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Abstract

An adaptive method for designing the infill pattern of 3D printed objects
is proposed. In particular, new unit cells for metamaterials are designed in
order to match prescribed mechanical specifications. To this aim, we resort to
topology optimization at the microscale driven by an inverse homogenization
to guarantee the desired properties at the macroscale. The whole procedure
is additionally enriched with an anisotropic adaptive generation of the com-
putational mesh. The proposed algorithm is first numerically verified both in
a mono- and in a multi-objective context. Then, a mechanical validation and
3D manufacturing through fused-model-deposition are carried out to assess
the feasibility of the proposed design workflow.

Keywords: Topology optimization, inverse homogenization, anisotropic adapt-
ed grid, metamaterials, 3D printing.
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1 Motivations

Recently, the developing of innovative manufacturing technologies has involved
the industry in numerous fields (e.g., automotive, aerospace, medical industry)
[4, 23]. Among the different innovations, the Additive Manufacturing (AM) has
revolutionized the way to think the production [2]. In fact, the AM has allowed the
production of objects with complex geometries in a simple way, overcoming the
constraints imposed by traditional technologies, such as material removal, form-
ing and tooling. Moreover, the AM, thanks to the versatility of the manufacturing
system, has allowed to optimize the design on each specific case following the
mechanical and structural requirements [31]. Generally, in the innovative manu-
facturing technologies, the structural optimization is driven by trial-and-error ap-
proaches. To minimize the waste of material and time, a more rigorous approach is
represented by topology optimization methods that allow for increasingly efficient
designs. The optimization procedures aim at identifying an optimal material dis-
tribution within a given design domain, according to prescribed requirements [5].
In this study, a design method for production through additive manufacturing is
proposed involving topology optimization properly combined with inverse homog-
enization to satisfy structural requirements. In particular, different unit cells, suit-
able to be produced via AM, are designed addressing different mono- and multi-
objective structural problem requirements. The cells developed are then subject to
numerical verification, validation, and manufacturing through 3D printing.

2 A microstructural design technique

To provide the design of new microstructures, we resort to an inverse homoge-
nization approach [3, 27]. The idea is to periodically repeat in the macro design
domain a unit cell, Y , which is properly optimized in order to match a required
property at the macroscale (for instance, in a mechanical, thermal or magnetic
setting). Cell Y is designed by resorting to a topology optimization procedure
performed at the microscale. Among the several approaches available in the lit-
erature for topology optimization [26, 28], we adopt the Solid Isotropic Material
with Penalization (SIMP) method [5]. In this context, a suitable power of an aux-
iliary function ρ ∈ L∞(Y, [0,1]), modeling the relative density of the base material,
weighs the constitutive law governing the physical system. In particular, function
ρ is expected to be a binary function, taking values 0 and 1 to identify void and full
material, respectively. In practice, all the intermediate values in the interval [0,1]
are allowed. Suitable power laws, e.g., ρp, of the density function combined with
standard thresholding techniques are usually adopted to get rid of the intermediate
values of ρ.

Thus, the formulation of a generic topology optimization problem solved in Y reads
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min
ρ∈L∞(Y,[0,1])

G(ρ) :


aρ(u,w) = Fρ(w) ∀w ∈U∫

Y ρdY ≤ α|Y |
ρmin ≤ ρ≤ 1.

(1)

In this formulation, G(ρ) is the goal quantity to be optimized; the first constraint is
the weak form of the state equation, weighed by the density ρ; the first inequal-
ity imposes an upper bound on the maximum volume |Y | of the cell, α being
the allowed volume fraction; finally, the box constraint on ρ guarantees the well-
posedeness of the weak form by introducing a lower bound, ρmin, on the density.
Problem (1) exhibits some well-known issues, such as the non uniqueness of the so-
lution and the presence of intermediate densities (known as grayscale effect) [29].
Clearly, the definition of G(ρ), aρ and Fρ depends on the specific topology opti-
mization problem, namely, on the application of interest. Next section is devoted
to characterize the functional G(ρ) and the forms aρ and Fρ when dealing with the
design of microstructures. In particular, the microcell optimization is performed in
a 2D setting and then converted into 3D unit cells via extrusion (for the details, see
Section 4).

2.1 Direct and inverse homogenization approaches

For both direct and inverse homogenization, we assume as a reference physical
model the linear elasticity equation, characterized by the well-known stress-strain
(σ− ε) relation

σ =

 σ11
σ22
σ12

=

 E1111 E1122 E1112
E2211 E2222 E2212
E1211 E1222 E1212

 ε11
ε22
2ε12

= Eε, (2)

according to the Voigt notation in a 2D setting [14], with E the stiffness tensor.

Direct homogenization is a standard technique used to incorporate the contribution
at the microscale into the macroscale model by modifying the stiffness tensor. To
this aim, it is standard to adopt the two-step procedure:

i) we compute the microscopic displacement field u∗,i j ∈ U# with i j ∈ I =
{11,22,12}, by solving the elliptic equation

ai j(u∗,i j,v) =
1
|Y |

∫
Y σ(u∗,i j) : ε(v)dY

=
1
|Y |

∫
Y σ(u0,i j) : ε(v)dY = F i j(v) ∀v ∈U#,

(3)

set in the periodic function space U# = [H1
	(Y )]

2, with u0,i j, for i j ∈ I, a dis-
placement imposed to the cell Y , and with H1

	(Y ) the space of functions in
H1(Y ) satisfying periodic boundary conditions on ∂Y . In particular, we im-
pose the displacements u0,11 = [x,0]T , u0,22 = [0,y]T , u0,12 = [y,0]T , which
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correspond to the linearly independent engineering strain fields, ε0,11 = [1,0,0]T ,
ε0,22 = [0,1,0]T , and ε0,12 = [0,0,1]T , respectively;

ii) the fields u∗,i j and u0,i j define the components of the homogenized stiffness
tensor, according to the relation

EH
i jkl(u

∗,i j,u∗,kl) =
1
|Y |

∫
Y

[
σ(u0,i j)−σ(u∗,i j)

]
:
[
ε(u0,kl)−ε(u∗,kl)

]
dY, (4)

for i j,kl ∈ I.

Thus, in a homogenized context, we are led to solve the linear elasticity equation
after replacing the stress-strain relation in (2) with the new law σ = EHε, the stiff-
ness tensor EH including now also the effect of the microscale.

Direct homogenization implies that Y is known, whereas the effect of the repetition
of the unit cell has to be determined at the macroscopic scale. Vice versa, the
cell Y represents the unknown of the inverse homogenization. According to [27],
the optimal characterization of the unit cell is driven by topology optimization, so
that the actual unknown is the distribution of material ρ inside the design domain
Y . Following the SIMP approach, the constitutive law σ = Eε is changed into
σρ = ρpEε, and relations (3) and (4) are replaced by

ai j
ρ (u∗,i j,v) =

1
|Y |

∫
Y ρpσ(u∗,i j) : ε(v)dY

=
1
|Y |

∫
Y ρpσ(u0,i j) : ε(v)dY = F i j

ρ (v) ∀v ∈U#,
(5)

EH
i jkl(u

∗,i j,u∗,kl;ρ) =
1
|Y |

∫
Y

ρ
p[

σ(u0,i j)−σ(u∗,i j)
]

:
[
ε(u0,kl)− ε(u∗,kl)

]
dY, (6)

with i j,kl ∈ I, respectively. At this level, the design variable ρ is selected in V# =
H1
	(Y ) to extend the periodic conditions on u∗,i j to the density function and to

simplify the discussion below.

2.2 Topology optimization at the microscale

The generic problem (1) is now particularized to the design of a unit cell Y . This
implies to define G(ρ), aρ, and Fρ accordingly. Concerning the goal functional, we
choose

G(ρ) = Gi jkl(u∗,i j,u∗,kl;ρ) =
1
2
[EH

i jkl(u
∗,i j,u∗,kl;ρ)−EG

i jkl]
2, (7)

with EH
i jkl(u

∗,i j,u∗,kl;ρ) as in (6), and where EG
i jkl is the i jkl-th component of the

user-defined goal stiffness tensor to be reached at the macroscale. The selected
component allows us to control a specific physical quantity of interest as shown in
the numerical verification. Moreover, different components of the stiffness tensor
can be combined in the spirit of a multi-objective optimization.
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As far as the weak form constraining problem (1), it exactly coincides with the
three equations in (5).

In order to solve the minimization problem in (1), we have to compute the deriva-
tive of the goal functional with respect to the design variable ρ. For this purpose, we
resort to an adjoint-based Lagrangian formulation, by introducing the augmented
functional

L(u∗,λ,ρ) = Gi jkl(u∗,i j,u∗,kl;ρ)+ ∑
mn∈I

[amn
ρ (u∗,mn,λmn)−Fmn

ρ (λmn)],

for certain i j, kl ∈ I. The arguments u∗,λ of the augmented Lagrangian belong
to the space [U#]

3, since collecting the three components u∗,mn,λmn, with mn ∈ I,
respectively, where λ is the adjoint variable used to impose the state equations.

To localize the minimum of functional Gi jkl(u∗,i j,u∗,kl;ρ), we differentiate L with
respect to u∗,pq,λpq,ρ, respectively. The derivative with respect to u∗,pq defines the
dual problems,

∂L(u∗,λ,ρ)
∂u∗,pq (w) = [EH

i jkl(u
∗,i j,u∗,kl;ρ)−EG

i jkl]
∂EH

i jkl(u
∗,i j,u∗,kl;ρ)

∂u∗,pq (w)

+ apq
ρ (w,λpq) = 0 ∀w ∈U#,

with pq∈ I. The derivative of L with respect to λ retrieves the three state equations
in (5). Finally, differentiating L with respect to ρ, we obtain the gradient equation

∂L(u∗,λ,ρ)
∂ρ

(φ) = [EH
i jkl(u

∗,i j,u∗,kl;ρ)−EG
i jkl]

∂EH
i jkl(u

∗,i j,u∗,kl;ρ)

∂ρ
(φ)

+ ∑
mn∈I

1
|Y |

∫
Y

pρ
p−1[σ(u∗,mn)−σ(u0,mn)] : ε(λmn)φdY ∀φ ∈V#.

The derivation of the dual and of the gradient equations can be generalized in a
straightforward way when moving to a multi-objective context.

With a view to the numerical verification in the next section, the three state equa-
tions and dual problems, together with the gradient equation, have to be discretized.
For this purpose, we introduce a conforming tessellation, Th = {K}, of the unit cell
design domain consisting of triangular elements, and the associated space, X1

h (Y ),
of the affine finite elements. It is well-known that the choice of the computational
mesh plays a crucial role in the topology optimization procedure. There is a strong
dependence of the final layout on the selected grid in accordance with the non-
uniqueness of the solution to problem (1). Moreover, other issues affect the design
of the optimal structure, such as the formation of checkerboard patterns, related
to the two-field (density-displacement) formulation, the staircase effect or the ge-
ometric complexity, due to the employment of a too coarse or too fine mesh [29].
Filtering techniques and ad hoc choices for the discrete spaces represent standard
solution to these drawbacks [15]. More recently, a combination of SIMP with
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anisotropic mesh adaptation has been proposed as a possible remedy to the stair-
case effect and to the generation of complex geometries [8, 9, 10, 11, 21, 22]. We
adopt this approach, which, in addition, allows us to employ a linear discretiza-
tion for both density and displacement, choosing ρh ∈V#,h and u∗,i j

h ∈ [V#,h]
2, with

V#,h =V#∩X1
h (Y ) and with i j ∈ I.

3 Verification

Following [10], with a view to an efficient numerical implementation of the method-
ology introduced in the previous section, we enrich the inverse homogenization
procedure with an anisotropic adaptive management of the computational mesh.

3.1 The theoretical background: an anisotropic error analysis

To generate an adapted mesh following the material-void interface in the design
of the unit cell, we resort to a metric-based approach, where each element K
of the computational mesh Th is characterized by two lenghts, λi,K , and two or-
thonormal vectors, ri,K , (i = 1,2) [12]. Such quantities constitute the metric M =
{λi,K ,ri,K}K∈Th , and are strictly related to the standard invertible affine map TK :
K̂→K from the reference triangle K̂ to the generic element K, changing the circle,
C , circumscribing K̂ into the ellipse, E , circumscribing K. In particular, quanti-
ties λi,K (with λ1,K ≥ λ2,K > 0) measure the lengths of the semiaxes of E , while
vectors ri,K provide the corresponding directions. As an important quantifier of
the anisotropy of the element K, we adopt the aspect ratio sK = λ1,K/λ2,K ≥ 1, the
isotropic configuration being identified by the unitary value.

Metric M is predicted starting from a so-called a posteriori error estimator, which
drives the generation of the adapted mesh via an iterative procedure. At each iter-
ation k:

i) we compute the density ρk
h, solution to the inverse homogenization problem

in Section 2.2, on the mesh T k
h ;

ii) we evaluate an a posteriori error estimator associated with ρk
h;

iii) we construct the corresponding metric M k;

iv) we generate the adapted mesh T k+1
h induced by the metric M k.

We comment on ii)-iv), separately, and we drop the iteration index k to simplify
the notation.

The a posteriori error estimator adopted at item ii) coincides with the anisotropic
recovery-based estimator proposed in [19], namely

η
2 = ∑

K∈Th

η
2
K , with η

2
K =

1
λ1,Kλ2,K

2

∑
i=1

λ
2
i,K(r

T
i,KG∆K (E∇)ri,K), (8)
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where E∇ denotes the so-called recovered error, [GK(z)]st = ∑
T∈∆K

∫
T

zszt is a sym-

metric positive semidefinite matrix, with s, t = 1,2 and (z1,z2) ∈ [L2(Ω)]2, and ∆K

is the patch of elements associated with K. According to [33, 34], E∇ coincides
with the difference between the discrete gradient of the density, ∇ρh, and a corre-
sponding suitable reconstruction, P(∇ρh). In the literature, several examples for
the recovery operator P are available (see, e.g., [16, 19, 25, 33, 34]), which con-
sists of a projection or an average of the discrete gradient across a suitable patch of
elements surrounding K. We adopt the area-weighed average over the patch ∆K ,

P(∇ρh)(x) = |∆K |−1
∑

T∈∆K

|T |∇ρh
∣∣
T (x) for any x ∈ K, (9)

|ω| denoting the measure of the generic domain ω ⊂ R2. Estimator (8) has been
already employed for several engineering applications with excellent results [6, 7,
20, 22, 24].

Estimator η in (8) is successfully exploited to predict the metric M at item iii).
The criteria driving the definition of M are the enforcement of a certain accuracy
TOL on ρh, the minimization of the mesh cardinality, and the error equidistribution
throughout the mesh. These requirements lead us to solve a constrained minimiza-
tion problem on each element K, which is characterized by an explicit solution. In
particular, first, the local estimator in (8) is scaled with respect to the area of ∆K ,
so that

η
2
K = λ1,Kλ2,K |∆K̂ |

[
sK
(
rT

1,KĜ∆K (E∇)r1,K
)
+ s−1

K

(
rT

2,KĜ∆K (E∇)r2,K
)]
, (10)

where Ĝ∆K (E∇) is the scaled matrix G∆K (E∇)/|∆K |, |∆K |= λ1,Kλ2,K |∆K̂ |, and ∆K̂ =
T−1

K (∆K) is the pull-back of the patch ∆K . Since, for the error equidistribution, η2
K

is equal to a constant, minimizing the mesh cardinality turns out to be equivalent
to maximize the area λ1,Kλ2,K |∆K̂ | in (10), i.e., to minimize the quantity

J (sK ,{ri,K}i=1,2) = sK
(
rT

1,KĜ∆K (E∇)r1,K
)
+ s−1

K

(
rT

2,KĜ∆K (E∇)r2,K
)
.

Thus, we are led to solve the local constrainedthat we are led to solve reads

min
sK ,ri,K

J (sK ,{ri,K}i=1,2) :

{
ri,K · r j,K = δi j

sK ≥ 1,
(11)

where δi j is the Kronecher symbol. Proposition 26 in [18] provides the explicit
solution to problem (11), namely,

sopt
K =

√
γ1,K/γ2,K , ropt

1,K = g2,K , ropt
2,K = g1,K ,

with {γi,K ,gi,K}i=1,2 the eigen-pairs associated with matrix Ĝ∆K (E∇), with γ1,K ≥
γ2,K > 0 and {gi,K}i=1,2 orthonormal vectors. Directions ropt

i,K already represent
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Figure 1: Optimized cells: density distribution (top) and associated anisotropic
grid (bottom) for the mono- (left) and multi-objective (δ = 0.5 center; δ = 0.8
right) optimization.

two ingredients of the optical metric M that we are searching, whereas the length
information, λ

opt
i,K , is still gathered into the single quantity sopt

K . To derive lengths
λ

opt
1,K , λ

opt
2,K separately, we explicitly impose the error equidistribution, i.e.,

λ
opt
1,Kλ

opt
2,K |∆K̂ |

[
sopt

K

(
(ropt

1,K)
T Ĝ∆K (E∇)r

opt
1,K

)
+(sopt

K )−1((ropt
2,K)

T Ĝ∆K (E∇)r
opt
2,K

)]
=

TOL2

#Th
,

which yields

λ
opt
1,K = γ

−1/2
2,K

(
TOL2

2#Th|∆K̂ |

)1/2

, λ
opt
2,K = γ

−1/2
1,K

(
TOL2

2#Th|∆K̂ |

)1/2

.

Thus, the desired metric is identified by M = {λopt
i,K ,r

opt
i,K}K∈Th .

Finally, the new adapted grid is constructed providing the metric M as an input to
a metric-based mesh generator. We remark that mesh software usually associate
the metric with the mesh vertices, so that a projection of the elementwise quantity
M onto the mesh vertices could be demanded.

3.2 Numerical assessment

We apply the metric-based adaptive procedure in the previous section to the design
of different unit cells. In particular, we perform a mono- and a multi-objective
optimization. To carry out the verification, we employ the microSIMPATY algo-
rithm in [10], which alternates a topology optimization step with a mesh adaptation
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phase, until the stagnation of the mesh cardinality is reached or a maximum num-
ber, kmax, of (global) iterations is met. Among the input parameters expected by
the procedure, we select the volume fraction α, the tolerance, CTOL, to control the
mesh stagnation, the tolerance, TOL, set by the user to drive the adaptive procedure,
and the maximum number, OptMax, of iterations for the topology optimization.
To perform the topology optimization, we resort to the Interior Point OPTimizer
(IPOPT) package [32], while we adopt FreeFEM as solver, since particularly suited
to manage an anisotropic adaptation of the mesh, being endowed with the metric-
based mesh generator BAMG [13]. Finally, the power law used to penalize the
intermediate densities according to the SIMP approach is set to 4 for all the numer-
ical simulations below.

More technical details about the mechanical properties of the designed unit cells
will be provided in the next section.

Concerning the mono-objective cell design, we identify the goal functional G(ρ)
with G1212(u∗,12,u∗,12;ρ) according to definition (7). This choice corresponds to
optimize the topology of Y with respect to the shear stress. As reference value
EG

1212, we choose 0.6 [Pa]. The input parameters to microSIMPATY are set to
α = 0.5, kmax = 200, CTOL = 1e-4, TOL = 1e-5, OptMax = 35 for the first three
iterations and OptMax= 10 for the remaining ones, while a random initial guess for
the density is selected and then discretized on a uniform structured mesh consisting
of 1800 elements.
The design algorithm breaks after 41 iterations with the output layout in Figure 1
(top-left), whereas the corresponding adapted mesh, constituted by 1572 triangles,
is shown in the bottom-left panel. The mesh elements are stretched to follow the
void-material interface, with a maximum aspect ratio smax

K = 29.13.

As far as the multi-objective design optimization is concerned, we control a combi-
nation of the shear stress and of the component E1111 of the stiffness tensor. Thus,
the goal functional G(ρ) becomes

δG1111(u∗,11,u∗,11;ρ)+(1−δ)G1212(u∗,12,u∗,12;ρ),

with 0 ≤ δ ≤ 1 the parameter tuning the combination of the two quantities of in-
terest. The reference values for the two selected components of the stiffness tensor
are EG

1111 = 0.03 [Pa], and EG
1212 = 0.2 [Pa]. MicroSIMPATY algorithm is run with

the same input parameters as in the previous check, and choosing δ = 0.5. The pro-
cedure stops after 93 iterations by providing the unit cell in Figure 1 (top-center)
and the corresponding final adapted mesh in Figure 1 (bottom-center), constisting
of 1644 elements. It turns out that the control of the additional component E1111
modifies the layout associated with the shear stress only. Moreover, the anisotropic
features of the mesh are more evident as confirmed by the value of the maximum
aspect ratio smax

K = 61.75.

Finally, we investigate how the choice of the tuning parameter δ affects the design
of the unit cell. To this aim, we choose δ = 0.8, while preserving all the other input
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Data
Imposed pressure p 250 KPa
Geometry side length d 5.5 cm
TPE Young’s modulus 45 MPa
TPE Poisson’s ratio 0.49

Figure 2: Generic graphical representation of the mono-objective optimization
(left); specific data for the considered validation (right).

values to microSIMPATY. Now, convergence is reached after 25 iterations and the
topology of Y is modified as shown in Figure 1 (top-right). In contrast to the two
previous cells, the current one seems to promote the NE-SW direction only. The
associated grid in Figure 1 (bottom-right) is characterized by 1340 triangles with
intermediate anisotropic features compared with cells in the left and center panels,
the maximum aspect ratio being smax

K = 52.86.

4 Validation

In order to validate the results of the optimization process, the three cells in Figure
1 are compared in terms of mechanical behaviour. Moreover, to show the usabil-
ity for AM, the optimized cells are manufactured via fused deposition modelling
(FDM) through 3D printer.

4.1 Mechanical validation

Each 2D cell is regarded as a continuum square body with a side length d. The
cell is composed of Thermoplastic Polyether-polyurethane Elastomer (TPE), a 3D
printable filament chosen for the versatility of use. The mechanical behaviour of
TPE material is assumed linearly elastic, homogeneous and isotropic. The equi-
librium problem, related to optimized cells subject to load condition, is solved ex-
ploiting the finite-element capabilities of COMSOL Multiphysics [1]. Addressing
a compression test to validate the mechanical behaviour of the optimized struc-
tures, the cells are constrained on the bottom boundary and a constant pressure p
is applied on the top boundary. A schematic representation for the mono-objective
optimization is shown in Figure 2, together with the data used in the validation.
The same analysis is carried out on the cells associated with the multi-objective
optimization. For simplicity, we will refer to the three cells in Figure 1 (from left
to right) as to cell A, B and C, respectively.

The performed experiment focuses on the mechanical response of the optimized
cells. Figure 3 compares the deformation of cells A, B, and C under the imposed
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Figure 3: Spatial distribution of the displacement magnitude for cells A (left), B
(center), and C (right).

Figure 4: Spatial distribution of the von Mises stress for cells A (left), B (center),
and C (right).

load, in terms of spatial distribution of the displacement magnitude. It is evident
that the same volume fraction leads to a very different mechanical behaviour when
controlling diverse goal quantities. Cell B exhibits the lowest displacement mag-
nitude, whereas cell C presents a not symmetric deformation. As far as the multi-
objective optimization is concerned, we observe that cell C shows a 40% increment
in the displacement magnitude peak with respect to cell B.

To characterize the loading-transfer mechanism within the structure, we investigate
also the mechanical behaviour of the three cells in terms of the von Mises stress
distribution under the imposed pressure (see Figure 4). The non-symmetric re-
sponse of cell C is evident also for the von Mises stress, which reaches the highest
values along the vertical boundary of the structure and in correspondence with the
internal struts, when compared with cells A and B.

4.2 Manufacturing validation

To validate the feasibility of the designed 2D cells, an axial extrusion was con-
ducted to obtain a 3D model. In detail, we manufactured cells B and C. We used
the dedicated software of slicing, Simplify 3D, to generate a piece of code for
the 3D printer. Different slicing parameters and profiles were tested to obtain the
optimal result in terms of reliability and quality of production. The flexible TPE
filament Filaflex, with a shore A equal to 82 (Filaflex 82A), has been selected
to manufacture the prototypes (see Figure 5). This material has optimal resis-
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Figure 5: 3D printed prototypes associated with cells B (left) and C (right).

tance to elongation and abrasion as well as high tensile strength. These properties
make Filaflex 82A a perfect material for the production of flexible and resistant
parts. After several tests, the main printing parameters were set as following: print
speed 2200 mm/min, extruder temperature 235°C, cooling 60%, no-retraction,
top/bottom/outline perimeters equal to 3. Each model took approximately 4 hours
of printing. The produced 3D samples prove the manufacturability of the cells
showing that AM technologies can fill the gap between the numerical optimization
method and application.

5 Conclusions

In this work, a structural design technique for additive manufacturing technolo-
gies, combining anisotropic mesh adaptation, topology optimization and inverse
homogenization, is proposed. The developed methodology has been tested to ac-
complish both mono- and multi-objective mechanical requirements. The optimized
cells have been computationally validated and experimentally verified. Moreover,
the effective applicability of the proposed technique in AM has been checked by
manufacturing corresponding prototypes via 3D printing.
Future works will address specific applications in the field of biomedical engineer-
ing where AM technologies can exploit the potential for patient-specific device
production as just demonstrated in the prototyping of innovative custom insoles
[17, 30]. We also highlight that the proposed algorithm is completely general and
can be successfully exploited in different applicative contexts.
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