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statistical prediction of spatially dependent functional data. It incorporates
a physical model – expressed by a partial differential equation – within a
Universal Kriging setting through a geostatistical modelization of the resid-
uals with respect to the physical model. The approach is extended to deal
with sequential problems, where samples of functional data become available
along consecutive time intervals, in a context where the physical and stochas-
tic processes generating them evolve, as time intervals succeed one another.
An incremental modeling is used to account for both these dynamics and
the misfit between previous predictions and actual observations. We apply
Physics-based Residual Kriging to forecast production rates of wells operat-
ing in a mature reservoir according to a given drilling schedule. We evaluate
the predictive errors of the method in two different case studies. The first
deals with a single-phase reservoir where production is supported by fluid
injection, while the second considers again a single-phase reservoir but the
production is driven by rock compaction.
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1. Introduction

Functional Data Analysis (FDA, Ramsay (2005)) is an area of statistics
developed in the recent years to deal with infinite-dimensional data, such as
functions and curves. In many applications, functional data are also geo-
referenced, i.e. observed at specific locations within the spatial domain of in-
terest. In these cases, the spatial association among functional data has to be
modeled. To deal with functional data with a spatial dependence, a number
of geostatistical methods for modeling and prediction of scalar data (Cressie,
2015) have been extended to functional data, leading to functional Ordinary
Kriging (Giraldo et al., 2011) and functional Universal Kriging (Menafoglio
et al., 2013, 2016) predictors. These techniques belong to the more general
framework of Object Oriented Spatial Statistics (O2S2, Menafoglio and Sec-
chi (2017, 2019)), which allows for the analysis of general types of object
data (e.g., functional, distributional, or Riemannian data) by considering
them as points of an appropriate mathematical space (e.g., Hilbert space or
Riemannian manifold), through a geometrical and topological approach.

In many processes over spatial domains, not only data are observed, but
also prior information about the phenomenon under study is available in
terms of a physical model, formulated through Partial Differential Equations
(PDEs). These physical models can be used to predict a functional response
at any location of the domain, the spatio-temporal evolution of the phe-
nomenon being precisely modeled through the governing physical laws, such
as mass or energy conservation. Of course, one may expect a discrepancy
between these predictions and the observations, due to many factors such
as over-simplified model assumptions, uncertain model parameters, numeri-
cal discretization errors and aleatory variability (Quarteroni and Valli, 1994;
Smith, 2013). Still, the physical model can provide meaningful information
and, when taken into account, can potentially lead to better predictions than
a pure data-driven model.

In the recent years, a number of authors presented approaches which ex-
ploit physical models to improve the modeling of spatial dependent data.
A notable example is the so-called regression with differential regularization
(Arnone et al., 2019; Azzimonti et al., 2015; Bernardi et al., 2017), which
models spatially dependent data by means of a spatial regression penalized
with a differential operator, which in turn expresses the physical information
on the problem under study. In this case, the differential operator is used
to support predictions in regions sparsely observed; the obtained predictions
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are typically biased towards the physical model solution. Another approach
is illustrated in Chen and Baker (2019); Rodat et al. (2018); Yang et al.
(2018), where the physical model is used to improve estimations of the spa-
tial dependence among the (scalar) data, especially when few observations
are available. In this case, the spatial covariance is estimated from multiple
physical model realizations, thus avoiding the fit of a parametric model to
empirical variograms or covariograms. Constantinescu and Anitescu (2013)
propose a way to derive valid covariance models which incorporates physi-
cal relations between the variables in a multivariate setting. In this broad
framework, none of the works presented in the literature specifically deals
with problems where the response variables are functional objects, sequen-
tially observed over time.

As a first element of innovation, we here propose an original approach,
that we term Physics-based Residual Kriging (Phy-RK) for functional data,
which incorporates the physical model for the phenomenon in a functional
geostatistical setting. Having collected the observation of the process at a
set of locations, we decouple the observed functional process in a physically-
driven drift and in a stochastic residual, and accordingly model the latter
term by means of functional Universal Kriging. We show that this method,
beside being unbiased, can lead to substantial improvements, in terms of
prediction error, when compared to the sole physical model or to the purely
data-driven Kriging approach. Furthermore, we show that the information
from the physical model can be effectively used also in the residuals modeling,
through the inclusion of covariates derived from the physical model solution.

As a key additional element of novelty, we formulate the Phy-RK ap-
proach for sequential problems, namely for problems where sets of functional
observations are sequentially observed along a number of time intervals. Here,
the experimental design proceeds incrementally, including at each time inter-
val a new set of observed locations, which are added to the locations observed
at previous intervals. In this case, our methodology aims to address prob-
lems in which (i) the sequential design itself implies a dynamic change in the
process generating the data, and, consequently, (ii) repeated observations at
the same locations are generated by differing random fields when collected at
different time intervals. Due to the intrinsic dynamical nature of the prob-
lem, we develop an incremental formulation of the Phy-RK predictor which
not only accounts for the residuals between the physics-based drift and the
latest observations (first-order residuals), but also for the residuals between
the previous predictors and the actual observations (higher-order residuals),
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allowing for a dynamic correction of Kriging predictions.
This general approach has a broad applicability, for instance in environ-

mental sciences, and more specifically in meteorology, for soil characterization
and pollution modeling (Webster and Oliver, 2007), in public health problems
(Diggle and Giorgi, 2019). In this work we embed the formulation of Phy-RK
within the problem of predicting production rates, measured in STB/day, of
producer wells operating in a mature conventional reservoir. Here, we aim
at forecasting production rates of wells yet to be drilled at a set of locations
in the reservoir, based on the observed past production of the wells which
were active in previous time intervals. Production forecast is necessary to
quantify investments, e.g. number and type of new wells, and to optimize
field operations.

Unlike unconventional shale gas reservoirs, in which a pure geostatisti-
cal method has been successfully applied (Menafoglio et al., 2015; Xi and
Morgan, 2019), the application of such techniques for production forecast of
wells yet to be drilled in a conventional reservoir has not been investigated
so far. The main reason is that drilling a new well perturbs the pressure of
the whole reservoir, changing the random field realization observed through
the production rates of previously operating wells. Applying a pure geosta-
tistical method, based on functional Kriging, would not appropriately model
this dynamical nature of the process. For instance, if more than one wells
were open in the successive time interval, a purely geostatistical approach
would not take into account their interaction (e.g., if two wells were drilled
close to each other, one would expect lower productions, due to their inter-
action, than placing a single well). This phenomenon is somehow negligible
in an unconventional reservoir, as in this type of systems the perturbation
happens at a local scale due to their peculiar rock properties. For these
reasons, the standard approach to production forecast in conventional sys-
tems is the reservoir numerical simulation (Aziz and Settari, 1979), where
the reservoir domain is discretized and the governing equations of fluid flow
in porous media are solved. Surrogate models can be developed allowing
one to avoid setting many parameters, such as porosity and permeability
of each cell of a fine reservoir discretization, and long execution times even
on modern computational infrastructures. Some examples are the Capaci-
tance Resistance Models (CRM, Wanderley de Holanda et al. (2018)), the
Interwell Numerical SImulation Model (INSIM, Zhao et al. (2015)) and the
recently developed FlowNet (Kiærr et al., 2020). In this context, Phy-RK
could exploit, in a data-driven framework, a surrogate model, i.e. a physical
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model which is characterized by fewer parameters and is less computation-
ally demanding than a full-physics 3D reservoir simulation. Furthermore, our
Phy-RK methodology overcomes the above-mentioned limitations due to the
static nature of a pure geostatistical approach, as the wells drilling schedule
is taken into full account by the physical model.

We present two applications of Phy-RK to the problem of forecasting
production rates. Both concern single phase reservoirs; for the first one, pro-
duction is supported by fluid injection, whereas, for the second one, by rock
compaction. In both cases, wells are incrementally drilled in the reservoir
according to a schedule which consists of eight time steps. At each step, the
aim is to predict the production rates of the new wells drilled in that step as
well as the future production rates of those already operating, based on the
production rates observed in the previous step at the wells already operating.
We shall show that the Phy-RK approach leads to substantially lower pre-
diction errors than a pure geostatistical method, which will thus be shown
to be inappropriate for the prediction of production rates in a conventional
reservoir.

The work is organized as follows. Section 2 introduces the mathematical
formulation of Phy-RK predictor, with a focus on its sequential formulation.
In Section 3, we adapt the general approach of Phy-RK to the prediction
of production rates in a mature reservoir. Section 4 presents a first applica-
tion of Phy-RK for the prediction of liquid production rates in a single-phase
reservoir supported by liquid injection. Section 5 presents a second applica-
tion of Phy-RK for the prediction of liquid production rates supported by
rock compaction. Finally, Section 6 outlines conclusions and considerations
for future development and applications.

2. Physics-based Residual Kriging predictor for func-
tional data

2.1. Formulation of Physics-based Residual Kriging

Consider a probability space (Ω,F ,P) and a (functional) random object
Y : Ω → H, where H is a separable Hilbert space, endowed with the norm
‖ · ‖ induced by the scalar product 〈·, ·〉. We define the random field

{Ys, s ∈ D ⊆ Rd},

where s indicates the spatial location, included in the spatial domain D,
associated with the corresponding random function Ys. We assume that, for
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each s, Ys ∈ L2(Ω;H), that is
∫

Ω
‖Ys‖2P(dω) = E [‖Ys‖2] <∞. Our goal is

the prediction of the functional variable at location s0, having observed the
random field at locations {s1, . . . , sn}.

We suppose that the phenomenon under investigation can be described
by means of a deterministic model, able to approximately predict Ys. We
call these predictions Fs(θ), where θ ∈ Θ ⊂ Rm are the model parameters,
and we decompose the functional variables Ys as

Ys = Fs(θ) + Xs,

being Xs the stochastic residual from the deterministic model prediction.
In this work, we focus our attention on physics-based models, mathemat-

ically formulated by means of Partial Differential Equations (PDEs), which
express physical principles, such as mass or energy conservation, into the
mathematical relationship between partial derivatives of functions (for an
introduction see, e.g., Evans (2010); Salsa (2015)). In particular, we formu-
late the physical model as the differential problem

L(θ)u(θ) = g(θ) inD, (1)

where u(θ) is the solution, L(θ) is a differential operator and g(θ) is the forc-
ing term, which all depend on the vector of parameters θ. The determination
of these parameters is out of the scope of this work, although our method can
partially correct their misspecification (as discussed in Subsection 4.4). We
assume that problem (1), coupled with appropriate boundary conditions on
the boundary of the domain D, ∂D, and, if time-dependent, with an initial
condition, is well-posed. In particular, we require that problem (1) admits a
unique weak solution u(θ) ∈ V for each θ ∈ Θ, where V is an appropriate
Hilbert space. The physical model prediction is thus given by

Fs(θ) = Fsu(θ), (2)

where Fs : V → H is a continuous bounded operator which maps the PDE
solution into the physical model prediction at location s ∈ D. Although we
restrict ourselves to PDE models, this is not a limitation of our approach
and more general models can be considered.

We combine the deterministic model (2) with a geostatistical model for
the residual random field {Xs, s ∈ D ⊆ Rd}. Indeed, the residual random
field might exhibit spatial dependence, which results from the spatial struc-
ture that was already present in the random field Ys but not completely
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captured by the physical model. This can be due, for instance, to simplified
assumptions of the physical model, to numerical discretization errors in the
PDE solution or to the presence of additional influent variables not included
in the physical model. We point out that, in the residual part, physics can
still play a role, which however is modeled following a geostatistical approach.

In this work, we rely on O2S2, with particular reference to Universal
Kriging (UK) for functional observations (Menafoglio et al., 2013). This
geostatistical framework allows one to predict the (functional) residual at
unsampled locations within the domain, by modeling the spatial dependence
of the residual field, then building, on this basis, the Universal Kriging pre-
dictor. We thus define the expected value ms of the residual random field
as

ms =

∫
Ω

Xs(ω)P(dω), s ∈ D,

the integral being defined in the Bochner sense, and the global covariance
function (also called trace-covariogram) C : D ×D → R, as

C(si, sj) = Cov(Xsi ,Xsj) = E
[
〈Xsi −msi ,Xsj −msj〉

]
.

Note that the covariance function C allows one to quantify the spatial depen-
dence between two elements of the field corresponding to two locations in the
spatial domain. Recall that, in a functional setting (Menafoglio et al., 2013),
a random field {Xs, s ∈ D ⊆ Rd} is said to be globally second-order stationary
if E[Xs] = m for all s ∈ D and Cov(Xsi ,Xsj) = E[〈Xsi−m,Xsj−m〉] = C(hi,j)
for all si, sj ∈ D, with hi,j = si − sj (i.e. the separating vector between two
locations). Furthermore, a second-order stationary random field is isotropic
if Cov(Xsi ,Xsj) = C(hi,j), where hi,j = ‖hi,j‖ is the distance between si and
sj in D. Although the isotropy assumption can be easily weakened, we stick
to it for ease of notation.

Let us consider a possibly non-stationary model for the random field
{Xs, s ∈ D ⊆ Rd}, decomposed as

Xs = ms + δs,

where ms is the mean term (a.k.a. drift) and δs is a zero-mean, second-
order stationary and isotropic residual random field. For the mean term, we
assume a linear model

ms =
L∑
i=0

βlfl(s), (3)
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where f0 is the intercept (i.e, f0(s) = 1 for all s ∈ D), f1(s), . . . , fL(s) ∈ R
are known spatially dependent covariates and β0(·), . . . , βL(·) are functional
parameters in H, which do not depend on the spatial location.

In practice, having collected n observations {Xs1 , . . . ,Xsn} of the residual
random field at locations {s1, . . . , sn} – obtained as differences between the
observed {Ys1 , . . . ,Ysn} and the purely physics-based predictions {Fs1 , . . . ,Fsn}
– our goal is the prediction of the variable Ys0 at the unsampled location s0

in D. It is computed as the sum of the physical model prediction Fs0 and the
residual X̂s0 predicted by Universal Kriging, which is the best linear unbiased
predictor, of the form:

X̂s0 =
n∑
i=1

λ̂iXsi , (4)

where the optimal weights (λ̂1, . . . , λ̂n) solve the optimization problem:(
λ̂1, . . . , λ̂n

)
= arg min

λ1,··· ,λn∈R
Var

(
n∑
i=1

λiXsi −Xs0

)
s.t. E

[
n∑
i=1

λiXsi

]
= ms0 .

(5)
Thus, the weights are chosen by minimizing the variance of the prediction
error, subject to the (uniform) unbiasedness constraint. Under the assump-
tion that the covariance function C is known, the optimization problem (5)
can be equivalently formulated in terms of the following linear system



C(0) · · · C(h1,n) f0(s1) · · · fL(s1)
...

. . .
...

...
...

...
C(hn,1) · · · C(0) f0(sn) · · · fL(sn)
f0(s1) · · · f0(sn) 0 · · · 0

...
. . .

...
...

...
...

fL(s1) · · · fL(sn) 0 · · · 0





λ1
...
λn
µ0
...
µL


=



C(h0,1)
...

C(h0,n)
f0(s0)

...
fL(s0)


, (6)

where (µ0, · · · , µL) are the Lagrange multipliers associated with the L linear
constraints derived from the unbiasedness constraint in (5), see Menafoglio
et al. (2013) for further details. Solving the linear system, we obtain the
optimal weights and, thus, the corresponding prediction X̂s0 . Eventually,
we compute the Physics-based Residual Kriging (Phy-RK) prediction for the
functional variable Ys0 as

Ŷs0 = Fs0(θ) + X̂s0 . (7)
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In applications, one usually does not know the trace-covariogram C and
thus needs to estimate it from the observations. This is done by estimat-
ing the trace-semivariogram γ(hi,j) = C(0) − C(hi,j), in two steps. Firstly,
a method-of-moments estimator is used (i.e., a binned trace-variogram, see,
e.g., Menafoglio et al. (2013)), then a valid parametric variogram model (e.g.,
spherical, Matérn, see Cressie (2015)) is fitted by optimizing its parameters
in, e.g., a least-squares sense. Finally, the trace-covariogram is easily ob-
tained from the trace-semivariogram similarly as in classical geostatistics.
Note that, in the setting of our work, the spatial dependence is estimated from
the observations and not from multiple realizations of the physical model, as
in Chen and Baker (2019); Rodat et al. (2018); Yang et al. (2018), because
it is referred to the residuals from the physics model predictions (2). This is
compatible with the simplified nature of our physical model (1), and allows
us to reduce the overall computational burden of the procedure, as one avoids
to repeatedly solve the PDE used to model the phenomenon under study.

2.2. Residual Kriging for sequential predictions

In this subsection, we extend the general Physics-based Residual Kriging
method presented in Subsection 2.1 for tackling the problem of sequential pre-
diction. In this context, let us consider the whole time domain [t0, tNa = T ]
and subdivide it into Na activation time intervals, indicating the subinter-
vals with ai = [ti−1, ti), for i = 1, . . . , Na, ∪Na

i=1ai = [t0, T ]. We assume
that, in each interval ai, a realization of the functional-valued random field
{Ys,ai , s ∈ D ⊆ Rd}, which depends on the interval, has been sampled at
a set of locations Wi =

{
sij
}ni

j=1
in the spatial domain D. From now on,

we omit the apex i of the locations, implicitly assuming that they belong to
the set Wi specified by the activation interval ai. Furthermore, each random
field is characterized by a covariogram Cai , which can vary among different
intervals. This mathematical setting describes, for instance, the prediction
of production rates in a conventional reservoir. Indeed, we observe the pro-
duction rates of currently operating wells in the time interval ai, but when
additional wells are drilled, the whole reservoir is perturbed, leading to a
possibly different random field in the next interval ai+1.

Given a location s0 sampled during the interval ai with i ≥ 2, our goal
is to predict the corresponding functional observation, given the functional
data sampled in the interval ai−1. We embed the general Phy-RK predictor
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(7) in this setting, by defining the predictor

Ŷs0,ai = Fs0,ai(θ) + X̂s0,ai , (8)

which is obtained as the sum of the physics-based prediction Fs0,ai(θ) in
the interval ai with wells configuration Wi, and the residual predicted by
functional Universal Kriging (4). In particular, the residual predictor has
the following form

X̂s0,ai =
∑

j:sj∈Wi−1

λ̂j,aiXsj ,ai−1
, (9)

where the optimal weights λ̂j,ai are found by solving problem (5) based on
the information available at the latest step (i.e., Xsj ,aj−1

, sj ∈ Wi−1). Note
that, in general, the intervals ai and ai−1 may have different lengths. This
implies that, if interval ai−1 is longer than interval ai, the prediction X̂s0,ai

will be defined on the whole interval ai. If this is not the case, the prediction
X̂s0,ai will be defined only on the the initial part of the interval ai (i.e., on
an interval domain whose length coincides with that of ai−1). Moreover, we
point out that the residuals at the locations that were observed in ai−1 are
predicted precisely as the observed residuals in the previous time interval,
i.e.,

X̂sj ,ai = Xsj ,ai−1
sj ∈ Wi−1,

due to the interpolating property of Kriging. However, note that, in general,
the Phy-RK prediction Ŷsj ,ai will not coincide with the response Ysj ,ai−1

observed in the previous interval, as the physics-driven prediction Fs0,ai(θ)
evolves along the intervals. In practice, to build predictor (9), we need to
estimate the spatial dependence based on the residuals observed in the in-
terval ai−1. In doing so, we implicitly assume that the covariogram Cai does
not abruptly vary between consecutive intervals. In fact, the viability of us-
ing the predictive model (8) in a sequential framework itself depends on the
stability of the process over time – both in terms of the physics-based model
and residuals field.

2.3. Physics-based Residual Kriging with sequential update

If the residuals among consecutive activation intervals exhibit a strong
variation, due for instance to the strong evolutionary nature of the consid-
ered problem (as the one illustrated in Section 5), predictor (8) might be
unable to adapt to the dynamic of the process itself. In this case, we may
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introduce additional terms, dynamically updated, to further correct the pre-
dictive model based on the misfit between observations and predictions in
the previous activation interval. We illustrate the construction of such cor-
rective terms in the first activation time intervals, the following intervals
representing just a straightforward generalization.

Predictor (8) can be used to produce predictions starting from the second
interval a2, as one needs to observe the residuals in a1 to be able to predict
them in a2. If we now move to the interval a3, we can predict two residuals:
(i) the residuals from the physical model X (1)

sj ,a2 , and (ii) the residuals from
the predictive model used to carry out the forecast at the previous step, i.e,
the one formulated in (8). These latter residuals, denoted as X (2)

sj ,a2 , are infor-
mative on the possible misfit of the latest available predictive model which
may represent repeatable effects potentially observable in successive time in-
stants. In fact, the second-order residuals X (2)

sj ,a2 can be used to update the
predictions in the third activation interval, correcting them by the observed
misfits in the second interval.

Thus, for third activation interval, we can build a corrected predictor

Ŷs0,a3 = Fs0,a3 + X̂ (1)
s0,a3

+ X̂ (2)
s0,a3

,

where the two predicted residuals X̂ (1)
s0,a3 and X̂ (2)

s0,a3 are obtained through
functional Kriging of the latest available observations of first- and second-
order residuals, i.e.,

X̂ (1)
s0,a3

=
∑

j:sj∈W2

λ̂
(1)
j,a3
X (1)

sj ,a2
,

X̂ (2)
s0,a3

=
∑

j:sj∈W2

λ̂
(2)
j,a3
X (2)

sj ,a2
,

with X (1)
sj ,a2 = Ysj ,a2 −Fsj ,a2 and X (2)

sj ,a2 = Ysj ,a2 −Fsj ,a2 − X̂
(1)
sj ,a2 . In practice,

one can decide how complex the predictive model should be (i.e., how many
residuals to include): (i) no residuals (Phy-RK-0), i.e. the prediction is
determined by the physical model only (the only possible predictive model
at step a1), (ii) one residual (Phy-RK-1), correcting the prediction of the
physical model with first-order residuals (the complete predictive model at
step a2) or (iii) two residuals (Phy-RK-2), further correcting the predictive
model in a2 with second-order residuals. This set of choices is depicted in
Figure 1, where these possibilities at a generic location s0 are shown. In the
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first interval, the only possible prediction is Fs0,a1 , i.e., the physical model
prediction; no residuals can be used (Phy-RK-0, green line). At the end of
the first interval, having measured the functional observation in s0, Ys0,a1 ,
one can note, for instance, that the physical model actually overestimates the
response in a1, producing a (positive) residual (represented as green arrows).
On this basis, one can choose whether to correct the predictive model based
on the physics by including the first order residuals. This would yield a
corrected prediction (Phy-RK-1, blue line). In the third interval, one can
choose between the physical model (Phy-RK-0, green line), one residual (Phy-
RK-1, blue line) and two residuals (Phy-RK-2, dark yellow line) predictions,
based on the observed misfit between the observations and the two possible
predictive models at the previous step (Phy-RK-0, or Phy-RK-1). These
residuals are represented as colored arrows (green for Phy-RK-0, blue for
Phy-RK-1).

It is then clear that, at each interval, an additional residual is observed.
Indeed, at the end of the i-th interval, one observes residuals up to order i,
although up to (i− 1) residuals could be used for the prediction in the same
interval, because the residuals prediction at interval ai was based only on the
residuals available at the end of ai−1. Note also that the residuals used for
prediction at the i-th interval are those available at the latest interval (i−1),
and not those at previous intervals. Indeed, {Xs1 , . . . ,Xsn} are here inter-
preted as the residuals of the predictive models which can be used to perform
prediction, rather than the residuals of the actual previous predictions. This
is consistent with the dynamic modeling of the system, according to which
previous observations of the residuals become soon obsolete as the schedule
proceeds, and thus, poorly informative due to the phenomenon dynamics.

Iterating the same argument in the following intervals by adding higher-
order residual terms as soon as they become available, the predictor at the
i-th step can be defined as

Ŷs0,ai = Fs0,ai +

Ki∑
k=1

X̂ (k)
s0,ai

, (10)

whereKi ≤ i−1 is the number of residual terms modeled in the i-th activation
interval. Note that, if no residual terms (hereafter denoted by Ki = 0) are
taken into account, the prediction coincides with that generated by the sole
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physical model. Each residual is predicted as

X̂ (k)
s0,ai

=
∑

j:sj∈Wi−1

λ̂
(k)
j,ai
X (k)

sj ,ai−1
,

where the observed residuals are given by

X (k)
s0,ai−1

= Ys0,ai−1
−Fs0,ai−1

−
k−1∑
l=1

X̂ (l)
s0,ai−1

.

The optimal weights λ̂
(k)
j,ai

are found by solving the Kriging system (6), in
which the covariogram Cai is estimated from the residuals observed in the
previous interval. Thus, it can differ among different time intervals and
different residual terms.

The parameter Ki is chosen by selecting the number of residuals which
produces the lowest average error in the previous interval. This procedure
allows us to avoid overfitting, as, in a sequential framework, the choice of Ki

in ai is based on a test set disjoint from the available observations (i.e., the
observations in the interval ai−1). Thus, Ki might vary among the intervals,
as we further discuss in Sections 4 and 5.

3. Prediction of production rates in a mature reservoir

In this work, we apply the Physics-based Residual Kriging methodology
illustrated in Section 2 for the prediction of liquid production rates of wells
operating in a mature reservoir. In particular, having observed the produc-
tion rates, which are time-dependent functional data, of some operating wells
during a certain time interval, our goal is to forecast the production rates of
existing and newly drilled wells in a subsequent time interval.

Referring to the mathematical formulation presented in Subsection 2.3,
we thus indicate with Ys,ai the production rate over time of a well placed at
location s ∈ D operating in interval ai, and with Fs,ai(θ) the production rate
predicted by a physical model suitable for the specific application, as those
described in Subsections 4.2 and 5.2. Besides the physical parameters, the
vector θ includes the wells drilling schedule. We assume that wells are open
or closed in Na time instants, (t0, . . . , tNa−1), and, within any time interval
ai = [ti−1, ti), for i = 1, . . . , Na, the well configuration does not change. Wi

is the set of locations of the active producers in the interval ai.
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Observation Physics prediction One residual prediction Two residuals prediction

First interval Second interval Third interval

Figure 1: Graphical illustration of model (10) in the first three activation time intervals.
Arrows represent the observed residuals in each time interval, computed with respect to
the model of the corresponding color.

In the context of a mature field, historical data are abundant, making
possible to exploit spatial dependence among production rates in the predic-
tion step. We present two applications in Sections 4 and 5. In both cases,
we aim to predict the production rates of a single-phase reservoir. However,
in the first case the production is driven by injection, whereas in the second
case the production is driven by rock compaction. For each case, the data
are simulated using a reservoir simulator (OPM, Flemisch et al. (2011) or
ECLIPSE, Schlumberger (2019.3)), as described in Subsections 4.1 and 5.1.

3.1. Governing equations of single-phase flow in a reservoir

We present the single phase formulation, which provides the basis for the
physical models used in the two test cases described in Sections 4 and 5. A
petroleum reservoir is a sub-surface region containing hydrocarbons trapped
in porous rocks. Although a reservoir usually contains water, oil and, depend-
ing on the temperature and pressure conditions, gas, in this work we restrict
our analysis to single-phase isothermal flow conditions where production oc-
curs because fluid is injected in the reservoir or because a combination of
fluid expansion and rock compaction provides the necessary energy, see Dake
(1978) for a review of these mechanisms. Neglecting poromechanics coupling,
a single phase fluids flow in the reservoir is modeled according to the mass
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conservation PDE

−∇ · (ρu)− m̃ =
∂

∂t
(φρ),

where ρ = ρ(p) is the mass density of the fluid, φ = φ(p) is the porosity, p is
the pressure, u is the Darcy’s velocity which can be related to fluid pressure,
according to Bear (2013), by the Darcy’s equation

u = − 1

µ
k · ∇p, (11)

where µ = µ(p) is the fluid viscosity and k is the permeability tensor, which
is a local rock property that measures the ability of the fluid to flow through
it. Combining equations (22) and (23) we get the pressure equation

∇ ·
(
ρ

µ
k · ∇p

)
− m̃ =

∂

∂t
(φρ). (12)

Solving Equation (12) for pressure requires the definition of a thermody-
namic model, ρ = ρ(p), and a compaction model, φ = φ(p). These closure
models depend on rock and fluid characteristics and are, thus, case-specific.
Then, the time evolution of the fluid can be simulated provided that initial
and boundary conditions are defined. In this work, we assume, as initial
conditions, the equilibrium state of the reservoir before production and, as
boundary conditions, that our reservoir is completely sealed from the rest of
the subsurface. Furthermore, the mass source rate m̃ can be written as the
sum of the contributions of the Nw wells, i.e. m̃ =

∑Nw

j=1 m̃j(t)δ(s − swj ),
where δ(s) is the Dirac’s function, and swj ∈ D, m̃j(t) are the positions and
the mass rate produced/injected at time t at the j-th well. We assume that,
in the development of the field, new wells can be drilled or existing wells can
be closed in the reservoir.

The solution of equation (12) can be numerically computed under spe-
cific initial and boundary conditions and proper closure relation using a gen-
eral purpose numerical simulator, such as OPM (Flemisch et al., 2011) or
ECLIPSE (Schlumberger, 2019.3), which essentially follows the techniques
described in Aziz and Settari (1979); Lie (2019); Peaceman (1977): finite
volume discretization of mass conservation equations on hexaedrons, fully
implicit time-marching scheme for average fluid properties (cell pressure val-
ues) and well models based on the Peaceman’s formulation (Peaceman et al.,
1983) which links inflow/outflow rates, cell pressure and bottom-hole fluid
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pressure pwf . In this work, we assume that the solution provided by the
simulator for a given discretization can be used as the reference, i.e. the
physically correct behavior of the reservoir, while approximated solutions
are developed for the term Fs0,ai(θ).

4. Single phase flow driven by injection

In this first test case, we consider a single-phase flow in a reservoir, in
which the production is driven by fluid injection. Albeit being not realistic
in the context of hydrocarbon recovery, as the liquid production is usually
not driven by the injection of the same fluid, this situation can appear in the
context of groundwater aquifer management (Jakeman et al., 2016) and it
allows us to show the effectiveness of our approach in a relatively simple test
case.

4.1. Dataset description

We consider a synthetic reservoir of dimensions 25600ft, 25600ft and 50ft
along x-axis, y-axis and z-axis respectively, discretized with 128 × 128 × 1
cells, whose dimensions are 200ft, 200ft and 50ft, respectively. We generate
the reservoir porosity φ0 as the logistic transformation of a realization of a
random field with isotropic spherical variogram with range R = 4000 ft, sill
σ2 = 0.1 and zero nugget, which was linearly scaled in the range [0.1, 0.3]. We
build the permeability tensor k as diagonal with components kx = ky = k,
where k, expressed in milliDarcy, is obtained as log k = log 40 + 5(φ0 − 0.1).

The resulting porosity and permeability fields are reported in the supple-
mentary material in Figure S1. In this case the compaction model is simply
φ = φ0[1 + crock(p− prock)] while the water density is ρ = ρ0[1 + cw(p− pw)].
More specifically, crock = 9.8141 · 10−7 psi−1, cw = 2.74 · 10−6 psi−1, prock =
5801.51 psi and pw = 3118.3 psi. Fluid viscosity µ is set to µ = 0.39851
cP. A total number of 256 injectors and 225 producers are drilled in the
reservoir in Na = 8 activation time intervals of equal length. During each
activation instant ti = 0, . . . , 7, a group of injectors and producers is drilled,
adding them to the already operating wells. The wells are placed according
to a five-spot pattern, and their activation schedule is shown in Figure 2.
We impose a bottom hole pressure of 3000 psi for producers and of 5000 psi
for injectors. The reservoir was implemented in OPM, obtaining the liquid
production rates shown in Figure 2.
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Figure 2: Simulated production rates and schedule for the reservoir described in Section
4.1. Left panel: blue lines represent the production rates corresponding to newly drilled
wells in each activation interval, gray lines correspond to wells already operating. Right
panel: blue circles represent the newly drilled producers, red crosses the newly drilled
injectors and grey symbols the already operating wells

4.2. Physical model

We now derive the physical model which shall be employed for this test
case, analogously to Aziz and Settari (1979); Peaceman (1977). Even though
fluid and rock in the reference model simulated using OPM are compressible,
in the logic of our method we implement an approximate solution where fluid
and rock are incompressible, so that ρ is constant and φ does not play any
role. Thus, equation (12) reduces to{

∇ ·
(

1
µ
k · ∇p

)
= m̃/ρ = q in D

∂np = 0 on ∂D
, (13)

which can be seen as a conservation equation for the fluid volume at reser-
voir conditions. The boundary condition ensures zero net flow through the
reservoir boundaries.

Equation (13) is solved by means of a finite volume discretization tech-
nique (Aziz and Settari, 1979). We employ a two-dimensional uniform grid,
which consists of rectangular blocks of dimensions (∆x,∆y) and we indi-
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cate with H the reservoir thickness. We use the same spatial discretiza-
tion as the reservoir simulator described in Subsection 4.1, thus (∆x,∆y) =
(200ft, 200ft) and H = 50ft. The numerical method results in solving a
linear system of the form

Ap = b, (14)

where A is a pentadiagonal matrix, p contains the unknown pressure nu-
merical approximation in each block and b is the right-hand side which is
zero everywhere except for the elements corresponding to blocks containing
a well. Details are given in the supplementary material, Section S1. The lin-
ear system (14) gives, in each activation interval, an approximation p of the
reservoir pressure p. Then, the prediction Fs0,ai(θ) is given by (13), where,
with reference to equation (2), u(θ) is approximated by the vector p and
Fs is the Peaceman’s well model (Peaceman et al., 1983) applied to the ap-
proximated pressure p in the well location. The model parameters θ are the
permeability tensor k, the fluid viscosity µ, the active wells locations swj , the
wells connection factors Tw and the bottom hole pressures pbhp

w . In this test
case, physical model predictions Fs0,ai are constant in the whole activation
interval, being equation (13) time-independent.

4.3. Results and discussion

We now apply Phy-RK for the prediction of the liquid production rates
simulated as described in Subsection 4.1, employing the physical model de-
scribed in Subsection 4.2. For each activation phase, we compute the physi-
cal model predictions solving equation (13). The residuals are then predicted
based only on the residuals of the previous activation interval according to
model (10). We point out that, for each interval, we ignore the initial part
of the data, i.e. the part which connects zero to the first observed value in
the interval, as it is due only to the linear interpolation we perform on the
simulated data to obtain a uniform time sampling.

We measure the relative error E between the observed data Ys0,ai and

the prediction Ŷs0,ai in the activation interval ai as

Ei =

∫
ai
|Ys0,ai − Ŷs0,ai |∫
ai
|Ys0,ai |

.

The relative error Ei is dimensionless and expresses the cumulative absolute
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difference between the observed and the predicted rates, normalized by the
total cumulative observed production.

We compare four approaches derived from the general predictor (10). The
first one is the pure Ordinary Kriging (OK), in which functional Kriging, with
only the intercept in the drift linear model (3), is employed, setting to zero the
physical model predictions. The second one is the pure physical model (Phy),
in which the predictions are Fs0,ai , setting to zero the predicted residuals.
Moreover, two versions of the Physics-based Residual Kriging are tested, in
which the method described in Subsection 2.2 is applied with two different
drift terms respectively: for the Physics-based Residual Ordinary Kriging
(Phy-ROK) we use only the intercept as regressor, thus ms = β0, whereas
for the Physics-based Residual Universal Kriging (Phy-RUK) the drift ms =
β0 + β1ps, ps being the numerical solution of the physical model (13) in the
current interval ai evaluated at location s. Note that the approaches can be
compared starting from the second activation interval. As we observe the
production rates in following intervals, we could use Phy-RK with increasing
number of residual terms. Selection of the number Ki of residuals involved
in predictor (10) for interval ai is done by looking at the best predictor for
the previous interval ai−1. This leads to Ki = 1 in all the intervals, for both
Phy-ROK and Phy-RUK (see Figure 3).

Rates predicted by Phy-RUK are shown in Figure S3 in the supplemen-
tary material, exhibiting a great agreement with the observations. Figure 4a
displays the boxplots of the relative errors for each activation phase, com-
paring the different approaches. We note that, in this example, Phy has
a lower prediction error than OK. However, combining the two approaches
in the Phy-RK leads to remarkably lower errors. In particular, we observe
that Phy-RUK, which uses the pressure as regressor, leads to consistently
lower errors, showing that it can effectively exploit some information from
the physical model in the geostatistical part of the model. Furthermore, we
point out that the errors tend to be lower in the last activation intervals,
when functional Kriging can take advantage from a higher number of ob-
servations. Note that, thanks to the sequential nature of our problem, we
do not need cross-validation to select, among the four options, the model to
employ in each interval. Indeed, we can choose the one that gives the lowest
average relative error in the previous interval, assuming that there are no
strong variations in the process that generates the data (both the physics
and the stochastic process of the residuals) between consecutive time inter-
vals. According to this criterion, Phy-RUK results to be the best model in
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Figure 3: Relative prediction error boxplots produced by Phy-ROK (left panel) and Phy-
RUK (right panel) with different orders of residual terms, for the case described in Section
4. The boxplots with red outlines are the ones of the models selected for their correspond-
ing interval on the base of the lowest mean relative error in the previous time interval

all the intervals.

4.4. Robustness to the compressibility coefficient

We now want to investigate the robustness of our approach to changes
in the fluid compressibility cw, generating a new set of production data with
OPM – as described in Section 4.1 – with a higher fluid compressibility.
This analysis can be used to evaluate the ability of the method to correct a
more and more approximated physics in the simplified modeling. We here
discuss three scenarios, in which the data are simulated multiplying the fluid
compressibility by a factor of 10, 100 and 1000, with a baseline compressibility
of 2.74 · 10−6 psi−1.

Figure 4 shows the relative errors boxplots varying the water compress-
ibility (the other cases are reported in the supplementary material, Figure
S4). We observe that the physical models predictions Fs0,ai are unreliable
when the water compressibility is misspecified. However when the predictions
Fs0,ai are employed in the framework of the Phy-ROK and Phy-RUK, they
still significantly contribute to decrease the errors. Furthermore, we note
that the errors increase when the compressibility increases. In correspon-
dence of cw = 2.74 · 10−3 psi−1, the OK approach produces errors which are
comparable to Physics-based Residual Kriging. This suggests that, when the
physical model becomes too inaccurate, there is no value-added in consider-
ing the term Fs0,ai in model (8), but the residual modelization can partially
correct the predictions. Concerning this aspect, using a spatial regression
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(a) cw = 2.74 · 10−6 psi−1
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(b) cw = 2.74 · 10−3 psi−1

Figure 4: Relative errors boxplots of the predictions for the case described in Section 4
produced by OK, Phy, Phy-ROK and Phy-RUK varying the fluid compressibility cw. Note
that the y-axis is represented on a log scale

model with differential penalization (SR-PDE, Arnone et al. (2019)), with an
inaccurate physics would lead to worse predictions than a regression model
without physics penalization. Indeed, in such a framework the functional
data would be modeled as

Ysj = f 0
sj

+ εj, (15)

where f 0 is a spatial field and ε a zero-mean residual, independent of the other
residuals. The field f 0 is then estimated minimizing the following functional

Jai(f) =

ni∑
j=1

∫
ai

(
fsj − Ysj

)2
+ λ

∫
ai

∫
D

(∂f/∂t+ Lf − u)2 , (16)

where λ is a smoothing parameter, and ∂f/∂t+Lf = u is the time-dependent
PDE that expresses the prior knowledge on the phenomenon under study.
When the physics is misspecified in (15)-(16), the field estimated via SR-
PDE is biased towards it, leading to worse predictions than a pure regression
model. Instead, we showed that Phy-RK may benefit also from such an
imprecise physical model, thanks to the geostatistical modeling of the residual
field Xs.
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pressure 386 886 1386 1886 2386 2886 3386 3886
η 0.776 0.778 0.779 0.78 0.79 0.803 0.835 0.897

pressure 4386 4886 5386 5886 6386 6886 7386 7886
η 0.937 0.954 0.963 0.974 0.984 0.992 1 1.002

Table 1: Porosity multiplier for different values of reservoir pressure.

4.5. Permeability field degradation

Another important aspect to investigate is the partial knowledge of the
parameters that play a role in the reservoir dynamics. We now assume that
the permeability field is only partially known and we analyze two different
scenarios. In the first one, we assume that the permeability field is corrupted
by a spatially dependent noise, whereas in the second one, the permeability
field is known only at the active well locations and the whole permeability
field is obtained using scalar Kriging. In both the cases, Phy-ROK and
Phy-RUK prove to be the best predictors, as discussed in details in the
supplementary Section S2.

5. Single-phase flow driven by rock compaction

In the second test case, we deal with a single-phase flow in a reservoir
which can be developed under primary depletion because production is sup-
ported firstly by rock compaction and then by fluid expansion, see Dake
(1978). This problem idealizes typical production behavior in many real
fields, where, for very long periods of time, production is solely due to the
capability of the rock to compact and then provide energy to the fluid, see
for instance the Ekofisk field (Sulak et al., 1991), the Valhall Field (Sulak
et al., 1991) and a large part of the turbidite reservoirs in the Gulf of Mexico,
(Morgenthaler et al., 2012).

5.1. Dataset description

We consider the same reservoir described in Subsection 4.1 in terms of
geometry and petrophysical properties. The rock is considered to be com-
pressible, with a porosity that depends on the pressure as φ(p) = φ0η(p),
where φ0 is the porosity at the reference pressure 7386 psi and η(p) is a
pressure-dependent porosity multiplier, reported in Table 1. The fluid com-
pressibility is set to 3.13 · 10−4 psi−1 and an initial reservoir pressure of 7000
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psi is prescribed. During Na = 8 activation intervals, 100 producers are in-
crementally drilled in the reservoir, according to Figure 5, and they operate
at a constant bottom hole pressure of 3000 psi. We implemented the reser-
voir setting in ECLIPSE, getting the observations of the production rates
depicted in Figure 5.
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Figure 5: Simulated production rates and schedule for the reservoir described in Section
5.1. Left panel: blue lines represent the rates corresponding to newly drilled wells in each
activation interval, gray lines correspond to wells already operating. Right panel: blue
circles represent the newly drilled producers and grey circles the already operating ones

5.2. Physical model

We use a physical model which takes into account the rock compression,
but in a simplified manner, whereas the fluid compression is not modeled.
Starting from equation (12), we assume a constant fluid density ρ and a linear
relation between porosity and pressure, with crock constant in the considered
time interval, φ = φ0[1+crock(p−prock)], where prock is the reference pressure,
obtaining the following conservation equation

∇ ·
(

1

µ
k · ∇p

)
= φ0crock

∂p

∂t
+ q. (17)

Then, discretizing equation (17), on a Cartesian grid, analogously to Subsec-
tion 4.2, and adding the implicit discretization of the temporal derivative of
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time step ∆t, we end up with the following linear system, where the unknown
is the discretized pressure at time t+ ∆t

(A+D)pt+∆t = Dpt + b.

A and the vector b are defined according to (14), whereas D is a diagonal
matrix, whose elements are Dii = Vi,jφ0crock/∆t. Thus, we need to solve a
linear system at each time step, starting from the initial pressure pai0 . The
spatial discretization (∆x,∆y) is set to (200ft, 200ft), with a reservoir thick-
ness H = 50ft. The time step ∆t is set to 28.95 days (which means we need
25 steps to cover each activation interval ai) and we prescribe an initial con-
dition pa10 = 7000 psi for the first time interval. In order to obtain a physical
model which produces meaningful predictions, we consider a constant rock
compressibility in each time interval ai equal to the sum of the fluid com-
pressibility and the derivative of the function η(p) evaluated at the initial
pressure pai0 of each interval.

5.3. Results and discussion

For this problem, we apply Physics-based Residual Kriging analogously
as in the first application, described in Subsection 4.3. We compare the same
four approaches, namely, OK, Phy, Phy-ROK and Phy-RUK. In the case of
Phy-RUK, the pressure computed solving equation (17), averaged over the
i-th time interval, is used as covariate for the drift term. As in the first test
case, we select the optimal number of residuals Ki in each interval as the
one that produced the lowest average relative error in the previous interval,
according to Figure S5 in the supplementary material. A major difference
is in the resulting choice of the number of residual terms Ki. Indeed, in
this case, it is often convenient to select more than one residual term (see
Table 2). Note that selected Ki is often coherent between the Phy-ROK and
Phy-RUK approaches, except for slight discrepancies in the fourth and the
sixth intervals. In the following, we assume that, in each time interval, the
number of employed residual terms is chosen according to Table 2.

The Phy-RK method leads to much lower errors than a pure data-driven
or pure-physical approach (see Figure 6a). In fact, the Phy-RUK results
to be the best predictor in the first intervals, whereas in the last one the
best one is Phy-ROK. This is probably due to degradation of the physical
model predictions as time advances, leading to a worse reservoir pressure
approximation, impacting the Phy-RUK performances. Note also that the
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Interval OK Phy Phy-ROK Phy-RUK

2nd K2 - 0 1 1
E: mean(s.d.) 0.524 (0.288) 0.271 (0.035) 0.128 (0.036) 0.036 (0.015)

3rd K3 - 0 1 1
E: mean(s.d.) 0.900 (0.426) 0.157 (0.031) 0.161 (0.040) 0.033 (0.011)

4th K4 - 0 2 1
E: mean(s.d.) 1.068 (0.359) 0.062 (0.017) 0.049 (0.032) 0.033 (0.019)

5th K5 - 0 2 2
E: mean(s.d.) 1.268 (0.335) 0.078 (0.018) 0.051 (0.023) 0.120 (0.021)

6th K6 - 0 2 0
E: mean(s.d.) 1.859 (0.549) 0.392 (0.085) 0.132 (0.061) 0.392 (0.085)

7th K7 - 0 3 3
E: mean(s.d.) 2.639 (0.454) 0.862 (0.141) 0.104 (0.049) 0.249 (0.036)

8th K8 - 0 2 2
E: mean(s.d.) 3.984 (0.725) 1.502 (0.172) 0.030 (0.025) 0.097 (0.028)

Table 2: Optimal residual terms number Ki and mean and standard deviation of the
relative error Ei in each interval for OK, Phy, Phy-ROK and Phy-RUK

chosen Ki for prediction (marked as “Selected model” in Figure 6a) is always
optimal, except for the fourth interval, where the best model would be Phy-
ROK but Phy-RUK is selected instead. In any case, the selected Phy-RK
models result in a huge improvement over the pure geostatistical approach
(OK) and, except for the fourth interval, also over the pure physical approach
(Phy). In Figure 6b we show the predictions computed by the selected best
models in each interval for this test case, noting a great agreement between
predictions and observations.
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Figure 6: (a) Relative errors boxplots of the predictions produced by OK, Phy, Phy-ROK
and Phy-RUK. (b) Observed rates and rates predicted by the selected models for the case
described in Section 5
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6. Conclusions

In this work, we presented the Physics-based Residual Kriging method,
a novel approach for geostatistical problems in presence of prior information
expressed by a physical model. As further extension, we formulated it for
sequential problems, where the Physics-based Residual Kriging predictor can
be incrementally enriched by adding residual terms at each activation time
interval. We applied this approach for the prediction of production rates in
a mature reservoir. With two examples, we showed that this approach leads
to remarkably lower prediction errors when compared to a pure geostatistical
approach or to a pure physical model. Furthermore, we tested the robustness
of our approach to changes or partial knowledge of the physical model pa-
rameters. Our study shows that a Physics-based Residual Kriging approach
is indeed beneficial also when an inaccurate physical model is employed in its
formulation. For all these reasons, Phy-RK represents a valuable approach to
geostatistical problems, whenever a (possibly approximated) physical model
is available.

As future research, we plan to apply the Phy-RK methodology with se-
quential update to more realistic reservoirs, where two or three phases flows
make the underlying physics more complex. In these contexts, one might
avoid the burden of a 3D full-physics simulation, by employing a surrogate
model, e.g. INSIM (Zhao et al., 2015) or FlowNet (Kiærr et al., 2020), as
the physics model term within Phy-RK approach.
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1. Physical model

We here describe the numerical method used to solve the physical model
for the test case described in Subsection 4.1, i.e.{

∇ ·
(

1
µ
k · ∇p

)
= m̃/ρ = q in D

∂np = 0 on ∂D
, (1)

which is a conservation equation for the fluid volume at reservoir conditions.
The boundary condition ensures zero net flow through the reservoir bound-
aries.

Equation (1) is solved by means of a finite volume discretization tech-
nique. We employ a two-dimensional uniform grid, which consists of rectan-
gular blocks of dimensions (∆x,∆y) and we indicate with H the reservoir
thickness. Indexing the blocks as (i, j), for each of the Nh cells, the discrete
volume balance reads as follows

vi−1/2,j + vi+1/2,j + vi,j−1/2 + vi,j+1/2 = qwi,j,
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where the terms on the left are the reservoir volumes fluxes through the four
block edges and the term qwi,j is the volumetric source/sink, present only if
a well is located in the block. Integrating the Darcy’s law on the cartesian
grid, the volume flux vi+1/2,j reads as

vi+1/2,j =
Γi+1/2,j

µ
(pi+1,j − pi,j),

where pi,j is the discretized pressure in block (i, j) and the transmissibility
Γi+1/2,j is equal to

Γi+1/2,j = ki+1/2,j
∆yH

∆x
=

2

1/ki,j + 1/ki+1,j

∆yH

∆x
,

with the other volume fluxes treated in an analogous way. If a well is com-
pleted in cell (i, j), its net flow rate is given by qwi,j = Twi,j(pi,j − pwbhp)/µ. The
quantity Twi,j is the well connection factor, which is approximated, according
to Peaceman’s well model, as:

Twi,j =
2πHki,j
log( r0

rw
)
,

where rw is the physical radius of the well (0.625 feet in our case) and r0 is
the Peaceman radius of the cell, equal to 0.198 ·∆x for isotropic cells. Then,
assuming wells are under pressure control, we end up with a linear system of
the form

Ap = b, (2)

where A ∈ RNh×Nh is a pentadiagonal matrix, p ∈ RNh contains the unknown
pressure numerical approximation in each block and b ∈ RNh is the right-
hand side which is zero everywhere except for the elements corresponding
to blocks containing a well. The linear system (2) gives, in each activation
interval, an approximation p of the reservoir pressure p.

2. Permeability field degradation

Concerning the test case described in Subsection 4.1, we here investigate
how the partial knowledge of the parameters that play a role in the reservoir
dynamics affects the predictions. We now suppose that the permeability
field is only partially known and we analyze two different scenarios. In the

2



first one, we assume that the permeability field is corrupted by a spatially
dependent noise, whereas in the second one, the permeability field is known
only at the active well locations and the whole permeability field is obtained
using scalar Kriging.

More in details, in the first scenario, we assume that the permeability
field being used in the physical model is the sum of the original permeability
(reported in Figure 1) and a spatially dependent noise. The noise is here
generated as the realization of a Gaussian random field with spherical var-
iogram without nugget, having range R = 2000 ft and sill σ2 = 400 mD2.
This results in a maximum absolute variation of 40 mD in the permeability
values. Figure 2a shows the relative errors boxplots obtained in this scenario.
We note that adding noise has a considerable impact on the physical model
predictions. However the Physics-based Residual Kriging greatly reduces
the errors with respect to the predictions purely physics-based. In this case,
introducing the pressure as regressor does not further lead to substantial
advantages, possibly due to the severe inaccuracy of the physical model.

In the second scenario, we assume that the permeability is known, without
error, only at the locations of the operating wells. At each time interval, the
whole permeability field is obtained using scalar Kriging, and then employed
in the solution of the physical model. Furthermore, in the prediction step,
the residuals of the previous interval are updated solving the physical model
with the permeability field estimated having observed the permeability in
the locations of the wells active in the previous time interval. As shown
in Figure 2b, also in this scenario, a partial knowledge of the permeability
field highly affects the physical model predictions, which are considerably
corrected by Physics-based Residual Kriging. Indeed, even if we show the
errors of all the four methods in each interval, we would employ the one which
exhibits the lowest average relative error in the previous interval, which is
always Physics-based Residual Ordinary Kriging or Physics-based Residual
Universal Kriging.

3. Supplementary figures

3
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Figure 1: Reservoir porosity (left) and permeability (right) for the test cases described in
Sections 4.1 and 5.1
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(a) Noisy permeability field
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(b) Permeability Kriging

Figure 2: Relative errors boxplots of the predictions for the case described in Section
4.1 produced by pure Ordinary Kriging (OK), pure physical model (Phy), Physics-based
Residual Ordinary Kriging (Phy-ROK) and Physics-based Residual Universal Kriging
(Phy-RUK), with pressure as regressor, when the permeability field is corrupted adding
noise (a) and the permeability field is obtained using Kriging (b)
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Figure 3: Observed rate and rates predicted by Phy-RUK for the case described in Section
4
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(a) cw = 2.74 · 10−5 psi−1
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(b) cw = 2.74 · 10−4 psi−1

Figure 4: Relative errors boxplots of the predictions for the case described in Section 4.4
produced by OK, Phy, Phy-ROK and Phy-RUK varying the fluid compressibility cw. Note
that the y-axis is represented on a log scale
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Figure 5: Relative errors boxplots of the predictions for the case described in Section
5.1 produced by Phy, Phy-ROK (a) and Phy-RUK (b), with different numbers of resid-
ual terms. The boxplots with red outlines are the ones of the models selected for their
corresponding interval on the base of the lowest mean relative error in the previous time
interval
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