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Abstract. This paper investigates the student dropout phenomenon in a technical Italian 

university in a time-to-event perspective. Shared frailty Cox time-dependent models are 

applied to analyse the careers of students enrolled in different engineering programs with 

the aim of identifying the determinants of student dropout through time, to predict the 

time to dropout as soon as possible and to observe how the dropout phenomenon varies 

across time and degree programs. The innovative contributions of this work are 

methodological and managerial. First, the adoption of shared frailty Cox models with 

time-varying covariates is relatively new to the student dropout literature and it allows to 

take account of the student career evolution and of the heterogeneity across degree 

programs. Second, understanding the dropout pattern over time and identifying the 

earliest moment for obtaining its accurate prediction allow policy makers to set timely 

interventions for students at risk of dropout. 
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1. Introduction and Motivation 

The Italian Higher Education system is affected by a high level of dropout, with many students 

abandoning their Bachelor programs during the first or second year. According to ANVUR 

(Italian National Agency for the Evaluation of Universities and Research Institutes), the Italian 

dropout rate for the students from whom complete data is available is around 24%, with half 

(12%) of them dropping out in the first two years (ANVUR, 2018). 

This data is even more worrying considering that only 28% graduates in Italy are from the 25-

34 years old population, against a European average of 40 University dropout represents a 

worrisome phenomenon with both economic and social impacts. 

From the economic standpoint, dropout represents a net waste of resources for universities, 

since education is a costly activity. From the social perspective, dropout affects students, who 

face a social stigma (e.g., fewer job opportunities and lower salaries), disconnecting them with 

their social environment (Alban & Mauricio, 2019). 

Hence, studying the dropout phenomenon and its determinants is paramount. Identifying 

students at risk and, in particular, the riskiest moment of their career is extremely important: 

only with timely interventions, universities would be able to retain their students, shepherding 

them towards graduation (Seidel & Kutieleh, 2017). 

In line with the presented motivations, the aim of this paper is twofold: to study student’s 

dropout and its major responsible factors across time and to identify the earliest moment in time 
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in which we can provide dropout predictions that are (sufficiently) good both in terms of event 

and event time and can be used by universities for early intervention though appropriate 

preventive actions. The focus is on identifying not only who the students at risk are, but also 

when these students are at risk, discussing the effectiveness of an Early Warning System. The 

study is held at Politecnico di Milano (PoliMi) in Italy.  

The paper is organized as follows: in Section 2, we set up an overview of the academic literature 

about survival analysis and dropout; in Section 3 we present the main features of the PoliMi 

dataset and the methodology adopted; results and final considerations are detailed in Sections 

4 and 5. 

2. Related Literature: survival analysis for studying dropout 

As part of the wide academic literature aiming at predicting dropout in Education settings 

(Cannistrà et al., 2022; Hegde & Prageeth, 2018; Kehm, Larsen, & Sommersel, 2019), survival 

analysis is directed toward the deepening of when dropout occurs, considering the students’ 

educational career complemented with its time dimension. 

Many studies applying survival analysis focus on digital learning (Xie, 2019; Utami et al., 2020; 

Spitzer et al., 2021; Chenet al., 2020) for a simple reason: it is easy to track students over time, 

you know exactly when they drop out from the platform (i.e., last access). Hence, this method 

is less frequently applied to traditional settings. Another stream of literature is centered on the 

doctoral path: when and why PhD students drop out from their career (Van Der Haert et al., 

2014; Booth & Satchell, 1995; De Valero, 2001; Grove, Dutkowsky, & Grodner, 2007). Indeed, 
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the investigation of this phenomenon is relevant since it gives the opportunity to understand the 

most effective type of support for retaining PhD students, given their value in our society (Van 

Der Haert et al., 2014). 

Focusing on schools and universities, the academic contributions applying survival analysis to 

students’ academic career progression aim at modelling the phenomenon by highlighting the 

most important underlying factors (Arulampalam, Naylor, & Smith, 2004; Weybright et al., 

2017; Thaithanan et al. , 2021; Patacsil, 2020; Min et al. 2011; Plank, DeLuca, & Estacion, 

2008; Barragan, Gonza´lez, & Calderon, 2022; Vallejos & Steel, 2017; No, Taniguchi, & 

Hirakawa, 2016; Gury, 2011; Lesik, 2007). 

Arulampalam et al. (2004) and Barragan et al. (2022) found academic performance to be an 

important dropout predictor, while according to Weybright et al. (2017), the student’s 

background (e.g., being a male and not living with his mother) plays a significant role in 

predicting dropout (Barragan et al., 2022). Soares et al. (2015) observed that the difficulties 

faced with particular subjects, the desire for a different school, the perception that those 

completing their studies will have better job opportunities, and the importance assigned to 

school choice influence dropout from secondary school. When looking at the university dropout 

phenomenon’s time component, Min et al. (2011) found significant differences for early 

semesters across groups. White and/or female students tend to leave university earlier than other 

sub-populations. Engineering students mostly abandon their academic career during the third 

semester, but this can happen even during the second semester when the student has a low math 

grade. 
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In terms of adopted models, the majority of scholars (Weybright et al., 2017; Thaithanan et al., 

2021; Min et al., 2011; Plank et al., 2008; Barragan et al., 2022; Vallejos & Steel, 2017; Gury, 

2011; Lesik, 2007; Arulampalam et al., 2004) use Cox PH models to estimate the probability 

of dropping out, often comparing Kaplan-Mayer curves on different students’ features. 

Interesting sources of innovation are related to the comparison between fixed and random 

effects, as in Arulampalam et al. (2004), to model the effect of being enrolled in different degree 

programs; or to the combination between survival analysis and analytic hierarchy process 

methodologies, as in Barragan et al. (2022), to model dropout as a decision subjected to multiple 

alternatives; or by handling covariates’ selection within a Bayesian framework (Vallejos & 

Steel, 2017). Generally, academic literature is moving toward modelling dropout and estimating 

its related factors with ever-increasing precision. 

To contribute to this stream of research, this paper aims at studying the dropout phenomenon 

with a time perspective, adding two sources of innovation. The first relates the methods 

adopted, where the inclusion of frailties allows to account for the nested structure of students 

into degree programs, modelling the heterogeneity at the second level of the hierarchy, and the 

modelling of time-dependent covariates allows to update student information in time, building 

increasingly informed models. The second innovation regards the final collateral goal of the 

analysis: identifying the earliest moment in a student’s career in which we can accurately 

predict his/her time-to-dropout. Indeed, early and accurate predictions are essential to 

effectively support at-risk students. 

3. Data and Methods 



6 

 

In the following two subsections we present the dataset and our methodological approach. 

3.1. PoliMi dataset 

The PoliMi dataset contains administrative information about the careers of students enrolled 

between Academic Years 2010 and 2021 (12 years span period) in Bachelor’s degree programs 

of Engineering. The University collects information about students’ demographics and previous 

studies and tracks their entire academic careers, making anonymized data available in real time 

(Mussida & Lanzi, 2022). The demographics regard gender and age, residency and citizenship, 

and university’s fee bracket paid by the student (as a proxy of socio-economic status). Then, 

high school track and final mark inform about student’s previous career, while PoliMi 

admission test score is the first grade measured at the University. As regards career tracks, the 

number of credits obtained (ECTS) and the relative Grade Point Average (GPA) are collected 

for each student each semester. 

The analysis excludes students who abandon their studies during the first semester of their first 

year, since many students enroll at PoliMi while waiting to be admitted to other programs at 

other universities, or they immediately decide to abandon because they had different 

expectations. This heterogeneity behind these dropouts might bias the results and these are not 

the dropouts that we aim to identify and on which we want to act1.  

 
1 In the dataset, students who dropped out during their first semester are 1,700 (21.33% of the total 

dropout students). The University does not have time to take targeted preventive actions on these 

dropouts; therefore, their prediction is neither attractive nor valuable. 
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The final dataset contains 49,501 students enrolled within 16 degree programs. Table 1 reports 

the selected student-level variables, collected at the time of enrolment, with their explanation 

and summary statistics. The target variable regards the status of the student’s career at the end 

of the third year, which can be concluded with graduation, with a dropout or with the student 

still being active. Variables Status at 3y and Career duration at 3y, reported in Table 1, define 

the target variable. Regarding the career tracks, Table 2 reports the selected longitudinal 

information relative to each student’s careers, semesterly updated, that are ECTS and GPA. 

The distribution of the students within the 16 Engineering degree programs is reported in Table 

A1a in the Appendix A1. For privacy reasons, we are not allowed to report the degree programs 

names but only their anonymized codes. 
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Table 1: Student-level variables adopted in the analysis, their description, type, and summary 

statistics. 

Name Description Type Summary info 

Gender Student gender (F/M) Categorical Male=77,5%, Female=22,5% 

Admission age Age as of the day of enrolment Numerical 

mean=18.72, 

median=19, sd=1.22, 

range=[16-61] 

Income University fee bracket: High, Medium, Low or Study 

Grant (SG)  
Categorical 

High=32.8%, Medium=23.5%, 

Low=30.6%, SG=13.1% 

Origins 
Milanese living in Milan, Commuter living outside 

Milan, Offsite have moved to Milan 
Categorical 

Commuter=67.5%, 

Milanese=25.7%, 

Offsite=6.8% 

Highschool type 
Field of study at high school: Scientific, Classic, 

Technical. Foreigner if he/she got his/her diploma 

abroad and Other if none of the above 

Categorical 

Classic=5.4%, Other=1.6%, 

Scientific=80.5%, 

Foreigner=0.7%, 

Technical=11.8% 

Highschool grade Grade obtained in high school Numerical 

Mean=84.87, 

median=85,    sd=11.61, 

range=[60-100] 

Admission score Score obtained on the PoliMi admission test Numerical 

Mean=73.22, 

median=71.55, sd=9.36, 

range=[60-100] 

Department Study program of the student Categorical 16 faculties 

Status at 3y 
Student career status considering a follow up time 

of 3 years, grouped by G (graduated), A (active), 

and D (dropout) 

Categorical 

Graduated=10.9%, 

Active=77.4%, 

Dropout=12.7% 

Career duration at 

3y 
Length of the student career considering a follow 

up time of 3 years, expressed in semester 
Numerical 

Mean=5.08, median=6, 

sd= 1.47, range=[1,6] 

Note: The Table shows the descriptive statistics of the time-invariant covariates used in subsequent analysis. In 

detail, for categorical variables it shows the distribution in each category, for Numerical variables their mean, 

median, standard deviation (sd) and range. Variables Status at 3y and Career duration at 3y are used to build the 

outcome of interest.   
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i 

Table 2: Student-level variables related to the student career, measured each semester until the 

end of the third year. 
 

 
Description Type Summary info 

Exa_Ay Academic year corresponding to the 

observation 

Categorical Range=2010-2021, 

Exa_Semester Semester corresponding to the observation. 1 

if first semester, 2 if second semester 

Categorical 1=58.6%, 2=41.4% 

ECTS ECTS obtained by the student during each 

semester 

Discrete mean=18.48, 

median=20, 

range=0-40, sd = 12.6 

GPA Weighted average grade measured for each 

semester 

Numeric mean=18.97,  

median = 22.8, 

range=0-30, sd= 10.43 

Note: the Table shows the structure of the time-dependent dataset, in which the GPA and ECTS are measured 

within each semester and Academic Year.  

3.2.Models and Methods 

In this subsection, we briefly recall the basics of survival analysis and we describe the statistical 

models adopted in the study. 

3.2.1. Basics of survival analysis 

Survival analysis regards the group of statistical procedures for the modelling of the time until 

an event of interest occurs (Kleinbaum & Klein, 1996; David & Mitchel, 2012). For each unit 

of analysis, the event (i.e. dropout) might occur during the follow-up (i.e., the period of 

observation - in our case, three years) or not. In the second case, we refer to the observation as 

censored. For each unit i = 1,…, N, the target variable is defined as the couple of the survival 

time Ti = min(Ti∗, Ci) and the censoring indicator δi = (Ti∗ ≤ Ci), where Ci is the censoring time 
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and Ti∗ is the observed event time, if any. δi is the indicator function that indicates whether the 

event occurred (δi = 1) or not (δi = 0) for the individual i. Censoring is assumed independent of 

survival time. Being T a non-negative random variable, the survival function 

S(t) = P(T > t) = 1 − P(T ≤ t) = 1 − F (t) 

represents the probability of survival until time t, while the hazard function describes the 

instantaneous risk of failure and is defined as  

ℎ(𝑡) = lim
∆𝑡→0

𝑃(𝑡≤𝑇≤𝑡+∆𝑡|𝑇≥𝑡)

∆𝑡
. 

The survival function S(t) can be estimated through the Kaplan-Meier estimator (KM) (Kaplan 

& Meier, 1958), which represents the probability of surviving in a given length of time while 

considering time in many small intervals. In case of two or more groups, the Log- Rank Ratio 

test (Mantel, 1966) can be used to test statistical differences across the estimated KM curves. 

3.2.2. Shared frailty Cox PH models with time-invariant and time-varying covariates 

Cox regression models are the most popular mathematical modelling approach to estimate the 

survival curves when considering several explanatory variables simultaneously. When the units 

are not i.i.d. but they are nested within groups, Shared Frailty Cox models introduce a frailty 

term, shared among units within the same group (in our case, students within degree programs), 

to take the structure into account (Kleinbaum & Klein, 1996; David & Mitchel, 2012). 



11 

 

The Shared Frailty Cox Proportional Hazards (PH) model assumes the hazard function for the 

i−th individual, for i = 1,…, N within the j−th group, for j = 1,…, J , to be modelled as 

follows: 

ℎ𝑖𝑗(𝑡, 𝒙𝑖𝑗)  =  ℎ0(𝑡) × 𝜔𝑗 × 𝑒𝑥𝑝 {∑ 𝛽𝑝𝑥𝑝,𝑖,𝑗

𝑃

𝑝=1

} 

where h0(t) is the baseline hazard function, βxij is the linear predictor, where xi is the vector of 

the i−th individual P covariates and β is the vector of corresponding coefficients, ωj is the frailty 

term for the j−th group. To better quantify the effect of the covariates, Hazard Ratios (HRs) can 

be derived from the vector of coefficients β. The modelling is based on the following 

assumptions: the effect of each covariate is constant across time (PH assumption), all failure 

times are independent given the frailties, and the values of the random effects ωj are constant 

over time and common to all the individuals belonging to the same group. The frailties ωj have 

a positive unobserved multiplicative effect on the hazard function. They are i.i.d. following a 

Gamma distribution with E(ω) = 1 and Var(ω) = θ, where θ is the unknown parameter. Larger 

values of θ mean greater heterogeneity among the groups. Individuals belonging to a group with 

ωj > 1 have an increased hazard and decreased probability of survival compared to those with 

average frailty (ωj = 1). Similarly, individuals belonging to a group with ωj < 1 have a decreased 

hazard and increased probability of survival compared to those with average frailty. 

This modelling can be extended to handle time-varying covariates. The shared frailty Cox model 

with both time-invariant and time-varying covariates, with respect to the i-th individual, 
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assumes the following form:  

ℎ𝑖𝑗  (𝑡, 𝒙𝒊𝒋(𝑡)) = ℎ0(𝑡) × 𝜔𝑗 × 𝑒𝑥𝑝 {∑ 𝛽𝑝𝑥𝑝,𝑖,𝑗

𝑃

𝑝=1

∑ 𝛾𝑞𝑥𝑞,𝑖,𝑗(𝑡)

𝑄

𝑞=1

} 

where P and Q are the number of time-invariant and time-varying covariates, respectively, and 

β and γ are the coefficients associated to these covariates, respectively. This modelling assumes 

that the effect of time-varying covariates xq (t) on the survival probability at time t depends on 

the value of this feature at time t and not on its value at previous times. The PH assumption is 

no longer satisfied and the Hazard Ratio between two individuals i and j varies across time, 

depending on the covariates’ values. 

3.2.3. Goodness-of-fit indices 

To evaluate the goodness of fit of our models, we rely on the most common metrics, the 

Concordance index (C-index) (Steck et al., 2007), which is defined as the proportion of 

concordant pairs, i.e., pairs of individuals for which the expected event times are predicted in 

the correct ordering, divided by the total number of possible evaluation pairs. The closer to one, 

the more accurate the Cox model. We support the C-index with a further evaluation, obtained 

by treating our survival models as classification models: by looking at the estimated survival 

probability at a fixed time t∗, we compute classification performance indices, e.g., precision, 

recall and ROC curve. 

4. Results 
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The event of our interest is the failure event of student dropout from university. A follow up 

period of five semesters is considered: a student dropping out between the end of the first 

and sixth semester is labelled as dropout, while all other students, i.e., students who drop 

out after 3 years from the enrolment, who graduate or who have an active career at the 

end of the 3rd year, are marked as censored. 

This section is divided into three main parts. In Section 4.1 we report results of a 

preliminary analysis to describe the cohort of students and the dropout distribution across 

time. In Sections 4.2.1 and 4.2.2 we show the results of shared frailty Cox models, first 

with only the time-invariant covariates and, then, with the addiction of the time-varying. 

Results focus on the interpretation of the effect of student-level characteristics on the 

dropout risk, on the quantification of the heterogeneity across degree programs and on 

the models’ predictive power. Lastly, Section 4.3 reports a comparison of Cox models 

fitted by sequentially adding students information in time in order to identify the best 

trade-off between accurate and early predictions. 

4.1.Preliminary analysis 

As reported in Table 1, 12.7% of the students in our sample dropped out during the five 

semesters after the first one. Figure 1 reports the estimated survival function and the 

distribution of the time do dropout, measured in semesters. As expected, most of the 

dropouts occurs in correspondence of the end of academic years, mainly during the first 

two ones. 
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The hazard function presents three major peaks (represented by jumps in the survival 

function), which correspond to moments with high frequency of dropouts, at the end of 

each of the three academic years. The highest peak is in correspondence of the second 

semester, which marks the end of the first year of university; therefore, preventive 

interventions before this time are needed. 

In order to investigate the association between student characteristics and dropout risk, 

we conducted a univariate analysis by computing KM survival curves. Figures in 

AppendixA2 report the KM curves computed for all student characteristics listed in 

Table 1, for the students’ performance (ECTS and GPA) during the first semester and 

by Department. Figures show, for all students’ features, different survival profiles.  
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Figure 1: Estimated survival function and time-to-dropout distribution. 

 
Note: The figure in the right panel reports the distribution of the times, expressed in semesters, in which students 

definitely abandon PoliMi during a follow-up of 5 semesters (3 years, except for the first semester). Mean = 3.02, 

median = 2.20). 0 corresponds to the enrolment. 

 

4.2.Shared frailty Cox PH models 

In this section, we fit two Shared Frailty Cox models, considering students (level 1) nested 

within degree programs (level 2), in order to estimate the student time to dropout between the 

end of first and sixth semester, by exploring the effects of student characteristics and of the 

degree programs. The first is a Shared Frailty Cox model with time-invariant covariates, while 

in the second time-varying covariates about students’ academic results are added.  

For both models, we randomly divide the dataset in training and test sets, containing 70% and 

30% of the observations, respectively.  
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4.2.1. Shared Frailty Cox PH model with time-invariant covariates 

The Shared Frailty Cox model includes as time-invariant covariates Gender, Income, Origins, 

HighschoolType, HighschoolGrade, AdmissionScore, Age19, and ECTS2 of first semester. 

Table 3 shows the summary of the model estimated on the training set, where a total of 4,549 

dropout events occurred. Results are in line with the ones of the KM curves. Females have an 

average lower risk of dropout than males (HR = 0.84), students with SG income category are 

less likely to drop out with respect to students in the Medium category (HR = 0.772), 

Commuters are more likely to drop out than Milanese students (HR = 1.144), being that 

a student who attended a Technical school or other types of high schools is associated to 

a higher dropout risk with respect to students who attended Scientific schools (HR = 1.088 

and 1.322, respectively), and the higher the high school final grade, the lower the risk of 

drop out, on average (HR = 0.997). Lastly, the number of credits obtained at the first 

semester confirms to be an important protective factor. This output confirms again how 

the early academical results obtained by the student have an important role in a  student’s 

choice of withdraw from studies. The admission score at PoliMi and the age as of 

enrolment do not result to be significant. Figure A1 reports the baseline survival and hazard 

functions estimated by the model. 

  

 

2 We do not include GPA at this stage because ECTS and GPA are highly correlated, due to all 

students that have 0 GPA and 0 ECTS at first semester. 
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Table 3: Shared Frailty Cox model with time-invariant covariates, output of the summary 

 

 Coefficient Standard error Hazard Ratio 95%CI for HR 

Gender:F −0.177∗∗
 0.042 0.840 ( 0.77 - 0.91 ) 

Income:High 0.031 0.038 1.031 ( 0.96 - 1.11 ) 

Income:Low −0.038 0.039 0.962 ( 0.89 - 1.04 ) 

Income:SG −0.258∗∗
 0.056 0.772 ( 0.69 - 0.86 ) 

Origins:Commuter 0.135∗∗
 0.034 1.144 ( 1.07 - 1.22 ) 

Origins:Offsite −0.074 0.069 0.929 ( 0.81 - 1.06 ) 

HighschoolType:Classical −0.013 0.062 0.987 ( 0.87 - 1.12 ) 

HighschoolType:Foreigner −0.144 0.157 0.866 ( 0.64 - 1.18 ) 

HighschoolType:Others 0.279∗∗
 0.096 1.322 ( 1.10 - 1.59 ) 

HighschoolType:Technical 0.085∗∗
 0.045 1.088 ( 1.00 - 1.19 ) 

HighschoolGrade −0.003∗
 0.002 0.997 ( 0.99 - 1.00 ) 

AdmissionScore −0.002 0.002 0.998 ( 0.99 - 1.00 ) 

Age19: > 19 −0.050 0.046 0.951 ( 0.87 - 1.04 ) 

ECTSP −0.123∗∗
 0.002 0.884 ( 0.88 - 0.89 ) 

Number of events 4,549    

Observations 

Frailty 

34,651 

�̂� = 0.029 se(�̂�) = 0.0104 
 

pval = 0.010 

 

Concordance 0.816    
Log Likelihood −17118.22    

Note: ∗p<0.1; ∗∗p<0.05. Estimated baseline survival and hazard functions are reported in Figure A3a in Appendix 

A3. 

Regarding the degree program effect, 𝜃 = 0.029 is the estimated variance of the frailty 

parameter. The variance of the frailty term 𝜃 is significantly different from 0 (p-value of the 

Wald test 0.01), confirming the presence of heterogeneity between degree programs. The 

estimated frailty terms ωj , j = 1,…,16, which denotes the effect of each particular study program 

on the baseline hazard function, are shown in left panel of Figure 4. Among the 16 degree 

programs, two result to be associated to a higher dropout risk with respect to the average, net to 

the effect of student characteristics (ωDG4 = 1.245 and ωDG13 = 1.203). On the opposite, two 
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programs result to be associated to lower dropout risks (ωDG2 = 0.656 and ωDG7 = 0.712). In the 

plot, the groups are colored depending on the asymptotic 95% confidence interval [ω ± 1.96 × 

σ(ωj)]. The groups whose lower bound of the confidence interval is greater than 1 are red, while 

the groups whose higher bound of the confidence interval is lower than 1 blue. In grey we find 

the departments whose confidence interval contains 1, suggesting that they are not significantly 

different from the average. 

The impact of these estimated values on the survival probability can be easily visualized in the 

department-specific baseline hazard functions, showed in the right panel of Figure 4. 

Figure 4: Estimated frailty terms and degree programs-specific baseline hazard functions in the 

time-invariant case 

Note: Left panel shows the empirical Gamma Frailty terms for the 16 degree courses estimated by the shared frailty 

Cox model with time-invariant covariates. Red and blue points identify the faculties that have a frailty term significantly 

higher and lower than 1, respectively. Right panel reports the faculty-specific baseline hazard functions for the 16 

specific degree courses. 

In terms of model predictive performance, the C-index computed both on the training and test 

set are 0.816 and 0.814, respectively. 
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4.2.2. Shared Frailty Cox PH model with time-varying covariates 

We now extend the previous model by including time-varying covariates. In particular, we 

consider GPA and ECTS measured at the end of each semester as time-progressive information. 

Model results are reported in Table 4. 

By including the career tracks over time, some of the personal student characteristics change 

their significance with respect to the first model. Here, gender is no more significant; with 

respect to a Medium income, having a Low income and having a scholarship (SG) are protective 

factors; with respect to Milanese students, Commuters and Offsite students have on average a 

higher dropout risk; with respect to scientific high school, having attended a foreigner or a 

technical school is a protective factor; having obtained a good high school grade is a risk factor, 

and being a student older than the average is a protective factor. As regards the career track, 

both ECTS and GPA are very significant and are protective factors. It is worth to note that, net 

to the effect of progressive ECTS and GPA, we still observe many significant student 

characteristics. 
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Table 4: Shared Frailty Cox model with time-dependent covariates, output of the summary 

 Coefficient Standard Error Hazard ratio 95%CI for HR 

Gender:F −0.06 0.043 0.945 (0.87-1.03) 

Income:High −0.053 0.038 0.948 (0.88-1.02) 

Income:Low −0.105∗∗
 0.039 0.899 (0.83-0.97) 

Income:SG −0.293∗∗
 0.056 0.746 (0.67-0.83) 

Origins:Commuter 0.156∗∗
 0.034 1.169 (1.09-1.25) 

Origins:Offsite −0.128∗
 0.069 0.880 (0.77-1.01) 

HighschoolType:Classical 0.028 0.062 1.029 (0.91-1.16) 

HighschoolType:Foreigner −0.337∗∗
 0.157 0.713 (0.52-0.97) 

HighschoolType:Others 0.144 0.096 1.155 (0.96-1.39) 

HighschoolType:Technical −0.144∗∗
 0.045 0.866 (0.79-0.95) 

HighschoolGrade 0.007∗∗
 0.001 1.007 (1.00-1.01) 

AdmissionScore −0.003 0.002 0.997 (0.99-1.00) 

Age19: > 19 −0.384∗∗
 0.046 0.681 (0.62-0.75) 

ECTSPprog −0.061∗∗
 0.001 0.941 (0.94-0.94) 

GPAprog −0.028∗∗
 0.002 0.972 (0.97-0.98) 

Number of events 4549    

Observations 197591    

Frailty �̂� = 0.012 se(�̂�) = 0.006 pval = 0.020  

Concordance 0.857    
Log Likelihood −14528.61    

Note: ∗p<0.1; ∗∗p<0.05. Estimated baseline survival and hazard functions are reported in Figure A3b in 

Appendix A3. 
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The estimated baseline survival and hazard functions are displayed in Figure A2. At the 

end of the follow-up, the baseline survival function reaches very low value (and in 

parallel, the hazard reaches very high ones) with respect to the ones of the first model 

shown in Figure A1. The number of progressive ECTS mainly drives this trend since 

surviving until the end of the third year with 0 ECTS is very unlikely. 

Regarding the frailty term, its estimated variance 𝜃 = 0.012 again results to be 

significantly different from 0. The distribution of the 16 estimated frailties ω̂ j and 

the program-specific baseline hazard functions are reported in Figure 5. Except for 

DG4, that confirms to be associated to a higher dropout risk both in the time-invariant 

and time-dependent frameworks, the other departments with an effect significantly 

different from 1 differ from the ones identified in the time-invariant framework. Here, 

DG10 and DG12 are associated to higher dropout risks, while DG6 and DG14 are 

associated to lower ones, suggesting that, net to the effect of the entire student career 

in the first three years, there are heterogeneous dropout dynamics across these 

departments. 

The C-index measured on the training and on the test sets are both equal to 0.857. 

As expected, the inclusion of the career tracks over time improves the model accuracy 

and the predictive power, leading to a powerful model. Nonetheless, in order to 

promptly help at-risk students, early predictions are needed. In this perspective, in the 

next subsection we conduct a comparative analysis in order to estimate the best 
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trade-off between accurate and early predictions. 

Figure 5: Estimated frailty terms and faculty-specific baseline hazard functions in the time-

varying case 
 

Note: Left panel shows the empirical Gamma Frailty terms for the 16 degree programs estimated by the shared 

frailty Cox model with time-varying covariates. Red and blue points identify the departments that have a frailty 

term significantly higher and lower than 1, respectively. Right panel reports the department-specific baseline 

hazard functions for the 16 specific degree programs. 

4.3.Definition of an efficient Early Waning System 

In order to evaluate the trade-off between early and accurate predictions, we perform a 

comparative analysis in which we build several shared frailty Cox models by including 

student information measured until different time points and we evaluate their predictive 

performance, in terms of C-index and classification indices. In particular, we build six 

subsequent models: 

• Model 0 only includes the student information measured at the time of 

enrolment (all time-invariant, no student career progress information is 

considered); 
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• Model 1 includes the student information measured at the time of enrolment 

plus the number of ECTS obtained during the first semester (all time-

invariant); 

• Model 2 includes the student information measured at the time of enrolment 

plus the progress of the number of ECTS and GPA obtained during the first 

two semesters; 

• Model 3 includes the student information measured at the time of enrolment 

plus the progress of the number of ECTS and GPA obtained during the first 

three semesters; 

• Model 4 includes the student information measured at the time of enrolment 

plus the progress of the number of ECTS and GPA obtained during the first 

four semesters; 

• Model 5 includes the student information measured at the time enrolment plus 

the progress of the number of ECTS and GPA obtained during the first five 

semesters; 

• Model 6 includes the student information measured at the time of enrolment 

plus the progress of the number of ECTS and GPA obtained during the first 

six semesters. 

As we did in the previous section, we randomly divide the sample into training (70%) and 

test sets (30%). The predictive performance is measured in terms of C-index, accuracy, recall, 

and Area Under the ROC Curve (AUC), measured on the test set. For each of the six models, 

the classification indices are built at different time instants t* = {1.0, 1.1, 1.2,…, 5.9, 6.0} by 

classifying a student as dropout or not standing on his/her predicted dropout probability at 
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time t*. At each time t*, the optimal threshold p0(t*) for the classification is found (on the 

training set) and students in the test set are classified accordingly. Figure 6 shows the six 

trends of accuracy, recall, AUC, and optimal classification threshold in time, while Table 5 

reports the C-index of the six models computed on the test set. 

Figure 6: Estimated accuracy, recall, AUC, and optimal classification threshold in time for the 

six Shared frailty Cox models. 

Note: Figures show Accuracy, Recall, AUC and values of optimal p for the predictions of dropout in different 

moments.  

From Figure 6 and Table 5, we observe a first significant improvement in the models 

predictive performance when we move from Model 0 to Model 1 and a second less 

pronounced one when we move from Model 1 to Model 2. The difference in the performances 
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between the last four models is instead almost negligible. This result suggests that student 

information at the time of enrolment is not sufficient to provide a good prediction for the 

dropout risk (Cindex = 0.682, accuracy between 0.65 and 0.7, AUC between 0.7 and 0.75). 

With the inclusion of first semester information, we become much more confident in 

identifying students at risk (Cindex= 0.813, accuracy between 0.7 and 0.75, AUC 

approximately 0.8), and with the entire first year information we reach a level that is 

comparable to the one that we obtain by observing the complete student career of the first six 

semesters. 

This evidence, together with high frequency of dropout during the first year, suggest that first 

year career is already extremely informative and is enough to outline targeted interventions. 

The end of first and of the second semester represent two pivotal moments to implement 

preventive actions. 

Table 5: Concordance Index computed on the test set, comparison between the 6 different 

time-dependent shared frailty Cox models. 
 

Model C-index 

Model 0 0.682 

Model 1 0.813 

Model 2 0.849 

Model 3 0.851 

Model 4 0.855 

Model 5 0.857 
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5. Concluding remarks and policy implications 

The need to deal with the dropout issue is particularly relevant for scholars and policy makers, 

due to its important consequences at the personal, social, and economic levels (Castro-Lopez 

et al., & Bernardo, 2022). Early Warning System is a promising approach aiming at reducing 

educational withdrawal, predicting the phenomenon as soon as possible. However, academic 

literature focuses much on identifying the “who”, while less is done about the “when”. Indeed, 

the key research goals of this paper are identifying the time when dropout occurs and the 

optimal time to predict it. 

To pursue these goals, we developed a set of shared frailty Cox models with time-invariant and 

time-varying covariates for predicting student dropout at different engineering faculties of 

PoliMi. The main innovation of this work relies on the methodological approach adopted and 

on its advantages: the time-to-event approach allows to predict the time to dropout, while the 

frailty and the time-varying covariates allow to fit the data and their complexity. The first aspect 

is relevant since it represents clear insights for universities and program managers, who can 

effectively use these predictions to intervene on time. In our case, dropout mainly occurs at the 

end of every year, but particularly after the first one. This means that students face difficulties 

especially at the beginning of their career. Potential reasons could be found in the low pre-

academic preparation or in a misalignment in students’ expectations about university career. In 

this perspective, empowering the selection procedure and enriching the set of student 

information collected at the time of enrolment would help in providing more accurate and 
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timely predictions. The second key takeaways relates to the characteristics of the most resilient 

(and, on the contrary, the most at risk) students. Girls, study grant recipients, and offsite 

students are those who retain more than their counterparts. The interpretation could be found 

in their (expected) higher motivation. Females are less represented in STEM disciplines, 

students with study grants probably feel the responsibility (and duty) of having received this 

opportunity, and offsite students have moved to another city – the one with the highest rents in 

Italy – probably thanks to the sacrifices of their families. Especially for female students, their 

resilience shows up late in the academic career (after 3 semester, half-way for graduation). As 

also confirmed in literature (Tinto, 2017), the motivation represents the main latent factor 

related to students’ retention. 

The last consideration relates to the adoption of an Early Warning System for detection of 

students at risk of dropout. This paper aims at setting the stage for a discussion about the timing 

of predictions as the result of an optimization problem to balance their accuracy and their 

timeliness. Findings indicate that as the student’s career progresses, predictions’ precision 

improves (as expected), but waiting for too long may lead the university to not have enough 

time to retain students. Evidence suggests that a possible optimal moment for prediction is the 

end of the first year, since the improvement in accuracy for the following semesters is nearly 

negligible. 

Possible and interesting further development directions regard two main aspects. The former 

concerns the investigation of the heterogeneity at the degree programs level. Indeed, the 

dropout dynamics across degree courses might differ across time (e.g., the baseline hazard 
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function of a degree program might be higher during the first year but lower during the second, 

with respect to the average), and time-invariant frailties are not able to catch this source of 

variability. Developing Cox models with time-varying frailties and degree program-specific 

parameters of covariates would significantly help the research in this direction. The latter 

regards the possibility to enrich the student-level dataset by including information about student 

motivation, psychological and personal aspects that would help the prediction allowing for even 

earlier accurate estimates. 
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Appendices 

Appendix A1. Students’ distribution within programs 

Table A1a: Distribution of students within the 16 programs and relative dropout percentage. 

 

Degree Program Code Number of students % dropout 

DG1 4,392 11.04 

DG2 1,208 11.04 

DG3 2,265 11.03 

DG4 4,374 12.05 

DG5 2,112 12.64 

DG6 1,767 13.02 

DG7 1,207 7.71 

DG8 1,586 15.38 

DG9 1,002 16.67 

DG10 3,948 13.52 

DG11 1,635 10.95 

DG12 6,659 11.61 

DG13 6,719 16.55 

DG14 6,020 12.09 

DG15 2,486 11.06 

DG16 2,121 12.21 
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Appendix A2. Dropout risk across time by students’ characteristics 

From KM curves in Figure A2a, we observe that, despite the number of males is widely 

larger than the number of females (77.5% vs 22.5%), males are more likely to drop out. 

Regarding the family income, students with administrative support (SG category) are 

less likely to drop o u t  across time. This could depend from the fact that students with 

SG are more motivated and feel the responsibility for having obtained a grant. The highest 

risk category, especially right after the end of first semester, is that of high income students. 

Nonetheless, on the long term, also low income students show a higher dropout probability with 

respect to the other categories, which suggests that students with a more disadvantaged 

background, who do not receive administrative support, are more exposed to dropout, 

especially on the long term. The dropout probability of the Medium category reaches results 

very close to the SG group at the end of the follow up time. For what concerns student origins, 

Offsite students (i.e., students coming from other regions who moved to Milan to study at 

PoliMi) have on average a lower dropout risk with respect to Milanese and Commuter students. 

Regarding the type of high school attended before the enrolment at PoliMi, most of the students 

come from Scientific school (80.5%) and result to be the ones with lowest dropout risk. Students 

coming from Classical schools present a significant higher risk of dropout during the first year, 

while, on the opposite, students who attended a high school abroad are less likely to dropout at 

the beginning but more likely to dropout during their third year. At the end of the follow-up, 

technical schools and all other types of high schools show a relatively high dropout probability. 

Furthermore, also the high school grade results to be a determinant of the dropout risk. We 
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identify 75 as the threshold that differentiates the most the two populations, highlighting that 

students with a high school final mark lower than 75 have on average higher risk of dropout 

with respect to the others. Students enrolling at PoliMi later than the standard age (19), tent to 

drop more than younger students, especially after the first year. 

Focusing on the early performance at PoliMi (KM curves in Figure A2b), we observe a lower 

dropout risk for those students obtaining an admission score higher than 71, that resulted to 

be the most significant threshold. In terms of ECTS and GPA measured at the end of 

first semester, we observe that obtaining less than 10 ECTS is an extremely predictive 

risk factor. The sharp difference between the two KM curves highlights the importance of 

this information and its predictive power. Among the students who obtained at least 10 

ECTS, having a GPA lower than 22, i.e., the most discriminant value, constitutes a 

further risk factor. Lastly, given our interest in investigating the difference across degree 

programs, we observe that the 16 KM curves show heterogeneous dropout dynamics 

across faculties, detecting up to a 13% difference in the dropout percentage at the end 

of follow-up across faculties. 
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Figure A2a: Kaplan-Meier Curves for Gender Income, Origins, HighschoolType, High 

schoolGrade, and AdmissionAge.  
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Figure A2b: Kaplan-Meier Curves for AdmissionScore, ECTS, GPA, and Degree Program. 
 

 

Note: For each numerical covariate, the threshold represents the value for which the difference between the two 

Kaplan-Meyer curves is maximized. 
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Appendix A3. Baseline survival and hazard functions of the shared frailty Cox models 

Figure A3a: Estimated baseline survival and hazard functions of the shared frailty Cox model 

with time-invariant covariates. 

  

Figure A3b: Estimated baseline survival and hazard functions of the shared frailty Cox 

model with time-varying covariates. 
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