . . . , z(Ni,Y )

i (µ))T ∈ RNi,Y and ri(µ) = (r(1)
i (µ), . . . , r(Ni,Y )

i )T ∈ RNi,Y (µ), the
interface mass matrix MΓi and its inverse become the transfer matrices form the Lagrange basis to the dual
one and viceversa, i.e.

zi(µ) = M−1
Γi

ri(µ). (47)

The same results can be extended also to the unsteady case, including the time dependency of the residual
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terms.
Then, calling Rjk the rectangular matrices associated with Πjk, we can finally obtained the algebraic

formulation of the Dirichlet and Neumann terms for the steady case, i.e. (41) and (42): for each k ≥ 0

uk+1
Γ1

(µ) = R12uk+1
Γ2

(µ) (48)

and
rk+1

N2
(µ) = −MΓ2R21M−1

Γ1
rk+1

N1
(µ), (49)

The same results can be stated also for the unsteady terms, including the time dependency of the
considered quantity, i.e. we impose for each n = 0, . . . , Nt − 1 and k ≥ 0 that

un+1,k+1
Γ1

(µ) = R12un+1,k+1
Γ2

(µ) (50)

and
rn+1,k+1

N2
(µ) = −MΓ2R21M−1

Γ1
rn+1,k+1

N1
, (51)

In Section 4 we will use DEIM matrices instead of Rjk as interpolation and/or projection method, while
we refer to [4] for the corresponding INTERNODES interpretation. Note that the conforming interface case
can be recovered by taking R12 and MΓ2R21M−1

Γ1
equal to the identity matrix.

3. Reduce order formulation

The proposed strategy aims at reducing separately the two sub-problems obtained from the application
of the sub-structuring domain decomposition method, including the interface conditions. In particular, this
model order reduction technique can be seen as an extension of the one proposed in [1] and is, therefore,
modular, i.e. it combines different RB method on each sub-problems and, in particular, the DEIM to treat
both interface conditions, defining independent reduced order representation of the involved quantities.

Indeed, for each k ≥ 0, we first approximate the FOM solution of the master and slave models by means of
a small number of basis functions selected through a POD-DEIM procedure on the FOM solution snapshots.
Moreover, using the DEIM, we identify a suitable set of basis functions for the Dirichlet and Neumann data
snaphosts, and use them to interpolate or project such data across conforming and non-conforming interface
grids. Lastly, we sub-iterate between the two sub-problems reduced forms until convergence of the FOM
approximated solutions. In particular, the convergence criteria is defined through the l2-norm of FOMs
solution difference at the domains interface, i.e. for a chosen tolerance ε, the sub-iterations convergence is
reached when

‖uk+1
Γ1

(µ)− uk+1
Γ2

(µ)‖2 < ε. (52)

Note that the same criteria can be applied also for the unsteady case for each time-instant tn, including the
n-index in the equality.

The reduced form of the master and slave problems in the steady and unstedy case can be found in
Subsections 3.1 and 3.2, respectively, while we derive the parameters dependent Dirichlet and Neumann data
reductions in Section 4.

For the sake of notation, we remark that hereon ui, i = 1, 2 refer to the algebraic representation of the
FOM solutions, meaning uNi .

3.1. Steady master and slave reduced order problems
We define the reduced version of problems (23) and (24) through POD-Galerkin approach [7]. Therefore,

in the offline stage we collect the set of snapshots solving the sub-FOMs for a suitable set of parameter
values. In particular, we choose as snapshots the FOM master and slave solutions at convergence of the
sub-iterations, i.e. S̃1 = {ũ1(µ`),µ` ∈ Pd} and S2 = {u2(µ`),µ` ∈ Pd}, respectively. The paramaters
samplings are usually done considering a latine hypercube method [8, 9].
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Remark 5. The master and slave solution snapshots can be directly collected from the FOM computations
when (i) conforming discretizations are considered in the two sub-domains or (ii) when interpolation/pro-
jection methods are implemented to handle the discretization non-conformity, e.g. MORTAT methods or
INTERNODES. Instead, as already stated in Section 2, in case of interface non-conformity, in this paper in
the offline stage we solved the FOMs twice, one for each chosen discretizations. Then, the snapshots are
the master solutions obtained from the first computation, i.e. considering the discretization chosen for the
master domain, and the slave solutions obtained from the second computation, i.e. with the discretization
chosen for the slave domain.

Remark 6. The k index is omitted when quantity at convergence of the sub-iterations are considered.

The POD techniques is, then, applied to each set of snapshots and a corresponding set of reduced basis
functions is computed and stored. Defining as Vi ∈ RNi×ni , ni � Ni, the matrices whose column yield the
obtained basis functions, in the online phase we can approximate the FOM solutions as

ũ1(µ) ≈ V1ũn1(µ)

and
u2(µ) ≈ V2un2(µ).

Projecting problems (23) and (24) onto the reduced spaces defined by Vi, starting from an initial guess
ũ0

ni
(µ) and u0

n2
(µ), in the online phase, for each k ≥ 0, we search for the reduced solutions ũk+1

n1
(µ) ∈ Rn1

and uk+1
n2

(µ) ∈ Rn2 such that®
An1(µ)ũk+1

n1
(µ) = fn1(µ)− VT

1 A1(µ)gD(µ)− VT
1 A1(µ)uk+1

Γ1
(µ)

uk+1
Γ1

(µ) = R12uk
Γ2

(µ).
(53)

and ®
An2(µ)uk+1

n2
(µ) = fn2(µ) + VT

2 rk+1
N2

(µ)
rk+1

N2
(µ) = −MΓ2R21M−1

Γ1
rk+1

N1
(µ),

(54)

where Ani
(µ) = VT

i Ai(µ)Vi and fni
(µ) = VT

i fi(µ), i = 1, 2.

Remark 7. The presence of nonlinear terms in the master and slave formulations can be handle through
suitable hyper-reduction techniques, e.g DEIM [10, 11, 12]. For simplicity, in this paper we consider only the
linear case.

3.2. Unsteady master and slave reduced order problems
As for the steady case, we search for the reduced formulation of problems (39) and (40) applying

POD-Galerkin approach to the single sub-problem. Then, in the online phase, for each time instant tn,
we sub-iterate between the solution of the obtained ROMs until the convergence criteria (52) is satisfied.
Moreover, the time variable can be considered as an additional parameter of the two sub-problems.

Thus, we select as snapshots the FOMs solution at convergence of the sub-iterations, for each time
step of the simulation, i.e. S̃1 = {ũt1

1 (µ`), . . . ũtNt

1 (µ`);µ` ∈ Pd} for the master problem and S2 =
{ũt1

2 (µ`), . . . ũtNt

2 (µ`);µ` ∈Pd} for the slave problem. The total number of snapshots for each set will be,
therefore, the product between the number of time steps Nt and the number of selected parameters values.

As for the time-indepedent case, POD is applied to each set of snapshots and the Vi matrices are
computed. Then, operating a Galerkin projection on the sub-spaces defined from Vi, we can obtained the
reduced forms of problems (39) and (40), i.e, for each k ≥ 0 and n = 0, . . . , Nt − 1, find ũn+1,k+1

n1
(µ) ∈ Rn1
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and un+1,k+1
n2

(µ) ∈ Rn2 such that

Å
Mn1

∆t + An1(µ)
ã

ũn+1,k+1
n1

(µ) =fn+1
n1

(µ)− VT
1

Å
M1

∆t + A1(µ)
ã

gn+1
D (µ)

− VT
1

Å
M1

∆t + A1(µ)
ã

un+1,k+1
Γ1

(µ) +
Å
Mn1

∆t + An1(µ)
ã

ũn
n1

(µ)

un+1,k+1
Γ1

(µ) = R12un+1,k
Γ2

(µ)
ũ0,k+1

n,1 (0;µ) = ũ0,n1(µ),

(55)

and 
ÄMn2

∆t + An2

ä
un+1,k+1

n2
(µ) = fn+1

n2
(µ) +

ÄMn2
∆t + An2

ä
un

n2
(µ) + VT

2 rn+1,k+1
N2

(µ)
rn+1,k+1

N2
(µ) = −MΓ2R21M−1

Γ1
rn+1,k+1

N1
(µ)

u0,k+1
n2

(µ) = u0,n2(µ),
(56)

where Mni
= VT

i MiVi, Ani
(µ) = VT

i Ai(µ)Vi, fni
(µ) = VT

i fi(µ) and ũ0,n1(µ) u0,n2(µ) are the projection of
the initial solution u0,N1(µ) and u0,N2(µ) on the master and slave reduced basis, respectively.

Differently from the time-independent case, here fn+1
i (µ) is time dependent and must, therefore, reassemble

for each time step. Instead, the mass and stiffness matrices Mi and Ai(µ) are time-independent and can be
assemble only ones. In particular, Mi is reduced and stored during the offline stage, while Ai(µ) is reduced
and stored at the first time step.

4. Parametric interface data reduction

Dealing with interface conditions is usually an expensive task, especially when non-conforming grids
and/or large domains and very fine discretizations are involved. Since the sub-problems are parameters
dependent, the interface data naturally inherit the parameter dependency and DEIM [10, 11, 12, 13, 14, 15, 16]
can be applied to reduce the dimension of such data but also as an interpolation methods to transfer the
information across the interface grids.

Moreover, in the conforming case the DEIM can be used directly on the quantity of interest, i.e. on
the interface solution - for Dirichlet data - and on the interface residual - for Neumann data - while, for
non-conforming interface grids, the residual dual vectors must be involved to treat the Neumann terms.
Recalling the interpolation operators Rjk defined in Subsection 2.3, for the sake of generalizations, in
Subsection 4.1 and 4.2 we define the reduction of the Dirichlet and Neumann data, respectively, when
non-conforming interface grids are considered.

4.1. Parametric Dirichlet data
The parametric Dirichlet data interpolation method used in this work is the same presented in [1]. Such

techniques relies on the DEIM and can be applied on the same quantity in case of both conforming and
non-conforming interface grids.

First, in the offline phase we collect the snapshots, i.e. we extract the interface Dirichlet data obtained for
different instances of the parameters vectors from the first of the FOM computations, the one corresponding
to the master domain discretizations in the non-conforming case. Moreover, we select only the Dirichlet data
at convergence of the sub-iterations, as for the solution reductions - therefore, we omit the k dependency of
the interface Dirichlet data in what follows -, namely

SD = {uΓ1(µ`), (µ`) ∈Pd}.

A low-dimensional representation of the Dirichlet data, then, can be computed applying the POD basis
functions ΦD. Calling M1 � N1,Λ the small dimension of such set, we can approximate the Dirichlet data as

uΓ1(µ) ≈ ΦDu1,M1(µ),
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where u1,M1(µ) is a vector of M1 coefficients. Furthermore, with a greedy algorithm [14], we select iteratively
M1 indices

I1,D ⊂ {1, . . . , N1,Λ}, |I1,D| = M1 (57)

from the basis ΦD which minimize the interpolation error over the snapshots set according to the maximum
norm. These indices, which are usually referred to as magic points, represents the degrees of freedom from
which to extract the FOM Dirichlet data uΓ1,|I1,D

to compute u1,M . In particular, in the online phase, uk+1
1,M

can be found solving the following linear system

ΦD|I1,D
uk+1

1,M (µ) = uk+1
Γ1|I1,D

,

where ΦDI1,D
∈ RM1×M1 represents the matrix with the I1,D rows of ΦD. Therefore, we can approximate

the Dirichlet interface data as
uk+1

Γ1
(µ) ≈ ΦDΦ−1

DI1,D
uk+1

Γ1|I1,D

.

The interpolation or projection operation is get substituting uk+1
Γ1|I1,D

with the slave solution extracted in
the DoFs corresponding to the magic points. Thus, given the position p1 of the DoFs corresponding to each
index i1,D ∈ I1,D in Cartesian coordinates, we search for the corresponding DoFs in the slave interface, i.e.
for the points p2 such that

p2 = min
pj

2∈DoFsΓ2

(dist(p1 − pj
2)).

Then, we can define the set of indices on the slave grids I2,D corresponding to the indices in I1,D that
identify the DoFs of the slave interface in position p2, i.e.

I2,D = {ii1,D

2,D }i1,D∈I1,D
.

Finally, in the online phase, the M1 needed interpolants point to approximate the interface Dirichlet data
directly on the master interface are the slave solutions values extracted on the DoFs with indices in I2,D,
meaning

uk+1
1Γ1

(µ) ≈ ΦDΦ−1
DI1,D

uk
2|I2,D

.

Note that uk
2|I2,D

refers to the FOM solution of the slave models that must, therefore, be computed from
the ROM solution uk

n2
during the online phase. However, only part of the FOM slave solution is needed,

meaning the one in the magic points. Therefore, one can assemble the FOM solution only in such points
multiplying the ROM slave solutions for those rows of V2 corresponding to the magic points, i.e. for the
matrix V2|I2,D

.
In this way, recalling the master ROM (53), the lifting term can be approximated as

VT
1 A1(µ)uk+1

Γ1
(µ) ≈ VT

1 A1ΦDΦ−1
DI1,D

V2|I2,D
uk

n2
, (58)

where the matrix product VT
1 A1ΦDΦ−1

DI1,D
V2|I2,D

does not depend on the solution and can be pre-computed
and stored in the offline phase. Therefore, the R12 operator, in both conforming and non-conforming case,
corresponds to the matrix product

R12 = ΦDΦ−1
DI1,D

.

Remark 8. Even if the snapshots are selected as the Dirichlet data at convergence of the sub-iterations, the
reduced coupled model is solved sub-iterating between the reduced master and slave models. Therefore, we
have added the k index to quantities computed in the online stage.

Remark 9. As for the FOM computation, an initial guess of the Dirichlet boundary conditions must be
considered, but only on the magic points. Therefore, for k = 0, the approximated FOM solution on the
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magic points can be substituted with the FOM initial guess

V2|I2,D
u0

n2
= u0

2|I2,D
,

for the time-independent case, and

V2|I2,D
un+1,0

n2
= un+1,0

2|I2,D
, n = 0, . . . , Nt − 1

for the time-dependent one.

Remark 10. Differently from the master and slave reductions, the DEIM interpolation is time-independent.
Therefore, if the coupled model is unsteady and to take into account the time variations of the solution, the
interface data at convergence of the sub-iterations for each time instant n = 1, . . . , Nt must be collected in
the set of snapshots. Then, the interpolation of the Dirichlet data is the same as of the steady case.

4.2. Parametric Neumann data reduction
The DEIM used to interpolate the parametric Dirichlet interface conditions can be applied also the

parametric Neumann interface conditions. Starting from the steady case, if the interface grids are conforming,
for each k ≥ 0,

rk+1
N2

(µ) = rk+1
N1

(µ)

so that DEIM can be used on the interface residual. Instead, in the non-conforming case, the interface mass
matrices are involved, as in (51). However, recalling definition (47) of zi(µ), i.e. the dual vectors of the
interface residual, equation (51) can be substituted with

zk+1
2 (µ) = −R21zk+1

1 (µ), (59)

which corresponds to equation (48). Therefore, vector zk+1
2 is the quantity to be reduced and reconstructed

using the DEIM.
For the sake of generality, in this Subsection we derive the Neumann data approximation for the

non-conforming case, but the same procedure holds also for the interface residual of the conforming case.
As in Subsection 4.1, for each µ we compute the snapshots, i.e. the dual interface residual z2(µ) at

convergence of the sub-iterations
SN = {z2(µ`),µ` ∈Pd}.

Applying the POD, a set of M2 basis functions ΦN is found, being M2 � N2,Λ. The dual vector of the
residual is, therefore, approximated as

z2(µ) ≈ ΦNz2,M2(µ).

Furthermore, with a greedy algorithm, M2 magic points are selected and their indices in the slave grid
numbering are collected in the set

I2,N ⊂ {1, . . . , N2,Λ}, |I2,N | = M2.

Therefore, in the online phase we need to find z2,M2(µ) solution of the linear system

ΦN|I2,N
zk+1

2,M2
(µ) = zk+1

2|I2,N
(µ),

where ΦN|I2,N
is the restriction of ΦN on the magic points, and the dual interface residual vector can be

approximated as
zk+1

2 (µ) ≈ ΦNΦ−1
N|I2,N

zk+1
2|I2,N

(µ).
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Then, zk+1
2|I2,N

(µ) is substituted with the values of zk+1
1 (µ) extracted on the magic points. To do this,

we need first to select the set of indices I1,N on the master interface Γ1 corresponding to I2,N . Therefore,
calling p2 the DoF in cartesian coordinated corresponding to the i-th index in I2,N , we search for

p1 = min
pj

i
∈DoFsΓ1

(dist(p2 − pj
1)),

and we collect the corresponding index in the master grid numbering in

I1,N = {ii2,N

1,N }i2,N∈I2,N
.

Thus, in the online phase, we get

zk+1
2 (µ) ≈ −ΦNΦ−1

N|I2,N
zk+1

1|I1,N
(µ).

Finally, considering the definition of z2(µ) in (47), we can recover the Neumann interface residual term
of (54) as

VT
2 rk+1

N2
(µ) ≈ −VT

2 MΓ2ΦNΦ−1
N|I2,N

MΓ1|I2,N
rk+1

N1|I1,N

(µ). (60)

Note that matrix product VT
2 MΓ2ΦNΦ−1

N|I2,N
MΓ1|I2,N

does not dependent on the parameters and can be
computed and stored in the offline phase.

Moreover, recalling the definition (25) of the interface residual, we can recover the dependency of such
vectors with the reduced master solution, i.e

rk+1
N1|I1,N

(µ) ≈
(
(A1(µ)V1uk+1

n1
(µ)− f1(µ))|Γ1

)
|I1,N

. (61)

However, only the interface residual on the magic points is needed and must be computed, reducing the
dimension N1 × n1 of the matrix-vector operations A1(µ)V1uk+1

n1
(µ) to M2 × n1. Thus, similar to the

Dirichlet interpolation or projection, the operator R21 here is represented by

R21 = ΦNΦ−1
N|I2,N

,

and can be used with both conforming or non-conforming interface grids.
We summarize the interface DEIM reduction, considering both Dirichlet and Neumann processing, in

algorithm 1, while the complete reduction of the two-way coupled model can be found in algorithm 2.

Remark 11. Note that similar results can be obtained for time-dependent coupled problems. In particular,
equation (59) can be equally derived including the time index n, while the parametric Neumann data for
each tn must be included in the set of snapshots for the DEIM reduction. Then, the same procedure leads to
equation (60), where the master residual definition (61) is to be substituted with the equivalent definition
(38) for the unsteady case. In this regards, the DEIM interpolation can be considered as time-independent
also for the Neumann data.

Remark 12. We remark that when the interface grids are conforming, meaning that Γ1 = Γ2 = Γ, a perfect
match between the corresponding DoFs on the master and slave interface is found. However, this does not
happened in the non-conforming case, i.e. when Γ1 6= Γ2. In this regards, we are introducing an error
both in Dirichlet and Neumann data approximations, especially when the interface discretizations are very
different. Considering the numerical tests of Section 5, to minimized such error we suggest to consider a finer
discretization on the slave domain than in the master one, since the Dirichlet approximation seems to suffer
more from the interface difference than the Neumann one.

Moreover, given the smaller number of DoFs in the master interface than in the slave one - considering
a coarser discretizations in the master domains, as just stated - as convergence criteria during the ROM
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solution we choose to consider the difference between the approximated FOM solution restricted at the
master interface DoFs, i.e.

‖u1|I1,D
− u2|I2,D

‖2 < ε.

Algorithm 1 Interface DEIM procedure
1: procedure [ROM arrays] = Offline(FOM arrays, Ptrain, εtolD

, εtolN
, tol)

2: Dirichlet and Neumann data snapshots
3: for µ ∈Ptrain do
4: while ‖uΓ1 − uΓ2‖2 >tol do
5: u1 ← solve the master model;
6: u2 ← solve the slave model;
7: end while
8: u|Γ1 ← extract the master interface solution;
9: z2 ← extract the slave dual vector of the residual.
10: SD = [SD,uΓ1 ];
11: SN = [SN , z2];
12: end for
13: DEIM reduced-order arrays:
14: ΦD ← POD(SD, εtolD

); I1,D ← DEIM-indices(ΦD);
15: ΦN ← POD(SN , εtolN

); I2,N ← DEIM-indices(ΦN );
16: Dirichlet magic points:
17: for i1,D ∈ I1,D do
18: p1 ← get Cartesian coordinates of i1,D DoF;
19: p2 = minpj

2∈DoFΓ2
(dist(p1 − pj

2))← search the nearest DoF of p1 in Γ1;
20: i2,D ← get the Dirichlet index for p2;
21: I2,D = [I2,D, i2,D];
22: end for
23: Neumann magic points:
24: for i2,N ∈ I2,N do
25: p2 ← get Cartesian coordinates of i2,N DoF;
26: p1 = minpj

1∈DoFΓ1
(dist(p2 − pj

1))← search the nearest DoF of p2 in Γ2;
27: i1,N ← get the Neumann index for p1;
28: I1,N = [I1,N , i1,N ];
29: end for
30: end procedure
31:
32: procedure [u1,u2] = Online Query(ROM arrays, FOM arrays, µ, tol)
33: while ‖u1|I1,D

− u2|I2,D
‖2 >tol do

34: u2|I2,D
← extract Dirichlet magic points;

35: uΓ1 ≈ ΦDΦ−1
D|I1,D

u2|I2,D
← Dirichlet DEIM approximation;

36: apply uΓ1 and solve the master problem with µ;
37: rN1|I1,N

← extract the master interface residual on the magic points;
38: rN2|Γ2

≈MΓ2ΦNΦ−1
N|I2,N

M−1
Γ1

rN1|I1,N
← Neumann DEIM approximation ;

39: rN2 ← recover the interface residual, i.e. the Neumann term of the second problem;
40: apply rN2 and solve the slave model with µ;
41: end while
42: end procedure
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5. Numerical results
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Algorithm 2 ROM procedure
1: procedure [ROM arrays] = Offline(FOM arrays, Ptrain,εtol1 ,εtol2 , εtolD

, εtolN
, tol)

2: Solution, Dirichlet and Neumann data snapshots
3: for µ ∈Ptrain do
4: while ‖uΓ1 − uΓ2‖2 >tol do
5: u1 ← solve the master model;
6: u2 ← solve the slave model;
7: end while
8: u1|Γ1

← extract the master interface solution;
9: z2 ← extract the slave dual vector of the residual.
10: S1 = [S1, ũ1];
11: S2 = [S2,u2];
12: SD = [SD,uΓ1 ];
13: SN = [SN , z2];
14: end for
15: POD reduced-order arrays:
16: V1 ← POD(S1, εtol1);
17: V2 ← POD(S2, εtol2);
18: {An1 , fn1} ← Galerkin projection of the FOM master arrays onto V1;
19: {An2 , fn2} ← Galerkin projection of the FOM slave arrays onto V2;
20: DEIM reduced-order arrays:
21: ΦD ← POD(SD, εtolD

); I1,D ← DEIM-indices(ΦD);
22: ΦN ← POD(SN , εtolN

); I2,N ← DEIM-indices(ΦN );
23: Dirichlet magic points:
24: for i1,D ∈ I1,D do
25: p1 ← get Cartesian coordinates of i1,D DoF;
26: p2 = minpj

2∈DoFΓ2
(dist(p1 − pj

2))← search the nearest DoF of p1 in Γ1;
27: i2,D ← get the Dirichlet index for p2;
28: I2,D = [I2,D, i2,D];
29: end for
30: Neumann magic points:
31: for i2,N ∈ I2,N do
32: p2 ← get Cartesian coordinates of i2,N DoF;
33: p1 = minpj

1∈DoFΓ1
(dist(p2 − pj

1))← search the nearest DoF of p2 in Γ2;
34: i1,N ← get the Neumann index for p1;
35: I1,N = [I1,N , i1,N ];
36: end for
37: VT

1 A1ΦDΦ−1
DI1,D

V2|I2,D
← save matrix product for master lifting term;

38: VT
2 MΓ2ΦNΦ−1

N|I2,N
MΓ1|I2,N

← save matrix product for slave residual term;
39: end procedure
40:
41: procedure [u1,u2] = Online Query(ROM arrays, FOM arrays, µ, tol)
42: while ‖u1|I1,D

− u2|I2,D
‖2 >tol do

43: u2|I2,D
← extract Dirichlet magic points;

44: VT
1 A1ΦDΦ−1

DI1,D
V2|I2,D

uk+1
n2
← assemble the lifting term;

45: ũn1 ← solve the master reduced order problem with µ;
46: rN1|I1,N

← extract the master interface residual on the magic points;

47: VT
2 MΓ2ΦNΦ−1

N|I2,N
MΓ1|I2,N

rk+1
N1|I1,N

(µ)← assemble the interface residual term;
48: un2 ← solve the slave reduced order problem with µ;
49: end while
50: end procedure 20
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