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Abstract

In this paper we formulate and analyse two non conforming high order
strategies for approximating the solution of elastic wave problems in het-
erogeneous media, namely the Mortar Spectral Element Method and the
Discontinuous Galerkin Spectral Element Method. Starting from a com-
mon variational formulation we make a full comparison of the two tech-
niques from the points of view of accuracy, convergence, grid dispersion
and stability.
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1 Introduction and motivations

During the last decades there has been a growing and intensive research on the
formulation and on the development of new algorithms for the numerical approx-
imation of the elastic wave in the Earth. The possibility of inferring the physical
parameter distribution of the Earth’s substratum, from information provided by
elastic wave propagations, has increased the interest towards computational seis-
mology. Recent developments in this scientific discipline concern with different
numerical strategies as finite differences, finite elements, but the major efforts
apply to spectral element methods (see [26, 28, 22, 31, 46, 17, 30]).
A motivation is that, in geophysical or industrial applications, finite difference
discretizations require very large system of equations to model realistic rock
properties and uniform meshes are needed. On the other hand when finite ele-
ment methods are employed for treating complex geometries, it is necessary to
invert the mass matrix, that can be computationally very expensive.
The reasons for using spectral element based approximations can be summa-
rized in the following lines. Firstly the flexibility in handling complex geome-
tries, retaining the spatial exponential convergence for locally smooth solutions.
Secondly, since spectral element methods are based on the weak formulation
of the elastodynamic equations, they handle naturally both interface continuity
and free boundary conditions, allowing very accurate resolutions of evanescent
interface and surface waves (of major interest in seismology). Finally spectral
element methods retain a high level parallel structure, thus well suited for par-
allel computers.
However when dealing with complex wave phenomena, such as soil-structure
interaction problems or seismic response of sedimentary basins, the geometri-
cal and polynomial flexibility is an important task for simulating correctly the
wave-front field.
For this reason we consider two different non-conforming high-order techniques,
namely the Mortar Spectral Element Method (MSEM), [10, 12], and the Dis-
continuous Galerkin Spectral Element Method (DGSEM), [7, 41, 43], to simu-
late seismic wave propagation in heterogeneous media. In contrast to standard
conforming discretizations, as Spectral Element Method (SEM), [14, 15], these
techniques have the further advantages that they can accommodate discontinu-
ities, not only in the parameters, but also in the wavefield, while preserving the
energy.
Depending on the involved materials it is possible to make a partition of the
computational domain. Then, in each non-overlapping subregion a spectral fi-
nite element discretization is employed. The meshes, constituted by quadrilater-
als or hexahedras, do not have to match between neighbouring subdomains, and
different spectral approximation degrees are allowed in different subdomains.
Therefore, the continuity of the solution at the skeleton of the decomposition is
imposed weakly, either by means of a Lagrange multiplier for the MSEM, or by
penalizing the jumps of displacements at that skeleton in the DGSEM.
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In the present work, starting from a displacement based weak formulation of the
elastodynamic equation, we study the MSEM and DGSEM coupled to second
order time integration scheme, for the point of view of the accuracy, convergence,
grid dispersion and stability.
In this context the grid dispersion criterion determines the greatest number of
nodes per wavelength such that the numerical solution has an acceptable level of
accuracy, while the stability criterion determines the largest time step allowed
for explicit time integration schemes.
A general framework to study the numerical dispersion for the SEM was devel-
oped in [19] and analysed for the acoustic case up to third degree basis functions.
In [45] was given a complete description for the elastic case, based on a Rayleigh
quotient approximation of the eigenvalue problem characterizing the dispersion
relation.
For the DGSEM, the grid dispersion has been analysed in [3, 21]. In partic-
ular in [3] the dispersion and dissipation errors of the acoustic wave equation
in one space dimension are considered using the flux formulation. The results
include third degree polynomial basis functions and conjectures on the exten-
sion to higher degrees are given. Making use of the plane wave analysis, in [21]
a complete description of the grid dispersion properties is carried out for the
acoustic and the elastic case.
For the MSEM it should be noted that, to the best of our knowledge, in the lit-
erature there are no available results for the grid dispersion properties regarding
the elastic wave equation.
For what concerns the stability we remark that the classical numerical approach
to solve a second order initial value problem is the Newmark method [29]. The
Leap-Frog Finite Difference Method is a special case of the former scheme that
is second order accurate, explicit and conditionally stable. This latter method is
the most popular one in seismic modelling [31, 19, 18, 24, 16], but other schemes
of Runge-Kutta or Taylor-Galerkin type are also available [20, 22, 30].
In this work we derive, for the Leap-Frog Method, specific stability bounds link-
ing the time step with the size of the elements and the maximal velocity.
All results obtained are compared to the conforming SEM case.
The organisation of the paper is as follows. After introducing the elastodynamic
problem and its variational formulation in Section 2, we describe in Section 3
the geometrical and functional discretization of the problem within the context
of non conforming approximations. In particular we derive the Mortar and the
Discontinuous Galerkin Spectral Formulations. The algebraic aspects of the two
methods are then compared in Section 4. Section 5 is devoted to the grid dis-
persion and stability analysis, completely carried out for 2-D case. In Section
6 we discuss the property of accuracy and convergence of the MSEM and the
DGSEM and finally we present a geophysical application, namely the seismic
response of an alluvial basin.
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2 Problem formulation

Let us consider an elastic medium occupying a finite region Ω ⊂ R
d, d = 2, 3,

with boundary Γ = ∂Ω and unit outward normal n. The boundary is assumed to
be composed of portions ΓD, where the displacement vector u is prescribed, ΓN

where external loads apply, and ΓNR where suitable non-reflecting conditions are
imposed. The portion ΓNR is in fact a fictitious boundary of the computational
domain which is introduced to bound the physical domain for the numerical
approximation of wave propagation problems in unbounded media. We make the
assumptions that either ΓD or ΓN can be empty, ΓD∩ΓN = ∅ and ΓN∩ΓNR = ∅.
Here and in the sequel, an underlying bar denotes matrix or tensor quantities,
while vectors are typed in bold. Having fixed the temporal interval (0, T ), with
T real and positive, the equilibrium equations for an elastic medium, subjected
to an external force f read:





ρ∂ttu−∇ · σ(u) = f , in Ω× (0, T ),

u = 0, on ΓD × (0, T ),

σ(u) · n = t, on ΓN × (0, T ),

non reflecting boundary conditions on ΓNR × (0, T ),

∂tu = u1, in Ω× {0},
u = u0, in Ω× {0},

(1)

where u is the medium displacement vector, σ the stress tensor, t the time
variable and ρ the material density. Without loss of generality (see, for instance,
[38]) we make the following further assumptions on Γ: on ΓD the medium is
rigidly fixed in the space and on ΓN we prescribe surface tractions t. Finally, on
ΓNR non-reflecting boundary conditions are imposed: from the mathematical
point of view, the latter have the effect of introducing a fictitious traction t∗

which is a linear combination of space and time derivatives of the displacement
u (cf. [47, 16], for example). In particular for d = 2, if ΓNR has outward unit
normal n = (nx, ny) and tangential unit vector τ = (τx, τy), the non-reflecting
conditions in coordinate frame {τ ,n} take the form





∂

∂n
(u · n) = − 1

cP

∂

∂t
(u · n) + cS − cP

cP

∂

∂τ
(u · τ ),

∂

∂n
(u · τ ) = − 1

cS

∂

∂t
(u · τ ) + cS − cP

cP

∂

∂τ
(u · n).

(2)

For d = 3 non-reflecting boundary conditions are given by




∂

∂n
(u · n) = − 1

cP

∂

∂t
(u · n) + cS − cP

cP

[
∂

∂τ1
(u · τ1) +

∂

∂τ2
(u · τ2)

]
,

∂

∂n
(u · τ1) = − 1

cS

∂

∂t
(u · τ1) +

cS − cP
cP

∂

∂τ1
(u · n),

∂

∂n
(u · τ2) = − 1

cS

∂

∂t
(u · τ2) +

cS − cP
cP

∂

∂τ2
(u · n),

(3)
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where τ1 and τ2 are two arbitrary mutually orthogonal unit vectors on the plane
orthogonal to n, the normal to ΓNR, such that {τ1, τ2, n} defines a right handed
Cartesian frame.
The quantities cP and cS appearing in (2) and (3) are respectively the compres-
sional and the shear wave velocities, defined as

cP =

√
λ+ 2µ

ρ
and cS =

√
µ

ρ
, (4)

where λ and µ are the Lamé elastic coefficients. We remark that for hetero-
geneous media ρ, λ and µ are bounded functions of the spatial variable, not
necessarily continuous, i.e., ρ, λ and µ ∈ L∞(Ω). We observe that Neumann
type boundary conditions can be simply given by (2) or (3), where the right-
hand side is substituted with the known value of the external load t.
To complete the system in (1), we prescribe initial conditions u0 and u1 for
the displacement and the velocity, respectively. When we consider viscoelastic
materials, see Section 6, we introduce in the system (1) an additional term in
the form of volume forces fvisc = −2ρζu̇ − ρζ2u, where ζ is a suitable decay
factor with dimension inverse of time. Correspondingly, the equation of motion
becomes

ρ∂ttu−∇ · σ(u) = f + fvisc. (5)

The parameter ζ is spatially variable (i.e. piecewise constant), as in [16], in order
to model absorbing regions, thus providing an alternative or a complement to the
absorbing boundary conditions. In other cases, like seismic wave propagation
through heterogeneous media with strong elastic impedance, this model is used
to prevent the onset of non-physical oscillations of the numerical solution.
We consider the strain tensor ε defined as the symmetric gradient of u, i.e.,

ε(u) =
1

2
(∇u+∇u⊤),

so that the stress tensor σ satisfies the constitutive relation (Hooke’s law)

σ(u) = λ∇ · u I + 2µε(u),

where I is the d−dimensional identity tensor. Here and in the sequel we use the
standard notation [1] to define the L2-inner product (·, ·)Ω for scalar, vector and
tensor quantities.
By multiplying the first equation in (1) for a regular enough function v (can-
didate to represent an admissible displacement), integrating by parts over the
domain Ω, using the Green’s formula:

− (∇ · σ(u),v)Ω = (σ(u), ε(v))Ω − (v, σ(u) · n)Γ ,
and imposing the boundary conditions, the variational formulation of (1) reads:
∀t ∈ (0, T ] find u = u(t) ∈ V such that

dtt (ρu,v)Ω +A(u,v)Ω = L(v) ∀v ∈ V, (6)
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where the bilinear form A : V × V → R
d is defined as

A(u,v)Ω = (σ(u), ε(v))Ω ,

and the linear functional L : V → R
d as

L(v) = (t,v)ΓN
+ (t∗,v)ΓNR

+ (f ,v)Ω .

Here V is the Sobolev space V = {v ∈
[
H1(Ω)

]d
: v = 0 on ΓD}, where L2(Ω)

is the space of square integrable functions over Ω and H1(Ω) is the space of

functions in L2(Ω) with gradient in
[
L2(Ω)

]d
. We recall that the bilinear form

A(·, ·) is symmetric, V -elliptic and continuous [40]. These conditions imply that
problem (6) admits a unique solution u ∈ C0((0, T );V ) ∩ C1((0, T ); [L2(Ω)]d)
satisfying stability estimates [13, 40], provided that ρ ∈ L∞(Ω) is a strictly
positive function, and that u0 ∈ V , u1 ∈ [L2(Ω)]d and f ∈ [L2(Ω× (0, T ))]d.
By introducing a finite dimensional space Vδ which is a suitable approximation of
V , the semi-discrete approximation of (6) reads : ∀t ∈ (0, T ] find uδ = uδ(t) ∈ Vδ

such that

dtt (ρuδ,v)Ω +A(uδ,v)Ω = L(v) ∀v ∈ Vδ. (7)

In the next section we will explain how to construct Vδ for two different families
of non-conforming domain decomposition methods, namely, the Mortar Spec-
tral Element Method (MSEM) and the Discontinuous Galerkin Spectral Element
Method (DGSEM). Both methods are well suited to allow: 1) variable approx-
imation orders, that is an elementwise polynomial degree, 2) unstructured and
non-matching meshes, and 3) exponential rates of convergence in case of smooth
solutions, [19].

3 Non-conforming Galerkin Spectral Formulations

In a domain decomposition approach we start by a discretization of the spatial
differential operators in Ω, that relies on a time-independent three-level spatial
decomposition of the domain Ω, as follows. At the first level, we subdivide Ω
into K non overlapping regions Ωk, k = 1, ...,K, such that Ω =

⋃K
k=1Ωk with

Ωk ∩Ωℓ = ∅ if k 6= ℓ and we define the skeleton of this (macro) decomposition as
S =

⋃K
k=1 ∂Ωk \∂Ω. Note that this (macro) decomposition can be geometrically

non-conforming, i.e., for two neighbouring subdomains Ωk, Ωℓ, the interface
γ = ∂Ωk ∩ ∂Ωℓ may not be a complete side (for d = 2) or face (for d = 3) of
Ωk or Ωℓ. Then problem (1) is solved in each Ωk together with transmission
conditions to ensure that the local solution is the restriction to Ωk× (0, T ] of the
global solution. For the elastic problem (1) the transmission conditions read:
(TC1) [[u]] = 0 and (TC2) [[σ]] = 0, where [[ ]] denotes the jump of a quantity
across a given interface.
To get the second level, in each Ωk we introduce a partitioning Thk

, made by

elements Ωj
k (quadrilaterals if d = 2 or hexahedra if d = 3), with typical linear

6



Figure 1: Example of a two dimensional subdomain partitioning. In this case K = 3 and

Ω = Ω1 ∪ Ω2 ∪ Ω3, with Ω1 =
⋃

8

j=1
Ω

j

1, Ω2 =
⋃

3

j=1
Ω

j

2 and Ω3 =
⋃

2

j=1
Ω

j

3.

size hk and Ωk =
⋃Jk

j=1Ω
j
k (see Figure 1). Let us set Ω̂ = (−1, 1)d and suppose

that there exists a suitable invertible mapping F j
k : Ω̂ → Ωj

k with (positive)
Jacobian J

Ωj
k

. This (meso) partition is instead geometrically conforming, thus

the intersection of two elements Ωj
k, Ω

ℓ
k, ℓ 6= j, is either empty, or a vertex, or

an edge, or a face of both Ωj
k and Ωℓ

k. We thus have that

∫

Ωk

f(x)dx =
∑

Ωj
k
∈Thk

∫

Ωj
k

f(x)dx =
∑

Ωj
k
∈Thk

∫

Ω̂
(f ◦ F j

k )(x̂)JΩj
k

(x̂)dx̂.

The third (micro) level will be represented by the so-called Gauss-Lobatto-
Legendre (GLL) points in each mesh element Ωj

k. Let Q̂Nk
(Ω̂) be the space

of functions defined on Ω̂ that are algebraic polynomials of degree less than or
equal to Nk ≥ 2 in each variable x1, ..., xd, and

QNk
(Ωj

k) = {v = v̂ ◦ F j
k

−1
: v̂ ∈ Q̂Nk

(Ω̂)}.

We define the finite dimensional space

Xδ(Ωk) = {vδ ∈ C0(Ωk) : vδ|Ωj
k
∈ QNk

(Ωj
k), ∀Ω

j
k ∈ Thk

},

and finally

Vδ = {vδ ∈
[
L2(Ω)

]d
: vδ|Ωk

∈ [Xδ(Ωk)]
d , ∀k = 1, ...,K : vδ|ΓD

= 0},

where δ = {h,N} with h = (h1, ..., hK ) and N = (N1, ..., NK) K-uplets of
discretization parameters. Each component hk and Nk represents the mesh size
and the degree of the polynomial interpolation in the region Ωk, respectively. In
order to construct a nodal basis for Vδ, we introduce on each element Ωj

k a set
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of interpolation points {pi} and corresponding degrees of freedom which allow
to identify uniquely a generic function in Vδ. We remark the fact that, by the
definition of the space Vδ, the basis functions will not be globally continuous on
the whole domain Ω. In the spectral element approximation, the interpolation
points are the GLL points. On the reference element Ω̂, these points are tensor
product of points defined in the interval [−1, 1] as the zeros of (1−x2)L′

Nk
where

L′
Nk

is the derivative of the Legendre polynomial LNk
. This means that there

existNk+1 points pi for the interpolation of a polynomial of degreeNk in [−1, 1],
[15]. As previously observed, in higher dimensions, the spectral nodes {pi} are
defined on the reference element Ω̂ via tensor product of the one dimensional
distribution, and are then mapped onto the generic element Ωj

k in the physical

space by F j
k . In the SEM, the interpolation points are used also as quadrature

points. Thus, we have

∫

Ω̂
(f ◦ F j

k )(x̂)JΩj
k

(x̂)dx̂ ≈
(Nk+1)d∑

i=1

(f ◦ F j
k )(pi)JΩj

k

(pi)wi,

where wi are the weights of the GLL quadrature formula which is exact for all
(f ◦ F j

k )JΩj
k

∈ Q2Nk−1(Ω̂). The spectral shape functions Ψi ∈ Vδ are defined

as Ψi(pj) = δij , i, j = 1, ..., (Nk + 1)d, where δij is the Kronecker symbol. It is

straightforward to see that the restriction of any spectral function to Ωj
k either

coincides with a Lagrange polynomial or vanishes. Moreover the support of any
shape function is limited to the neighbouring elements if the spectral node lies
on the interface between two or more elements, while it is limited to only one
element for internal nodes.
To introduce the non-conforming Mortar and Discontinuous Galerkin Variational
Formulation, we write the equilibrium equations for a generic Ωk, integrate it
by parts and sum over Ωj

k ∈ Thk
. What we obtain is an equivalent form of the

equation (6): For each t ∈ (0, T ], we now seek for a K-uplet (uδ,1, . . . ,uδ,K)
of functions, one for each subdomain Ωk. Problem (7) is then equivalent to:
∀t ∈ (0, T ] find (uδ,1(t), . . . ,uδ,K(t)) ∈ Vδ such that

K∑

k=1

dtt(ρuδ,k,vk)Ωk
+A(uδ,k,vk)Ωk

+ B(uδ,k,vk)∂Ωk\∂Ω =

K∑

k=1

L(vk)Ωk
, (8)

for all (v1, . . . ,vK) ∈ Vδ, where

A(u,v)Ωk
= (σ(u), ε(v))Ωk

, and B(u,v)∂Ωk\∂Ω = (σ(u) · n,v)∂Ωk\∂Ω. (9)

Depending on the chosen non-conforming approach, the functional space Vδ is
completed by additional conditions on uδ,k, k = 1, . . . ,K, on the skeleton of
the macro decomposition which ensure that uδ,k is the restriction to Ωk of
uδ ∈ H1(Ω)d. The bilinear form B(·, ·) may either be zero or gather all the
contributions (σ(uδ,k) · nk,vk)∂Ωk\∂Ω, k = 1, . . . ,K, depending on the chosen
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Figure 2: Example of non conforming decomposition.

approach. In fact, TC1 is imposed by introducing a weak continuity condi-
tion on S compatible with the considered formulations while TC2 is enforced
strongly. In both situations this lead to a strongly consistent numerical method.
This means that the exact solution satisfies the numerical scheme for each choice
of h and N, [37].
Equation (8) represents the starting point to introduce the Mortar Variational
Formulation and the Discontinuous Variational Formulation. With both for-
mulations we will be able to treat more general situations like (i) geometric
non-conformity and (ii) polynomial degree non-conformity.
In (i) the partitions Tk and Tℓ, of different regions Ωk and Ωℓ can have mesh
sizes hk and hℓ significantly different: in fact, the practical importance of the
proposed methods for elastodynamic problems lies on the possibility of using
computational grids with very different local mesh sizes to take into account
sharp variations in the physical parameters of the media.
Furthermore, the vertices of elements Ωj

k and Ωi
ℓ lying on the skeleton S do not

necessarily have to match, not even in the case hk = hℓ (Figure 2).
In (ii) we use different polynomial approximation degrees in each region to get
higher precision without refining too much the grid. Moreover, as we show in
Section 5, it is evident that high order methods do not significantly suffer from
numerical dispersion. The combination of (i) and (ii) yields approximated solu-
tions that are both numerically accurate and computationally cheap.
Obviously, interface conditions other than those we consider are possible as well:
an intuitive alternative is offered by pointwise matching conditions which require
different spectral solutions to match on a particular set of points lying on S. The
Mortar or Discontinuous Galerkin approach is preferred to the pointwise match-
ing since it brings optimal convergence rate, which is not the case for methods
based on pointwise conditions (see [9] for the elliptic case), without affecting
significantly the computational cost.
In the sequel, we describe in detail the non-conforming methods. To ease the
presentation, we suppose that each partition Thk

of Ωk consists in only one ele-
ment, this means that each region is a spectral element. The more general case
follows from similar arguments.
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3.1 Mortar Spectral Formulation

In this section we introduce the mortar spectral element method for the solution
of (8). The emphasis is on the numerical formulation, implementation and on
the illustration of its flexibility and accuracy. To illustrate the key points, we
consider the free-vertex variant of the MSEM [23, 8]. The constrained-vertex
strategy can be implemented in a similar framework. For this latter technique
the theoretical analysis is given in [10, 9, 32].
The MSEM relaxes the H1-continuity requirements of the conforming spectral-
element method by considering each element (or in the general case each region)
individually and achieving matching or patching conditions through a variational
process. The mortars play the role of gluing the bricks of the spectral construc-
tion. Through the use of mortars, one can also couple domains where spectral
elements are employed with others treated by finite elements [9]. However, in
this context we focus on nonconforming spectral methods.
To begin, we denote by Γℓ

k, ℓ = 1, . . . , 2d, the edges (faces) of each subdomain
Ωk, k = 1, . . . ,K, so that

∂Ωk =

2d⋃

ℓ=1

Γ
ℓ
k.

We then identify the skeleton S as the union of elementary non-empty compo-
nents called mortars (or masters), more precisely

S =
K⋃

k=1

(∂Ωk \ ∂Ω) =
M⋃

m=1

γm, with γm ∩ γn = ∅, if m 6= n,

where each mortar is a whole edge (or face) Γ
ℓ(m)
k(m) of a specific element Ωk(m) and

m is an arbitrary numbering m = 1, . . . ,M , with M a positive integer. Those
edges or faces Γℓ

k that do not coincide with a mortar are called non-mortars (or
slaves) and provide a dual description of the skeleton, as

S =
⋃

mmortar

γ+m =
⋃

nnonmortar

γ−n .

The intersection of the closures of the mortars defines a set of vertices or cross-
points

V = {xq = (γ+r ∩ γ+s ), xq 6∈ γ+m, m = 1, . . . ,M},
where q is an arbitrary numbering q = 1, . . . , V. We define as well the set Ṽ of
virtual vertices (that are not cross-points) as

Ṽ = {x̃q = (γ+
r ∩ γ+s )},

where q is an arbitrary numbering q = 1, . . . , Ṽ (see Figure 3).
We define Λδ(Γ

ℓ
k) = QNk

(Γℓ
k), the space of the traces of functions of Xδ(Ωk) over

Γℓ
k and we also introduce Λ̂δ(Γ

ℓ
k) = QNk−2(Γ

ℓ
k).
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Figure 3: Nonconforming domain decomposition (left) and skeleton structure (right) showing
a cross-point (•), a virtual vertex (�), the mortars (dark continuous lines) and the non-mortars
(dark dashed lines).

We can now define the nonconforming spectral element discretization space Ṽδ

as the space of functions vδ ∈ Vδ that satisfy the following additional mortar
matching condition:

(MC1) let Φ be the mortar function associated with vδ, i.e., a function that is

continuous on S, zero on ∂Ω and such that on each mortar γm = Γ
ℓ(m)
k(m) it

coincides with the restriction of vδ,k = vδ|Ωk
to γm; then, for all indices

(k, ℓ) such that Γℓ
k is contained in S but (k, ℓ) 6= (k(m), ℓ(m)) for all

m = 1, . . . ,M (that is for all indices (k, ℓ) such that Γℓ
k is a non-mortar)

we require that:
∫

Γℓ
k

(vδ,k − Φ) · Φ̂ dγ = 0 ∀Φ̂ ∈ [Λ̂δ(Γ
ℓ
k)]

d (10)

and that
vδ|Ωk

(xq) = Φ(xq), ∀xq ∈ V ∪ Ṽ. (11)

The integral matching condition (10) represents a minimization of the jump of
the functions at internal boundaries with respect to the L2-norm and is the
counterpart in the Mortar framework of condition TC1. The vertex condition
(11) ensures exact continuity at cross-points. The Mortar Spectral Formulation
is obtained by solving in each region Ωk the elastodynamic variational problem
(8) with homogeneous Neumann boundary conditions on S ( σ(u) · n = 0 so
that

∑
k B (u,v)∂Ωk\∂Ω

is identically zero, i.e., TC2 is satisfied), and enforcing
weak continuity of the displacement on S with mortar condition (10).
Thus, the semi-discrete Mortar Spectral Formulation reads: ∀t ∈ (0, T ] find

(uδ,1(t), . . . ,uδ,K(t)) ∈ V mortar
δ such that

K∑

k=1

dtt (ρuδ,k,vk)Ωk
+A(uδ,k,vk)Ωk

=
K∑

k=1

L(vk), (12)
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Ω2

Ω1

Ω2

Ω1

S

S

A

B

C

D

Figure 4: Example of rectangular domain Ω where the surface S separates two different
physical materials. Non overlapping subdomains and meshes (left), holes as non meshed regions
(shadowed areas) and overlapping subdomains and meshes (right).

for all (v1, . . . ,vK) ∈ V mortar
δ where

V mortar
δ = {(v1, . . . ,vK) ∈ Vδ : mortar condition MC1 is satisifed} .

The mortar element method was originally proposed as a non-overlapping
domain decomposition approach, however recently it has been generalized to
the case of overlapping subdomains [27, 33, 39]. The overlapping version may
be quite useful in elastodynamic modelling to treat subdomains with complex
shaped boundaries (see an application in Section 7). Let us consider the two
cases presented in Figure 4.

On the one hand, the rectangular domain Ω is partitioned into two non-
overlapping subdomains Ω1, Ω2 and the skeleton S of the decomposition co-
incides with the separation surface between two different materials such that
elastic waves propagate faster in Ω2 than in Ω1. By adapting the mesh size hk
in each subdomain Ωk according to the propagation velocity of the elastic waves
in the subdomain, one reasonably selects h1 > h2. However, h2 has to be small
enough to follow the shape of S and h1 cannot be too large otherwise some holes
appear close to the surface S. As a consequence, h1 ∼ h2 in a neighbourhood of
S resulting in a large number of unknowns to consider in both subdomains. The
mortar matching condition allows to transfer the displacement from the set of
master interpolation points to the set of slave ones and both sets of points are
located on the (d − 1)-dimensional surface S. Note that numerical results are
independent of the choice of the master and of the slave subdomains.

On the other hand, the rectangular domain Ω is partitioned into two over-
lapping subdomains, namely, Ω1 which is the bottom left-handed region under
the dashed polyhedrical surface AB and Ω2 the top right-handed region over the
solid line S. These two subdomains overlap in the region between S and the
surface AB. In this case, we can have h1 > h2 everywhere in Ω1 and the mortar
matching condition allows to transfer the displacement from the set of interpo-
lation points of Ω1 which are contained in the d-dimensional region bounded
by the polyhedrical surfaces AB and CD to the set of interpolation points of
Ω2 which are on the (d − 1)-dimensional surface S. Indeed, in the overlapping
case, the slave subdomain always covers the master one. Moreover, the slave

12



subdomain is chosen as the one where the mesh best describes the surface S and
the master subdomain contains the source of elastic waves. In the overlapping
case, the matching condition reads:

(MCO1) let Φ be a function that is equal to vδ,k in the d-dimensional elements of
master subdomain Ωk containing a part of S, and zero elsewhere. Then,
for each slave subdomain Ωi such that ∂Ωi ∩ S 6= ∅, we require that:

∫

S
(vδ,i − Φ) · Φ̂ dγ = 0 ∀Φ̂ ∈ [Λδ,i(S)]d (13)

where Λδ,i(S) is the space of the traces over S of functions belonging to
Xδ(Ωi).

3.2 Discontinuous Galerkin Spectral Formulation

Before going into the detail of the Discontinuous Galerkin Spectral Formulation
let us introduce some notation that will be useful in the sequel. Let us subdivide
the skeleton S in elementary components as follows:

S =
M⋃

j=1

γj , with γi ∩ γj = ∅, if i 6= j,

where each element γj = (∂Ωk(j)∩∂Ωℓ(j))\∂Ω, for some different positive integers
k and ℓ: this decomposition is unique (see Figure 5). Next we collect all the
edges (faces if d = 3) in the set FI .
For any pair of neighbouring regions Ωi and Ωj that share a non trivial edge
(face) γ ∈ FI , we denote by vi, σi (resp. vj, σj) the restriction to Ωi (resp. Ωj)
of regular enough functions v, σ. We also denote by ni (resp. nj) the exterior
unit normal to Ωi (resp. Ωj).
On each γ ∈ FI we define the average and jump operators for v and σ as follows:

{v} =
1

2
(vi + vj), [[v]] = vi ⊗ ni + vj ⊗ nj , (14)

and

{σ} =
1

2
(σi + σj), [[σ]] = σi · ni + σj · nj, (15)

where a⊗ b ∈ R
d×d is the tensor with entries (a ⊗ b)ij = aibj, 1 ≤ i, j ≤ d, for

all a,b ∈ R
d.

After integration by parts over each region, the application of jump and av-
erage operators defined in (14)-(15) and the imposition of condition TC2, i.e.,
continuity of traction across S, we deduce that

K∑

k=1

(σ(u) · n,v)∂Ωk\∂Ω
=

M∑

j=1

({σ(u)}, [[v]])γj . (16)
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Figure 5: Nonconforming domain decomposition (left) and skeleton structure (right) showing
the elementary components (dark continuous lines).

Since also TC1 holds, i.e., [[u]] = 0 is zero across S, we can further add other
terms in (16) that penalize and control the jumps of the numerical solution,

M∑

j=1

θ ([[uδ ]], {σ(v)})γj +
M∑

j=1

ηγj ([[uδ ]], [[v]])γj ,

with θ = {−1, 0, 1} and ηγj positive constants depending on the discretization
parameters h and N and on the Lamé coefficients. The terms do not affect
consistency of the method and are added with the purpose of providing more
generality and better stability properties to the scheme (see [41, 42]).
In this context we choose ηγj = α{λ + 2µ}A N2j/hj , where {q}A represents the
harmonic average of the quantity q, defined by {q}A = 2qk(j)qℓ(j)/(qk(j) + qℓ(j)),
Nj = max(Nk(j), Nℓ(j)), hj = min(hk(j), hℓ(j)) and α is a positive constant at
disposal. The semi-discrete DG Formulation reads:
∀t ∈ (0, T ] find uδ = (uδ,1(t), ...,uδ,K(t)) ∈ V DG

δ ≡ Vδ such that

K∑

k=1

(
dtt (ρuδ,v)Ωk

+A(uδ,v)Ωk

)
+

M∑

j=1

B(uδ,v)γj =

K∑

k=1

L(vk), (17)

for all v = (v1, ...,vK) ∈ V DG
δ , with

B(u,v)γj = − ({σ(u)}, [[v]])γj + θ ([[u]], {σ(v)})γj + ηγj ([[u]], [[v]])γj . (18)

Corresponding to different values of θ we obtain different DG schemes, namely:
θ = −1 (resp. θ = 1) leads to the symmetric (resp. non-symmetric NIPG) inte-
rior penalty method SIPG, while θ = 0 corresponds to the so-called incomplete
interior penalty method IIPG (see [7, 41, 42, 43] for more details).
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4 Algebraic formulations and time integration scheme

We discuss here the algebraic formulations of the two non-conforming approaches
presented in the previous sections. In particular we describe how to construct
the linear system coming from the mortar or the DG discretization and subse-
quently we introduce the time integration scheme employed for the numerical
simulations.

4.1 Algebraic formulation of the problem

We consider the elastodynamic equation (1) in a bounded region Ω ⊂ R
2 with

Dirichlet boundary condition, thus ΓD ≡ ∂Ω. To ease the presentation let
also suppose that Ω is partitioned into K non-overlapping spectral elements
Ω1, ...,ΩK so that S =

⋂K
k=1 ∂Ωk \ ΓD. The more general case can be obtained

in a similar manner.
We denote by D =

∑K
k=1(Nk + 1)2 the dimension of each component of Vδ

and we introduce a basis {Ψ1
i ,Ψ

2
i }Di=1 for the finite dimensional space Vδ, where

Ψ1
i =

(
Ψ1

i , 0
)⊤

and Ψ2
i =

(
0,Ψ2

i

)⊤
. Dropping the subscript δ, we write the trial

functions u ∈ Vδ as linear combination of basis functions

u(x, t) =
D∑

j=1

[
Ψ1

j(x)

0

]
U1
j (t) +

D∑

j=1

[
0

Ψ2
j (x)

]
U2
j (t), (19)

Next, we define ak = 1+
∑k−1

j=1(Nj + 1)2 and bk =
∑k

j=1(Nj + 1)2 and we order
the basis functions such that

u|Ωk
=
(
u1, u2

)⊤
|Ωk

=




bk∑

j=ak

Ψ1
jU

1
j,k ,

bk∑

j=ak

Ψ2
jU

2
j,k




⊤

, (20)

for k = 1, ...,K. With the notation just introduced, we write the equation (8) for
any test function Ψℓ

j(x), for ℓ = 1, 2, in the space Vδ and we obtain the following
set of discrete ordinary differential equations:

MÜ+AU+ BU = Fext, (21)

or equivalently

[
M1 0
0 M2

] [
Ü1

Ü2

]
+

[
A1 + B1 A2 + B2

A3 + B3 A4 + B4

] [
U1

U2

]
=

[
Fext,1

Fext,2

]
, (22)

where Ü represents the vector of nodal acceleration and Fext the vector of ex-
ternally applied loads. As a consequence of assumptions on the basis func-
tions, the mass matrices M1 and M2 have a block diagonal structure Mℓ =
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diag(Mℓ
1,M

ℓ
2, ...,M

ℓ
K), for ℓ = 1, 2, where each block Mℓ

k is associated to the
spectral element Ωk and

Mℓ
k(i, j) = (ρΨℓ

j,Ψ
ℓ
i)Ωk

, for i, j = ak, ..., bk. (23)

The matrix A associated to the bilinear form A(·, ·) defined in (9) takes the form

A =

[
A1 A2

A3 A4

]
,

where the block diagonal matrices Aℓ, for ℓ = 1, .., 4 are equal to

Aℓ = diag(Aℓ
1,A

ℓ
2, ...,A

ℓ
K).

The elements of the matrices Aℓ
k, for ℓ = 1, ..., 4 and k = 1, ..,K are defined by

A1
k(i, j) = A(σ(Ψ1

j ), ε(Ψ
1
i ))Ωk

, A2
k(i, j) = A(σ(Ψ2

j ), ε(Ψ
1
i ))Ωk

,

A3
k(i, j) = A(σ(Ψ1

j ), ε(Ψ
2
i ))Ωk

, A4
k(i, j) = A(σ(Ψ2

j ), ε(Ψ
2
i ))Ωk

,

(24)

for i, j = ak, ..., bk. We remark that the matrices M and A are very similar to
those resulting from the discretization of the elastodynamic equation (6) with
conforming methods like Spectral Element Method (see [14, 15]).
The matrix B, associated to the bilinear form B(·, ·) defined in (9), is the one
that takes into account the discontinuity of the numerical solution across the
skeleton S. In the DG approach it is expressed by

B =

[
B1 B2

B3 B4

]
,

where

Bℓ =




Bℓ
1,1 · · · Bℓ

1,K
...

. . .
...

Bℓ
K,1 · · · Bℓ

K,K


 , for ℓ = 1, ..., 4.

In particular the elements of each matrix B1
k,n are defined by:

B1
k,n(i, j) =

∑

γ∈FI

B(Ψ1
j ,Ψ

1
i )γ

=
∑

γ∈FI

−
∫

γ
{σ(Ψ1

j )} : [[Ψ1
i ]]ds+ θ

∫

γ
[[Ψ1

j ]] : {σ(Ψ1
i )}ds

+ηγ

∫

γ
[[Ψ1

j ]] : [[Ψ
1
i ]]ds,
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for i = ak, ..., bk and j = an, ..., bn. The elements of the matrices Bℓ
k,n, for

ℓ = 2, 3, 4 are defined in a similar way.
The situation is a little bit more complicated in the Mortar approach, since the
weak continuity condition across the skeleton S does not appear explicitly in
the variational equation but it is a constraint in the functional space V mortar

δ : in
fact, in the Mortar Variational Formulation, B(·, ·) = 0 implies that B is a null
matrix.
To account for MC1 we need to modify (22) as follows. Without loss of gener-
ality let us suppose that γ−n is a non mortar edge contained in S and moreover
that it is shared by two regions Ωm and Ωn. We call master the side of γ−n
belonging to Ωm and slave the other side. Thus, the mortar conditions MC1
can be recast as:

(i) Φ = um on γ−n ,

(ii)
∫
γ−
n
(un − um) · Φ̂ds = 0 ∀Φ̂ ∈ [Λ̂δ(γ

−
n )]

d.

Now, for the spectral element Ωn (resp. Ωm) we order first the Nn + 1 (resp.
Nm+1) degrees of freedom (d.o.f.) associated to the spectral nodes pi that live
in γ−n and next the d.o.f. associated to the remaining spectral nodes pi. With
this assumptions the restriction of the function un on γ−n is rewritten as

un|
γ
−
n

= (

Nn+1∑

j=1

Ψ1
jU

1
j,n,

Nn+1∑

j=1

Ψ2
jU

2
j,n),

and the same for the function um|
γ
−
n

. Hence, by definition of scalar product, the

mortar condition (ii) becomes

∫

γ−
n

(u1n − u1m)Φ̂1ds+

∫

γ−
n

(u2n − u2m)Φ̂2ds = 0 ∀Φ̂1, Φ̂2 ∈ Λ̂δ(γ
−
n ). (25)

Since the integrals in (25) concern separately the two components of the dis-
placement, we focus the attention onto one of them, dropping the superscripts
to ease the notation. The other one is treated in the same manner. For the slave
side of the mortar we obtain

∫

γ−
n

unΦ̂ids =

Nn+1∑

j=1

Uj,n

∫

γ−
n

ΨjΦ̂ids =

Nn+1∑

j=1

Ri,jUj,n, for i = 1, .., Nn−1, (26)

where Ri,j =
∫
γ−
n
ΨjΦ̂ids. For the master side, using the mortar condition (i),

we have that

∫

γ−
n

umΦ̂ids =

Nm+1∑

j=1

Uj,m

∫

γ−
n

ΦjΦ̂ids =

Nm+1∑

j=1

Pi,jUj,m, for i = 1, .., Nn − 1,

(27)
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with Pi,j =
∫
γ−
n
ΦjΦ̂ids. One may use (26)-(27) to recast the mortar constraint

MC1 in matrix notation

R




U1,n
...

UNn+1,n


 = P




U1,m
...

UNm+1,m




Now, to compute numerically the matrices R and P we use suitable quadrature
formulas depending if we are on the slave or in the master side of the mortar.
We choose Nn+1 GLL nodes to evaluate the integrals

∫
γ−
n
ΨjΦ̂ids such that the

matrix R takes a special structure. In fact, because of this choice the interior part
Rint is diagonal. The first and the last columns are full but they are concerned
only with degrees of freedom (namely, U1,n and UNn+1,n) but do not depend on
the matching conditions. We observe also that the matrix P is full. Then the
local projection operator can be written in a matrix form as




U2,n

..

.
UNn,n


 = R−1

int




P1,1 · · · P1,Nm+1 −R1,1 −R1,Nn+1

.

..
. . .

.

..
.
..

.

..
PNn−1,1 · · · PNn−1,Nm+1 −RNn−1,1 −RNn−1,Nn+1




︸ ︷︷ ︸
Q

n




U1,m

.

..
UNm+1,m

U1,n

UNn+1,n


.

Thanks to the projection operator Q
n
, we are then able to recover the slave

unknowns in γ−n once we know the master ones. To obtain a global projection
operator Q̃ we proceed as follows. For each component of u we denote by Uslave

the vector of unknowns associated to d.o.f. that lay on the slave side of S and
by Umaster the vector of unknowns associated to all the remaining d.o.f. Then,
for each γ−n belonging to the skeleton S we build the local projection operator
Q

n
and we store it into the matrix Q̃. In this way Q̃ has a block structure of

the form

Q̃ =

[
Q̂ 0

0 Q̂

]
, (28)

where Q̂ is a block diagonal matrix with a block equal to the identity and the
other equal to the rectangular matrix Q containing all the local matrices Q

n
.

Thus, we have that the global linear system can be expressed as

Q̃
⊤
M̃Q̃Ümaster + Q̃

⊤
ÃQ̃Umaster = Q̃

⊤
Fext, (29)

where the matrices M̃ and Ã have columns and rows modified with respect to the
ones of M and A according to latter assumptions on the unknowns reordering.
All the terms appearing in the matrices of the two algebraic formulation are
computed using Gauss-Lobatto quadrature rule in which the quadrature points
coincide with the GLL points. We remark that since the term ΨjΨi ∈ QNk

, for
some k, while the Gauss-Lobatto rule with Nk points is exact for polynomials
up to degree 2Nk − 1, the spectral mass matrix M are slightly under integrated.
However, the final accuracy of spectral methods is maintained [14].
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4.1.1 Structural damping

When using equation (5) to model viscoelastic materials, very useful for seismic
applications, we must compute additional external forces:

Fvisc = −CU̇−DU,

or equivalently

[
Fvisc,1

Fvisc,2

]
= −

[
C1 0
0 C2

] [
U̇1

U̇2

]
−
[
D1 0
0 D2

] [
U1

U2

]
,

where the matrices Cℓ and Dℓ, for ℓ = 1, 2 are block diagonal. Each block Cℓ
k

and Dℓ
k is associated to the spectral element Ωk and

Cℓ
k(i, j) = (ρζΨℓ

j,Ψ
ℓ
i)Ωk

, Dℓ
k(i, j) = (ρζ2Ψℓ

j ,Ψ
ℓ
i)Ωk

, (30)

respectively for i, j = ak, ..., bk. Then the final discretized system becomes:

MÜ+CU̇+ (A + B +D)U = Fext, (31)

where the accelerations Ü and the velocities U̇ are approximated as described
in the following section.

4.2 Time integration scheme

Let now subdivide the interval (0, T ] into N subinterval of amplitude ∆t = T/N :
at every time level tn = n∆t, for n = 0, ..., N , the time integration scheme is
achieved with the second order Leap-Frog scheme (cf. [40]):

MU(tn+1) =
[
2M−∆t2(A + B)

]
U(tn)−MU(tn−1) + ∆t2Fext(tn), (32)

or

Q̃
⊤
M̃Q̃Umaster(tn+1) = Q̃

⊤
[(2M̃ −∆t2Ã)Q̃Umaster(tn)

−M̃Q̃Umaster(tn−1) + ∆t2Fext(tn)], (33)

respectively for (22) and (29), with initial conditionsU(t0) = u0 and U̇(t0) = u1.
In particular if a DGSEM is employed the iteration matrix M in (32) is diagonal
and can be inverted at very low computational cost. In the MSEM the matrix

Q̃
⊤
M̃Q̃ is non-diagonal, but taking advantage of the structure of Q̃ it is possible

to split the linear system (33) as follows

[
Mmaster 0

0 Q⊤MslaveQ

] [
UI

master(tn+1)
US

master(tn+1)

]
=

[
bI
master

Q⊤bS
slave

]
, (34)

with b = [(2M̃ −∆t2Ã)Q̃U(tn) − M̃Q̃U(tn−1) + ∆t2Fext(tn)]. Here the super-
scripts I and S identify those unknowns belonging respectively to the interior
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or to the skeleton of the domain. Then at each time step we solve separately the
two blocks of the linear system (34). In particular for the non-diagonal block we
perform the LU-factorization (see [37]).
To ensure stability, the explicit time integration scheme must satisfy the usual
Courant-Friedrichs-Levy (CFL) condition (see [38]) that imposes a restriction on
∆t. We see in the next section that this limitation is proportional to the minimal
distance between two neighbouring spectral nodes of the numerical grid. Since
this distance scales as hkN

−2
k (hk size of the spectral element Ωk), the stability

requirement on ∆t may become too restrictive for very large polynomial degrees
Nk. For these cases an implicit time scheme is recommended.

5 Analysis of grid dispersion and stability

In this section we study in detail the MSEM and the DGSEM in the two di-
mensional case, doing the so called Von-Neumann analysis, namely the analysis
of grid dispersion and stability. The former criterion determines the largest
sampling ratio for the spatial discretization (i.e., the number of nodes per wave-
length) such that the numerical solution has a prescribed accuracy. The latter
determines the largest time step ∆t that we are allowed to use in the explicit
time integration scheme, such that the solution remains bounded with respect
to problem’s data. For the sake of simplicity, we present the dispersion and
stability analysis in a two dimensional framework.
To start with, let us consider the wave equation (1) in an isotropic, elastic, un-
bounded domain Ω, with u(x, t) → 0 for all t as |x| → ∞ and u0 = u1 = 0.
Finally, we also assume f ≡ 0, this is not a limitation. These are standard as-
sumptions when using the Von Neumann’s method (plane wave analysis), see
[2, 3, 4, 21, 19, 48, 36, 34].
At the discrete level we assume that Ω is partitioned into non-overlapping spec-
tral elements Ωk having uniform size h. This partitioning is supposed to be
periodic and made by squared elements with sides parallel to the coordinate
axes (cf. Figure 6). We also suppose the polynomial approximation degree
equals N in each Ωk.

5.1 Grid dispersion - DGSEM

We report the analysis of grid dispersion for the DGSEM, see also [21] for the
scalar case. Let identify by Ψℓ,Ωf , ℓ = 1, 2 the basis functions with support
in Ωf with f ∈ {C, T,B,L,R} (cf. Figure 6). Without loss of generality, we
consider respectively test and trial functions of the following form

Ψℓ
i =

{
Ψℓ,ΩC

i in ΩC ,

0 otherwise,
and Ψℓ

j =





Ψℓ,ΩC

j in ΩC ,

Ψ
ℓ,Ωf

j in Ωf , f ∈ {T,B,L,R},
0 otherwise.

(35)
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Figure 6: Periodic grid made by squared elements with side parallel to the coordinate axis.
The reference element ΩC with sides γf and neighbouring elements Ωf , for f = {R,L, T,B}.

By rewriting the equation (21), we obtain a rectangular linear system in the
unknowns

Uℓ = [Uℓ,ΩC ,Uℓ,ΩT ,Uℓ,ΩB ,Uℓ,ΩL ,Uℓ,ΩR ], ℓ = 1, 2. (36)

Clearly this system is underdetermined because the number of columns, 10(N +
1)2, exceeds the number of rows, 2(N + 1)2. To reduce it into a square linear
system we make use of the following plane wave hypothesis.
Let us assume that the displacement is a plane wave, i.e., in ΩC we have

U ℓ,ΩC

j = cℓje
i(k·pj−ωt), ℓ = 1, 2, (37)

where κ = (kx, ky) is the wave vector, pj contains the jth node in Cartesian
coordinates and cj are arbitrary constants. The above assumption implies that

U
ℓ,Ωf

j = eβfU ℓ,ΩC

j , ℓ = 1, 2, (38)

with βf = {−ikyh, ikyh,−ikxh, ikxh} and f = {T,B,R,L}, respectively. Substi-
tuting (38) in (36) we obtain the modified square linear system of size 2(N+1)2:

[
M1 0
0 M2

] [
Ü1,ΩC

Ü2,ΩC

]
+

[
A1 + B̃

1
A2 + B̃

2

A3 + B̃
3

A4 + B̃
4

][
U1,ΩC

U2,ΩC

]
=

[
0
0

]
, (39)

where Mi, i = 1, 2, and Ai, i = 1, ..., 4, are defined in (23) and (24) respectively.

The matrices B̃
ℓ
, for ℓ = 1, ...4, are defined taking into account the hypothesis of

periodicity of the discretization and the plane wave assumption (37); for example

B̃
1
is given by

B̃
1
(i, j) = B1(i, j) +

∑

f={T,B,R,L}

eβfB1,f (i, j), i, j = 1, ..., (N + 1)2,
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where

B1(i, j) =
∑

f={T,B,R,L}

−
∫

γf

{σ(Ψ1,ΩC

j )} : [[Ψ1,ΩC

i ]]ds

+ θ

∫

γf

[[Ψ1,ΩC

j ]] : {σ(Ψ1,ΩC

i )}ds + ηf

∫

γf

[[Ψ1,ΩC

j ]] : [[Ψ1,ΩC

i ]]ds,

and

B1,f (i, j) = −
∫

γf

{σ(Ψ1,Ωf

j )} : [[Ψ1,ΩC

i ]]ds + θ

∫

γf

[[Ψ
1,Ωf

j ]] : {σ(Ψ1,ΩC

i )}ds

+ηf

∫

γf

[[Ψ
1,Ωf

j ]] : [[Ψ1,ΩC

i ]]ds.

Similarly, we define the elements of the matrices B̃
ℓ
for ℓ = 2, 3, 4. Now, calcu-

lating the second derivative with respect to time of Uℓ,ΩC and setting K̃ = A+B̃
we obtain the following generalized eigenvalue problem

K̃UΩC = ΛMUΩC , (40)

where Λ = ω2
h, with ωh the angular frequency at which the wave travels in the

grid. As observed in [20, 21] and in [44] the number of eigenvalues of problem
(40) naturally exceeds the number of admissible physical modes. Then we need
a strategy to select which eigenvalues correspond to the compressional (cP ) and
the shear (cS) wave velocities. We do this by computing all the velocities asso-
ciated to the eigenvalues of (40) and then comparing them to the real cP and cS
velocities defined in (4).
We denote by ΛP and ΛS the eigenvalues used to compute the best approxima-
tions of cP and cS , namely cP,h and cS,h.
Note that the system (40) for the NIPG method is not symmetric thus complex
eigenvalues are possible. However in [21] it has been remarked that ΛP and ΛS

are in fact always real numbers. Next we define the grid dispersion of pressure
and shear waves as the ratio between the velocity at which the wave travels in the
grid (numerical velocity) and the physical velocity. By definition the numerical
shear velocity cS,h is given by cS,h = hωh/(2πδ), where δ = h/(NL) is the sam-
pling ratio (or equivalently δ−1 is the number of GLL points per wavelength),
and L is the wavelength of the plane wave. We have that cS,h = h

√
ΛS/(2πδ),

and therefore the grid dispersion is the relative error in the velocity, given by
eS = cS,h/cS − 1. Analogously cP,h = h

√
ΛP /(2πδ) and eP = cP,h/cP − 1.

5.2 Grid dispersion - MSEM

In order to carry out a dispersion analysis for the MSEM, we adopt a strategy
similar to the one described for the DGSEM. The goal is the definition of a gen-
eralized eigenvalue problem associated only to the degrees of freedom belonging
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Figure 7: Periodic grid made by squared elements with side parallel to the coordinate axis.
The reference element ΩC with sides γf and neighbouring elements Ωf , for f = {R,L, T,B}.
Solid lines (-) are the master edges and dashed lines (- -) are the slave edges.

to ΩC . Under the hypothesis of shape regularity and periodicity of the mesh,
we observe that the skeleton of the partitioning is uniquely defined once the
master and slave edges for the reference element ΩC are selected. Consider the
configuration shown in Figure 7: this is the unique, up to a rotation, possible
combination of master and slave edges for ΩC that does not violate the hy-
pothesis of grid periodicity.
We rewrite the ODE system (21) in the MSEM framework: using (35) we obtain

MÜΩC +AUΩC = 0, (41)

where M and A are defined in (23) and (24), respectively. Next, we impose the
mortar conditions MC1 concerning the slave unknowns at the interfaces γB and
γR. In particular, for ℓ = 1, 2 and f = {R,B}, we have that

∑

j:pj∈γf

U ℓ,ΩC

j

∫

γf

Ψℓ,ΩC

j Φ̂ℓ
ids =

∑

j:pj∈γf

U
ℓ,Ωf

j

∫

γf

Ψ
ℓ,Ωf

j Φ̂ℓ
ids ∀Φ̂ℓ

i ∈ Λ̂δ(γf ). (42)

To recast these conditions in terms of unknowns and basis functions defined only
on ΩC we simply notice that, by periodicity,

Ψℓ,ΩR

j |γR
= Ψℓ,ΩC

j |γL
and Ψℓ,ΩB

j |γB
= Ψℓ,ΩC

j |γT
, ℓ = 1, 2 (43)

and by the plane wave assumption, equation (38) holds. Substituting (43) in
(42) we obtain

∑

j:pj∈γf

U ℓ,ΩC

j

∫

γf

Ψℓ,ΩC

j Φ̂ℓ
ids =

∑

j:pj∈γf

eβfU ℓ,ΩC

j

∫

γf

Ψ
ℓ,Ωf

j Φ̂ℓ
ids ∀Φ̂ℓ

i ∈ Λ̂δ(γf ),

(44)
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Figure 8: Grid dispersion versus the polynomial degree N: δ = 0.2 and incident angle θ = π/4.

for ℓ = 1, 2 and f = {B,R}. We remark that the equation (44) relates slave
unknowns in ΩC with master unknowns still in ΩC : this means that the matrix
projection Q̃ refers only to the reference element ΩC . We use this matrix to
reduce the linear system in (41) to one for the master unknowns only

Q̃
⊤
M̃Q̃ÜΩC

master + Q̃
⊤
ÃQ̃UΩC

master = 0. (45)

We notice that Q̃ has always a block diagonal structure like (28) where each

block Q̂ is modified according to (44). Calculating the second derivative of the

displacement with respect to time and defining K̃ = Q̃
⊤
ÃQ̃, we finally obtain

the generalized eigenvalue problem of size 2(N2 + 3)

K̃UΩC
master = ΛQ̃

⊤
M̃Q̃UΩC

master, (46)

where Λ = ω2
h as in the DGSEM case.

We remark that in the definition of eS and eP the sign of the error indicates if
the numerical approximation causes a delay or an acceleration of the travelling
waves. The grid dispersion error will depend on the sampling ratio δ, the wave
vector κ, the degree of the basis function N and on the velocities cP and cS . For
the DGSEM, on the stability parameter η too.

5.3 Grid dispersion - Numerical Results

Now, we analyse the grid dispersion error for both the MSEM and the DGSEM
from three different points of view: (i) the convergence with respect to the
polynomial degree N , (ii) the convergence with respect to the sampling ratio δ
and (iii) the numerical anisotropy introduced by the grid dispersion. Finally we
compare the results with the conforming SEM: in this case the grid dispersion
analysis is obtained using a technique similar to the one employed in the MSEM
and the results obtained are in agreement with [21, 45].
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Figure 9: Grid dispersion versus the sampling ratio δ: N = 2.
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Figure 10: Grid dispersion versus the sampling ratio δ: N = 3.

In the first set of experiments, we fix the ratio between the velocities r = cP /cS =
2 (that is a very common choice in geophysical applications), the incidence angle
θ = π/4 and, for the DGSEM, we fix the parameter η = 2N2/h.
In Figure 8 we show the grid dispersion errors with respect to the degree N of
the basis functions, fixing δ = 0.2 (namely 5 grid points per wavelength). All
the non-conforming approaches reproduce the same spectral convergence of the
SEM. The SIPG and the MSEM reach the threshold value ≈ 10−13 for N = 6
while the NIPG for N = 9.
The grid dispersion as a function of sampling ratio δ is shown in Figures 9-12
for the degrees N = 2, .., 5, respectively. The aim of this analysis is to establish
a relation between the absolute value |eS |, resp. |eP |, and the mesh size h (i.e.,
determine q, resp. q′, such that |eS | = O(hq), resp. |eP | = O(hq

′

)). The order
of convergence is estimated by the slope of these lines in Figures 9-12.
From the results reported in Figures 9-12 it seems that the SIPG converges with
order q = q′ = O(2N), as the SEM; whereas a suboptimal order q = q′ =
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Figure 11: Grid dispersion versus the sampling ratio δ: N = 4.
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Figure 12: Grid dispersion versus the sampling ratio δ: N = 5.

O(N + 1) is observed for both NIPG and MSE methods. These results are in
agreement with [5].
Finally, in Figures 13-16, we show the anisotropy (that is the ratio cS,h/cS and
the ratio cP,h/cP ) introduced by the numerical schemes . We consider N = 2, 3, 4
and five points per wavelength. For N > 4 the anisotropy is very small for all the
practical purposes. We notice that, for N = 2, in the SIPG and in the MSEM
the waves are slightly delayed for all possible incident angles while in the NIPG
the waves are accelerated. In Tables 1-2 we also report the maximum value
max1<θ<2π |eS | and max1<θ<2π |eP | respectively. From these results it can be
inferred that all the methods perform in a very similar way.
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Figure 13: Anisotropy curves cS,h/cS of the SEM (left) and MSEM (right): sampling ratio
δ = 0.2 for polynomial degrees N = 2 (- -), N = 3 (-) and N = 4 (.-). For visualization
purposes, the grid dispersion has been magnified by a factor 20.
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Figure 14: Anisotropy curves cS,h/cS of the SIPG (left) and NIPG (right): sampling ratio
δ = 0.2 for polynomial degrees N = 2 (- -), N = 3 (-) and N = 4 (.-). For visualization
purposes, the grid dispersion has been magnified by a factor 20.

N SEM SIPG NIPG MSEM
2 1.2684e-03 2.7156e-03 1.7540e-02 2.3728e-02
3 8.7429e-06 7.5949e-06 2.7196e-04 2.2247e-04
4 4.2894e-08 5.2818e-08 2.4372e-05 1.3029e-06

Table 1: Maximum value max0≤θ≤2π |eS | for N = 2, 3, 4.
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Figure 15: Anisotropy curves cP,h/cP of the SEM (left) and MSEM (right): sampling ratio
δ = 0.2 for polynomial degrees N = 2 (- -), N = 3 (-) and N = 4 (.-). For visualization
purposes, the grid dispersion has been magnified by a factor 10.
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Figure 16: Anisotropy curves cP,h/cP of the SIPG (left) and NIPG (right): sampling ratio
δ = 0.2 for polynomial degrees N = 2 (- -), N = 3 (-) and N = 4 (.-). For visualization
purposes, the grid dispersion has been magnified by a factor 10.

N SEM SIPG NIPG MSEM
2 9.8805e-04 1.5402e-02 2.8146e-02 8.8991e-02
3 6.8628e-06 1.8732e-05 5.6250e-04 2.4218e-04
4 3.1687e-08 3.3492e-07 6.8619e-05 1.5325e-06

Table 2: Maximum value max0≤θ≤2π |eP | for N = 2, 3, 4.
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5.4 Stability - DGSEM and MSEM

To derive the stability condition for the methods in question we start considering
the problem

M̂Ü+ K̂U = 0, (47)

where all the terms appearing in the above equation are defined on the reference
element ΩC (we omit the superscripts to ease the notation). In the DG frame-
work the matrices K̂ and M̂ are A + B̃ and M respectively, while in the mortar

approach they are equal to Q̃
⊤
ÃQ̃ and Q̃

⊤
M̃Q̃ respectively. Assuming that the

solution is the plane wave given in (37), substituting this expression in (47) and
approximating the second order derivative in time with the Leap-Frog scheme
(32) or (33), we obtain the following eigenvalue problem

K̂U = ΛM̂U, (48)

depending on the degrees of freedom inside the reference element ΩC and where

Λ =
4

∆t2
sin2

(
ωh∆t

2

)
.

In order to make explicit the dependence of Λ on both the mesh size h and the
polynomial approximation degree N we rewrite (48) on Ω̂ = (−1, 1)2. Collecting
out the size of the elements it yields to

K̂U = Λ′ M̂U, (49)

with Λ′ = (h/∆t)2 sin2 (ωh∆t/2) . Defining the stability parameter q = cP∆t/h,
we deduce the relation

q2Λ′ = c2P sin2
(
ωh∆t

2

)
≤ c2P ,

or equivalently

q ≤ cP
1√
Λ′

= ccfl(Λ
′), (50)

As noted in [20], ccfl is a function of Λ′ and then depends implicitly on the wave

vector κ through the matrices K̂ and M̂. Moreover, inequality (50) must be
fulfilled for all the eigenvalues and all the wave vectors κ = 2πδ/h(cos(θ), sin(θ)).
Thus, the stability condition is given by

q = min
1≤j≤ν

min
0≤θ≤2π

ccfl(Λ
′
j(θ)), (51)

where θ is the incident angle of the plane wave and ν is the number of the
eigenvalues of problem (49). We remark that condition (51) is equivalent to
requiring that

q ≤ c(λ, µ)√
Λmax

,

29



where Λmax is the largest eigenvalue of problem (49) and c(λ, µ) is a positive
constant. Thus, by estimating Λmax in terms of h and N , it is possible to
determine a bound for q.
In the DG approach, the bilinear form K̂(·, ·) associated to the matrix K̂ in (48)
takes the form

K̂(u,v) =

∫

ΩC

σ(u) : ε(v) dΩ1 −
∑

f={T,B,R,L}

∫

γf

σ(u) : v⊗ n ds

+θ

∫

γf

(u− gf )⊗ n : σ(v)ds + ηf

∫

γf

(u− gf )⊗ n : v ⊗ nds,

where the functions u,v ∈ V DG
δ are zero outside ΩC , and n is the normal unit

vector pointing outside ΩC . According to the plane wave hypothesis made at
the beginning of Section 5, we take

gf = eβfu, for f = {T,B,L,R}.

Following [6], it is easy to prove that

K̂(u,u) ≤ c(λ, µ, α)
N4

h2
||u||2L2(ΩC).

Thus, for the generalized eigenvalue problem (49), we can derive the estimate

Λmax ≤ c(λ, µ, α)
N4

h2
,

and consequently
Λ′
max ≤ c(λ, µ, α)N4. (52)

For the MSEM we observe that writing Λ′
max by the generalized Rayleigh quo-

tient yields

Λ′
max = sup

v∈R
2m

\{0}

(K̂v,v)ΩC

(M̂v,v)ΩC

= sup
v∈R

2m
\{0}

(Q̃
⊤
ÃQ̃v,v)ΩC

(Q̃
⊤
M̃Q̃v,v)ΩC

= sup
v∈R

2m
\{0}

(ÃQ̃v, Q̃v)ΩC

(M̃Q̃v, Q̃v)ΩC

= sup
w=Q̃v∈R

2n
\{0}

∃ i=1,...,2m: v·ei 6=0

(Ãw,w)ΩC

(M̃w,w)ΩC

≤ sup
v∈R

2n
\{0}

(Ãv,v)ΩC

(M̃v,v)ΩC

= sup
v∈R

2n
\{0}

(Av,v)ΩC

(Mv,v)ΩC

, (53)

wherem = (N2+3) and n = (N+1)2. In this way we obtain an upper bound for
the maximum eigenvalue of (49) when using MSEM approximation. In fact the
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N SEM MSEM SIPG NIPG

2 0.3376 0.3333 0.2621 0.2163
3 0.1967 0.1770 0.1368 0.1045
4 0.1206 0.1118 0.0795 0.0607
5 0.0827 0.0776 0.0530 0.0400
6 0.0596 0.0570 0.0374 0.0281
7 0.0449 0.0434 0.0280 0.0210
8 0.0351 0.0342 0.0216 0.0162
9 0.0281 0.0277 0.0172 0.0129
10 0.0231 0.0227 0.0140 0.0105

N-rate -1.8463 -1.8253 -1.9247 -1.9360

Table 3: Computed upper bound for the stability parameter q using r = 1.414: rate of decay
with respect to N .

last term in (53) is exactly the maximum eigenvalue of the SEM discretization
for which the following estimate holds (cf. [11])

c1N
4 ≤ Λ′

max ≤ c2N
4,

for c1 and c2 positive constants. We remark that in agreement with [6], we
notice that for d = 2 the estimate (52) does not depend on h. This behaviour
is confirmed from the results in Table 3. Finally, we can resume the stability
analysis in the following statement.

Proposition 5.1 For every µ > 0, λ ≥ 0 and α ≥ αmin > 0, the CFL condition
(50) is satisfied for both MSEM and DGSEM if there exists a positive constant
c∗(λ, µ, α) such that

q ≤ c∗(λ, µ, α)

N2
. (54)

Moreover for the MSEM and the NIPG it holds αmin = 0 and c∗(λ, µ, α) =
c∗(λ, µ).

We remark that for the SIPG, the constant c∗(λ, µ, α) is proportional to α−1/2

(cf. [6]), then a less restrictive bound for q in (54) is achieved when α = αmin.
Moreover it is possible to determine exactly the threshold value αmin (cf. [25]
for the elliptic case), but this is not the objective of this study. For the following
numerical simulations we choose α = 1.

5.5 Stability - Numerical Results

To determine an upper bound for the stability parameter q we fix δ = 0.2 and
the ratio r = 1.414. This choice gives a more restrictive stability condition:
higher values of r = cP /cS produce milder stability condition [20]. As for the
grid dispersion analysis we have fixed η = 2N2/h for the SIPG and the NIPG
methods. In Table 3 are shown the estimated threshold values for q, for N =
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Figure 17: Λmax versus the polynomial degree N for the generalized eigenvalue problem (49).

N SEM MSEM SIPG NIPG

2 0.6752 0.6667 0.5241 0.4326
3 0.7115 0.6403 0.4951 0.3782
4 0.6983 0.6474 0.4607 0.3516
5 0.7039 0.6608 0.4515 0.3409
6 0.7017 0.6712 0.4400 0.3315
7 0.7009 0.6769 0.4360 0.3273
8 0.7005 0.6819 0.4303 0.3228
9 0.6994 0.6878 0.4282 0.3206
10 0.6995 0.6871 0.4247 0.3180

Table 4: Computed upper bound for the stability parameter q′ using r = 1.414. Note that q′

is proportional to qN2 thus constant for different choices of ∆x.

2, ..., 10. The constants for the SIPG are around 70 percent with respect the
SEM, while for the MSEM are around 95 percent. The NIPG has constants
always more restrictive than those of SIPG.
In Table 3 it is also shown the asymptotic behaviour of the ccfl with respect to
N (N -rate): as expected the decay rate of q is approximately proportional to
N−2. We remark that the N -rate is computed using polynomial degree up to 20.
In Figure 17 we show the trend of Λmax with respect to the polynomial degree,
in agreement with the theoretical estimate. In practice, the time step is often
bounded, not by the size of the spectral elements h, but by the smaller space
increment ∆x, then, in Table 4 we compute the upper bounds for the modified
stability parameter q′ = cP∆t/∆x. It is evident that the CFL condition (51) is
less restrictive for the MSEM than for the DGSEM. Then the MSEM allows for
larger time step ∆t in the explicit time integration scheme.
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Figure 18: First level of refinement (L1) for the grid A (left) and B (right). The end points
of the skeleton S are highlighted by two circles.

6 Accuracy and order of convergence

Firstly we discuss the accuracy of the MSEM and of the DGSEM on a test case
where the exact solution is known. We analyse a wave propagation problem in
Ω = (0, 1)2, setting the elastic parameters λ = µ = ρ = 1, and choosing f such
that the exact solution of (1) is

u(t, x, y) = sin(
√
2πt)

[
− sin2(πx) sin(2πy)
sin(2πx) sin2(πy)

]
. (55)

The Dirichlet boundary conditions on ∂Ω and the initial displacement u0 and
initial velocity u1 are set accordingly.
We then subdivide Ω into two subregions Ω1 and Ω2 with partitioning Th1

and
Th2

and fix N1 and N2 as the degree of the spectral expansion in each subregion
respectively. The skeleton is defined by S = ∂Ω1 ∩ ∂Ω2 as it is shown in Figure
18. In order to study the property of convergence of MSEM an DGSEM with
respect to h = (h1, h2) and N = (N1, N2) we examine two different situations:
the first corresponding to a Cartesian matching grid (Figure 18, left) while the
second to a Cartesian non-matching grid (Figure 18, right), referred to as grid
A and grid B, respectively. In Figure 18 is shown the first level (L1) of refine-
ment for both grids, corresponding to the initial mesh sizes h1 and h2 for Ω1 and
Ω2. At each further step of refinement (for a maximum number of four steps),
we consider a uniform refinement of the grids at the previous level, in particular
for grid A, Li refers to h1 = h2 = 2−i whereas for grid B, Li refers to h1 = 2−i

and h2 ≈ (2/3)h1. For the time integration we employ the second order explicit
Leap-Frog scheme described in Section 4.
For SEM approximations we recall that, under suitable assumptions on the par-
tition size h and on the polynomial degree N an a priori error bound of the

33



following form holds (see [15])

‖u− uδ‖L2(Ω) ≤ C


∆t2 +

(
K∑

k=1

C(sk)h
2rk
k N−2sk

k ‖u‖2Hsk (Ωk)

) 1

2


 ,

for C and C positive constants. Here sk represents the Sobolev regularity of u
in Ωk, rk = min(Nk + 1, sk) and ∆t the time step.
In particular, if the mesh size h is constant (i.e., h1 = ... = hK = h) we
expect exponential convergence in N = mink Nk, whereas if the spectral order
of approximation N is fixed (i.e., N1 = ... = NK = N) we expect algebraic
convergence in h = maxk hk.
In the family of proposed DGSEMs, we analyse in detail the SIPG method (i.e.,
θ = −1 in (18)) because it exhibits better performances in term of grid dispersion
and stability (see Section 5).
In Figure 19 (resp. Figure 21) we report the L2-error using MSEM and SIPG
with grid A for different choices of N (resp. d.o.f.). The estimated norm is
computed at the time t∗ = 2 using ∆t = 5 · 10−4. All plots in Figures 19-22 are
displayed in semilogarithmic scale.
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Figure 19: Computed errors versus the polynomial degree N : MSEM (left) and DGSEM
(right) at the observation time t∗ = 2 using ∆t = 5 · 10−4. The results are obtained with the
grid A and the refinement level L2.

The results show that both methods have the same rate of convergence as the
SEM one. In Figure 20 (resp. Figure 22) it is shown the L2-error using a different
time step ∆t = 10−4 for different choices of N (resp. d.o.f.).
The results confirm that MSEM and SIPG have both exponential convergence
in N , until the threshold value given by ≈ ∆t2 is reached.
Now, we fix N1 = N2 and we study the accuracy of the two methods with respect
to the mesh size h. For each level of refinement we compute the error in L2-norm
obtained using grid A and grid B. The algebraic order of convergence O(hN+1)
is achieved in both cases for different choices of N and ∆t (see Figures 23-24).
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Figure 20: As in Figure 19 with ∆t = 10−4.

Figure 21: Computed errors versus the number of dof: MSEM (left) and DGSEM (right) at
the observation time t∗ = 2 using ∆t = 5 · 10−4. The results are obtained with the grid A and
the refinement level L2.
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Figure 22: As in Figure 21 with ∆t = 10−4.

Finally in Figure 25 and Figure 26 we show a qualitative analysis of stability of
MSEM and SIPG applied to this test case. The results are in agreement with
those obtained in Section 5 and confirm that the region of stability for MSEM
is larger than that for SIPG. Then, for explicit time integration scheme, MSEM
is preferable to SIPG.
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Figure 23: Computed errors versus the mesh size: N1 = N2 = 2, ∆t = 10−3 (left) and
N1 = N2 = 4 and ∆t = 10−4 (right). The error in the L2-norm is computed at the observation
time t∗ = 2 for all the refinement levels L1-L4. The suffixes A,B in the legend refer to the grids
employed in the computation.
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Figure 24: Computed errors versus the mesh size: N1 = N2 = 2, ∆t = 10−3 (left) and
N1 = N2 = 4 and ∆t = 10−4 (right). The error in the L2-norm is computed at the observation
time t∗ = 2 for all the refinement levels L1-L4. The suffixes A,B in the legend refer to the grids
employed in the computation.
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Figure 25: Stability analysis of MSEM (left) and SIPG (right) with respect to the mesh size
h. The L2-error is computed at the observation time t∗ = 20 with N1 = N2 = 2. Solid lines (-)
correspond to SEM approximations, while dashed lines (- -) to non-conforming approximations:
MSEM on the left and SIPG on the right.
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Figure 26: Stability analysis of MSEM (left) and SIPG (right) with respect to the polynomial
order N. The L2-error is computed at the observation time t∗ = 20 for the refinement level L1
using the grid A. Solid lines (-) correspond to SEM approximations, while dashed lines (- -)
to non-conforming approximations: MSEM on the left and SIPG on the right.
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7 An application of geophysical interest

In this section we analyze the seismic response of an alluvial basin. We consider
the viscoelastic model (5) in the computational domain (x, z) ∈ Ω = (0, 2 ·
104m) × (−9.6 · 102m, f(x)) where f describes the top profile of the valley, see
Figure 27. The bottom and the lateral boundaries are set far enough from the
point source so to avoid any interference of possible reflections from non-perfectly
absorbing boundaries with the waves of interest that are reflected, transmitted,
or converted at the material or free surfaces. We simulate a point source load of
the form

f(x, t) = g(x)h(t),

where f is the external force introduced in (1). The function g describes the
space distribution of the source and is written in the form

g(x) = δ(x − xS)ŵ,

where δ represents the Dirac distribution, xS the source location and ŵ the
direction of the applied force (cf. [16]). Alternative source distributions can be
expressed in terms of gradient or curl of suitable potential functions, giving rise
to pure pressure and shear waves: more complex and realistic source mechanisms
are based on tensorial models (cf. [26]). The source time history is given by a
Ricker-type function with maximum frequency νmax = 3Hz, defined as

h(t) = h0[1− 2β(t− t0)
2] exp[−β(t− t0)

2], (56)

where h0 is a scale factor, t0 = 2s is the time shift and β = π2ν2max = 9.8696 s−1

is a parameter that determines the width of the wavelet (56). A significant prop-
erty is the cut-off at both low and high frequencies: the spectrum of the signal
is maximum at νp =

√
β/π and is practically negligible for frequencies higher

than νco = 3νp.
In Figure 27-28, we show the two different mesh configurations. Figure 27 shows
a regular, structured grid with a mesh spacing of h ≈ 40m. The mesh size is cho-
sen small enough to describe with sufficient precision the physical profile of the
valley. Figure 28 shows an irregular, quasi-structured grid with overlap with a
mesh spacing h1 ≈ 40m for layer 1 (basin) and h2 ≈ 120m for layer 2 (bedrock).
The finest mesh is used to describe the physical boundary of the valley while the
coarsest mesh the bedrock. This type of overlapping discretizations are handled
by the mortar technique described in Section 3.1.
We assign constant material properties within each region as described in Table
7.
This regular conforming grid in Figure 27 is used with SEM discretization to
produce a reference solution for the problem and provides a sufficiently accurate
discretization, since further mesh refinements generates quasi-identical seismo-
grams.
In Figures 29-30 we compare the horizontal and vertical displacement recorded
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Figure 27: Conforming, structured grid with a mesh spacing of h ≈ 40 m at the interface
between the two materials. Top: receiver R1 placed on the top of the valley and point source
xS within the bedrock. Bottom: zoom of the valley profile.

Figure 28: Non-Conforming, quasi-structured grid with overlap with a mesh spacing h1 ≈ 40
m for layer 1 (basin) and h2 ≈ 120 m for layer 2 (bedrock). Top: receiver R1 placed on the
top of the valley and point source xS within the bedrock. Bottom: zoom of the valley profile.

Layer cP [m/s] cS [m/s] ρ[Kg/m3] ζ[1/s]

1 700 350 1900 0.03141
2 3500 1800 2200 0.06283

Table 5: Dynamic and mechanical parameters.
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Figure 29: Horizontal displacement recorded by the receiver R1 on the free surface fo the
valley. Comparison between SEM and MSEM, N=4.
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Figure 30: Vertical displacement recorded by the receiver R1 on the free surface fo the valley.
Comparison between SEM and MSEM, N=4.
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Figure 31: Time histories of the receivers on the top of the surface obtained with MSEM
(N=4).

by receiver R1 placed on the free surface of the valley (cf. Figures 27-28).
The high discontinuities between the mechanical properties of the materials pro-
duce high oscillations and perturbations on the wave front. All these complex
phenomena are well captured by both SEM and MSEM using fourth order spec-
tral elements. We remark that with MSEM we reduce the computational effort
for the generation of the grid as well as the problem complexity (from 61385
spectral nodes with SEM to 48091 spectral nodes with MSEM). In Figure 31
we show the time histories of the seismograms recorded by some receivers on
the free surface of the domain, obtained using MSEM. It can be observed that
the wave which starts travelling from the point source remains trapped into the
valley, where it is amplified and where phenomena of reflection and refraction
arise. This phenomenon is relevant in some geophysical contexts, e.g. it has
occurred in the Gubbio valley (in Italy) on the occasion of the earthquake of
September 27, 1997. We refer to [35] for a detailed analysis.

8 Conclusions

In this paper we compared two different domain decomposition non-conforming
high order numerical techniques, namely the Mortar Spectral Element Method
(MSEM) and the Discontinuous Galerkin Spectral Element Method (DGSEM),
for the approximation of the elastic wave equation in heterogeneous media.
Both methods preserve the spectral accuracy typical of high order methods, allow
geometrically non-conforming domain partitions where local meshes are indepen-
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dently generated from the neighbouring ones, and can handle variable spectral
approximation degrees. Note that the subdomain partition is constructed ac-
cording to the (available) material properties.
Starting from a common weak formulation we describe both approaches in order
to highlight their analogies and their differences. In particular, we gave special
attention to the analysis of grid dispersion, stability, and accuracy, which rep-
resent the main important features determining the applicability of a numerical
method to wave propagation problems. We numerically proved that the MSEM
and the DGSEM do not suffer from grid dispersion. Indeed five points per wave-
length with spectral element approximations of order four are sufficient to have
negligible errors. For the stability analysis we derived a precise CFL bound
for the Leap-Frog scheme when employed with the considered non-conforming
approaches. The threshold values obtained for the DGSEM (resp. the MSEM)
are around 70 percent (resp. 95 percent) of the ones typical with the Spectral
Element Method (SEM). So, on the one hand, the symmetric version of the
DGSEM yields optimal error decays in the grid dispersion as occurs with the
SEM. On the other hand the MSEM allows larger time step in the time advanc-
ing scheme. Finally, both non-conforming techniques are well suited for parallel
computations.
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nite element method for the wave equation. SIAM Journal on Numerical
Analysis, 44(6):2408–2431, 2006.

[29] T.J.R. Hughes. The Finite Element Method. Prentice-Hall, 1987.
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pour la Mâıtrise. Masson, Paris, 1983.

[41] B. Rivière. Discontinuous Galerkin methods for solving elliptic and parabolic
equations - Theory and implementation, volume 35 of Frontiers in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2008.

[42] B. Rivière, S. Shaw, M. F. Wheeler, and J. R. Whiteman. Discontinuous
Galerkin finite element methods for linear elasticity and quasistatic linear
viscoelasticity. Numer. Math., 95(2):347–376, 2003.

45



[43] B. Rivière and M. F. Wheeler. Discontinuous finite element methods for
acoustic and elastic wave problems. In Current trends in scientific comput-
ing (Xi’an, 2002), volume 329 of Contemp. Math., pages 271–282. Amer.
Math. Soc., Providence, RI, 2003.
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