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Abstract

We present a model-driven uncertainty quantification methodology based
on the use of sparse grids sampling techniques in the context of a general-
ized Polynomial Chaos Expansion (GPCE) approximation of a basin-scale
geochemical evolution scenario. The approach is illustrated through a one-
dimensional example involving the process of quartz cementation in sand-
stones and the resulting effects on the dynamics of the vertical distribution
of porosity, pressure and temperature. The proposed theoretical frame-
work and computational tools allow performing an efficient and accurate
Global Sensitivity Analysis (GSA) of the system states (i.e., porosity, tem-
perature, pressure and fluxes) in the presence of uncertain key mechanical
and geochemical model parameters as well as boundary conditions. GSA
is grounded on the use of the variance-based Sobol indices. These allow
discriminating the relative weights of uncertain quantities on the global
model variance and can be computed through the GPCE of the model re-
sponse surface. Evaluation of the GPCE of the random model response is
performed through the implementation of a sparse grid interpolation tech-
nique in the space of the selected uncertain quantities. As opposed to a
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standard Monte Carlo sampling, the use of sparse grids polynomial inter-
polants renders computationally affordable and reliable evaluations of the
required indices. GPCE can then be employed as a surrogate model of the
system states to quantify uncertainty propagation through the model in
terms of the probability distribution (and its statistical moments) of target
system states.

1 Introduction

Porosity dynamics observed in sedimentary basins has been ascribed mostly to
mechanical compaction. This mechanism is effective during the early burial
phase and was assumed to be responsible of cementation processes observed
at the largest depth. This assumption is controversial because experimental
observations are not entirely consistent with the idea that reduction of effective
stresses at the onset of overpressure should stop porosity reduction.

Recent studies relate the diagenetic porosity reduction which is observed
beyond a certain depth to temperature rather than to effective stress [1, 7, 30, 43],
because of the relevance of the effects of temperature-activated reactions.

In this context, quartz precipitation in sandstones and smectite–illite trans-
formation in shales are considered as key geochemical compaction processes
driving basin scale evolution [9, 33, 27, 11]. Pressure solution is also a rele-
vant mechanism in the presence of limestones and chalks, see e.g. [9, 27]. The
complex mineralogic composition of natural rocks might result in the simulta-
neous occurrence of these reaction processes, with different relative importance
within a region of interest. Here, we focus on the study of quartz cementation in
sandstones, and its effect on the porosity and overpressure dynamics along the
vertical direction.

Quartz cementation can be described as a sequence of three phases: disso-
lution of quartz grains, diffusion of the dissolved products, and precipitation.
Precipitation is regarded as the rate limiting process (see e.g. [29]).

Some conceptual models of quartz cementation at the basin scale [38, 32,
28, 45] rely on the idea that cementation is the consequence of an intergranular
pressure solution process. These models are mostly applied to calcite cementa-
tion rather than sandstones. A very detailed model to describe crystals growth
is described in [19], taking into account the joint occurrence of several mineral
species, equilibrium and kinetic reactions, and diffusive, dispersive and advective
mass fluxes. This model requires the joint solution of the fluid flow field and
temperature distribution and its complexity renders it unsuitable for large scale
applications. Nevertheless, it has provided useful insights to detect the source
of precipitated silica, suggesting that this should be internal to the system. We
note that the assessment of the source of silica driving these processes is still
not completely clear. According to some authors, [19, 47] the source of quartz is
internal to the sandstone system and is related to pore scale reactions, pressure
solution and smectite-illite transformation. The assumption of the action of an
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external source of silica seems less likely, as this does not explain the strength
of the cementation which is observed in nature [23, 8].

A simple empirical model for quartz precipitation is proposed in [42]. This
model assumes that the source of quartz is local, and the dissolution at the solid
grains boundary and diffusive processes are associated with time scales which are
much shorter than those related to precipitation, thus having negligible effects
at basin scale. The rate of precipitation is controlled by temperature ([41]) with
an exponential dependence

R = aq10
bqT (1)

R being the precipitation rate per unit surface of the host rock. Here, T is tem-
perature and aq and bq are two empirical constants that need to be calibrated
against experimental data. The total volume of precipitated quartz then depends
on temperature (note that precipitation is activated when T > Tc, Tc being a
critical activation temperature) and the specific surface of the quartz matrix.
Here, we consider the quartz cementation model (1) to describe geochemical
compaction due to the coupled effects of quartz cementation and mechanical
compaction. The equations describing the dynamic evolution of the system in-
volve a number of parameters: these include the physical properties of the liquid
phase and the host matrix, chemical parameters, as well as geological informa-
tion about the system. Estimates of most of these parameters are corrupted
by uncertainty, mainly due to difficulties related to obtain direct and reliable
measurements of the quantities of interest at the spatial and temporal scales
characterizing a basin compaction process. The relevance of these uncertain-
ties has been previously documented in [24], where a sensitivity analysis of the
problem is performed within a Monte Carlo scheme.

In this study we present a theoretical framework and associated computa-
tional tools for the efficient and accurate global sensitivity study of a basin
evolution model in the presence of uncertain key mechanical and geochemical
system parameters. We then adopt this procedure to

(i) quantify the global uncertainty of the model state variables (including
porosity, temperature and pressure heads) due to a set of uncertain input
parameters and boundary conditions;

(ii) identify the relative contribution of each selected uncertain quantity on
the global uncertainty of the target state variables;

(iii) assess propagation of uncertainty to the model response in terms of the
space-time evolution of the probability density function (pdf) associated
with the selected state variables.

A review of sensitivity analysis theoretical frameworks can be found in [34],
where it is shown that a nonlinear model typically requires a global sensitivity
analysis procedure. For our purposes, we select the variance-based Sobol sensi-
tivity indices [37, 2, 34, 39]. These indices allow to evaluate the relative influence
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of different uncertain parameters on the global model variance without the need
for assuming any regularity of the underlying mathematical model.

As shown in [25, 39] the Sobol indices can be easily computed starting from
a generalized polynomial chaos expansion (GPCE) of the solution as a function
of the input parameters, i.e. an expansion in orthogonal polynomials of the
input parameters, see e.g. [46, 18, 48]. Such a (truncated) GPCE can also
be seen as a reduced model for the input/output mapping and can also be
used to perform a Monte Carlo analysis of the system to assess propagation of
uncertainty through the model at a significantly reduced computational cost (see
e.g. [16], and references therein).

The global sensitivity analysis is developed according to the following three
main steps.

1. Parameter selection. Identification of the parameter space of interest en-
tails selecting the main uncertain quantities driving the model response,
together with the corresponding probability distribution (e.g. Gaussian,
uniform) and the related parameters (e.g. mean and standard deviation
for a Gaussian distribution, or lower and upper bounds for a uniform dis-
tribution).

2. Model evaluation. The model response is calculated at different locations
(collocation points) in the uncertain parameters space. The choice of the
collocation points is (in principle) arbitrary and can be performed accord-
ing to different strategies. For example, a standard Monte Carlo sampling
of the collocation points considers a random selection in the parameter
space. This strategy has been applied to a wide range of problems and
provides robust results. It is computationally expensive as the number of
collocation points needed to obtain reasonable accuracy for the quantities
of interest is in general very large. To reduce the computational effort while
keeping accurate results, we explore the use of the sparse grid interpolation
method introduced in [36, 5, 12].

3. Computation of sensitivity indices. The sparse grid interpolant is converted
into the GPCE reduced model of the solution and the required statistical
indices (mean, standard deviation, Sobol indices) are computed. This
approach to compute a GPCE expansion is relatively new and only few
similar works are available in literature (e.g., [14]).

To the best of our knowledge, the adoption of Sobol indices within the context
of a GPCE-based surrogate model for uncertainty quantification of sedimentary
basins evolution has not been previously documented in the literature. It is
also emphasized that computing the GPCE reduced model of a random function
starting from a sparse grid interpolation represents a novel approach to the
GPCE computation.

The paper is organized as follows. Section 2 presents the mathematical
formulation of the problem and the parameters involved. Section 3 illustrates
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the numerical methodology implemented to solve the basin compaction process.
Section 4 is devoted to the description of the sensitivity analysis procedure.
Results related to a selected test case are presented in Section 5.

2 Mathematical model

We consider a one-dimensional domain

Ω(t) = (zbot(t), ztop(t))

evolving with time, t, zbot(t) and ztop(t) being the vertical locations of the basin
basement and the ocean floor, respectively. Upon setting z = 0 at the sea level,
we assume that the time evolution of ztop(t) is provided on the basis of paleo-
bathymetry data, while zbot(t) is calculated from solid mass conservation. The
mathematical model for the coupled problem of geomechanical compaction and
fluid flow in the one-dimensional domain is provided in the following Sections.

2.1 The Darcy’s law

We assume that the fluid-phase velocity is provided through Darcy’s law, i.e.

uD = φ(ul − us) = −K
µl

(

∂pl

∂z
− ρlg

)

. (2)

Here, uD is Darcy flux, φ is the porosity of the sediments and superscripts l and
s refer to fluid and solid phases, respectively. In particular, ul and us indicate
the velocities of the fluid and solid matrix, respectively, pl the pore pressure,
while ρl and µl the fluid density and dynamic viscosity, here considered constant
for simplicity. Permeability K is considered as isotropic and is modeled as a
function of porosity as

K = 10k1φ−k2−χ, (3)

where k1, k2 are experimental parameters ([44]) and χ is a conversion factor
from millidarcy unit (mD). In this work we have set χ = 15.

2.2 Mass conservation

Mass conservation of the fluid and the solid phases in Ω(t) is governed by

∂φρl

∂t
+
∂
(

φρlul
)

∂z
= ql,

d

dt
[(1− φ) ρs] + (1− φ)ρs

∂us

∂z
= qQ.

(4)

The source term ql accounts for processes associated with fluid generation, e.g.
water release during transformation of clay minerals, and is neglected in our
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study as we only consider sandstone compaction. The source term qQ in the
solid mass balance accounts for quartz precipitation. We have indicated with

d·
dt

=
∂·
∂t

+ us
∂·
∂z
,

the material derivative w.r.t. the solid matrix.
Darcy’s law (2) and fluid mass conservation (4) constitute an elliptic prob-

lem (in mixed form) in the unknowns ul and pl. It must be complemented by
appropriate boundary conditions. Here, we impose a given pressure psea at the
top of the basin and assume that the bottom is impermeable.

The velocity us of the solid phase at the top of the basin is taken to be known
on the basis of estimates of paleobathymetry and sedimentation rate.

2.3 Force balance

Let us define the overburden load S(z) as

S(z) =

∫ z

ztop

−
[

φρl + (1− φ)ρs
]

gdz + S0, (5)

where S0 accounts for the weight of the water column in a submerged basin.
The solid matrix is subject to an effective stress

σ = S(z)− pl(z). (6)

2.4 Compaction modelling

Porosity change depends on mechanical and geochemical processes. Purely me-
chanical compaction can be described by the following constitutive law

φM = (φ0 − φf ) exp(−βσ) + φf , (7)

where φ0 is the initial porosity of the sediments, φf is the limiting value of
porosity that can be attained by pure mechanical compaction, i.e. the void
space that corresponds to the optimal packing of the grains, and β is the soil
compressibility coefficient. According to (7), porosity decreases from φ0 to φf
with increasing effective stress σ. The rate of porosity change due to mechanical
compaction is then given by

dφM
dt

= −β(φ0 − φf ) exp(−βσ)
dσ

dt
. (8)

We employ the following empirical model [42] to describe the kinetics of the
quartz precipitation process

dφQ
dt

=
MQ

ρQ
AR, T > Tcrit. (9)
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Here, φQ is the volumetric fraction of quartz cement, and MQ and ρQ are the
molar mass and the density of quartz, respectively. The reaction takes place
only if the temperature is sufficiently high, T > Tcrit ≃ 80◦C. The rate of quartz
precipitation R is expressed as a function of temperature, T , while the surface
A available for mineral deposition is modelled as a function of the porosity
according to

R(T ) = aq10
bqT , and A = A0

(

φ

φact

)

, (10)

A0 and φact representing the specific surface and the actual porosity at the onset
of quartz precipitation, respectively. The effects of mechanical and geochemical
compaction are combined in the following relationship for porosity evolution

dφ

dt
=
dφM
dt

− dφQ
dt

, φ ≥ φmin > 0 (11)

where dφM

dt
and

dφQ

dt
are provided by (8) and (9), respectively. Here, φmin is a

small limiting value for the porosity.

2.5 Temperature dynamics

Temperature plays a key role in triggering geochemical compaction and its field
evolution is modeled according to

CT

∂T

∂t
+
(

φρlclul + (1− φ)ρscsus
) ∂T

∂z
− ∂

∂z

(

KT

∂T

∂z

)

= Q, (12)

where CT (φ) = φρlcl+(1−φ)ρscs is the effective thermal capacity of the medium.
Equation (12) can be re-written in a Lagrangian framework using (2)

CT

dT

dt
+
(

ρlcluD
) ∂T

∂z
− ∂

∂z

(

KT

∂T

∂z

)

= Q. (13)

The thermal conductivity KT of the water/rock system depends on temper-
ature according to

KT (T ) = λφf [λs(T )]
1−φ λs(T ) =

λ0
1 + c0T

,

and introduces a non-linear term in the heat equation. Here λf and λs represent
fluid and solid specific conducivities respectively, λ0 is a reference conducivity
at T = 0◦C and c0 an experimental parameter. Finally, Q models the possible
occurrence of internal heat sources, and it is neglected in the following. As
boundary condition, we prescribe a temperature value at the top of the basin and
impose a given heat flux at the bottom. We consider that a linear temperature
profile, T0(z), develops within the system at the initial simulation time, according
to a typical geothermal gradient.
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Figure 1: Frame of reference and discretization of the one-dimensional, time
dependent domain considered.

3 Numerical solution

This section illustrates the iterative method adopted for the solution of the
system of coupled differential equations presented in Section 2. Their distinctive
characteristic is the presence of an evolving domain and the occurrence of strong
non-linearities.

3.1 Lagrangian approach

A Lagrangian approach where the computational grid is deformed under the ef-
fect of compaction according to the solid matrix movement is adopted to address
the temporal evolution of the computational domain. In this framework, each
cell is formed always by the same portion of solid material, so that no transfer
of solid mass occurs between two different cells. The heat and fluid flow equa-
tions are thus expressed in terms of material derivatives, avoiding the need of
introducing advection terms.

In our problem setting, the domain and the grid deform under the effect
of sedimentation, to include the deposition of new sediment layers over time,
and possibly erosion. There are two different ways of taking into account the
sedimentation of new material. A first approach relies on adding a new cell
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at the top of the mesh at each sedimentation event, increasing the size of the
the computational domain. Alternatively, newly accumulated sediments can be
considered as an additional time-varying load acting at the top of the basin,
inducing time-dependent boundary conditions for the pressure and temperature
equations.

In our work we use a hybrid technique which describes sedimentation by a
modified load until the thickness of fresh sediments equals the characteristic size
of the mesh elements. At that point, a new element is added to the computational
grid. This allows avoiding an increase of the size of the problem at each time-step
during sedimentation and, most notably, to deal with very small mesh elements.

Let [0, tmax] be the time-interval of interest, which is uniformly discretized as
{0 = t0, t1, . . . , tM = tmax}, and Ω0 the initial space domain, and let hsea(t) be
the given paleobathymetry. We set the origin of the reference system at the sea
level (Fig.1) and provide an initial mesh Z0 = {zbot = z1, z2, . . . , zN = −hsea}
with elements, e0i = [zi+1, zi], of uniform size h = |zi+1 − zi|. Since we adopt a
Lagrangian approach the element size changes during the basin evolution. As the
strength of compaction is not uniform with depth, the deformed grid comprises
elements of different size at each time step.

After the beginning of sedimentation at time t1, and depending on sedimen-
tation velocity, Used, a certain number of time steps, say K+1, is required before
the newly deposited material attains a sufficient thickness which allows adding
a new element to the computational mesh.
During these steps the grid is free to deform under the increasing sediment
weight, yielding the updated configuration ZK = {zKbot = zK1 , z

K
2 , . . . , z

K
N = zKtop}

(Fig.1). At time tK+1 the grid is finally updated by adding a new element eN
on top: ZK+1 = {zK+1

bot = zK+1
1 , . . . , zK+1

N , zK+1
N+1 = zK+1

top }.

3.2 A fixed point method for the basin evolution

For the numerical solution of the non-linear coupled system described in the
previous sections we refer to the work of [26] related to three-dimensional basin
modeling and based on an idea first presented in [13]. The methodology relies
on a fixed point iteration which at each time step eventually leads to the values
of the fluid pressure pl, temperature T , porosity φ, volume fraction of quartz
φQ, sedimentary loading S, solid and liquid phase velocity us and ul and the
updated grid configuration.

A relaxation-parameter, θ ∈ (0, 1], which is empirically adjusted according
to the number of iterations needed to converge, is introduced to ensure the
convergence of the fixed point method.

The iterative algorithm is formulated as follows. At each time step tK →
tK+1 set pl(0) = (pl)K , σ(0) = σK , T(0) = TK , φ(0) = φK , (φM )(0) = φKM ,

(φQ)(0) = φKQ , us(0) = (us)K , Z(0) = ZK and i = 0. Then, for i = 1, . . . we solve

the equations for S(i), p
l
(i), T(i), φ(i), (φM )(i), (φQ)(i), u

s
(i), Z(i) as follows [26]:
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1. Estimate the sedimentary loading S(i) on the mesh Z(i−1) using porosity
φ(i−1) distribution at iteration (i− 1):

S(i)(zj(i−1)) = S(ztop)

−
∫ zj(i−1)

ztop

[

φ(i−1)ρ
l + (1− φ(i−1))ρ

s
]

gdz,

where zj(i−1) (j = 1, . . . , N) is the j-th node of the grid at iteration (i−1),
and the integral is approximated by the trapezoidal rule.

2. Compute a first value for the effective stress σ∗(i) using the new sedimentary

loading value S(i) and the available pressure pl(i−1), with a relaxed updating
procedure

σ∗(i) = θ
(

S(i) − pl(i−1)

)

+ (1− θ)σ(i−1).

3. Using the computed stress and previous values for porosity and temper-
ature, compute φ(i) by calculating the variation due to mechanical com-
paction, (φM )(i) and to the volume fraction of quartz (φQ)(i) according
to (8) (9) and (11), where time derivatives are approximated by finite
differences. We apply the relaxation as

φ(i) = θφ(i) + (1− θ)φ(i−1).

4. Solve the fluid and heat equations to obtain the pressure pl(i) and the
temperature T(i). The Darcy flow is also computed in this phase. For the
sake of clarity, Section 3.3 reports the details of this step, which is the
most complex and computationally expensive part of the procedure.

5. Recalculate the effective stress σ(i) with the new pressure

σ(i) = S(i) − pl(i)

6. Compute the grid velocity, us(i), using solid mass conservation at each node
j,

us(i)(zj(i−1)) = us(ztop)−
∫ zj(i−1)

ztop

1

1− φ(i)

d(φM )(i)

dt
dz.

7. Update the mesh Z(i) using the current velocity us(i)

zj(i) = zKj + us(i)(zj(i−1))(t
K+1 − tK).

8. Test for convergence and eventually update the relaxation parameter θ.
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After the iterative cycle is completed we set (pl)K+1 = pl(i), σ
K+1 = σ(i), T

K+1 =

T(i), φ
K+1 = φ(i), (φM )K+1 = (φM )(i), (φQ)

K+1 = (φQ)(i), (u
s)K+1 = (us)(i) and

ZK+1 = Z(i). Convergence of the algorithm is tested on the mesh configuration.
More precisely, the fixed point algorithm ends when the difference between two
consecutive configurations of the domain, normalized by the elements size, is
below a fixed tolerance.

3.3 The discretization fluid and heat equations

The elliptic problem associated with the fluid flow equation is solved at each step
of the iteration procedure by a mixed finite-element method using RT0−P0 finite
elements []Brezzi. This choice is justified by the robustness of the method within
the context of highly heterogeneous media. Mixed finite-elements guarantee local
mass conservation and provide an accurate fluid velocity field, at the expense of
a slightly increased computational cost.

The fluid problem relies on equations (2) and (4). Considering pressure pl

as primal variable, the mixed strong formulation of the governing differential
problem takes, for all t ∈ (0, tmax), the form



































k̃(t)u(t) +
∂pl

∂z
(t) = ρlg in Ω(t),

∂u

∂z
(t) = f(t) in Ω(t)

u(t, zbot(t)) = 0

p(t, ztop(t)) = P,

where

k̃(t)(z) =
µl

K(φ(t, z))ρl

and

f(t)(z) = f(t, z) = −∂(φ(t, z)ρ
l)

∂t
− ∂(φ(t, z)ρlus(t, z))

∂z
.

Here, u = ρluD. This framework leads to a straightforward extension of the
model in case of variable fluid density, ρl = ρl(t, z).

The corresponding weak formulation can be expressed as follows. Given the
initial datum u(0) = u0 ∈ V at each t ∈ (0, tmax) find (pl(t), u(t)) ∈W ×V such
that

∫

Ω(t)
k̃u(t)v −

∫

Ω(t)

∂v

∂z
pl(t) =

∫

Ω(t)
ρlgv − Pv(ztop),

∫

Ω(t)

∂u

∂z
(t)w =

∫

Ω(t)
f(t),

for all (v, w) ∈ V ×W , where W = L2(Ω(t)) and V = {v ∈ H1(Ω(t)) : v(z =
zbot) = 0}.
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The problem is approximated by considering the domain Ω(t) formed by
elements ej = ej(t) = [zj(t), zj+1(t)], for j = 1, . . . , N − 1 and the RT0 − P0

finite element spaces Vh = {v ∈ V : v|ej ∈ RT0(ej)} and Wh = {w ∈ W : w|ej ∈
P0(ej)}, leading to: find (plh, uh) ∈Wh × Vh satisfying

∫

Ω(t)
k̃uhτi −

∫

Ω(t)

∂τi
∂z

ph =

∫

Ω(t)
ρlgτi − Pτi(ztop)

∫

Ω(t)

∂uh
∂z

ϕj =

∫

Ω(t)
fϕj

for each basis function τi ∈ Vh and ϕj ∈ Wh. In this framework, velocity u is a
nodal variable with N degrees of freedom while pore pressure pl is constant on
each mesh element. Note that N may change with time because sedimentation
may require adding new elements to the computational mesh.

This choice of discrete spaces allows to compute the forcing term as

∫

Ω(t)
fϕj = −

∫

ej(t)

∂(φρl)

∂t
−
∫

ej(t)

∂(φρlus)

∂z

= − d

dt

∫

ej(t)
φρl,

where Reynold’s theorem has been employed in the second equality. The latter
term can then be computed, at time step K, by a backward difference formula
as

− ρl

∆t

(

∫

eK+1
j

φK+1 −
∫

eKj

φK

)

.

Note that φK+1 is approximated by φ(i), within the iterative procedure il-
lustrated in Section 3.2.

Mixed finite elements have been adopted to solve the parabolic equation
associated with the heat problem. In this case the temperature T is the primal
variable, while the dual variable is

σT = KT (T )
∂T

∂z
− bT .

To minimize computational cost the conductivity KT (T ) is calculated using the
value of temperature T computed at the previous iteration step, within the iter-
ative procedure described in Section 3.2 . This allows solving the heat equation
as a linear problem in T , avoiding further fixed point iterations.

4 Global sensitivity analysis

Beside the modeling assumptions and the discretization errors associated with
the selected numerical solution, the accuracy and reliability of computed predic-
tions of a target quantity of interest, Q (e.g., porosity at a desired depth and
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Parameter ai bi

β[Pa−1] 5× 10−8 7× 10−8

aq[mol m−2 s−1] 0.40× 10−18 3.56× 10−18

bq [C−1] 0.0213 0.0227

Tc [C] 70 90

hsea[m] 450 550

k1 [-] 14.07 14.22

k2 [-] 1.35 2.38

Table 1: List of the selected uncertain parameters. Each parameter is modeled
as a uniform random variable ranging between ai and bi.

time), depend also on model parameters. Some of these parameters are virtually
impossible to assess (e.g., all parameters linked with the initial conditions of the
problem), while knowledge of others is plagued by uncertainty due to scarcity of
direct measurements at appropriate space-time resolution scales.

Assessment of how the uncertainty on the unknown parameters propagates
to the output of the model is therefore of utmost relevance. This analysis is typi-
cally known as “uncertainty quantification” or “sensitivity analysis” and aims at
quantifying the uncertainty associated with the model output Q (e.g., in terms
of second-order statistical moments) and identifying the relative contribution of
the unknown parameters to this uncertainty.

Amongst the different available approaches, e.g., perturbative methods and
Taylor expansions [3, 21], evidence theory [15, 35], and fuzzy sets theory [20, 22],
in this work we focus on a probabilistic approach to the uncertainty quantifica-
tion problem.

We consider the uncertain parameters as random variables, collected as the
(random) component of vector x = (x1, x2, . . . , xN )T . A quantity of interest
Q, which is the outcome of our computational model for each realization of the
random vector x, is denoted as a space-time function Q = Q(x).

The set of parameters that we consider as uncertain is introduced in Section
4.1. Section 4.2 illustrates the proposed sensitivity analysis procedure, which is
based on the use of the Sobol indices and their computation through the gener-
alized PCE (GPCE) of Q. Finally, Section 4.3 and 4.4 present a methodology
to compute the GPCE using the so-called sparse grid operators (see, e.g., [14]).

4.1 Choice of the random model parameters

Table 1 lists the set of seven parameters which are considered as uncertain for
our illustrative example.

Our choice includes the parameters affecting the compaction process and the
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characterization of the hydraulic conductivity of the sandstone. The parameters
selected are: β, the two parameters, aq and bq, driving the quartz cementation
rate kinetics (1), the activation temperature of the geochemical process Tc, the
depth of the sea imposed at the top of the basin, hsea, and the two parameters
k1, k2 appearing in (3).

An uncertainty range is assigned to each of these parameters, i.e., xi ∈ Γi =
[ai, bi]. The uncertainty associated with β is consistent with the sensitivity study
presented in [24]. The estimation of the bounds of the intervals associated with
the quartz cementation rate parameters is based on the calibration data reported
in [41]. The reference value of Tc is taken as 80 ◦C and we assume an uncertainty
of ±10 ◦C, consistently with the analysis of [24]. For our illustration purposes,
we assume an uncertainty of about ±10% associated with a reference value of
hsea = 500m . The range of variability of k1 and k2 has been estimated after the
sandstone permeability measurements reported in [44].

In the absence of an a-priori knowledge on the probability distribution of
these parameters, we assume each xi to be uniformly distributed within its
variation interval Γi. We denote with Γ the hypercube Γ = Γ1 × Γ2 . . . × ΓN ,
so that each realization x ∈ Γ. We further assume that all xi are statistically
independent. As a consequence, the joint probability density function of x over
Γ is the product of uniform probability density functions along each direction

ρΓ(x) =
N
∏

i=1

ρΓi
(xi) =

N
∏

i=1

1

bi − ai
. (14)

All the remaining parameters introduced in the mathematical model are consid-
ered to be fixed in the context of our example. Our choice is indeed arbitrary, as
virtually all parameters are affected by uncertainty, and aims at demonstrating
the main features of the proposed technique by including some of the key pa-
rameters affecting the compaction process and the ensuing feedback on porosity,
pressure and temperature distributions. The extension of the methodology to
include an enlarged set of uncertain parameters is straightforward.

4.2 Sobol indices

We perform a global sensitivity analysis of the problem by evaluating the so-
called Sobol indices [37, 2, 34, 39]. These indices provide a complete description
of the decomposition of the total variance of the quantity of interest into (a)
the effects of each random variable xi and (b) mixed/joint effects of different
variables xi1xi2 . . . xis (see e.g. [2] for a discussion in the context of classical
ANOVA techniques). With respect to other strategies (e.g., the one factor at
a time approach), Sobol indices provide a general result as they do not assume
any linearity in the considered model (see e.g. [34]).

Following [37, 25, 39], we first introduce the Hoeffding/Sobol decomposition
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of a function f depending on N independent random variables,

f(x) = f0 +

N
∑

i=1

fi(xi) +

N
∑

i,j=1

fij(xi, xj) + . . .+ f1,2,...,N (x1, x2, . . . , xN ), (15)

f0 =

∫

Γ
f(x)ρΓ(x)dx,

fi(xi) =

∫

Γ
∼i

f(x)ρΓ
∼i
(x)dx∼i − f0

fi,j(xi, xj) =

∫

Γ
∼i,j

f(x)ρΓ
∼i,j

(x)dx∼i,j − fi(xi)− fj(xj)− f0,

and so on, where e.g.
∫

Γ
∼i
f(x)ρΓ

∼i
(x)dx∼i represents integration of f over the

space of all variables (excluding the i-th variable) against the product of the
probability density functions of i − 1 variables, ρΓk

. Note that all the terms in
(15) are orthogonal, i.e.,

∫

Γ
fi1,i2,...,isfj1,j2,...,jrρΓ(x)dx = 0,

for {i1, i2, . . . , is} 6= {j1, j2, . . . , jr}. Thus, denoting with Vf the variance of f ,
one obtains

Vf =

∫

Γ
f(x)2ρΓ(x)dx− f20 ,

and the Sobol index Si1,i2,...,is corresponding to the mixed effect of xi1xi2 . . . xis
can be computed by integrating the summands of (15) and dividing by Vf

Si1,...,is =
1

Vf

∫

Γi1,...,is

f2i1,...,is(xi1 . . . xis)ρΓi1,...,is
(x)dxi1 . . . xis

where Γi1,...,is = Γi1 × . . .× Γis and ρΓi1,...,is
(x) is the corresponding probability

measure. Note that Sobol indices sum up to unity. The total variability due to
the i-th random parameter is then the sum over all mixed effects including xi

ST
i =

∑

S

Si1,i2,...,is , (16)

S denoting the subset of all indices including i.

4.3 Generalized polynomial chaos expansion

To compute the Sobol indices defined in (16), high-dimensional quadrature rules
are typically needed. To this purpose, one could employ simple Monte Carlo
quadrature schemes. However, these can be extremely computationally inten-
sive. Indeed, the convergence rate of these schemes is only 1/

√
M , M being the

number of points sampled from Γ. The generalized polynomial chaos expansion
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[46, 18, 48] of the quantity of interest Q(x) can then be introduced to reduce
the computational burden associated with the evaluation of the Sobol indices,
as shown in [25] and [39].

Given a function f depending on N random variables, f = f(x), the general-
ized polynomial chaos expansion of f is the spectral expansion of f over a set of
polynomials ψΓ,i(x) that are orthogonal with respect to the probability measure1

of Γ. In our case we can use the multidimensional Legendre polynomials (see
e.g. [17]), which are orthonormal with respect to the uniform probability density
function (14). Such polynomials are built as products of one-dimensional Leg-
endre polynomials in terms of each random variable considered. It is therefore
useful to introduce the following notation

Lp(x) =
N
∏

n=1

Ln,pn(xn),

where Lp(x) is a multidimensional Legendre polynomial and Ln,pn(xn) is the
pn-th Legendre polynomial (see, e.g., [17]). With this notation, the generalized
polynomial chaos expansion (GPCE) of f reads

f(x) =
∑

p∈NN

αpLp(x), αp=

∫

Γ
f(x)Lp(x)ρΓ(x)dx. (17)

Note that whenever p is such that pn = 0, then Lp(x) is independent of xn
because L0(xn) = 1, see [17]. As a consequence, one can reorder the expansion
(17) so that it is equivalent to (15), and derive an equivalence between the Sobol
indices (16) and the coefficients αp of the GPCE expansion of f(x)

f(x) = α0 +

N
∑

i=1

∑

p∈Pi

αpLp(x) +

N
∑

i=1

N
∑

j=i

∑

p∈Pi,j

αpLp(x) + . . . , (18)

where Pi contains all the indices such that only the i-th component is different
from 0, i.e., Pi = {p ∈ N

N : pi 6= 0, pk = 0 for k 6= i}, and so on.
Therefore, (18) and the orthonormality of the Legendre polynomials leads to

1a family of polynomials ψΓ,i(x) is said to be orthogonal with respect to the probability
measure ρΓ(x) if ∫

Γ

ψi(x)ψj(x)ρΓ(x)dx 6= 0 only if i = j

The polynomials are said to be orthonormal if
∫
Γ

ψ
2
i (x)ρΓ(x)dx = 1.
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the following equivalences between GPCE coefficients and Sobol indices

Si1,i2,...,is =
∑

p∈Pi1,i2,...,is

α2
p

Vf
, Vf =

∑

p∈NN

α2
p (19)

ST
i =

∑

i1,i2,...,is∈R

Si1,i2,...,is (20)

where the set R contains all the mixed effects that include the random variable
xi.

Note that (19) and (20) include summations over a countable infinite number
of terms. A workable approximation is usually obtained upon truncating the
GPCE (17) to the set Pw of polynomials whose total degree does not exceed
w ∈ N, i.e. upon restricting (17)-(20) to the set

TD(w) = {p ∈ N
N :

∑

i

pi ≤ w}. (21)

In other words, one computes the Sobol indices of the approximation of f in Pw

rather than of f itself. The accuracy of the approximation increases as w → ∞.
The reader is referred to [4, 6] and references therein for other possible truncation
schemes.

4.4 Sparse grid computation of GPCE

Equation (19) provides an expedient way to compute the Sobol indices once
the GPCE (18) for f(x) has been determined. However, computing the coeffi-
cients αp on the basis of (17) would still require the evaluation of a number of
high-dimensional integrals. To circumvent this problem we introduce the con-
struction of the sparse grid polynomial interpolant. The GPCE of the sparse
grid approximation allows then direct calculation of the Sobol indices.

To derive the sparse grid interpolant we first introduce some notation. Given
ln ∈ N, let

Hln
n = {xn,1, xn,2, . . . , xn,ln} ⊂ Γi (22)

be a set of ln interpolation points that provides an accurate interpolation with
respect to the uniform probability measure ρΓi

(xi), e.g., the Gauss–Legendre
points [31], or the Clenshaw–Curtis points [40].

Next, let Lk(xn), k = 1, . . . , ln be the set of Lagrangian polynomials over the
set of points Hln

n . These are polynomials of degree ln − 1, such that their value
is either 1 or 0 at the selected interpolation points,

Lk(xn,j) =

{

1 if xn,j = xn,k,

0 if xn,j 6= xn,k.

Taking the Cartesian product of the sets Hln
n , we can build a tensor interpolation

grid with Ml points, Ml = l1 × l2 × . . .× lN . We denote such tensorized grid as
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Hl, where
Hl = Hl1

1 ×Hl2
2 × . . .×Hln

N .

Each point x of the grid can also be addressed by a multi-index notation i ∈
N
N , e.g. xi = (x1,i1 , . . . , xN,iN ). One can then introduce the set of tensorized

Lagrangian polynomials over Hl,

Lk(x) =
N
∏

n=1

Lkn(xn)

with the property Lk(xj) = 1 if xj = xk and 0 otherwise. The tensor grid
interpolant for f is then defined as

fTG,l(x) =
∑

xi∈Hl

f(xi)Li(x). (23)

This can be rewritten in terms of tensorized interpolant operators. Denoting by
U ln
n the operator that interpolates a function of xn over the set of points, i.e.,

Hln
n ,

U ln
n [f ](xn) =

ln
∑

k=1

f(xn,k)Lk(xn),

one obtains

fTG,l(x) =
N
⊗

n=1

U ln
n [f ](x).

Note that the tensor grid is associated with the subscript l, that specifies the
interpolation level along each direction in the random parameters space.

Building such tensor interpolant requires evaluating f at Ml points. An
appropriate choice of the interpolation points along each direction allows fast
convergence of the tensor interpolant to the the original function. On the other
hand, building such an approximation can be excessively expensive, because Ml

could be very large. For example, using only 5 points along each direction in
our example would entail using a total of Ml = 5N = 58 = 390, 625 points.

The sparse grid is a way of reducing the computational cost of building tensor
grids interpolants, while retaining good approximation properties. This can be
achieved upon building the interpolant as a particular linear combination of
tensor grids, where each one of these contains only a limited number of points.
To this purpose, let us further introduce the detail operator along each direction
as the difference between two consecutive interpolation levels

∆ln
n [f ] = U (ln)

n [f ]− U (ln−1)
n [f ]. (24)

Tensorizing detail operators along each direction leads to the so-called hierar-
chical surplus operator

∆l[f ] =

N
⊗

n=1

∆ln
n [f ]. (25)
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Note that hierarchical surpluses are also indexed by a multi-index notation,
l ∈ N

N . One can then define the sparse grid approximation of f [36, 5, 12] as a
suitable sum of hierarchical surpluses

fSG =
∑

l∈I

∆l[f ], (26)

where I ∈ N
N is a set of multi-indices that selects the hierarchical surpluses

included in the sparse grid, and hence the set of tensor grids that form the sparse
grid. Indeed, employing the definitions (24) and (25) into (26) allows recasting
the sparse grid approximation operator as a linear combination of tensor grid
interpolants as

fSG(x) =
∑

l∈I

clfTG,l(x) =
∑

l∈I

cl

N
⊗

n=1

U ln
n [f ](x), (27)

with suitable computable coefficients cl (see, e.g., [5, 6]). The set of all points
required by the sparse grid is the union of the points of each tensor grid that
forms the sparse grid

G =
⋃

l∈I,cl 6=0

Hl. (28)

The set I needs to be chosen properly, to retain good approximations with a
small number of function evaluations. The underlying idea that should govern
the process of selection is that whenever one allocates many points along one
direction, i.e. a fine detail operator is employed in one direction, there is no need
to adopt a large number of points along the other directions, because one can
expect the high details to be small and their product to be negligible.

A simple choice of I that turns out to be quite effective in discarding the
irrelevant hierarchical surpluses is

I =

{

l ∈ N
N :

N
∑

n=1

ln − 1 ≤ w, w ∈ N

}

. (29)

A key observation is that the sparse grid approximation resulting from (29)
belongs to the polynomial space Pw introduced in (21) (see [4] for a proof). As
a consequence, it is possible to convert the sparse grid approximation (26) into
its equivalent GPCE representation (18), and then compute the Sobol indices
avoiding numerical quadratures. The reader is referred to [4, 6] for an analysis
on the choice of the set I, and for the links between the GPCE expansion and
the sparse grid approximation.

The conversion from sparse grid to GPCE expansion relies on the property
that a sparse grid is composed by a linear combination of tensor grid Lagrangian
interpolants (23), and is based on two steps: (a) each tensor Lagrangian inter-
polant is reformulated in terms of Legendre polynomials; and (b) the Legendre
polynomials associated with different tensor grids are summed.
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With reference to the first step, consider the l-th tensor grid, Hl. The cor-
responding Lagrangian interpolant fTG,l(x) in (23) is a sum of products of one-
dimensional Lagrange polynomials, respectively on l1, l2, . . ., lN points. It can
then be formulated as a linear combination of all the Legendre polynomials
whose maximum degree along direction n does not exceed ln − 1, that is

fTG,l(x) =
∑

p∈Cl

βpLp(x),

Cl = {p ∈ N
N : pn ≤ ln − 1, n = 1, . . . , N}.

The coefficients βp of this linear expansion can be easily calculated by solving
the linear system

∑

p∈Cl

βpLp(xj) = fTG,l(xj), ∀xj ∈ Hl. (30)

In essence, converting the sparse grid into a GPCE entails solving as many
systems (30) as the number of tensor grids in the sparse grid, and then collecting
coefficients βp for the same p associated with different tensor grids. Note that
the matrix of this linear system is not ill-conditioned, due to the properties of
the selected interpolation points. In particular, using Gauss-Legendre points
renders an orthogonal matrix. This implies that the conversion algorithm will
be very efficient, since no linear system has to be solved. This is not true for the
above-mentioned Clenshaw–Curtis points. In this case, however, the sparse grid
construction can take advantage of the fact that the interpolation points used
are nested. FFT techniques can be used to solve efficiently the system and to
compute the coefficients Lp(xj).

Finally, we remark that it is straightforward to build a sparse grid quadrature
scheme starting from (27- 28), and to approximate the statistical moments of f
once its sparse grid approximation has been computed. Indeed, suppose that the
interpolation points (22) along the n-th direction are now used as quadrature
points with associated weights γn,1, γn,2, . . . , γn,ln , i.e.

∫

Γn

g(xn)ρΓn(xn)dxn ≈
ln
∑

i=1

g(xn,i)γn,i .

The sparse grid quadrature rule then naturally descends from (27) and reads

∫

Γ
f(x)ρΓ(x)dx ≈

∑

l∈I

cl
∑

xi∈Hl

f(xi)λi, λi =

N
∏

n=1

γn,in .

5 Results

We illustrate here the results of the sensitivity analysis through an example.
The uncertain parameters space is presented in Table 1. We consider a total
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sedimentation time of 200 Ma and a fixed sedimentation rate of 30 m/Ma. The
temperature is set to 295K at the top of the basin, whereas a geothermal gra-
dient of 0.03K/m is imposed at the bottom. No fluid flow conditions (ul = 0)
are imposed at the bottom. A pressure value corresponding to the hydrostatic
pressure of the overlying sea depth is assigned at the top. The basin is consid-
ered as homogeneous and fully composed by quartz material. This implies that
the quartz can precipitate and completely fill the pore space.

5.1 Comparison with a standard Monte Carlo sampling

We start by comparing the approximation of statistical moments obtained through
the sparse grid quadrature against those obtained through a standard Monte
Carlo analysis of the problem to assess the reliability of the sparse grid tech-
nique. The uncertainty on the mean values computed making use of the Monte
Carlo analysis can be evaluated through the standard deviation of the predic-
tor, defined as σ(µ(si)) = σ(si)/

√
M , where µ(si) and σ(si) are the mean and

the standard deviation calculated on the basis of M realizations of the generic
variable si. The analysis illustrated here is based on M = 105. Figure 2 depicts
the evolution of the coefficient of variation associated with the Monte Carlo
prediction standard deviation defined above, i.e., CV(µ(si)) = σ(µ(si))/µ(si)
with si = φ, T, p, for four different times. For any considered time the distribu-
tion of the statistical moments of the sample along the vertical direction can be
obtained. We select here the largest value of CV(µ(si)) for each of the observa-
tion times considered. The largest uncertainties are associated with the average
porosity φ, with CV(µ(φ)) attaining values of about 1%. The coefficients of
variation of mean pressure and temperature are always smaller than 10−4.

Figure 3 shows L2-norm in space of the relative error between the mean
and the variance computed with the sparse grid and the standard Monte Carlo
simulation of the system and corresponding to the same time frames considered
in Figure 2. The sparse grid is composed by 589 collocation points in the pa-
rameter space. The mean porosity error is comprised between 10−3 and 10−6.
The errors are smaller than the corresponding uncertainty, shown in Figure 2.
Pressure and temperature relative errors are generally smaller than 10−4 (Figure
3 (a)). The variances of the variables exhibit an error of about 1% with respect
to a standard Monte Carlo analysis, providing an acceptale accuracy (Figure 3
(b)). In summary, our results indicate that the sparse grid computation provides
reliable results, greatly reducing the number of collocation points with respect
to the reference Monte Carlo analysis and can be profitably employed for the
derivation of a surrogate model in terms of a GPCE of the solution.
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Figure 2: Relative uncertainty of the Monte Carlo sampling-based mean of φ, T
and p.

5.2 Sensitivity and uncertainty propagation analysis

We devote this section to the analysis of the results of the sensitivity analysis
carried out through the sparse grid method. For illustrative purposes, we focus
on the analysis of the last time step of the simulation.

Figures 4-6 show the distribution of the main state variables characterizing
the system at the final computation time, the associated uncertainty and the
related source. Figure 4 (a) shows the vertical distribution of porosity and the
related standard deviation. Three regions can be distinguished. In the upper
zone of the basin the porosity change is driven by pure mechanical compaction.
Quartz precipitation starts around z = −2000m and the rate of porosity re-
duction increases with burial depth. This difference between the two zones is
documented by the distribution of the Sobol indices depicted in Figure 4 (b).
In this example we choose to examine the behavior of the total Sobol indices,
i.e., the sum of all the indices involving each of the considered parameters.
For the upper layer most of the uncertainty is due to the boundary data hsea
(defined in Figure 1). The influence of this parameter sharply decreases for
z < 2000m. The β parameter of mechanical compaction has a dominant in-
fluence for −1000 > z > −1800m. The related Sobol index then decreases for
−1800 > z > −3000m. A localized effect of the activation temperature of the
quartz cementation process Tc can be observed in this region. The parameters
of the quartz precipitation model largely influence the uncertainty of the output
porosity distribution for z < −2200m, where, in particular, the total Sobol in-
dex associated with aq approaches unity. The effect of mechanical compaction is
greatly reduced but not completely absent (the related index is approximately
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Figure 3: Relative L2-norm error of the (a) mean and (b) variance of φ, T and
p computed by means of sparse grid method with respect to a standard Monte
Carlo analysis.

0.05 for −3000 > z > −4000). In the deepest layers of the basin (z < −4000m)
the pore space completely is filled with quartz due to geochemical compaction
and the porosity tends to vanish. In this region the calculated Sobol indices
are not significant due to very small porosity values and exhibit an oscillatory
behavior. This feature of the solution is induced by the choice of a homogeneous
material in our example, where quartz precipitation is allowed everywhere and
neglects the occurrence of grain coating effects.

Figure 5 reports the vertical distribution of mean temperature and the related
indices. The temperature increases with depth, as expected. We observe a joint
effect of the mechanical and geochemical compaction processes on the tempera-
ture distribution. As in the case of porosity, the overlying sea depth, hsea, and
the mechanical compaction coefficient influence the uncertainty of the results in
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Figure 4: Final snapshot of the computed vertical distribution of mean porosity
and related uncertainty (a) and Sobol indices (b).

Figure 5: Final snapshot of the computed vertical distribution of mean temper-
ature and related uncertainty (left) and Sobol indices (right).

the most superficial layers (z > 2000m). Notice that β has a smaller influence
on temperature than on porosity (in this case the related index never exceeds
0.4). On the other hand, the influence of hsea is larger on temperature than on
porosity. Geochemical parameters start playing an important role for the deep-
est locations. We observe that the gradient of temperature smoothly changes
in the region where geochemical compaction is active (−2000 > z > −4000m).
These results suggest that all the variability of the temperature distribution is
induced by the difference of thermal diffusivities associated with the solid and
the liquid phases. Hence, it is intrinsically linked to the porosity field. Fluid
mass transfer plays a negligible role in the thermal problem, i.e., heat exchange
associated with the movement of fluid in the pore space is not relevant. The
influence of Tc is less evident on temperature than on porosity (compare Figure
5 (b) with Figure 4 (b)). The Sobol indices related to the temperature field vary
more smoothly in space than those associated with the porosity. This behav-
ior may be ascribed to the format of the underlying differential problem. The
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Figure 6: Final snapshot of the computed vertical distribution of mean pressure
and related uncertainty (left) and Sobol indices (right).

vertical distribution of pressure and the Sobol indices are shown in Figure 6.
The pressure distribution appears to vary essentially linearly with depth. The
uncertainty in fluid pressure distribution is completely associated with hsea, and
no significant feedback of the geochemical compaction process on pressure is
noted. Hence, no over pressure phenomena due to geochemical compaction are
detected in the analyzed configuration. This particular result is likely related to
the adoption of a homogeneous material.

Figure 7 depicts the vertical distribution of the calculated coefficients of
variation of φ (CVφ), T (CVT ) and p (CVp) at the final simulation time. CVφ

smoothly increases up to 2×10−2 for z > −2000m. It then sharply increases up to
1 where the geochemical processes are active. The values of CVφ for z < −4000m
are not significant, as the mean porosity tens to vanish in this region. CVT is
approximately 10−3 at the top of the basin where the uncertainty due to to hsea
is largest. It slightly decreases up to a depth z ≈ −2500m. As geochemical
compaction influence starts to be relevant, CVT increases up to 2 % for the
deepest layers. CVp continously decreases with depth and is of the order of 10−2

on the whole domain. Consistently with what noted for the corresponding Sobol
indices, we do not observe any change in the trend of CVp due to the activation
of geochemical compaction process.

We exploited the GPCE based reduced model of the problem solution to
perform a Monte Carlo analysis based on 2.5× 105 evaluations of the GPCE of
the solution at the final time in the selected parameters space. This analysis
can be performed with a very low computational cost, as the surrogate model
is written in terms of an analytical (polynomial) formulation. The results can
be used to evaluate the probability density function (pdf) of each quantity at
any point along the vertical direction. In Figure 8 we focus our analysis on
three selected locations: S0, located at z = −1000m, in the region where com-
paction is purely mechanical; S1 and S2 respectively located at z = −2000m
and z = −3000m, where quartz cementation is active. All the pdfs presented
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Figure 7: Vertical distribution of the coefficients of variation at the final com-
putation time.

are centered around the mean value. The variability of the porosity increases
with depth, and consequently, the associated pdf shows an increasing dispersion
with around its the mean value (see Figure 8 (a)). The pdf is initially symmetric
(at location S0), and then becomes progressively asymmetric, displaying a long
tail towards the largest porosity values. Figure 8 (b) shows the evolution of the
pdf of temperature with depth. The temperature pdf appears very similar to a
uniform distribution at location S0: the uncertainty of the results is completely
due to the variability of hsea (see Figure 5 (b)). The asymmetry detected for
porosity appears only at location S2, whereas the distribution is still symmetric
at S1. Note that the geochemical compaction parameters start influencing the
temperature field only for z > 2000m, as indicated by the related indices in Fig-
ure 5 (b). These results suggest that the asymmetry of the pdfs may be linked
to the influence of the geochemical model parameters. On the other hand the
pdf of pressure is very similar to a uniform distribution (with almost constant
dispersion) at all the locations selected (see Figure 8 (c)). This result is con-
sistent with the observation that the pressure uncertainty is entirely due to the
paloebathimetry hsea, as shown in Figure 6 (b).

6 Conclusions

Our work leads to the following major conclusions.

• The nonlinear propagation of the uncertainty on the parameters and bound-
ary conditions during the geochemical and mechanical evolution of a basin-
scale sedimentation process has been analyzed through a generalized Poly-
nomial Chaos Expansion (GPCE) of the solution of the mathematical
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Figure 8: Probability density distributions of porosity (a), temperature (b) and
pressure (c) evaluated at the final time at z = −1000m, z = −2000m and
z = −3000m.

model driving the dynamics of key hydrogeological variables, i.e., porosity,
pressure head, and temperature distribution. The advantage of adopting
a GPCE-based analysis of the random system response is that the GPCE
is linked directly to the variance-based Sobol indices and provides a sur-
rogate model of the random system states. This can then be employed to
perform detailed and computationally affordable assessment of uncertainty
propagation through the numerical model. A sparse-grid-based interpola-
tion technique has been implemented for the computation of the GPCE
reduced model. When compared against typically adopted Monte Carlo
sampling strategies, the use of sparse grids allows obtaining reliable results
at an affordable computational cost.

• The procedure and technique proposed are exemplified through a one-
dimensional application focusing on quartz cementation and depicting the
geochemical and mechanical feedback during diagenetic porosity reduction
in a sandstone sedimentary basin. The relative contribution of the selected
uncertain parameters and boundary conditions to the total variance of the
random system outputs is analyzed through the calculated Sobol indices.
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As an example, the vertical distribution of porosity at large simulation
steps (a) is influenced by the sea bathymetry and by mechanical com-
paction within the upper portion of the basin, while (b) the parameters
linked to the adopted quartz precipitation kinetic have the largest impact
in the deepest regions, and (c) the effect of the activation temperature of
the reaction is observed only locally at intermediate depths. The vertical
variability of temperature distribution is associated with the different ther-
mal diffusivities of the solid and liquid phases and is therefore intimately
connected with porosity distribution. Note that the simplified scheme
adopted relies on homogeneous material distribution within the system and
does not allow evidencing significant effects of geochemical compaction on
pressure distribution. A significant extension of the methodology to in-
clude different geochemical compaction processes, such as smectite-illite
transformation in the presence of heterogeneous geomaterials in two- and
three-dimensions will be the subject of future investigations.

• The probability density function (pdf) of porosity, pressure and tempera-
ture fields have been calculated on the basis of the obtained GPCE. With
reference to simulation results at the final time, our choice of uniformly
distributed uncertain model parameters and boundary conditions results
in a progressive transition of the pdf of porosity from a symmetric through
an asymmetric functional format with depth, as the parameters driving
geochemical compaction come into play. Temperature pdf exhibits a simi-
lar behavior. Conversely, the pdf of pressure does not appear to vary with
depth, possibly due to the observed dependence of pressure on a single
parameter.
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