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Abstract

We propose a novel inferential technique based on permutation tests
that enables the statistical comparison between two functional populations.
The procedure (i.e., Interval Testing Procedure) involves three steps: (i)
representing functional data on a suitable high-dimensional ordered func-
tional basis; (ii) jointly performing univariate permutation tests on the co-
efficients of the expansion; (iii) combining the results obtaining a suitable
family of multivariate tests and a p-value heat-map to be used to correct
the univariate p-values. The procedure is provided with an interval-wise
control of the Family Wise Error Rate. For instance this control, which
lies in between the weak and the strong control of the Family Wise Error
Rate, can imply that, given any interval of the domain in which there is
no difference between the two functional populations, the probability that
at least a part of the domain is wrongly detected as significant is always
controlled. Moreover, we prove that the statistical power of the Interval
Testing Procedure is always higher than the one provided by the Closed
Testing Procedure (which provides a strong control of the Family Wise Er-
ror Rate but it is computationally unfeasible in the functional framework).
On the contrary, we prove that the power of the Interval Testing Procedure
is always lower than the Global Testing Procedure one (which however pro-
vides only a weak control of the Family Wise Error Rate and does not
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provide any guide to the interpretation of the test result). The Interval
Testing Procedure is also extended to the comparison of several functional
populations and to the estimation of the central function of a symmetric
functional population. Finally, we apply the Interval Testing Procedure to
two case studies: Fourier-based inference for the mean function of yearly
recorded daily temperature profiles in Milan, Italy; and B-spline-based in-
ference for the difference between curvature, radius and wall shear stress
profiles along the Internal Carotid Artery of two pathologically-different
groups of subjects. In the supplementary materials we report the results
of a simulation study aiming at comparing the novel procedure with other
possible approaches. An R-package implementing the Interval Testing Pro-
cedure is available as supplementary material.

1 Introduction

During the last years, due to the fast development of more and more precise
acquisition devices in many research areas, scientists have started dealing with
the analysis of high dimensional data sets, that is, data sets characterized by a
number p of features observed for each sample unit much larger than the number
n of sample units. In such situations, we generally talk about “large p small n
problems”.

An extreme example of a large p small n data is constituted by functional
data. Indeed, in functional data analysis (FDA) data are even no longer p-
dimensional vectors, but functions observed in a continuous domain and lying
in an infinite dimensional separable Hilbert space (Ramsay and Silverman 2005,
2002; Ferraty and Vieu 2006). In the practice, statisticians deal with this kind
of data by projecting them on a finite dimensional space spanned by a suitable
truncated functional basis (Ramsay and Silverman 2005), which may be fixed
(e.g., Fourier basis, B-splines, wavelet basis, polynomial basis) or data driven
(e.g., functional principal components).

The major issue for the analysis of large p small n data is constituted by the
fact that many classical multivariate inferential tools (e.g., Hotelling’s theorem)
become pretty useless in this framework, since they require the number of sample
units to be greater than the dimension of the space in which data are observed.
Consequently, the growing interest for the analysis of this type of data is urging
the development of inferential techniques suited for any value of n and p.

Many methods dealing with the large p small n problems are object of sta-
tistical investigation. In particular, these techniques may be classified in two
different categories: the ones just focusing on “global inference” and the one
focusing on “component-wise inference” as well. Techniques for global inference
are made by a unique global test that provides a unique result. These procedures
controls the global level of the test (i.e., weak control of the Family Wise Error
Rate). In the parametric case, examples of such techniques are derived from
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suitable generalizations of Hotelling’s theorem (Srivastava 2007; Secchi et al.
2011). In the non parametric case, an example of these technique is constituted
by the NPC permutation test (Pesarin and Salmaso 2010). On the one hand,
these procedures are feasible even when the number of components is very large
but, on the other one, they can just state if there is enough evidence to reject
the null hypothesis without imputing the rejection to specific components. On
the contrary, in large p small n problems, a method allowing the selection of
the components of data set which are significantly different in distribution is of-
ten desirable. As an example, suppose that a functional data set is represented
through the expansion on a suitable basis. In order to perform a dimensional
reduction of the data set, it might be useful to select the components of the
expansion that are significant for the specific test in exam. A global test would
not be able to provide this kind of information.

Techniques that focus on components are instead based on the joint use of
com-ponent-specific univariate statistics. Indeed, the central idea is the decom-
position of the initial high-dimensional test into lower dimensional subproblems,
which are usually characterized by marginal univariate hypotheses. Then, each
subproblem is tested with a classical technique and finally the test results are
corrected in order to assure the control of the level of the test for each possible
set of true null hypotheses (i.e., strong control of the Family Wise Error Rate).
According to these techniques, a global result for the test is given as in the pre-
vious case, and furthermore, a selection of rejected sub-hypotheses is provided.
Examples of such approach are the Bonferroni and the Bonferroni-Holm correc-
tion (Holm 1979), and the Closed Testing Procedure (CTP) (Marcus et al. 1976).
On the one hand, these procedures provide a strong control of the Family Wise
Error Rate (FWER) and enables the selection of a smaller subset of significant
components. On the other one, they are generally not suited to deal with large
p small n data. Indeed as p increases their computational cost might explode
and/or their power can become very low. In particular, if p≫ n, the Bonferroni
correction, which implies the division of the level of the test by p, leads to a
highly conservative and low-power procedure while the CTP requires to test the
closure family of the set of marginal hypotheses (i.e., 2p − 1 tests) making the
computations quickly unfeasible.

The Interval Testing Procedure (ITP), which we hereby propose, is meant for
dealing with functional data and it lies in between these two different approaches.
Similarly to the component-wise inferential techniques, it is able, in case of
rejection, to highlight which components are significantly different. Differently
from them, even when the number of components is very large, its power remains
comparable with the one provided by the global inference techniques and its
computational cost grows just quadratically in p. Since “there is no such thing
as a free lunch” the ITP lacks the strong control of the FWER. Indeed it just
provides an “interval-wise” control of the FWER (which is stronger than the
weak control provided by global test but weaker than the strong control provided
by component-wise procedures). In the FDA framework this is a minor drawback
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since this kind of control is often the only one you might want. Indeed, all
functional bases commonly used in FDA present a natural ordered structure:
Fourier components are ordered according to frequency, B-spline components
according to the abscissa, wavelet components according to the abscissa and the
frequency, Taylor components (or polynomial-inspired components in general)
according to roughness, functional principal components according to variance.
For example, when testing for the difference between two functional populations,
the “interval-wise” control of the FWER in the Fourier expansion implies that,
for any band of frequencies (including the entire set of explored frequencies or
the set of all frequencies greater or lower than a certain threshold), if there is no
difference between the two functional populations in that band, it means that
the probability that at least one component of the band is wrongly detected as
differently distributed in the two populations is controlled. As a second example,
you might think a the B-spline representation. Indeed, because of the compact
support of the B-spline basis elements you have the control of the FWER on
intervals of the domain, i.e., if there is no difference between the two populations
in an interval of the domain, the probability that the two population are detected
as significantly different on part of this interval is controlled. Finally, note that
the ITP is based on permutation tests which just require the exchangeability
of the sample units under the null hypothesis and since the sample functional
principal component scores result exchangeable, we have that the ITP is also
suited to deal with the functional principal component basis expansion.

The paper is outlined as follows: in Section 2 the ITP is described for the
two population framework (i.e., testing for the difference between two functional
populations in both the coupled and the uncoupled scenario). In Section 3, the
ITP is declined in the test for the mean of one functional population and in the
test for the difference among g > 2 populations. The theoretical properties of
the ITP, both in terms of control of the FWER and of its power, are proven in
Section 4. In Sections 5 and 6 the ITP is applied to two case studies, respectively.
In particular, the first one pertains the estimation of the mean function of yearly-
recorded daily temperature profiles in Milan, Italy (NASA 2008). The second
case study is instead devoted to the analysis the Aneurisk data set (Sangalli et al.
2009a) and it concerns the comparison between geometric and hemodynamic
features of the internal carotid artery in two groups of patients associated to
different levels of severity of the cerebral aneurysm pathology. Finally, in the
supplementary materials we provide the results of a simulation study comparing
the performances of the ITP with other multiple testing procedures, as well as an
R-package implementing the ITP for one or two populations of functional data
evaluated on a uniform grid. All computations and images have been created
using R (R Core Team 2012).
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2 The ITP in the Two-Population Framework

Let y = {y11,y21, ...,yn11,y12, ...,yn22} be a collection of n = n1+n2 functions,
and assume that the set of functions y1 = {yi1}, i = 1, ..., n1 represents a random
sample from a first functional population Y1 and the remaining y2 = {yi2}, i =
1, ..., n2 a sample from a second functional population Y2. Consequently, assume
that Y1 and Y2 are two random functions taking values in a separable functional
space Y. We aim at testing the null hypothesis Y1

d
= Y2 against the alternative

Y1
d

̸= Y2, in both the uncoupled and the coupled scenario:

• Uncoupled scenario: we assume independence between the first n1 units

and the remaining n2 units. We make the assumption that y11, ...,yn11
iid
∼

Y1, y12, ...,yn22
iid
∼ Y2, where Y1 and Y2 are two independent random

functions.

• Coupled scenario: we assume a coupled dependence between the units of
the first group and the ones of the second group. In particular, n1 = n2 and

units are coupled across groups, i.e., (y11,y12), ..., (yn11,yn12)
iid
∼ (Y1,Y2).

The testing procedure we hereby propose is composed by the following steps:

1. Basis Expansion: functional data are represented through the coeffi-
cients of a suitable basis expansion;

2. Joint Univariate Tests: univariate permutation tests for the basis coef-
ficients are jointly performed;

3. Interval-wise Combination and Correction of the Univariate Tests:
the univariate tests are suitably combined and then p-values are corrected
to obtain an interval-wise control of the FWER.

2.1 First Step: Basis Expansion

Theoretically, each function can be univocally represented through a countable
sequence of coefficients associated to a suitable basis of the functional space Y
(i.e., Fourier harmonics, B-splines, wavelets, ...). In the practice, very rarely
functional data come with an analytic expression. More often, just some point-
wise evaluations of a function (possibly with some noise) are available, and thus
just a reduced number of components can be estimated. It is thus necessary to
represent data by means of an expansion on a reduced basis {φ(k)}k=1,...,p :

yij(t) =

p
∑

k=1

c
(k)
ij φ

(k)(t) (1)

This projection constitutes the first step in most FDA procedures, and it is
presented in detail in Ramsay and Silverman (2005). The integer p represents
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the finite dimension of the functional space in which data are represented and,
to have a good description of data, it is generally greater than n, at least when a
strong data smoothing is not planned. In particular, when data are constituted
by J observations of each function, we have typically n ≪ p ≤ J . In detail,
in this particular context we are interested in representing data without loss of
information, rather than reducing a priori data dimension. Thus, we will always
set p as big as possible.

In the end, we can represent each of the n units by means of the p coefficients

c
(k)
ij ∈ C ⊆ R, i = 1, ..., nj , j = 1, 2 associated to the expansion (1). In particular,
for each component k of the expansion, we obtain n1 coefficients associated to

units of the first group c
(k)
1 = {c

(k)
i1 , i = 1, ..., n1} and n2 coefficients associated

to units of the second group c
(k)
2 = {c

(k)
i2 , i = 1, ..., n2}. As the basis coefficients

represent sampled data, the hypotheses made for the functional populations can
be re-stated in terms of the expansion coefficients: in the uncoupled case we

have for each k, c
(k)
11 , ..., c

(k)
n11

iid
∼ C

(k)
1 , c

(k)
12 , ..., c

(k)
n22

iid
∼ C

(k)
2 , and in the coupled one

(c
(k)
11 , c

(k)
12 ), ..., (c

(k)
n11
, c

(k)
n12

)
iid
∼ (C

(k)
1 , C

(k)
2 ).

2.2 Second Step: Joint Univariate Tests

The second step of the ITP consists in jointly performing p univariate permu-
tation tests for the coefficients of the basis expansion (1). In particular, we aim
at testing the differences between the two populations for each k = 1, ..., p by
means of an univariate test on the kth coefficient, defined by:

H
(k)
0 : C

(k)
1

d
= C

(k)
2 vs H

(k)
1 : C

(k)
1

d

̸= C
(k)
2 (2)

In order to perform a marginal test for each k, we introduce a suitable per-
mutation test, based on a family of data transformations which preserve the

likelihood under the null hypothesis H
(k)
0 and a suitable test statistic, stochasti-

cally larger under H
(k)
1 than under H

(k)
0 . The family of transformations depends

on the assumptions of independence between the two samples (i.e., coupled or
uncoupled test). The test statistic depends instead on the structure of the basis.

In particular, fix the basis component k, and let c(k) = (c
(k)
1 , c

(k)
2 ) the n1 +

n2 dimensional vector of the coefficients associated to units of the two groups,

and c(k)
∗

= (c
(k)∗

1 , c
(k)∗

2 ) the vector of the permuted coefficients. The family of
likelihood-invariant transformations depends on the type of test:

• in the uncoupled case, we have the total exchangeability under H
(k)
0 ,

thus the family of transformations is composed by any permutation over
the sample units of the observed values.

• in the coupled case, underH
(k)
0 exchangeability is just between and within

couples (e.g., if we want to preserve likelihood, couples cannot be splitted
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(a) Uncoupled permutations (b) Coupled permutations

Figure 1: Examples of some possible likelihood-invariant transformations of the original data
set in the coupled and uncoupled scenarios.

up). The family of transformations is thus composed by between and
within-couple permutations of the observed values.

Examples of possible likelihood-invariant transformations of the original data
set in the uncoupled and coupled scenario are presented in Figure 1.

It is important to note that, being the different components C1, C2, . . . , Cp

possibly dependent, the permutations of the coefficients need to be jointly per-
formed, i.e., each permutation is applied simultaneously to the entire set of
coefficients. This is the key to build the multivariate tests needed in the next
step.

The test statistic T (c(k)
∗

) used for the univariate permutation tests of the
expansion coefficients depend on the type of test to be performed (i.e., coupled
or uncoupled), and on the functional basis used to describe data. Indeed, in the
permutation framework the test statistic has to be properly chosen in order to
reflect the characteristics of data which are expected to change the most under
the alternative hypothesis.

Once chosen the test statistic, for each k, the p-value of the corresponding
test (2) is estimated through a conditional MC algorithm (Pesarin and Salmaso
2010), as the proportion of T (c(k)

∗

) exceeding the value T (c(k)) calculated on
the original data set.

To better understand how a test statistic may be selected and how the test
statistic may depend on the type of test and on the basis used for the analysis,
we report some examples that will be used in the two applications.

Example 1: B-spline Basis. Suppose that a difference between the two
functional populations is suspected to occur exclusively on an unknown region
of the domain. Then, a quite natural choice to target this problem is the use
of the B-spline basis. In particular, we fix a grid of knots along the abscissa,
and express each data through the p coefficients associated to the B-spline basis

functions b
(k)
m (t) of order m: yij(t) =

∑p
k=1 c

(k)
ij b

(k)
m (t) (Bosq 2000).

If we consider the uncoupled case, then, a possible test statistic for each
test (2) can be defined as the difference between the two sample means of the
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coefficients:

T (c(k)
∗

) =
1

n1

n1
∑

i=1

c
(k)∗

i1 −
1

n2

n2
∑

i=1

c
(k)∗

i2 .

If, on the contrary, we consider the coupled scenario, the same test statistic
can be properly rewritten as the sample mean of the differences between the
coupled coefficients:

T (c(k)
∗

) =
1

n1

n1
∑

i=1

(

c
(k)∗

i1 − c
(k)∗

i2

)

.

Example 2: Fourier Basis. Suppose now that data are T -periodic curves,
and that we expect a difference between the two populations in a frequency
band. Thus, it is natural to express data in the frequency domain by means of
a Fourier expansion, which can be expressed in both following representations:

yij(t) = m
(0)
ij +

p
∑

k=1

(

a
(k)
ij cos

(

2π

T
kt

)

+ b
(k)
ij sin

(

2π

T
kt

))

; (3)

yij(t) = m
(0)
ij +

p
∑

k=1

α
(k)
ij cos

(

2π

T
kt+ φ

(k)
ij

)

, (4)

The first expression (3) is exactly of the type (1), and associates each frequency

k to the coefficients a
(k)
ij and b

(k)
ij . The second expression (4) associates instead

each frequency to an amplitude and to a phase coefficient (i.e., α
(k)
ij and φ

(k)
ij )

leading to a more interesting interpretation. Coherently, for the “0th” frequency,

we can define the amplitude and phase coefficients as α
(0)
ij = |m

(0)
ij | and φ

(0)
ij =

π[1− sign(m
(0)
ij )]/2. Amplitude and phase coefficients have different properties:

amplitude coefficients are defined on [0,+∞), while phase coefficients are angles
defined on [0, 2π] and invariant by 2π translations. Thus, it is clear that different
test statistics need to be used for testing the two quantities.

In particular in the uncoupled scenario, for the amplitude coefficients we will
rely on the logarithmic distance of geometric sample means:

Tamp(α
(k)∗) =

∣

∣

∣

∣

∣

∣

∣

log







(

∏n1
i=1 α

(k)∗

i1

)1/n1

(

∏n2
i=1 α

(k)∗

i2

)1/n2







∣

∣

∣

∣

∣

∣

∣

.

In the coupled case, the same test statistic can be more properly rewritten as:

Tamp(α
(k)∗) =

∣

∣

∣

∣

∣

∣

log

(

n1
∏

i=1

α
(k)∗

i1

α
(k)∗

i2

)1/n1
∣

∣

∣

∣

∣

∣

.
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Instead, for testing the phase coefficients in the uncoupled scenario, we will
rely on the signed geodesic distance (on the circle S1) between the geodesic
sample means:

Tph(φ
(k)∗) = sign(mgeo(φ

(k)∗

2 )−mgeo(φ
(k)∗

1 ))dgeo(mgeo(φ
(k)∗

1 ),mgeo(φ
(k)∗

2 )).

In the coupled case, we will use the geodesic sample mean of the signed geodesic
distances:

Tph(φ
(k)∗) = mgeo[{sign(φ

(k)∗

i2 − φ
(k)∗

i1 )dgeo(φ
(k)∗

i1 , φ
(k)∗

i2 )}i=1,...,n1 ],

with the signed geodesic distance and the geodesic sample mean defined accord-
ing to:

dgeo(φ1, φ2) = min{|φ1 − φ2|, |2π − (φ1 − φ2)|}, φ1, φ2 ∈ [0, 2π);

mgeo(φ1, φ2, . . . , φq) = argmin
φ

q
∑

l=1

[dgeo(φl, φ)]
2 φi ∈ [0, 2π);

sign(φ2 − φ1) =

{

+1 if 0 ≤ φ2 − φ1 ≤ π or − 2π ≤ φ2 − φ1 < −π
−1 if π < φ2 − φ1 ≤ −2π or π < φ2 − φ1 ≤ 2π

.

2.3 Third Step: Interval-wise Combination and Correction

The third step of the ITP consists in the construction of suitable combinations
of the univariate test statistics in order to obtain an interval-wise control of the
FWER. Our proposal is to combine the p univariate test statistics by means
of multivariate non parametric combinations (i.e., NPC). In the following, as
an example, we will illustrate how to obtain a bivariate test from two univari-
ate tests along the NPC philosophy. The extension to multivariate NPC’s is
straightforward. It is however detailed in Pesarin and Salmaso (2010).

Let us indicate with T
(1)∗

0 and T
(2)∗

0 the observed values of the two uni-

variate statistics related to variables X1 and X2 and with T
(1)∗

b and T
(2)∗

b the
values induced by the permutation b of the bivariate data set containing the
realizations of (X1, X2). Then, select a combining function, i.e., a continuous
non increasing function ψ : [0, 1]2 → R which is symmetric on the two argu-
ments and attain its supremum value when at least one argument attains zero.
The Fisher combining function ψ(x1, x2) = −2(log x1 + log x2) is an example.

Finally define T
(1,2)∗

b = ψ(L
(1)
b , L

(2)
b ) where L

(1)
b and L

(2)
b are the marginal sur-

vival functions of the the two test statistics T (1) and T (2) evaluated in T
(1)∗

b

and T
(2)∗

b , respectively. Analogously define T
(1,2)∗

0 = ψ(L
(1)
0 , L

(2)
0 ). The p-value

of the joint bivariate test is now simply defined as the proportion of permu-

tations providing T
(1,2)∗

b > T
(1,2)∗

0 . Note that L
(1)
0 and L

(2)
0 coincide with the

p-values of the two original tests. In the practice, the marginal survival functions
(and the descending p-values) can be estimated by means of a conditional MC
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(a) Unrecycled (b) Recycled

Figure 2: Example (with p = 4) of the family of multivariate tests explored by the ITP:
unrecycled version on the left and recycled version on the right.

(i.e., just B randomly selected permutations are used). In this case we have:

L̂
(1)
b =

∑B
q=1 I(T

(1)∗

q ≤T
(1)∗

b
)+1/2

B+1 and L̂
(2)
b =

∑B
q=1 I(T

(2)∗

q ≤T
(2)∗

b
)+1/2

B+1 . The p-value of

the joint test is of course estimated by L̂
(1,2)
0 =

∑B
q=1 I(T

(1,2)∗

q ≤T
(1,2)∗

0 )+1/2

B+1 . For fur-
ther details about NPCs procedure please refer to Pesarin and Salmaso (2010).

Applying this procedure to all couples of subsequent coefficients, then to
all triplets of subsequent coefficients and so on progressively exploring larger
intervals of coefficients, up to the global test obtained combining all p coefficients,
we obtain a family of tests with their associated p-values (e.g., Figure 2(a)).
Finally, we obtain the corrected p-value for the kth coefficient by associating to
the kth coefficient the maximum p-value observed over the p-values of all tests

of the previous family whose null hypothesis implies H
(k)
0 : the univariate test

for H
(k)
0 ; the bivariate tests for H

(k−1)
0 ∩H

(k)
0 and for H

(k)
0 ∩H

(k+1)
0 ; the three-

variate tests for H
(k−2)
0 ∩ H

(k−1)
0 ∩ H

(k)
0 , for H

(k−1)
0 ∩ H

(k)
0 ∩ H

(k+1)
0 , and for

H
(k)
0 ∩H

(k+1)
0 ∩H

(k+2)
0 ; and so on up to the global p-variate test

∩

k′=1,...,pH
(k′)
0 .

Then, using these corrected p-values to detect the components respect to which
the two functional populations are significantly different, we obtain an inferential
procedure (i.e., the ITP) controlling the FWER on any interval of components.
This property is proven in Theorem 4.1.

2.4 Remarks

According to the latter combination strategy the hypotheses in the “middle”
are tested more times than the ones at the “edges” (in the example of Figure

2(a) with p = 4, H
(2)
0 and H

(3)
0 are included in 6 tests, whereas the hypotheses

H
(1)
0 and H

(4)
0 are only tested 4 times). In order to avoid this asymmetry, which

may favor the rejection of the hypotheses which are tested less times, one can
introduce a correction that consists in recycling the marginal hypotheses at the
edges of the structure. The resulting family is represented in an example with
p = 4 in Figure 2(b). This recycled version of the ITP has two major advantages:
(i) each components is tested the same number of times (i.e., p(p + 1)/2), and
(ii) the FWER is controlled not only on intervals but also on their respective
complementary sets. This is the implementation of the ITP we will refer to in
the two applications. The theoretical results presented in Section 4 are valid for
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both the recycled and the un-recycled version of the ITP.
Non parametric combinations can be used to build other family of multivari-

ate test. In the framework hereby depicted, we can think at building two extreme
procedure: the Global Testing Procedure (GTP), which is associated to a degen-
erative family made by the global test only, and the Closed Testing Procedure
(CTP), which is associated to the family made by all 2p−1 possible multivariate
tests and whose kth corrected p-values are obtained by computing the maximum

p-value observed over the p-values of all tests whose null hypothesis implies H
(k)
0 .

The GTP provides a weak control of the FWER (the probability of wrongly re-
jecting at least one null hypothesis is controlled only if all null hypotheses are
true) while the CTP provides a strong control of the FWER (the probability of
wrongly rejecting at least one null hypothesis is controlled over any set made of
true null hypotheses). Theorem 4.1 proves that the control of the FWER pro-
vided by the ITP is intermediate between the two above. Theorems 4.2 and 4.3
instead prove (both globally and component-wise respectively) that the power
of the GTP is always higher then the power of the ITP which is always higher
than the power of the CTP. The same theorems prove also (both globally and
component-wise respectively) that the CTP is always more conservative than
the ITP which is always more conservative than the GTP, which is indeed exact.
In the supplementary materials a simulation study is performed to explore the
tightness of the latter inequalities.

Finally, note that to implement the GTP just one test needs to be performed,
p2 tests are needed for the recycled version of the ITP, and 2p − 1 are needed
for the CTP. The CTP becomes thus quickly unfeasible for the typical values of
p used in FDA.

In conclusion , when dealing with functional data, the ITP provides a good
compromise between the CTP and GTP gathering the best of both procedures.
Indeed, like the CTP and differently form the GTP, the ITP performs a selection
of the significant components; and, like the GTP and differently from the CTP,
its computational costs remain affordable even for large values of p; moreover, its
control of the FWER and its power are intermediate between the ones provided
by the CTP and GTP.

3 The ITP in Different Frameworks

The idea of combining and correcting suitable univariate permutation tests along
the line described in Section 2.3 is very general, and may be applied more or
less straightforwardly to many other situations, provided that a suitable family
of univariate permutation tests is defined. In particular, we describe here the
application of the ITP in two situations: the functional ANOVA framework,
where the objective is to detect differences among g > 2 independent functional
populations, and the one population framework, where the objective is testing
for the center of symmetry of a symmetric functional population.
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3.1 The ITP in the Multi-Population Framework

Suppose to observe a collection of n functions y = {y11, ...,yn11, ...,y1g, ...,yngg}
from g > 2 different populations and to aim at testing the equality in distribution
of all functional populations against the difference in distribution of at least one
population from the other ones.

Once again, we calculate for each function the p coefficients of a suitable basis
expansion (1). For each component k of the basis, we have a vector of n = n1 +

n2 + ...+ ng coefficients associated to data c(k) = (c
(k)
11 , ..., c

(k)
n11
, ..., c

(k)
1g , ..., c

(k)
ngg),

with ci1 ∼ C1, ci2 ∼ C2, ..., cig ∼ Cg, and then perform the univariate permu-

tation tests H
(k)
0 : C

(k)
1

d
= C

(k)
2

d
= ... d

= C
(k)
g vs H

(k)
1 : ∃ τ1, τ2 s.t. C

(k)
τ1

d

̸= C
(k)
τ2 . In

detail, the permutations to be used depend on the test structure: in the indepen-
dent scenario (i.e., functional ANOVA framework), under the null hypothesis,
data are completely exchangeable. Consequently the family of transformations
is constituted by all possible permutations of the observed values, as in the un-
coupled case of the two-populations scenario. In the dependent scenario (i.e., the
functional repeated measurements) where the same n1 = ... = ng sample units
are observed g > 2 times, as in the coupled case of the two-population scenario,
the groups of values associated to the same sample unit i cannot be split up.
Thus, the family of transformations is composed by within and between sample
unit permutations of the observed values.

In the independent case, the Fisher’s test statistic can be used to perform
the marginal tests:

T ((c
(k)
11 , ..., c

(k)
n11
, ..., c

(k)
1g , ..., c

(k)
ngg)

∗) =

∑g
τ=1 nτ (c̄

(k)∗

τ − c̄(k)
∗

)2/(g − 1)
∑g

τ=1

∑nτ

j=1(c
(k)∗

jτ − c̄(k)∗)2/(n− g)
,

where c̄(k)
∗

is the sample mean of all permuted coefficients (which is identical

to the original sample mean), and c̄
(k)∗

τ is the sample mean of the permuted
coefficients associated the group τ .

In the repeated measure scenario, the Hotelling T 2 for g − 1 independent
contrasts can be used:

T 2((c
(k)
11 , ..., c

(k)
n11
, ..., c

(k)
1g , ..., c

(k)
ngg)

∗) = n1(∆c̄(k)
∗

)′(∆S∗
c
∆′)−1(∆c̄(k)

∗

),

where ∆ ∈ R
(g−1)×g is a contrast matrix, c̄(k)

∗

= (c̄
(k)∗

1 , . . . , c̄
(k)∗

τ ) is the vector
of the sample means of the permuted coefficients and S∗

c
is the sample variance-

covariance matrix of the permuted coefficients.

3.2 The ITP in the One-Population Framework

Suppose y = {y1,y2, ...,yn} to be a random sample drawn from a symmetric
functional population Y and to aim at testing if the center of symmetry of the
functional population is equal to a certain function µ0. Note that if the mean
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of a symmetric functional distribution exists this is identical to its center of
symmetry and thus, in the latter case, the test become also a test for the mean
function.

As in the previous cases, expand functional data and the m0 on a suitable

basis and represent them through their p coefficients c
(k)
1 , ..., c

(k)
n

iid
∼ C(k):

yi(t) =

p
∑

k=1

c
(k)
i φ(k)(t) and µ0(t) =

p
∑

k=1

c
(k)
0 φ(k)(t).

By exploiting the linearity of the coefficient representation we can introduce a
univariate permutation test for the center of symmetry of each coefficient of the

expansion H
(k)
0 : center[C(k)] = c

(k)
0 vs H

(k)
1 : center[C(k)] ̸= c

(k)
0 . In particular,

we need to define a suitable family of permutations and a test statistic.
In this case, the invariant transformations are the reflections of the function yi

with respect to µ0 (i.e., yi 7→ µ0 − (yi − µ0) = 2µ0 − yi) which, in the coefficient

representation, coincide with the simultaneous reflections through c
(k)
0 of all

coefficients c
(k)
i of the same unit.

Note that it is not straightforward to test for the center of symmetry when
a non linear expansion is used (e.g., the amplitude-phase representation (4) of
the Fourier expansion). For this reason, in the Fourier representation, the use
of the sine-cosine expansion (3) together with the treatment of the coefficients

(a
(k)
i , b

(k)
i ) associated to the same frequency k as a bivariate vector is probably the

more proper approach as the two coefficients jointly describe the same sinusoid:

(a
(k)
1 , b

(k)
1 ), ..., (a

(k)
n , b

(k)
n )

iid
∼ (A(k), B(k)). It is thus natural in this case to take a

bivariate test for each frequency as the starting tests of the ITP:

H
(k)
0 : center[(A(k), B(k))] = (a

(k)
0 , b

(k)
0 ) vs H

(k)
1 : center[(A(k), B(k))] ̸= (a

(k)
0 , b

(k)
0 ),

(5)

where a
(k)
0 and b

(k)
0 are the coefficients of the expansion of the function µ0.

Indeed, the ITP that we will use in the case study is based on the joint

reflection of all coefficients vectors (a
(k)
i , b

(k)
i ) through the point (a

(k)
0 , b

(k)
0 ), and

initialized by the bivariate Hotelling T 2 test statistics:

T (a(k)
∗

,b(k)∗) = (ā(k)
∗

− a
(k)
0 , b̄(k)

∗

− b
(k)
0 )′S∗

k,k(ā
(k)∗ − a

(k)
0 , b̄(k)

∗

− b
(k)
0 ), (6)

where ā(k)
∗

, b̄(k)
∗

are the two sample means of the permuted coefficients, and
S∗
k,k is the sample variance covariance matrix of the permuted coefficient vectors

(a
(k)∗

i , b
(k)∗

i ).

For the 0− th frequency, as we have a unique coefficient m
(0)
i for each data,

with m
(0)
i

iid
∼ M (0), we initialize the ITP through a univariate permutation test

H
(0)
0 : center[M (0)] = m

(0)
0 vs H

(0)
1 : center[M (0)] ̸= m

(0)
0 , based on the squared

of the Student t statistic and on the reflections of the coefficient values m
(0)
i

through the corresponding value m
(0)
0 derived from the expansion of µ0.
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4 Theoretical Properties of the ITP

In this section, we prove some theoretical results regarding the control of the
FWER and the power of the ITP. Note that all results hold for any imple-
mentation of the ITP. Indeed, the corresponding proofs exclusively rely on the
combination and correction procedure of the p univariate tests described in Sec-
tion 2.3 and not on the nature of the latter ones. Thus, results depend neither
on the specific basis used nor on the test statistics used. Furthermore, being
the ITP initialized by univariate tests, results hold for any dimension p of the
basis and in particular even for p greater than the sample size. The first result
characterizes the control of the FWER provided by the ITP.

Theorem 4.1 Let us consider an ITP obtained by aggregation of p univariate
tests associated to the p components of an ordered basis expansion. Such in-
ferential procedure provides a control of the FWER on all closed intervals of
components (i.e., interval-wise control of the FWER).

Proof. Let k = {k1, k2, ...kd} be a set of indices defining a close interval in {1, 2, ..., p}.

Let R
(ki)
α,ITP be the event “H

(ki)
0 is rejected by the ITP at level α” and R

(k)
α,ITP =

∪

ki∈k
R

(ki)
α,ITP the event “at least one of the H

(ki)
0 is rejected by the ITP at level α”.

Proving the interval-wise control of the FWER of the ITP means proving that, for any

k and for any α, P[R
(k)
α,ITP ] ≤ α when H

(k)
0 =

∩

ki∈k
H

(ki)
0 is true (i.e., when all H

(ki)
0

are true).

Let us indicate with R
(k)
α the event “H

(k)
0 =

∩

ki∈k
H(ki) is rejected at level α by

the corresponding multivariate NPC test”. This is the conclusion of the test included

in the family of tests explored within the ITP that is derived from the aggregation of

the univariate tests for H
(ki)
0 with ki ∈ k. Thanks to the structure of the ITP, for any

ki ∈ k, the latter test is among the ones used to correct the kith p-value. Thus, the ITP

cannot reject H
(ki)
0 if the latter test does not reject H

(k)
0 (i.e., R

(ki)
α,ITP ⊆ R

(k)
α ). This

inclusion holds for all ki ∈ k and thus we have that R
(k)
α,ITP =

∪

ki∈k
R

(ki)
α,ITP ⊆ R

(k)
α ;

and consequently that P[R
(k)
α,ITP ] ≤ P[R

(k)
α ]. Finally, due to the exactness of all tests

included in the family explored by the ITP, we have that, when H
(k)
0 =

∩

ki∈k
H

(ki)
0 is

true, the second term of the latter inequality is equal to α and thus, under the same

assumption, that P[R
(k)
α,ITP ] ≤ α. �

In simple words, interval-wise control of the FWER means that, given any
interval of components associated to true null hypotheses, the probability that at
least one of the null hypotheses associated to the interval is wrongly detected as
false is always less than α. Note that among the controlled intervals, we can find
two interesting extreme kinds of intervals: the entire set of components and all
single components as well. The former control is known in the literature as “weak
control of the FWER”, while the latter one as “control of the Comparison-Wise
Error Rate”.

Our second result compares, relatively the global hypothesis, the ITP with
the CTP and the GTP. In details, it ranks these tests in terms of weak control
of the FWER and of power.
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Theorem 4.2 Let us consider a CTP, an ITP, and a GTP of level α obtained
by aggregation of p univariate tests associated to the p components of an ordered
basis expansion. The actual global level of the CTP, of the ITP, and of the GTP

(i.e., the probability of rejecting at least one H
(k)
0 when all sub-hypotheses are

true) satisfy:
αCTP ≤ αITP ≤ αGTP = α .

The powers of the CTP, of the ITP, and of the GTP (i.e., the probability

of rejecting at least one H
(k)
0 when at least one of the sub-hypotheses is false)

satisfy:
πCTP ≤ πITP ≤ πGTP .

Proof. Let R
(k)
α,ITP be the event “H

(k)
0 is rejected by the ITP at level α”, R

(k)
α,CTP

be the event “H
(k)
0 is rejected by the CTP at level α”, and Rα,GTP be the event

“H0 =
∩

k=1,...,pH
(k)
0 is rejected by the GTP at level α”. Thanks to the structure

of the ITP and of the CTP, all multivariate NPC tests used to correct the kth p-
value in the ITP are used to correct the CTP but not viceversa. Moreover, the global
test is among the test used in both the CTP and the ITP to correct the kth p-value.

Thus, every time the CTP rejects H
(k)
0 also the ITP rejects it and every time the

ITP rejects H
(k)
0 also the GTP rejects it. Thus we have that R

(k)
α,CTP ⊆ R

(k)
α,ITP ⊆

Rα,GTP , and consequently that P[R
(k)
α,CTP ] ≤ P[R

(k)
α,ITP ] ≤ P[Rα,GTP ]. Let us now

consider the event “at least one of the H
(k)
0 is rejected by the ITP at level α” (i.e.,

∪

k=1,...,p R
(k)
α,ITP ) and the event “at least one of the H

(k)
0 is rejected by the CTP at

level α” (i.e.,
∪

k=1,...,p R
(k)
α,CTP ). We have that

∪

k=1,...,p R
(k)
α,CTP ⊆

∪

k=1,...,p R
(k)
α,ITP ⊆

Rα,GTP and thus P[
∪

k=1,...,p R
(k)
α,CTP ] ≤ P[

∪

k=1,...,p R
(k)
α,ITP ] ≤ P[Rα,GTP ]. Now, if the

state of nature implies that H0 =
∩

k=1,...,pH
(k)
0 is true, the left term defines the actual

global level of CTP, the second term the actual global level of ITP, and the third one
the actual global level of the GTP which is equal to α. Thus, the first thesis is proven.

On the contrary, if the state of nature implies that H0 =
∩

k=1,...,pH
(k)
0 is false, the

left term defines the power of CTP, the second term the power of ITP, and the third

one the power of the GTP. Thus, also the second thesis is proven. �

Our third result compares, relatively the component-specific sub-hypotheses,
the ITP with the CTP and the GTP. In details, it ranks these tests in terms of
Comparison-Wise Error Rate (CWER) and marginal power.

Theorem 4.3 Let us consider a CTP, an ITP, and a GTP of level α obtained
by aggregation of p univariate tests associated to the p components of an ordered
basis expansion. The Comparison-Wise Error Rate of the CTP and of the ITP

on each component (i.e., the probability of rejecting H
(k)
0 when the latter is true)

satisfy:

CWER
(k)
CTP ≤ CWER

(k)
ITP ≤ α .

The marginal powers of the CTP and of the ITP on each component (i.e., the

probability of rejecting H
(k)
0 when the latter is false) and the power of the GTP
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satisfy:

π
(k)
CTP ≤ π

(k)
ITP ≤ πGTP ,

with πGTP the power of the global test.

Proof. Let k ∈ {1, 2, ..., p} be an index referring to the kth component of the

basis representation. Let R
(k)
α,ITP be the event “H

(k)
0 is rejected by the ITP at level

α”, R
(k)
α,CTP be the event “H

(k)
0 is rejected by the CTP at level α”, and Rα,GTP be

the event “H0 =
∩

k=1,...,pH
(k)
0 is rejected by the GTP at level α”. Thanks to the

structure of the ITP and of the CTP, all multivariate tests used to correct the kth
p-value in the ITP are used to correct the CTP but not viceversa. Moreover, the GTP
is among the test used in both the CTP and the ITP to correct the kth p-value. Thus,

every time the CTP rejects H
(k)
0 also the ITP rejects it and every time the ITP rejects

H
(k)
0 also the GTP rejects it. Thus we have that R

(k)
α,CTP ⊆ R

(k)
α,ITP ⊆ Rα,GTP , and

consequently that P[R
(k)
α,CTP ] ≤ P[R

(k)
α,ITP ] ≤ P[Rα,GTP ]. Now, if the state of nature

implies that H
(k)
0 is true, the left term defines the CWER of the CTP and the second

term the CWTR of the ITP. Moreover, being single components special kind of intervals,
Theorem 4.1 proves that also the CWTR is controlled by the ITP. Thus, the first thesis

CWER
(k)
CTP ≤ CWER

(k)
ITP ≤ α is proven.

On the contrary, if the state of nature implies that H
(k)
0 is false, the left term defines

the marginal power of the CTP, the second term the marginal power of the ITP, and

the third one the power of the GTP. Thus, also the second thesis π
(k)
CTP ≤ π

(k)
ITP ≤ πGTP

is proven. �

Previous theorems explicit the tradeoff between the control of the FWER
and the power both globally (Theorem 4.2) and component-wise (Theorem 4.3).
Indeed the weaker control of the FWER of the ITP with respect to the CTP is
counterbalanced by the fact that the ITP is less conservative and more powerful
(globally and component-wise) than the CTP. On the contrary, the stronger
control of the FWER of the ITP with respect to the GTP pays the fact that the
ITP is more conservative and less powerful than the GTP. This power loss is
anyway countered by a big gain in interpretability of the test results with respect
to the GTP. Indeed, differently from the GTP, the ITP is able to highlight the
basis elements which the rejection is due to.

5 Analysis of the NASA Temperature Data

In this section we report the analysis of daily temperatures registered by NASA
satellites in the region (45o−46o North, 8o−9o East) including the city of Milan
(Italy) from July 1983 to June 2005 and stored in the NASA database Earth
Surface Meteorology for Solar Energy (NASA 2008). The aim of this analysis is
to test for the mean function of Milan temperature yearly profiles.

In the application, we identify the 22 years available as sample units (n = 22)
and the 365 records available for each year as 365 point-wise evaluations of the
functional data (J = 365) (Figure 3), and we aim at testing the mean function of
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the functional population which data are assumed to be drawn. Because of the
periodic nature of these data and because of their daily resolution we perform
an ITP starting from the coefficients of a truncated Fourier expansion (3) of
dimension 365 and period T equal to one year.

In particular we aim at selecting, among the frequencies k = 0, ..., (J −
1)/2 = 182, the ones whose contribution to the mean function is significantly
different from zero. In detail, we applied the ITP as described in subsection
3.2: assuming the functional population to be symmetrically distributed around
its mean function, for each frequency k > 0 we perform the bivariate test (5),

based on the joint changes of the signs of vectors (a
(k)
i , b

(k)
i ) and on the Hotelling

T 2 statistic (6); for the 0 − th frequency, as discussed in Section 3, we perform
a univariate permutation test based on the squared of the univariate Student t

statistic and on the change of the signs of the coefficientsm
(0)
i . Finally, we obtain

the p-value heat-map (top panel of Figure 3) by combine the tests mentioned
above as shown in subsection 2.3 relying on the Fisher combination function.
In the top panel of Figure 3, we represent the result of each test included in
the family explored by the ITP. In particular, the horizontal axis is associated
to the interval central frequencies and the vertical one to the amplitudes of the
tested interval. Each pixel of the image represents a single multivariate test and
its color represents the corresponding p-value (blue corresponds to low p-values
and yellow to high p-values). Please remember that p-value heat-map is periodic
in the horizontal direction.

Following the correction procedure described in subsection 2.3, the mean
contribution of the kth frequency is detected as significantly different from zero
at level α if all tests in the family explored by the ITP associated to intervals
including the kth component provide a significant result at level α (i.e., if, in
the p-value heat-map, all p-values lying in the upsidedown cone with vertex
in correspondence with the univariate test for the kth frequency are less than
α; the corrected p-value for the kth frequency is indeed exactly the maximum
of those p-values). For convenience, the central panel of Figure 3 reports for
each frequency its corrected p-value. According to the corrected p-values, just
the first two frequencies (i.e., the constant term and the sinusoids of period
one-year) contribute significantly to the mean function. The ITP thus suggests
an easy description of the mean function as a vertically translated sinusoid of
period one year. In detail, this sinusoid is characterized by an annual average
temperature of 9.023◦C and an annual excursion of 21.771◦C. Thanks to this
reduced representation we can also estimate the 18th January as the coldest
day of the year with a mean temperature of −1.891◦C and the 20th July as the
hottest day of the year with a mean temperature of 19.880◦C.

To appreciate the information provided by the ITP, in the lower panel of
Figure 3, together with the original data (dashed light lines), we report the
sample mean (bold solid red line), that would be the estimate suggested by the
GTP, and the sample mean restricted just to the zero-th and the first frequencies
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Figure 3: NASA case study. Top : p-values heat-map of the ITP. Center: corrected p-values
provided by the ITP. Bottom: curves of daily temperatures data (dashed light lines), sample
mean (bold solid red line), and mean as estimated according to the ITP results (bold solid blue
line).
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(bold solid blue line), that is the estimate of the mean suggested by the ITP.
Note how the high-frequency fluctuations that characterize the sample mean
(clearly related to the specific sample at hand) are instead not present in the
second estimate, as considered not significant by the ITP.

As a comparison with other inferential procedures that can be applied to the
coefficients of the basis expansion, let us mention the fact that: the CTP is not
feasible for p = 365 (i.e., more than 10109 tests would be needed). The global
test of course rejects the null hypothesis that the function population is centered
on zero but it cannot detect which frequencies are not centered on zero. Finally,
like the ITP, both the Bonferroni-Holm and the Benjamini-Hochberg corrections
(Benjamini and Hochberg 1995) of the univariate tests detect just the zero-th
and the first frequencies as not centered on zero. Note that the latter correction
procedures obtain corrected p-values by comparing the p-values of univariate
tests while the ITP obtains the corrected p-values by comparing the p-values of
a family of multivariate tests (i.e., the ones related to intervals) thus exploiting
possible dependencies among components.

As a final comment, note that the Fourier expansion of temporal signals is
common practice in engineering. Nevertheless, in that field, important frequen-
cies are detected by means of amplitude thresholding and/or frequency filters
tuned according to some specific knowledge about the physics (typical amplitude
and frequencies of the signal) and/or about the instruments (typical amplitude
and frequencies of the noise). The selection criterion derived by the application
of the ITP is instead purely statistical and exclusively relies on the observed
signals, and it can thus be applied also in context not provided with any quan-
titative prior knowledge about the problem.

6 Analysis of the Aneurisk Data Set

In this section we present the analysis of the Aneurisk Project data set (Sangalli
et al. 2009a,b), which deals with the geometrical and hemodynamical features of
the internal carotid arteries (ICA) of patients affected by a cerebral aneurysm.
The data set is freely available at http://ecm2.mathcs.emory.edu/aneuriskweb.

The aim of this analysis is to assess whether the geometry and/or the hemo-
dynamics of the internal carotid artery can be related to the type and severity of
the pathology. In particular, we look for possible differences in the distributions
of vessel-radius, centerline-curvature, and wall-shear-stress - as functions of the
arch-length - between subjects affected by a severe form of the pathology (i.e.,
upper group, 25 subjects with an aneurysm in the upper part of the brain within
the skull) and subjects affected by a minor form of the pathology or healthy (i.e.,
lower group, 25 subjects with an aneurysm in the lower part of the head outside
the skull or without any aneurysm). A detailed description of data gathering
and processing can be found in Passerini et al. (2012). Data of radius, curvature,
and WSS are reported in the bottom left and right panels of Figure 4. Upper
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group functions are reported in blue while the lower group ones in red.
In detail, we perform three separated analyses for the radius, curvature,

and WSS functions, respectively, and we implement the uncoupled ITP for the
differences between two independent functional populations (Section 2), using
the B-spline basis representation, the difference between the two sample means of
the coefficients as univariate test statistics, and the Fisher combination function.
The results hereby presented refer to p = 128 uniformly spaced B-splines of order
m = 3. Similar results are obtained by reducing the order m of the basis and
varying (up to some extent) its dimension p.

The p-value heat-maps resulting from the radius, curvature, and wall shear
stress tests are reported in the top panels of Figure 4, respectively, whereas the
corresponding corrected p-values are reported in the central panels. The three
ITP’s, at level α = 5%, do not detect any statistical difference between the upper
and lower groups pertaining neither the radius nor the curvature functions while
a difference in terms of wall shear stress is detected. In particular, as the B-spline
basis is local, by looking at the supports of the basis functions, we can identify
the interval where the difference is detected as the interval (−2.783,−1.632)
(gray region in the lower panels of Figure 4): lower WSS for very severe subjects
(i.e., upper group) while higher WSS for less severe subjects (i.e., lower group).
Note that thanks to the interval-wise control of the FWER provided by the ITP,
we can state that if in the interval (−2.783,−1.632) no differences in distribu-
tion between the two population were present, the probability of detecting as
significant at least part of the interval would be less than 5%.

Hemodynamics could explain this finding: the latter region corresponds in-
deed to the second bend of the ICA (i.e., the segment of the ICA where a second
peak of curvature is present and where the ICA becomes getting narrower). The
bends of the ICA are indeed “guardians” of the arteries of upper part of the
brain, which are among the weakest in the entire body (being the latter ones
not surrounded by any muscular tissue). Thanks to the passage through the
bends the unsteady blood flow from the heart is made steadier before entering
the brain. This “stabilizing” effect is related to the loss of energy which is in
turn related to the magnitude of the wall-shear-stress within the bends.

To show in a simple way the results of the ITP, in the lower panels of Figure
4, in the region where a significant difference is detected between the two groups,
the two sample means of the upper and of the lower group are plotted in bold
and the overall sample mean is dotted. The opposite notation is used in the
regions where no significant differences are detected. Finally, focussing on the
WSS functions is possible to appreciate how the ITP takes into account the
local variability. Indeed, despite the enhanced difference between two sample
mean functions with respect to the gray-colored part and because of the higher
variability occurring at the end of the ICA, the very last part of the ICA is not
detected as significant.
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Figure 4: Aneurisk case study analysis of radius (left), curvature (center) and WSS (right). Top: p-value heat-maps; center: corrected p-values;
bottom: curves of the upper and lower groups (blue and red, respectevely), sample means associated to the two groups (bold blue and red curves)
and global sample means (bold black curves). The shaded part indicates the interval where significant differences area found in terms of WSS.
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Similarly to the previous application, also in this case the CTP remains un-
feasible (i.e., more than 1038 tests would be needed) and the GTP onWSS rejects
the null hypothesis of no difference in the WSS between the upper and the lower
group but it cannot detect in which part of the carotid this difference is shown.
Differently from the previous application, the Bonferroni-Holm correction seems
less powerful indeed it is not able to detect any difference between the two
groups, while the Benjamini-Hochberg correction detect, in this case, a larger
interval than the one detected by the ITP (i.e., the interval (−3.239,−1.210)).
This latter finding can be explained by the fact that the Benjamini-Hochberg
correction has only a weak control of the FWER.

7 Conclusions

We presented a novel inferential procedure suited for functional data analysis
(FDA) and based on permutation tests. The procedure, named Interval Test-
ing Procedure (ITP), involves three steps: (i) representing functional data on a
suitable high-dimensional ordered functional basis; (ii) jointly performing uni-
variate permutation tests on the coefficients of the expansion; (iii) combining
the univariate tests obtaining a p-value heat-map to be used to correct the uni-
variate p-values. The procedure is very general and it can be easily declined to
deal with several inferential problems occurring in FDA: for example, the com-
parison of two or more functional populations, or testing for the mean function
of a functional population.

In particular, in this work, we introduced the concept of interval-wise control
of the Family Wise Error Rate (FWER) which is particularly meaningful in the
framework of FDA and which the ITP is provided with. In detail, interval-wise
control of the FWER refers to the property of controlling the FWER over all sets
of subsequent coefficients of the basis expansion, meaning that, for any interval
of coefficients, if there is no difference in distribution between the investigated
populations the probability of incorrectly detecting as significant at least one
coefficient of the interval is controlled. For instance this control, which lies in
between the weak and the strong control of the FWER, if associated to a B-
spline expansion implies that, given any interval of the domain in which there
is no difference between the two functional populations, the probability that at
least a part of the domain is wrongly detected as significant is always controlled.

In addition to having proved the interval-wise control property of the ITP,
we also proved that the marginal and global statistical power of the ITP is
always higher than the one provided by the Closed Testing Procedure (which
provides a strong control of the FWER but it is computationally unfeasible in
the functional framework). On the contrary, we proved that the marginal and
global power of the ITP is always lower than the Global Testing Procedure one
(which however provides only a weak control of the FWER and does not provide
any guide to the interpretation of the test result).
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Finally, we reported the application of the ITP to two case studies to show the
potential of the ITP in the practice. In the detail, we performed a Fourier-based
inference for the mean function of yearly recorded daily temperature profiles in
Milan, Italy; and B-spline-based inference for the difference between wall shear
stress profiles along the Internal Carotid Artery of two pathologically-different
groups of subjects. In both applications we compared the findings highlighted by
the ITP by the ones pointed out by the Bonferroni-Holm correction procedure
(which provides a strong control of the FWER) and the Benjamini-Hochberg
correction procedure (which provides a control of the False Discovery Rate and
thus just a weak control of the FWER). In both applications, the ITP turned
out to be equally or more powerful than the Bonferroni-Holm procedure and
comparable with the Benjamini-Hochberg correction procedure.

A deeper comparison with the Bonferroni-Holm procedure and the Benjamini-
Hochberg procedure has been carried out through a simulation study reported
in the supplementary materials. The major finding that can be drawn from sim-
ulations is that, if one is just interested in maximizing the power under a weak
control of the FWER: the use of the Benjamini-Hochberg correction procedure
or of the Bonferroni-Holm correction procedure is suggested when the “false”
components are expected to be sparse and isolated across components; while the
use of the ITP is suggested when the latter ones are expected to be grouped in
intervals or bands.

An R-package (fdatest) implementing the ITP is available as supplementary
material. The current version of the package requires functional data evaluated
on a uniform grid; it automatically projects each function on a chosen functional
basis; it performs the entire family of multivariate tests; and, finally, it provides
the matrix of the p-values of the previous tests and the vector of the corrected
p-values. The functional basis, the coupled or uncoupled scenario, and the kind
of test can be chosen by the user. The package provides also a plotting function
creating a graphical output like the ones presented in Figures 3 and 4: the p-
value heat-map, the plot of the corrected p-values, and the plot of the functional
data.

8 Supplementary Material

Simulation Studies An extensive simulation study comparing the performances
of the ITP, CTP, GTP, Bonferroni-Holm procedure and Benjamini Hochberg
procedure, articulated in three parts: (i) comparison among the FWER
control of the procedures; (ii) comparison among the global test and global
power of the procedures; (iii) comparison among the CWER and marginal
power of the procedures. (pdf file)

fdatest package An R package implementing the ITP for one or two popula-
tions of functional data evaluated on a uniform grid. The package also
contains all data sets used as examples in the article. (zipped file)
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9 Simulation Study

The aim of the simulation studies here reported is to investigate the performances
of the ITP. In particular, we want to explore the tightness of the inequalities
reported in theorems 4.1, 4.2 and 4.3, as the number of false hypotheses increases.
The simulation study is therefore divided into three parts, each of them being
related to one theorem: in the first part we compare the FWER of different
testing procedures, in the second part their global level and power, and in the
third part their CWER and marginal power. In each part of the simulation,
we compare the ITP with the CTP and GTP (the GTP is considered only in
the second part, as both the FWER and the component-wise statistics are not
defined for this procedure). In addition, we compare the ITP with other multiple
testing strategies, such as the Bonferroni-Holm and the Benjamini-Hochberg
procedures.

In the entire simulation study, we consider a coupled test for the differences

between two populations in an 8-dimensional space. Let c
(1)
1 , c

(2)
1 , .., c

(8)
1 be the

random coefficients associated to units of the first population, and c
(1)
2 , c

(2)
2 , .., c

(8)
2

the random coefficients associated to units of the second population. We generate
for each k ∈ {1, 2, ..., 8} the differences between coupled coefficients from a nor-
mal distribution, with mean µ(k) ∈ {0, 1} and standard deviation σ(k) = 1. The
different components are generated independently, i.e., the variance covariance
matrix of the 8-dimensional vector of differences is Σ = σ2I. Other simulations
have been performed with a different choice for Σ, showing that the described
results do not change considering a more complicate covariance structure. Fi-
nally, we suppose to observe n1 = n2 = 10 different realizations from the two
populations.

We consider the simultaneous test of p = 8 hypotheses on the 8 corresponding

independent differences. The corresponding tests are H
(k)
0 : µ(k) = 0 vs. H

(k)
1 :

µi ̸= 0, ∀k ∈ {1, 2, ..., 8}. In particular, if µ(k) = 0, H
(k)
0 is true and on the

contrary if µ(k) = 1, H
(k)
0 is false. The truth values of the 8 hypotheses will

change from one scenario to another. Nine scenarios are explored with the kth
scenario characterized by the first k null hypotheses being false and the last 8−k
being true, with k = 0, 1, . . . , 8.

9.1 Comparison of the FWER

In Figure 5 we report, for each scenario and each testing procedure, the esti-
mated FWER. We notice from the simulation results that, coherently with the
theory, the ITP, CTP and Bonferroni-Holm procedure control the FWER on
intervals. On one hand, the ITP is less conservative than the CTP in all sce-
narios. On the other hand, the ITP and Bonferroni-Holm procedures seem to
have an opposite behavior. In addition, simulation shows that, as expected, the
Benjamini-Hochberg procedure does not control the FWER.
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Figure 5: FWER of the considered multiple testing procedures as the number of false hypotheses
increases. The error bars indicates the 95% confidence interval for the real FWER.

9.2 Comparison of the global level and power

Figure 6 reports the estimated global probability of rejection of each procedure
and each scenario. In particular, in the scenario zero, with no false hypotheses,
the probability of rejection is the global level, and in all other scenarios it is the
global power. Here, we notice that all procedures control the global level of the
test. In terms of power, the ITP seems to behave more similarly to the CTP
when the number of false hypotheses is low, and more similarly to the GTP
when the number of false hypotheses is high. Moreover, the Bonferroni-Holm
procedure and the Benjamini-Hochberg procedure seem to outperform the ITP
when the number of true hypotheses is large and the number of false hypotheses
is low, while the opposite occurs in the opposite case.

9.3 Comparison of the CWER and marginal power

Figure 7 reports the component-wise probability of rejection. In particular, on
each panel we report a different scenario, and on the abscissa of each panel we
report the 8 different components. In addition, the shaded gray part of each
panel indicates the false hypotheses on the corresponding scenario. Thus, the
CWER is the probability of rejection of each true null hypothesis (that is, the
values reported in the white part of each graph), and the marginal power is the
probability of rejection of each false null hypothesis (that is, the values reported
in the gray part of each graph).

The simulation shows that all procedures assure the control of the CWER
in each scenario. As confirmed by the theory, the ITP outperforms the CTP in
terms of marginal power, and the difference between the power of the two proce-
dures depends on the component. Indeed, we notice that the CTP, Bonferroni-
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Figure 6: Estimated global probability of rejection for the considered multiple testing proce-
dures as the number of false hypotheses increases.

Holm and Benjamini-Hochberg do not make any distinction among the differ-
ent components, whereas the ITP does. In particular, the ITP maximizes the
power at the center of the intervals of false hypotheses, by exploiting the or-
dered structure of the components. Consequently, the ITP seems to outperform
the Benjamini-Hochberg procedure and (even more) the Bonferroni-Holm pro-
cedure on all false hypotheses not occurring at the boundaries between “true”
and “false” regions. If one was just interested in the weak control of the FWER,
this latter finding could suggest the use of the Benjamini-Hochberg correction
procedure or of the Bonferroni-Holm correction procedure when the “false” com-
ponents are expected to be mostly sparse and isolated while the use of the ITP
when the latter ones are expected to be mostly grouped in intervals.
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