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Abstract

The quantum simulation of classical fluids often involves the use of probabilistic
algorithms that encode the result of the dynamics in the form of the amplitude of
the selected quantum state. In most cases, however, the amplitude probability is
too low to allow an efficient use of these algorithms, thereby hindering the prac-
tical viability of the quantum simulation. The oblivious amplitude amplification
algorithm is often presented as a solution to this problem, but to no avail for most
classical problems, since its applicability is limited to unitary dynamics. In this
paper, we show analytically that oblivious amplitude amplification when applied
to non-unitary dynamics leads to a distortion of the quantum state and to an ac-
companying error in the quantum update. We provide an analytical upper bound
of such error as a function of the degree of non-unitarity of the dynamics and we
test it against a quantum simulation of an advection-diffusion-reaction equation, a
transport problem of major relevance in science and engineering. Finally, we also
propose an amplification strategy that helps mitigate the distortion error, while still
securing an enhanced success probability.

1 Introduction

Since its conceptual inception [1], potential applications of quantum computing have
been identified across a broad variety of problems involving quantum systems in science
and engineering [2, 3, 4]. Recently, there has been an increased interest in using quantum
algorithms to simulate classical physics problems and in particular those described by
non-linear partial differential equations, fluid dynamics being an outstanding example
in point [5, 6, 7, 8]. The main advantage of using quantum computing comes from
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the linear superposition of states and the resulting inherent parallelism of quantum
operations. Indeed, by exploiting superposition, a 𝑞 qubits quantum register can store
2𝑞 complex amplitudes, each of which can be updated in parallel thanks to the non-
local nature of quantum mechanics. However, developing quantum computational fluid
dynamics solutions remains a particularly challenging task due to the inherently linear,
unitary, and non-dissipative nature of quantum operations, which conflicts with the
characteristics of fluid flow [9].

Several strategies have been devised in the recent years to deal with nonlinearity
and dissipation [10, 11, 12, 8]. In particular, Carleman embedding as applied to the
lattice Boltzmann formulation of fluid flows has proven particularly attractive in terms
of convergence of the classical procedure replacing the original nonlinear problem with
a truncated sequence of linear ones [13]. Unfortunately, the corresponding quantum
circuit is plagued by an exponential depth of the corresponding quantum circuit once
projected onto the native Pauli quantum gates. In a recent work, taken here as a study
case, the dynamics of a one-dimensional advection-diffusion-reaction (ADR) system has
been encoded using the Carleman embedding [14] and shown to reduce the exponen-
tial complexity to a quadratic one by resorting to block-encoding of sparse matrices, a
technique borrowed from Quantum Control and Quantum Signal Processing to embed
a non-unitary matrix into a unitary operator [15, 16, 17].

The block encoding technique has been proposed as a candidate to address the non-
unitarity issue thereby offering an appealing route to advance the development of quan-
tum algorithms for fluid flows [11, 18, 19]. However, block-encoding comes at the cost
of a low success probability of the corresponding probabilistic update. In principle, this
can be obviated by the oblivious amplitude amplification (OAA) algorithm, were if not
for the fact that OAA only works for unitary operations. More precisely, the application
of OAA to non-unitary matrices leads to a distortion of the resulting state. To the best
of our knowledge, this distortion effect has been only pointed out [20] but not analysed
in quantitative terms.

In this paper we analyse explicitly the introduced distortion by studying the effect
of the OAA algorithm onto a block encoding based circuit for a one-dimensional ADR
system. In more detail, we propose a way to mitigate the error while ensuring an increase
of the success probability. Our strategy relies on an enhanced amplitude amplification
algorithm based on a computationally cheap approximation of the system’s evolution to
perform the standard reflection about the initial state. The paper is organized as follows.
In section 2, we present the basics of the block-encoding procedure by highlighting the
associated stochastic nature. Amplitude amplification strategies are reviewed in section
3, emphasizing the need for an oblivious amplification algorithm, which is then analysed
in section 4. The effect of the non-unitarity on OAA is further discussed and a new model
for the error is introduced in section 5, where possible error-mitigating strategies are
also analysed. Additionally, a novel method based on an approximate form of standard
amplitude amplification is proposed, providing a closer proxy to the exact solution. In
section 6 we present numerical results and provide evidence of the superior performance
of the proposed method versus the standard OAA algorithm.
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2 Block encoding

Classical systems, such as those representing transport problems, are affected by dissi-
pative and non linear effects that make their dynamics highly non unitary. This char-
acteristic poses a serious challenge to the quantum simulation of classical dynamics, as
quantum computers can operate only in a unitary fashion. As a possible remedy, one can
implement the dynamics of interest by defining the non-unitary operation as a building
block of a larger unitary matrix acting on an extended Hilbert space. This technique,
generally called block-encoding, was developed in the context of developing Hamiltonian
simulation algorithms [11]. More specifically, given the non-unitary matrix 𝐴 ∈ C2𝑛×2𝑛

where 𝑛 is the number of qubits of the target register, we define the unitary matrix
𝑈 ∈ C2𝑛+𝑚×2𝑛+𝑚 that block-encodes 𝐴 with 𝑚 ancillary qubits as

𝑈 =

[
𝐴/𝛼 ∗
∗ ∗

]
, (1)

where the elements ∗ guarantee the unitarity of 𝑈 while the scaling factor 𝛼 ensures that
the singular values of any submatrix of 𝑈 are bounded by 1 [21]. It is straightforward
to show that when 𝑈 is applied to the state |0⟩ |𝜓⟩, we get the following result

𝑈 |0⟩ |𝜓⟩ = 𝑐0 |0⟩ 𝐴 |𝜓⟩ +
2𝑚−1∑︁
𝑖=1

𝑐𝑖 |𝑖⟩ |∗⟩ (2)

where the coefficients 𝑐𝑖 depend on the specific values of the matrix blocks indicated
with the symbol ∗. This means that the non-unitary matrix 𝐴 is applied conditionally
to the vector |𝜓⟩ when all ancillary qubits are measured in the state |0⟩. Thus, the
success probability is simply given by 𝑝(0) = 𝑐20∥𝐴 |𝜓⟩ ∥2.

Amplitude amplification algorithms have been proposed to overcome the probabilistic
nature of block encoding with the aim of increasing the probability of measuring the
ancillary state |0⟩ [22].

3 Amplitude amplification strategies

In many quantum computing applications the solution to a problem is often encoded
in a specific state of a larger wave function describing the overall register. To increase
the probability of measuring a desired state, various amplitude amplification algorithms
[23, 24, 25] have been developed based on the framework of Grover’s search algorithm,
which offers a quadratic speed-up over the best-known classical search methods [26].

A fundamental component of these types of algorithm is the repeated application of a
specific operator, which is designed to rotate the full state vector in the two-dimensional
space spanned by a target and an orthogonal state. In more detail, the so-called Grover
operator is defined as

𝐺 = 𝑈𝑅𝑠𝑈
†𝑅𝑡 (3)
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where 𝑈 indicates the state preparation operator, 𝑈† its inverse while 𝑅𝑡 and 𝑅𝑠 are
reflection operators about the target and initial states. However, a rotation that goes
beyond this target state reduces the probability of success, which is referred to as the
soufflé problem, since iterating too few times undercooks the result, but iterating too
many times overcooks it. As a consequence, there is an optimal number of Grover
iterations that need to be performed to reach the maximum amplitude, which could still
be lower than 1. Furthermore, in order to apply Grover’s iteration the correct number of
times, one has to know the original amplitude of the target state, an information that is
not always accessible to the user. A different strategy is offered by fixed-point algorithms,
which do not suffer from the over rotation problem and monotonically increase the
amplitude of the target state [27, 28, 29].

We remark that the exact knowledge of the initial state of the system is a strict
requirement for the correct application of standard and fixed point amplitude amplifi-
cation algorithms. However, in many cases of interest the initial state cannot be known
in advance, and an alternative blind approach has to be used. An oblivious amplitude
amplification (OAA) algorithm that does not require any knowledge of the initial state
preparation of the quantum working register has been proposed in the context of Hamil-
tonian simulation techniques [30]. More recently, it has been developed a new fixed point
OAA algorithm [31] that monotonically increase the success probability by repeatedly
applying a Grover operator based on the Linear Combination of Unitaries (LCU) method
[12]. This algorithm combines OAA with a damping mechanism initially proposed by
Mizel in [28].

4 Oblivious amplitude amplification for non unitary ma-
trices

The standard OAA algorithm uses 𝑚 ancillary qubits and employs two unitary matrices
𝑈 and 𝑉 , defined on 𝑛 + 𝑚 and 𝑛 qubits, respectively. In particular 𝑈 acts, for an angle
𝜃 ∈ (0, 𝜋

2 ), on a generic state |𝜓⟩ in the following way

𝑈 |0⟩ |𝜓⟩ = sin 𝜃 |0⟩𝑉 |𝜓⟩ + cos 𝜃 |Φ⊥⟩ , (4)

where |Φ⊥⟩ is a state that depends on |𝜓⟩ and is orthogonal to any state characterized
by the |0⟩ state of the 𝑚 ancillary qubits. By defining the operator

𝑆 = −𝑈𝑅𝑈†𝑅, (5)

where 𝑅 = 2𝑃 − I is the reflection operator with respect to the state |0⟩ of the ancilla
qubits and 𝑃 = |0⟩ ⟨0| ⊗ I is the corresponding projector, the following relation, defined
for any 𝑙 ∈ Z, has been proven [30]:

𝑆𝑙𝑈 |0⟩ |𝜓⟩ = sin((2𝑙 + 1)𝜃) |0⟩𝑉 |𝜓⟩ + cos((2𝑙 + 1)𝜃) |Φ⊥⟩ . (6)

After applying the 𝑆 operator 𝑙 times, the success probability of measuring the target
state |0⟩𝑉 |𝜓⟩ changes from the initial value | sin 𝜃 |2 to | sin((2𝑙 + 1)𝜃) |2. An optimal
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value of 𝑙 can be chosen to maximize this probability. By comparing Eqs. (1) and (4),
we see that they are closely related, even though the matrix 𝐴 in (1) is not unitary.

In [20], the authors studied the effect of non-unitarity when the matrix 𝑉 is close
to a unitary matrix. This result has been extended to a robust version of OAA in [10].
Summarizing their findings, setting sin 𝜃 = 1/𝑠 and provided that |𝑠 − 2| = 𝑂 (𝛿), it has
been proved the following relation

𝑃𝑆𝑈 |0⟩ |𝜓⟩ = |0⟩ (3
𝑠
𝑉 − 4

𝑠3
𝑉𝑉†𝑉) |𝜓⟩ , (7)

which shows that an error is introduced at each step of OAA since 𝑉†𝑉 is not equal to
the identity matrix I.

Using the spectral matrix norm ∥ · ∥ , defined for a generic matrix 𝑀 as ∥𝑀 ∥ =√︁
𝜆max(𝑀†𝑀), we introduce the non-unitarity parameter

𝜂 = ∥𝑉†𝑉 − I∥. (8)

If 𝑉 is 𝛿-close to a unitary matrix, with 𝜂 = 𝑂 (𝛿), then the error can be bounded as
follows

∥𝑃𝑆𝑙𝑈𝑃 − |0⟩ ⟨0| ⊗ 𝑉 ∥ = 𝑂 (𝛿). (9)

5 A new perspective on oblivious amplitude amplification
for non-unitary matrices

The OAA algorithm is based on the 2D Subspace Lemma [30] which states that, defined
the state |Ψ⟩ = |0⟩ |𝜓⟩ and the effect of 𝑈 on this state as in Eq. (4), it is then possible
to define an orthogonal state, that also satisfies the property 𝑃 |Ψ⊥⟩ = 0 and s.t.

𝑈 |Ψ⊥⟩ = cos 𝜃 |0⟩𝑉 |𝜓⟩ − sin 𝜃 |Φ⊥⟩ . (10)

The orthogonality of the two states can be proved by taking the inner product of Eq. (4)
and Eq. (10) resulting in ⟨Ψ|Ψ⊥⟩ = 0. However, for a non-unitary matrix 𝑉 , the orthog-
onality condition of the state defined in Eq. (10) is no longer satisfied, thus leading to
an error after the application of the operator 𝑆. Nevertheless, an orthogonal state still
exists and it is characterized by the following expression:

𝑈 |Ψ⊥
true⟩ = cos 𝜃 |0⟩ (𝑉†)−1 |𝜓⟩ − sin 𝜃 |Φ⊥⟩ . (11)

Note that this is equivalent to the previous definition whenever 𝑉 is unitary. The proof
can be obtained by simply taking the inner product with Eq. (4) and using the fact that
𝑉†(𝑉†)−1 = I. Equation (11) suggests that there might be a way to cancel out the error
by using different reflection operators 𝑅 in (4) or by replacing 𝑈† with a different inverse
operation, as discussed in Sec. 4.

Using the updated definition (11) for the orthogonal state and following the same
procedure of Ref. [30], we are able to obtain an approximate solution (see Appendix A)
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after one iteration of the OAA algorithm, that is more general than the expression in
(7) since sin 𝜃 is not constrained to values close to 1/2. This yields:

𝑆𝑈 |0⟩ |𝜓⟩ ≃ sin 3𝜃 |Φ⟩ + cos 3𝜃 |Φ⊥⟩
−2 sin 𝜃 cos2 𝜃 |𝜖⟩ − 2 sin 𝜃 cos2 𝜃𝑈𝑅𝑈† |𝜖⟩ ,

(12)

where the state |𝜖⟩ = |Φ⟩ − |Φ𝜖 ⟩ is a combination of the exact |Φ⟩ = |0⟩𝑉 |𝜓⟩ with
the approximate |Φ𝜖 ⟩ = |0⟩ (𝑉†)−1 |𝜓⟩ state. It is also possible to provide the following
expression for |𝜖⟩, which highlights the effect of the non-unitarity

|𝜖⟩ = |0⟩ ⊗ (𝑉 − (𝑉†)−1) |𝜓⟩ = |0⟩ ⊗ (𝑉†)−1(𝑉†𝑉 − I) |𝜓⟩ . (13)

With reference to expression (12), we find the typical amplitude amplification terms
involving functions sin(3𝜃) and cos(3𝜃) along some perturbations that depend on |𝜖⟩,
which vanish as 𝑉 approaches unitarity.

We now introduce a simple linear model to characterize the error introduced by OAA.
First, we define the exact normalized target state |𝛽⟩ = 𝑉 |𝜓⟩ /∥𝑉 |𝜓⟩ ∥ and its orthogonal
counterpart |𝛽⊥⟩. It is possible to realize that the error-introducing terms in (12) are
characterized by the state |𝜖⟩, which depends on the application of the operator 𝑉†𝑉 − I
to |𝜓⟩ ( cf. Eq. (13)).
Therefore, by taking the projection along the |0⟩ state of the ancillary qubits, without
loss of generality, we obtain:

|𝜔⟩ = 𝑃𝑆𝑈 |0⟩ |𝜓⟩ = |𝛽⟩ + 𝑐𝜂 |𝛽⊥⟩√︁
1 + (𝑐𝜂)2

(14)

where 𝑐 is a parameter that depends on |𝜓⟩, on the initial angle 𝜃 of expression (12) and
on the matrix 𝑉 . Roughly speaking 𝑐 is a parameter which accounts for the amplitude
of the component orthogonal to the exact solution after one step of OAA. Note that the
error shows a linear dependence on 𝜂, as shown by the numerical verificaton in Sec.6.

5.1 The Euclidean distance

We now use Eq. (14) to retrieve the Euclidean distance between the exact solution |𝛽⟩
and the resulting state after one OAA iteration |𝜔⟩. Since ⟨𝛽 |𝛽⟩ = 1 and ⟨𝛽 |𝛽⊥⟩ = 0 we
conclude that the Euclidean distance is simply given by:

𝐷 (𝛽, 𝜔) =
√︁
2(1 − | ⟨𝛽 |𝜔⟩ |) =

√︄
2

(
1 − 1√︁

1 + (𝑐𝜂)2

)
. (15)

This value is limited between 0, the ideal error-free case achieved when the non-unitarity
parameter goes to 0, and

√
2, corresponding to the maximum possible error. Further-

more, for small values of the non-unitarity parameter 𝜂, the error is bounded by a linear
function of 𝜂 as it is possible to verify in Figure 1a, retrieving an equivalent version
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of the error bound of (9). We found an upper bound for the Euclidean distance 𝐷 by
setting in (12)

|𝜖⟩ ≃ 𝜂 |0⟩ |𝛽⊥⟩, 𝑈𝑅𝑈† |𝜖⟩ ≃ |𝜖⟩ . (16)

With these assumptions, the Euclidean distance is maximised to

𝐷 ≤ 𝐷𝑚𝑎𝑥 =

√√√
2(1 − 1√︃

1 + ( 4 sin 𝜃 cos2 𝜃
sin 3𝜃 𝜂)2

). (17)

5.2 The fidelity

To complete the analysis of the distortion error, we next present a model for the fidelity
of the quantum state after OAA when dealing with a non-unitary matrix 𝑉 . After one
step of the amplification process by using (14), we can write the fidelity between |𝜔⟩ and
|𝛽⟩ as:

𝐹 (𝛽, 𝜔) = | ⟨𝛽 |𝜔⟩ |2 =
����� ⟨𝛽 |𝛽⟩ + 𝑐𝜂 ⟨𝛽 |𝛽⊥⟩√︁

1 + (𝑐𝜂)2

�����2 (18)

=
1

1 + (𝑐𝜂)2 . (19)

The value 1 for 𝐹 corresponds to an exact solution without the introduction of any
distortion. If we plot 𝐹 over the non unitarity parameter 𝜂 (Figure 1b), we obtain a
decreasing Bell-shaped curve, whose width depends on the value of the parameter 𝑐. As
the non-unitarity goes to 0, the fidelity gets closer to 1, recovering the ideal case. Under
the same assumptions in (16), we can provide a lower bound for the fidelity, yielding,

𝐹 ≥ 𝐹𝑚𝑖𝑛 =
1

1 + ( 4 sin 𝜃 cos2 𝜃
sin 3𝜃 𝜂)2

. (20)

5.3 Error-mitigation strategies and approximate reflection amplitude
amplification

The distortion introduced at each iteration by the OAA algorithm when dealing with
non-unitary matrices represents a strong limitation to the development of quantum algo-
rithms aiming at efficiently implementing a non-unitary dynamics through block encod-
ing. The main issue of applying OAA to non-unitary matrices can be stated as follows:
when the matrix 𝑉 is non-unitary, applying the operator 𝑈† to the state |0⟩𝑉 |𝜓⟩ fails
to map it back to the initial state, as

𝑈† |0⟩𝑉 |𝜓⟩ = sin 𝜃 |0⟩𝑉†𝑉 |𝜓⟩ +
2𝑚−1∑︁
𝑖=1

𝑐𝑖 |𝑖⟩ |∗⟩ . (21)
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Figure 1: Trend of the euclidean distance 𝐷 (a) and fidelity 𝐹 (b) as a function of the
non-unitarity parameter for 3 representative values of 𝑐. The ideal case would be an
error-free situation with 𝐷 = 0 and 𝐹 = 1.

In general, we are looking for a modified version of the OAA algorithm that substitutes
𝑆 in (5) with the routine 𝑆 = −𝑈𝑅𝑈2𝑅, leading to a reduced (potentially zero) error and
to an increased success probability. A possibility is to replace 𝑈2 with the operator 𝑊
that block encodes 𝑉−1, such that

𝑊 |0⟩𝑉 |𝜓⟩ = sin(𝜃𝑊 ) |0⟩𝑉−1𝑉 |𝜓⟩ +
2𝑚−1∑︁
𝑖=1

𝑐𝑖,𝑊 |𝑖⟩ |∗⟩ . (22)

However, the numerical investigation we carried out shows that this strategy does
not provide any practical advantage, whereas the efficient implementation of 𝑊 is not
straightforward. At the same time, we proved that it is not possible to find a unitary
operator𝑈2 that solves the error problem and simultaneously allows for the amplification
of the target state. Thus, the development of a completely error-free OAA algorithm
for non-unitary matrices remains an open problem, requiring a fundamentally different
framework.
Here, we propose an alternative approach based on an approximate method, which we
show to provide better results for our use case as it leads to a reduced error with respect
to the OAA algorithm.

Standard amplitude amplification requires a reflection about the initial state 𝑅𝑠 and
another reflection about the target subspace 𝑅𝑡 . However, when the target is identified
by the state |0⟩ in the index register (this is the case e.g. of a block-encoded operation)
we can replace 𝑅𝑡 with the opposite reflection about the state |0⟩ of the index register
−𝑅, as done in the OAA algorithm. To simplify the Grover’s algorithm even further, we
propose to substitute the reflection operator 𝑅𝑠 with a reflection about an approximate
state 𝑅𝑠, which is easy to compute. Thus, our modified Grover algorithm (compare with
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(3)), becomes:

𝐺 = 𝑈𝑅𝑠𝑈
†𝑅𝑡 (23)

𝑅𝑡 = −𝑅 = −(2𝑃 − I) (24)

𝑅𝑠 = 2 |𝜓⟩ ⟨𝜓 | − I (25)

where 𝑃 is the projection to the |0⟩ state of the ancillary qubits and 𝑅𝑡 = −𝑅 is simply the
opposite of the reflection with respect to that state . This corresponds simply to flip the
sign of the target state, namely a very cost-efficient and easy to implement operation.
Concerning 𝑅𝑠 it coincides with a reflection operator with respect to an approximate
initial solution |𝜓⟩.
It is straightforward to show that if ∥𝑅𝑠 − 𝑅𝑠 ∥ = 𝑂 (𝛿), then the error between the exact
solution and the state after one application of 𝐺 is such that:

∥𝑃(𝑈𝑅𝑠𝑈
†𝑅𝑡𝑈)𝑃 − |0⟩ ⟨0| ⊗ 𝑉 ∥ = 𝑂 (𝛿). (26)

Therefore, using a sufficiently accurate estimate of the initial state, the error introduced
by the proposed algorithm is lower than the one introduced by OAA defined in (9).

6 Simulating the advection-diffusion-reaction dynamics with
Qiskit

In this section we quantum-simulate an advection-diffusion-reaction dynamics [14] by
employing the efficient block encoding circuit of a sparse matrix [21]. We focus on a one-
dimensional domain and we discretize the time dependent advection-diffusion-reaction
problem 

𝜕𝜙

𝜕𝑡
= 𝐷

𝜕2𝜙

𝜕𝑥2
−𝑈

𝜕𝜙

𝜕𝑥
− 𝑎𝜙 𝑥 ∈ (0, 𝐿), 𝑡 > 0

𝜙(𝑥, 0) = 𝜙0 𝑥 ∈ (0, 𝐿)
𝜙(0, 𝑡) = 𝜙(𝐿, 𝑡) 𝑡 > 0

(27)

where 𝜙 is the physical quantity of interest, with uniform diffusion coefficient 𝐷, constant
velocity 𝑈 and constant reaction 𝑎, provided with periodic boundary conditions and an
initial condition 𝜙0. Using a second order centred finite difference scheme to approximate
both the derivatives on the uniform distribution of spatial nodes 𝑥0 = 0 < 𝑥1 < ... <

𝑥𝑁−1 < 𝑥𝑁 = 𝐿, the problem is discretized with 𝑁 coordinates from 𝑥0 to 𝑥𝑁−1:

¤𝜙 𝑗 =
𝐷

Δ𝑥2
(𝜙 𝑗−1 − 2𝜙 𝑗 + 𝜙 𝑗+1) −

𝑈

2Δ𝑥
(𝜙 𝑗+1 − 𝜙 𝑗−1) − 𝑎𝜙 𝑗

∀ 𝑗 = 0, ..., 𝑁 − 1

(28)

with Δ𝑥 = 𝐿/𝑁 the uniform grid spacing and where ¤𝜙 𝑗 =
𝑑𝜙 𝑗

𝑑𝑡
=

𝑑𝜙(𝑥 𝑗 , 𝑡)
𝑑𝑡

. The corre-

sponding algebraic form is given by

¤ϕ(𝑡) = 𝑀ϕ(𝑡) (29)
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with 𝑀 ∈ R𝑁×𝑁 and ϕ(𝑡) ∈ R𝑁 . From now on, without loss of generality, we take 𝑁 = 2𝑛

where 𝑛 is the number of qubits used to embed the numerical problem on a quantum
register. By using a forward Euler scheme to discretize the time dependence, we obtain

ϕ(𝑡𝑖 + Δ𝑡) = (I + Δ𝑡𝑀)ϕ(𝑡𝑖) = 𝐴ϕ(𝑡𝑖) (30)

for each time-step 𝑡𝑖 of the temporal discretization starting from 𝑡0 = 0. The resulting
matrix 𝐴 ∈ R𝑁×𝑁 is a banded circulant matrix with the following structure:

𝐴 =



𝜆0 𝜆1 0 . . . 𝜆2

𝜆2 𝜆0 𝜆1
. . . 0

0
. . .

. . .
. . .

...
...

. . . 𝜆2 𝜆0 𝜆1
𝜆1 0 . . . 𝜆2 𝜆0


(31)

By introducing the three dimensionless Courant numbers for diffusion, advection and
reaction [14, 32]

𝛾𝑑 =
Δ𝑡𝐷

Δ𝑥2
, 𝛾𝑎 =

Δ𝑡𝑈

Δ𝑥
, 𝛾𝑟 = 𝑎Δ𝑡 (32)

we can write the 𝜆𝑖 terms in a compact form respectively as

𝜆0 = 1 − 2𝛾𝑑 − 𝛾𝑟 , 𝜆1 = 𝛾𝑑 − 𝛾𝑎

2
, 𝜆2 = 𝛾𝑑 + 𝛾𝑎

2
. (33)

To guarantee the stability of the explicit finite difference scheme in time, we properly
combine the CFL conditions for the Courant numbers as in [33], thus obtaining the
constraints

𝛾𝑑 ≤ 1/2, 𝛾𝑎 ≤ 1, 𝛾𝑟 ≤ 1. (34)

The time-step limitation in (34), can be circumvented using implicit schemes or other
formulations for transport phenomena [34]. In addition, we remark that the forward
Euler scheme results in a non-unitary matrix 𝐴 also in the case of a unitary differential
operator, such as an advection problem.

The matrix 𝐴 can be block-encoded using only 𝑚 = 3 ancillary qubits, by efficiently
taking advantage of its sparsity pattern. The quantum circuit to perform this operation
is described in detail in [14] with a specific analysis on the probabilistic nature of the
final result. In particular, the block encoding scheme employed embeds the matrix 𝐴

with a scaling factor of 1/4 into a larger unitary operator. As a consequence, the success
probability of implementing a single time step as in (30) is of the order of 1/16, thus
inhibiting the practical use of the proposed scheme to implement multiple time steps.
In order to analyse the effect of different amplitude amplification strategies, we have
implemented a Qiskit code [35] that is able to generate an efficient quantum circuit
to block-encode any banded circulant matrix, or symmetric 2 × 2 matrix, using the
resources provided by [21]. The developed code is currently available in [36]. A sketch
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of the developed circuit is shown in Figure 2 where 𝑈 is the gate that encapsulates the
block encoding of 𝐴/4. If the 𝑚 = 3 ancillary qubits are measured in state |0⟩, then the
working register has a final state-vector which is equal, up to a normalization factor, to
the application of matrix 𝐴 to the initial state |𝜓⟩. Using the Qiskit platform we are
able to simulate the probability of success as a function of 𝛾𝑟 (Figure 3a), with 𝛾𝑑 = 𝛾𝑎
both set to 0.1 and 𝑛 = 4 working qubits, for both a completely localized initial state
and for a uniform superposition initial state, retrieving the parabolic profile calculated
analytically in [14]. In both cases the probability has a value that is too small for
simulating multiple time steps.

𝑚

𝑛

|0⟩
𝑈

|0⟩

|𝜓⟩ 𝐴 |𝜓⟩ /∥𝐴 |𝜓⟩ ∥

Figure 2: Schematics of the quantum circuit to block encode the matrix 𝐴 with 𝑚

ancillary qubits and 𝑛 working qubits.

0.5 1.0 1.5
r
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completely localized distribution

(a)

0 1 2 3 4 5
k

0.2

0.4

0.6

0.8

1.0

p

simulation
theory

(b)

Figure 3: (a) Qiskit simulation of the success probability of implementing the operator
𝐴 as a function of 𝛾𝑟 with 𝛾𝑑 and 𝛾𝑎 both set to 0.1, using a uniform distribution (solid
line) and a completely localized initial state (dashed line). (b) Qiskit simulation of the
success probability (black dots) using the 𝜋/3 fixed-point algorithm as a function of the
number of iterations 𝑘 using 𝛾𝑟 = 0.9, 𝛾𝑎 = 𝛾𝑑 = 0.01 with a completely localized initial
state, compared to the theoretical curve (solid red line).

Figure 3b confirms that by applying standard amplitude amplification which requires
an exact knowledge of the initial state, no error is introduced, and the success probability
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can be increased. Thus, using for instance the fixed point 𝜋/3 Grover’s algorithm, we
are able to amplify the success probability up to a value that gets monotonically closer
to 1 as the number of the algorithm iterations is increased. The simulation employs
𝑛 = 3 working qubits while setting 𝛾𝑟 = 0.9, 𝛾𝑎 = 𝛾𝑑 = 0.01. More precisely, if the
initial success probability is 𝑝 = (1 − 𝜖) it becomes 𝑝 = (1 − 𝜖3

𝑘 ) after 𝑘 iterations[27].
Nevertheless, for simulating multiple time steps, an oblivious algorithm is needed since
it is not possible to know a priori ϕ(𝑡𝑖) for 𝑡𝑖 ≠ 0 and to apply the appropriate exact
reflection with respect to the initial state 𝑅𝑠. Hereafter, we present numerical simulations
based on the OAA algorithm and on an approximate implementation of the amplitude
amplification algorithm based on partial knowledge of the initial state.

6.1 OAA for a completely localized initial state

The following analysis is based on the possibility of changing the non-unitarity parameter
𝜂 by selecting a different time step Δ𝑡 , while preserving the value for all the other
variables involved in the definition of the Courant numbers. In particular, if we set to
𝛾𝑑 = 𝛾𝑟 = 0.01 and 𝛾𝑎 = 0.9, the value of the non-unitarity parameter is 𝜂 = ∥𝑉†𝑉 −
I∥ ≃ 0.75. Reducing the value of the time step Δ𝑡 the matrix defined in equation (31)
approaches the identity operator and correspondingly 𝜂 goes to 0. We start with the
analysis of a completely localized initial state for a working register of 𝑛 = 4 qubits.
This leads to a state-vector with only one component different from zero. If 𝑈 is the
operator that represents the block-encoding circuit shown in Figure 2, then the OAA
algorithm can be used by applying 𝑘 times the 𝑆 operator defined in (5), interleaving
𝑈 and its inverse 𝑈† with reflections about the state |0⟩ of the three auxiliary bits
(see Figure 4). Figure 5 shows how the probability 𝑝 = | sin((2𝑘 + 1)𝜃) |2 is affected

𝑚

𝑛

|0⟩
𝑈

−𝑅
𝑈†

𝑅

𝑈

|𝜓⟩

Figure 4: Quantum circuit for one iteration of the OAA algorithm, applied after the
operator 𝑈 that block encodes matrix 𝐴.

by changing the iteration number 𝑘. The optimal number of iterations 𝑘𝑜𝑝𝑡 should
maximize sin((2𝑘+1)𝜃), where 𝜃 depends on different factors, such as the block-encoding
technique, the Courant numbers, the choice for the initial state and the non-unitarity
of the matrix. Thus, 𝑘𝑜𝑝𝑡 ∼ O(

√︁
𝑁/𝑀) where 𝑁 = 2𝑚 = 8 is the total number of states,

and 𝑀 = 1 is the number of target states [31] so that, in our case, 𝑘𝑜𝑝𝑡 is either 2 or
3. Our results show that the non-unitarity parameter has a small effect on the overall
probability improvements at successive iterations.

We now focus on the error analysis due to the effect of OAA for a non unitary
matrix. In Figure 6a we show the Euclidean distance (15) between the exact and the

12



0.0 0.2 0.4 0.6
||V V I||

0.2

0.4

0.6

0.8

1.0

p

k=0 OAA
k=1 OAA
k=2 OAA
k=3 OAA

Figure 5: Qiskit simulation of success probability of measuring the |0⟩ state in the
ancillary qubits as a function of the non-unitarity parameter 𝜂 = ∥𝑉†𝑉 − I∥. As expected,
the optimal number of iterations is in the order of

√
8, therefore corresponding to 𝑘 = 2

or 3.
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Figure 6: Qiskit simulation of Euclidean distance 𝐷 (a) and fidelity 𝐹 (b) as a function
of the non-unitarity parameter 𝜂 = ∥𝑉†𝑉−I∥, obtained by modifying the time step Δ𝑡, for
successive iterations 𝑘 of the OAA algorithm. Successive iterations, although required
to increase success probability, also increase the error.
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approximated solution after 𝑘 iterations. Quantity 𝐷 is plotted as a function of the non-
unitarity parameter 𝜂, which we remind that is zero when 𝑉†𝑉 = I, while the number
of iterations is indicated with the integer 𝑘, and 𝑘 = 0 indicates that no amplitude
amplification is performed. At each iteration of the OAA algorithm a distortion is
introduced which increases the distance of the resulting state from the exact one. The
numerical result is in agreement with the analytical calculation in Eqs. (9) and (15).
Figure 6b shows the fidelity 𝐹 for the same system. It is evident that the decreasing
function matches the analytical behaviour reported in (19) shown in Figure 1b. The
plot suggests that Eq. (14) remains valid throughout successive amplitude amplification
iterations, by substituting an increased value for the parameter 𝑐. Comparing the results
for 𝑘 = 1 with the bounds on the maximum Euclidean distance and the minimum fidelity,
calculated with sin 𝜃 ≃ 1/4, we find that the upper (and lower) bounds 𝐷max of Eq. (17)
(and 𝐹min in Eq. (20)) offer conservative error estimates, as the resulting Euclidean
distance and fidelity stay, respectively, significantly below and above the limit values.
The results are summarized in the probability-Euclidean distance diagram in Figure
7. The goal is to drive the state from the initial point with low success probability
𝑝 (and high probability of failure 1 − 𝑝 ) to a final position in the diagram with high
probability, while ensuring a small error. Successive iterations 𝑘 of the algorithm increase
the probability of success 𝑝 up to a value close to 1, reached when 𝑘 approaches the
optimal number of iterations O(

√
8). The ideal error-free scenario is obtained when

1− 𝑝 = 0 and 𝐷 = 0, corresponding to the origin of the plane. The effect of non-unitarity
is to increase the Euclidean distance 𝐷 at each iteration of the OAA algorithm, thus
hindering its practical use for simulating multiple time steps.

0.0 0.2 0.4 0.6 0.8 1.0
1 p

0.00

0.05

0.10

0.15

0.20

D

k =0
k =1

k =2

k =3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

||V
V

I||

Figure 7: Qiskit simulation of the Euclidean-distance 𝐷 and the failure probability 1− 𝑝

as a function of the non-unitarity of the dynamics (colour bar), obtained varying the
number of OAA iterations 𝑘.
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6.2 OAA for a uniform distribution of random states

We now consider the effect of the error introduced by OAA, when applied to a non-
unitary matrix, on a set of states randomly sampled from the uniform distribution on
the unitary group of dimension 𝑁 = 2𝑛, according to the Haar measure [37]. we use
𝑛 = 4 qubits, a set of 1000 random states and the same parameters of the localized
initial state case study. We point out that using a reduced number of states (e.g. 100)
leads to nearly identical results, indicating that the sample size is statistically significant.
The results are presented in Figure 8, where we show the mean values of Euclidean
distance ⟨𝐷⟩ and fidelity ⟨𝐹⟩, obtained varying 𝜂 for a different number 𝑘 of iterations.
The effect of successive iterations is to increase the error for all random states. Also
in this case the estimate in (15) is valid and we retrieve the same behaviour of the
fidelity in relation to the non-unitarity as for the localized case. The expected mean

0.0 0.2 0.4 0.6
||V V I||

0.00
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0.20

<
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k=1 OAA
k=2 OAA
k=3 OAA

(a)
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F
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k=0 OAA
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Figure 8: Qiskit simulation of the mean Euclidean distance ⟨𝐷⟩ (a) and of the mean
fidelity ⟨𝐹⟩ (b) between exact and approximate solutions, measured over 1000 uniformly
sampled random initial states, represented as a function of the non-unitarity parameter,
which is changed by varying the time step Δ𝑡, for successive iterations 𝑘 of the OAA
algorithm.

fidelity, using the expression derived in (19) simply coincides with the average over all
possible states of the equation considering that 𝑐 = 𝑐(𝜓,𝑉). To provide a quantitative
measure of the introduced error, in Figure 9 we show the average and the standard
deviation of the fidelity as a function of 𝑘. We observe that for increasing value of 𝜂 and
successive iterations of the algorithm, the variability of the introduced error becomes
larger. Furthermore, if we use the maximum distance and minimum fidelity bounds
provided in (17) and (20) for the specific case sin 𝜃 ≃ 1/4 and compare them with our
results for 𝑘 = 1, the introduced error is well controlled by our conservative estimates.
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Figure 9: Qiskit simulation of fidelity average (point) and standard deviation (bar) for
3 representative values of the non-unitarity, varying 𝑘.

6.3 Approximate reflection operator

Finally, we study the effect of applying the approximate amplitude amplification algo-
rithm, introduced in section 5.3, to the case when an initial state is not fully available
but a corresponding estimate may be obtained at a sufficiently low computational cost.
We remind that the algorithm consists in the application of a suitable Grover operator

𝑚

𝑛

|0⟩
𝑈

−𝑅
𝑈† 𝑅𝑠 𝑈

|𝜓⟩

Figure 10: Quantum circuit for one iteration of the amplitude amplification algorithm
using an approximate reflection about the initial state 𝑅𝑠 applied after the initial operator
𝑈 that block-encodes matrix 𝐴.

𝐺, defined in (24), which employs a reflection −𝑅 about the |0⟩ state of the ancillary
qubits together with an approximate initial state reflection operator 𝑅𝑠. The circuit for
implementing this approximate amplitude amplification is sketched in Figure 10. We
consider an advection-dominated scenario with parameters set to 𝛾𝑑 = 𝛾𝑟 = 0.005 and
𝛾𝑎 = 0.9, corresponding to a value of 𝜂 ≃ 0.78. For this analysis, we employ 𝑛 = 4
working qubits and a fully localized initial state |ϕ(𝑡0)⟩. As in previous cases, the non-
unitarity parameter can be changed by reducing the time step Δ𝑡 keeping fixed all the
other variables involved in the definition of the Courant numbers.

After the first time step, the state |ϕ(𝑡0 + Δ𝑡)⟩ can be obtained in the working register
without any error, as the reflection 𝑅𝑠 = 𝑅𝑠 about |ϕ(𝑡0)⟩ can be implemented exactly.
In order to proceed with the simulation, we need to approximate |ϕ(𝑡0 + Δ𝑡)⟩ because
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Figure 11: Qiskit simulation of success probability of measuring the |0⟩ state in the
ancillary qubits using two iterations of OAA and of approximate algorithm, varying the
non-unitarity parameter 𝜂 = ∥𝑉†𝑉 − I∥ by selecting a different time step Δ𝑡.
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Figure 12: Qiskit simulation of Euclidean distance 𝐷 (a) and fidelity 𝐹 (b) using two
iterations of OAA and of approximate algorithm, varying the non-unitarity parameter
𝜂 = ∥𝑉†𝑉 − I∥ by selecting a different time step Δ𝑡.
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the information encoded in the quantum register is not available beforehand. An easy-
to-compute estimate can be achieved by considering only the effect of the advection (i.e.
setting 𝛾𝑑 = 𝛾𝑟 = 0). This choice yields an estimate |ϕ̃(𝑡0 + Δ𝑡)⟩, derived with minimal
computational effort corresponding to a spatial translation of the initial condition. Using
this approximation, the reflection operator 𝑅𝑠 can be built in advance using definition
(25). Both algorithms are able to increase the success probability as shown in Figure
11. In this setup, the approximate algorithm outperforms the OAA algorithm showing
significant improvements in terms of both the Euclidean distance and the fidelity for
nearly all values of non-unitarity, while still increasing the probability of success in a
similar manner (see Figure 12). Moreover, the approximate algorithm introduces an
error which does not depend on the number of iterations 𝑘, a major improvement with
respect to the OAA scheme.

7 Conclusions

Amplitude amplification algorithms can be used to enhance the probability of success
of implementing a non-unitary matrix with the block encoding technique. However, for
a majority of cases, an oblivious approach, unaware of the initial state of the quantum
register is required to enhance the success probability of the quantum update. This
comes with the major drawback of introducing a distortion error on the updated state
at each iteration. For the case of the explicit Euler scheme (30), this error can alter the
solution significantly, thereby inhibiting the practical use of the proposed algorithm for
simulating transport problems on quantum computers with a time-step approach. To
the best of our knowledge, this work provides the first quantitative estimate of the error
introduced by the OAA algorithm when applied to non-unitary matrices. Moreover, we
also provide additional error bounds for the Euclidean distance and fidelity of the state.
Our findings indicate that further improvements to the algorithm are inherently con-
strained by design, so that the development of a completely error-free OAA algorithm
for non-unitary matrices remains an open problem.
However, it has been shown that an approximate version of the amplitude amplifica-
tion, based on an estimate of the initial solution to construct an approximate reflection
operator, can outperform the OAA algorithm providing a smaller distortion while still
increasing the probability of success. This improvement is likely to apply to a broad
class of partial differential equations related to transport phenomena. However, further
improvements are required to take the success probability to the level of sustaining a
viable quantum simulation of transport processes. Our study lays the ground to the
development of innovative amplitude amplification quantum algorithms, offering a new
paradigm towards a viable quantum simulation of classic transport problems.
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A Approximate expression for the state after one OAA
iteration

Here we show how to calculate the approximate expression in (12) Starting from

|Φ⟩ = |0⟩𝑉 |𝜓⟩ (35)

𝑈 |Ψ⟩ = sin 𝜃 |Φ⟩ + cos 𝜃 |Φ⊥⟩ (36)

𝑈 |Ψ⊥⟩ = cos 𝜃 |Φ𝜖 ⟩ − sin 𝜃 |Φ⊥⟩ = cos 𝜃 |Φ⟩ − sin 𝜃 |Φ⊥⟩ − cos 𝜃 |𝜖⟩ (37)

|Ψ⟩ = sin 𝜃𝑈† |Φ⟩ − cos 𝜃𝑈† |Φ⊥⟩ (38)

|Ψ⊥⟩ = cos 𝜃𝑈† |Φ𝜖 ⟩ − sin 𝜃𝑈† |Φ⊥⟩ = cos 𝜃𝑈† |Φ⟩ − sin 𝜃𝑈† |Φ⊥⟩ − cos 𝜃𝑈† |𝜖⟩ (39)

and multiplying the previous two equations by cos 𝜃 and then by sin 𝜃, we get

𝑈† |Φ⟩ = sin 𝜃 |Ψ⟩ + cos 𝜃 |Ψ⊥⟩ + cos2 𝜃𝑈† |𝜖⟩ (40)

𝑈† |Φ⊥⟩ = cos 𝜃 |Ψ⟩ − sin 𝜃 |Ψ⊥⟩ − sin 𝜃 cos 𝜃𝑈† |𝜖⟩ . (41)

Now, we have all the ingredients to find how the operator 𝑆 acts on 𝑈 |Ψ⟩. We will also
use 𝑅 |Ψ⟩ = |Ψ⟩ and the approximation

𝑅 |Ψ⊥⟩ ≃ − |Ψ⊥⟩ (42)

which is an exact result when the matrix to be block-encoded 𝑉 is unitary. We now
follow the steps in [30].

𝑆𝑈 |Ψ⟩ = −𝑈𝑅𝑈†(sin 𝜃 |Φ⟩ − cos 𝜃 |Φ⊥⟩) (43)

where

𝑆𝑈 |Ψ⟩ = −𝑈𝑅(sin 𝜃 (sin 𝜃 |Ψ⟩ + cos 𝜃 |Ψ⊥⟩ + cos2 𝜃𝑈† |𝜖⟩)
− cos 𝜃 (cos 𝜃 |Ψ⟩ − sin 𝜃 |Ψ⊥⟩ − sin 𝜃 cos 𝜃𝑈† |𝜖⟩))

(44)

𝑆𝑈 |Ψ⟩ = −𝑈𝑅((sin2 𝜃 − cos2 𝜃) |Ψ⟩ + 2 sin 𝜃 cos 𝜃 |Ψ⊥⟩) − 2 sin 𝜃 cos2 𝜃𝑈𝑅𝑈† |𝜖⟩ (45)

𝑆𝑈 |Ψ⟩ = −𝑈𝑅((− cos(2𝜃) |Ψ⟩ + sin(2𝜃) |Ψ⊥⟩) − 2 sin 𝜃 cos2 𝜃𝑈𝑅𝑈† |𝜖⟩ (46)

Using the previous approximation in (42) we get

𝑆𝑈 |Ψ⟩ ≃ −𝑈 ((− cos(2𝜃) |Ψ⟩ − sin(2𝜃) |Ψ⊥⟩) − 2 sin 𝜃 cos2 𝜃𝑈𝑅𝑈† |𝜖⟩ (47)

𝑆𝑈 |Ψ⟩ ≃ (cos(2𝜃)𝑈 |Ψ⟩ + sin(2𝜃)𝑈 |Ψ⊥⟩) − 2 sin 𝜃 cos2 𝜃𝑈𝑅𝑈† |𝜖⟩ (48)

and finally the result

𝑆𝑈 |Ψ⟩ ≃ sin 3𝜃 |Φ⟩ + cos 3𝜃 |Φ⊥⟩ − 2 sin 𝜃 cos2 𝜃 |𝜖⟩ − 2 sin 𝜃 cos2 𝜃𝑈𝑅𝑈† |𝜖⟩ . (49)
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[7] René Steijl. Quantum Algorithms for Fluid Simulations. en. Publication Title:
Advances in Quantum Communication and Information. IntechOpen, June 2019.
isbn: 978-1-78985-268-4. doi: 10.5772/intechopen.86685.

[8] Claudio Sanavio and Sauro Succi. Quantum Computing for Simulation of Fluid
Dynamics. en. IntechOpen, May 2024. isbn: 978-0-85466-574-7. doi: 10.5772/
intechopen.1005242.

[9] C Sanavio et al. “Three Carleman routes to the quantum simulation of classical
fluids”. In: Physics of Fluids 36.5 (2024).

[10] Dominic W Berry, Andrew M Childs, and Robin Kothari. “Hamiltonian simulation
with nearly optimal dependence on all parameters”. In: 2015 IEEE 56th annual
symposium on foundations of computer science. IEEE. 2015, pp. 792–809.

[11] Guang Hao Low and Isaac L Chuang. “Hamiltonian simulation by qubitization”.
In: Quantum 3 (2019), p. 163.

[12] Andrew M Childs and Nathan Wiebe. “Hamiltonian simulation using linear com-
binations of unitary operations”. In: arXiv preprint arXiv:1202.5822 (2012).

[13] Wael Itani and Sauro Succi. “Analysis of Carleman Linearization of Lattice Boltz-
mann”. In: Fluids 7.1 (2022). issn: 2311-5521. doi: 10.3390/fluids7010024.

[14] Claudio Sanavio, Enea Mauri, and Sauro Succi. “Explicit Quantum Circuit for Sim-
ulating the Advection-Diffusion-Reaction Dynamics”. In: arXiv preprint arXiv:2410.05876
(2024).

[15] Tommaso Caneva et al. “Optimal control at the quantum speed limit”. In: Physical
review letters 103.24 (2009), p. 240501.

20

https://doi.org/10.5772/intechopen.1001631
https://doi.org/10.1103/PRXQuantum.5.037001
https://doi.org/10.1016/j.future.2024.04.060
https://doi.org/10.1016/j.future.2024.04.060
https://doi.org/10.5772/intechopen.95023
https://doi.org/10.5772/intechopen.86685
https://doi.org/10.5772/intechopen.1005242
https://doi.org/10.5772/intechopen.1005242
https://doi.org/10.3390/fluids7010024


[16] Kaveh Khodjasteh, Daniel A Lidar, and Lorenza Viola. “Arbitrarily accurate dy-
namical control in open quantum systems”. In: Physical review letters 104.9 (2010),
p. 090501.

[17] Guang Hao Low and Isaac L. Chuang. “Optimal Hamiltonian Simulation by Quan-
tum Signal Processing”. en. In: Physical Review Letters 118.1 (Jan. 2017), p. 010501.
issn: 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.118.010501.

[18] András Gilyén et al. “Quantum singular value transformation and beyond: ex-
ponential improvements for quantum matrix arithmetics”. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing. STOC 2019.
New York, NY, USA: Association for Computing Machinery, 2019, pp. 193–204.
isbn: 978-1-4503-6705-9. doi: 10.1145/3313276.3316366.

[19] Xiangyu Li et al. “Potential quantum advantage for simulation of fluid dynamics”.
In: Physical Review Research 7.1 (Jan. 10, 2025). Publisher: American Physical
Society, p. 013036. doi: 10.1103/PhysRevResearch.7.013036.

[20] Dominic W Berry et al. “Simulating Hamiltonian dynamics with a truncated Tay-
lor series”. In: Physical review letters 114.9 (2015), p. 090502.

[21] Daan Camps et al. “Explicit quantum circuits for block encodings of certain sparse
matrices”. In: SIAM Journal on Matrix Analysis and Applications 45.1 (2024),
pp. 801–827.

[22] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. “The power of block-
encoded matrix powers: improved regression techniques via faster Hamiltonian
simulation”. In: arXiv preprint arXiv:1804.01973 (2018).

[23] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum counting”. In: Automata,
Languages and Programming: 25th International Colloquium, ICALP’98 Aalborg,
Denmark, July 13–17, 1998 Proceedings 25. Springer. 1998, pp. 820–831.

[24] Gilles Brassard et al. “Quantum amplitude amplification and estimation”. In: Con-
temporary Mathematics 305 (2002), pp. 53–74.

[25] Andris Ambainis. “Variable time amplitude amplification and a faster quantum al-
gorithm for solving systems of linear equations”. In: arXiv preprint arXiv:1010.4458
(2010).

[26] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In:
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
1996, pp. 212–219.

[27] Lov K Grover. “Fixed-point quantum search”. In: Physical Review Letters 95.15
(2005), p. 150501.

[28] Ari Mizel. “Critically damped quantum search”. In: Physical review letters 102.15
(2009), p. 150501.

[29] Theodore J Yoder, Guang Hao Low, and Isaac L Chuang. “Fixed-point quan-
tum search with an optimal number of queries”. In: Physical review letters 113.21
(2014), p. 210501.

21

https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1103/PhysRevResearch.7.013036


[30] Dominic W Berry et al. “Exponential improvement in precision for simulating
sparse Hamiltonians”. In: Proceedings of the forty-sixth annual ACM symposium
on Theory of computing. 2014, pp. 283–292.

[31] Bao Yan et al. “Fixed-point oblivious quantum amplitude-amplification algorithm”.
In: Scientific Reports 12.1 (2022), p. 14339.

[32] Richard Courant, Kurt Friedrichs, and Hans Lewy. “Über die partiellen Differen-
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