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Abstract

In this work, we develop Bayes rules for several families of loss func-
tions for hospital report cards under a Bayesian semiparametric hierarchical
model. Moreover, we present some robustness analysis with respect to the
choice of the loss function, focusing on the number of hospitals our proce-
dure identifies as “unacceptably performing”. The analysis is carried out on
a case study dataset arising from MOMI2 (Month MOnitoring Myocardial
Infarction in MIlan) survey on patients admitted with ST-Elevation My-
ocardial Infarction to the hospitals of Milan Cardiological Network. The
major aim of this work is the ranking of the health care providers perfor-
mances, together with the assessment of the role of patients’ and providers’
characteristics on survival outcome.
Keywords: Semiparametric Bayesian hierarchical models, Provider profil-
ing, Decision analysis, Cardiovascular health care research.
AMS Subject Classification: 62F15, 62P10, 62J12

1 Introduction

Performance indicators have recently received increasing attention; they
are mainly used with the aim of assessing quality in health care research
[1, 2, 7, 13, 14, 15, 16]. In this work, we suitably model the survival outcome
of patients affected by a specific disease in different clinical structures; the
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aim is to point out similar behaviours among groups of hospitals and then
classify them according to some acceptability criteria. In general, provider
profiling of health care structures is obtained producing report cards com-
paring their global outcomes or performances of their doctors. These cards
have mainly two goals:

• to provide information that can help individual consumers (i.e. pa-
tients) making a decision,

• to identify hospitals that require investments in quality improvement
initiatives.

Here we are interested not only in the point estimation of the mortality
rate, but also to decide whether investing in quality improvement initiatives
for each hospital with “unacceptable performances”. The paper presents
Bayes rules under several families of loss functions for hospital report cards.
In particular, we adopt a Bayesian semiparametric hierarchical model in
this case, since it is known that they are more flexible than “traditional”
Bayesian parametric models. Moreover, we did some robustness analysis
with respect to the choice of the loss function, focusing on the number of
hospitals our procedure identifies as “unacceptably performing”.

Our aim is to profile health care providers in our regional district, i.e.
Regione Lombardia. Indeed, the health governance of Regione Lombardia
is very sensitive to cardiovascular issues, as proved by the huge amount of
social and scientific projects concerning these syndromes, which were pro-
moted and developed during the last years. Details on some of the most
important clinical and scientific local projects can be found in [3]. The data
we have analyzed in our application come from a survey called MOMI2,
which is a retrospective longitudinal clinical survey on a particular type
of infarction called STEMI (STsegment Elevation Myocardial Infarction).
STEMI has very high incidence all over the world and it causes approxi-
mately 700 events each month only in our district. These cases are mainly
treated through the surgical practice of primary angioplasty (a collapsed
balloon is inserted through a catheter in the obstructed vessel, and then in-
flated, so that the blood flow is restored). It is well known [5, 6] that within
this pathology, the more prompt the intervention is, the more effective the
therapy is; for this reason the main process indicators used to evaluate
hospitals performances are in-hospital treatment times. The MOMI2 sur-
vey consists of six time periods data collection in the hospitals belonging
to the cardiological network of the milanese urban area. It contains 841
statistical units, and, for each patient, personal data, mode of admission,
symptoms and process indicators, reperfusion therapy and outcomes have
been collected. After each collection, all the hospital performances (in
terms of patients survivals) were evaluated; moreover, a feedback was given
to providers (especially those with “unacceptable performances”) in order
to let them improve their performances.

The article is organized as follows: in Section 2 we present the statistical
method used to support decisions in this health care context, while Section 3
shows how the proposed model and method have been applied to data
coming from MOMI2 survey. Finally conclusions and open problems are
discussed in Section 4.
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2 Statistical support to decision-making in

health-care policy

Even in a perfect risk-adjustment framework, random errors will be present.
Therefore, when classifying hospital performances as “acceptable” or not,
some mistakes could occur, so that some hospitals could be misclassified.
Anyway, different players in the health care context would pay different
costs on misclassification errors. By False Positive we mean the hospital
that truly had acceptable performances but was classified as “unacceptably
performing”, and by False Negative the hospital that truly had unaccept-
able performances but was classified as “acceptably performing”. Then a
health care consumer would be presumably willing to pay a higher charge
for decisions that minimize false negatives, whereas hospitals might pay a
higher cost for information that minimizes false positives. On the other
hand, the same argument could be used to target hospitals for quality
improvement: false positives would yield unneeded investments in qual-
ity improvement, but false negatives would lead to loose opportunities in
improving the hospital quality. According to its plans, any health care
government could be interested in minimizing false positives and/or false
negatives.

In order to provide support to decision-making in this context, we carry
out the statistical analysis in the following way: firstly we estimate the
in-hospital survival rates after fitting a Bayesian semiparametric general-
ized linear mixed-effects model, in particular modelling the random effect
parameters via a Dirichlet process; then we develop Bayes decision rules
in order to minimize the expected loss arising from misclassification errors,
comparing four different loss functions for hospital report cards.

We fit a Bayesian generalized mixed-effects model for binary data. For
unit (patient) i = 1, . . . , nj , in group (hospital) j = 1, . . . , J , let Yij be a
Bernoulli random variable with mean pij , i.e.

Yij |pij
ind
∼ Be(pij).

The pijs are modelled through a logit regression of the form

logit(pij) = log
pij

1 − pij

= γ0 +

p∑
h=1

γhxijh +

J∑
l=1

blzjl (1)

where zil = 1 if i = l and 0 otherwise. In this model, γ = (γ0, . . . , γp) rep-
resents the (p+1)-dimensional vector of the fixed effects, xij is the vector of
patient covariates and b = (b1, . . . , bJ) is the vector of the additive random-
effects parameters of the grouping factor. According to [12], we assume a
nonparametric prior for b1, . . . , bJ , namely the bjs will be i.i.d. according
a Dirichlet process (see [4]), to include robustness to miss-specification of
the prior at this stage, since it is known that the regression parameters can
be sensitive to the standard assumption of normality of the random effects;
the prior for γ is parametric. Prior details will be given in Section 3. Model
(1) is a generalized linear mixed model with p+1 regression coefficients and
one random effect. In [9] the same model was fitted on a different dataset
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to classify hospitals taking advantage of the in-built clustering property of
the Dirichlet process prior. Here we use Bayesian estimates to address a
new decision problem concerning hospitals’ performances.

Bayesian inferences are based on the posterior distribution, i.e. the
conditional distribution of the parameters vector, given the data. Once
the posterior distribution has been computed, suitable loss functions can
be defined in order to a posteriori weigh the decision of wrongly classify-
ing the hospital as having acceptable or unacceptable performances. The
random intercepts of model (1), i.e. γ0 + b1, γ0 + b2, . . . , γ0 + bJ represent
the hospital performances quantifying the contribution to the model after
patients’ covariates adjustment. Let us denote by βj the sum of γ0 and bj .
The class of loss functions we are going to assume is then

L(βj , d) = cI · f1(βj) · d · I(βj > βt) + cII · f2(βj) · (1− d) · I(βj < βt), (2)

where d is the decision to take (d = 1 means that the hospital has “unac-
ceptable performances”, d = 0 stand for ”acceptable performances”), cI is
the weight assigned to the cost f1(βj), occurring for a false positive, cII

is the weight assigned to cost f2(βj), occurring for a false negative and
βt is defined as log(pt/(1 − pt)), being pt a reference value for survival
probabilities.

Without loss of generality, we can assume a proportional penalization,
i.e. f2(βj) = k · f1(βj), taking k as the ratio cII/cI . In this sense, the
parameter k quantifies our beliefs on cost, being greater than 1 if we credit
that accepting a false negative should cost more than rejecting a true neg-
ative and less than 1 otherwise. An acceptable performance is then defined
comparing the posterior expected losses associated with the decision that
the hospital had “acceptable performances”

R(y, d = 0) = Eπ (L(βj , d = 0)|y) =

∫
f2(βj)I(βj < βt)Π(βj |y)dβj

and the decision that the hospital had “unacceptable performances”

R(y, d = 1) = Eπ (L(βj , d = 1)|y) =

∫
f1(βj)I(βj > βt)Π(βj |y)dβj .

In short, we classify an hospital as being “acceptable” (or with “accept-
able performances”) if the risk associated with the decision d = 0 is less than
the risk associated with the decision d = 1, i.e. if R(y, d = 0) < R(y, d = 1).

Within this setting, four different loss functions (2) will be considered
in the next section, to address the decision problem, namely

0/1 Loss :

L(βj , d) = d · I(βj > βt) + k · (1 − d) · I(βj < βt),

Absolute Loss :

L(βj , d) = |βj − βt| · d · I(βj > βt) + k · |βj − βt| · (1 − d) · I(βj < βt),

Squared Loss :

L(βj , d) = (βj − βt)
2 · d · I(βj > βt) + k · (βj − βt)

2 · (1 − d) · I(βj < βt),
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LINEX Loss :

L(βj , d) = l(βj − βt) · d · I(βj > βt) + k · l(βj − βt) · (1 − d) · I(βj < βt).

For instance, this means that, to recover the 0/1 loss function above, the
functions fi(βj), i = 1, 2 in (2) are both constant, fi(βj) = |βj−βt|, i = 1, 2
for the Absolute Loss case, fi(βj) = (βj−βt)

2, i = 1, 2 for the Squared Loss
case and fi(βj) = l(βj −βt) = exp {a · (βj − βt)}−a · (βj −βt)−1, i = 1, 2
to obtain the LINEX Loss function. Note that all the loss functions but
the last one are symmetric, and the parameter k is used to introduce an
asymmetry in weighting the misclassification error costs.

3 Application to MOMI2 data

In this section we apply the model and the method proposed in Section 2
to 536 patients of MOMI2 data underwent to PTCA treatment. For this
sample, 17 hospitals of admission are involved, and a in-hospital survival
rate of 95% is observed. Among all possible covariates (mode of admission,
clinical appearance, demographic features, time process indicators, hospital
organization etc.) available in the survey, only age and killip class (which
quantifies the severity of infarction on a scale ranging from 1 to 4) have been
selected as being statistically significant. The killip class is binary here, i.e.
the killip covariate is equal to 1 for the two more severe classes and equal
to 0 otherwise. Moreover we considered the total ischemic time (namely
Onset to Balloon time or briefly OB) in the logarithmic scale too, because
of clinical best practice and know-how. The choice of the covariates and
the link function was suggested in [10], according to frequentist selection
procedures and clinical best-practice, and confirmed in [8] using Bayesian
tools.
Summing up, the model (1) we considered for our dataset is

logit(E[Yij |bj ]) = logit(pij) = γ0 + γ1 ·agei + γ2 · log(OB)i + γ3 · killipi + bj

(3)
for patient i (i = 1, . . . , 536) in hospital j (j = 1, . . . , 17). As far as the
prior is concerned, we assume

γ⊥b γ ∼ N4(0, 100 · I4)

b1, . . . bJ |G
iid
∼ G G|α, G0 ∼ Dir(αG0) (4)

G0|σ ∼ N (0, σ2) σ ∼ Unif(0, 10) α ∼ Unif(0, 30).

See details in [9]. The estimated posterior expected number of distinct val-
ues among the bjs, computed on 5000 iterations of Markov chain, is close
to 7. In Table 1 the performances of different loss functions for different
values of k and different threshold βt are reported. The different values
of pt we considered (that determine the βt values), were fixed in a range
of values close to the empirical survival probability, in order to stress the
resolution power of different loss in detecting unacceptable performances.
Of course, when increasing the threshold pt (and therefore βt), more hospi-
tals will be labelled as unacceptable. The tuning depend on the sensitivity
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Table 1: Providers labelled as “unacceptable”, under (3)-(4), for different loss
functions and different values of the threshold.

k = 0.5 k = 1 k = 2
Loss pt = 0.96 pt = 0.96 pt = 0.96

βt = 3.178 βt = 3.178 βt = 3.178

0/1 None None None

Absolute None None None

Squared None None 9

LINEX None None 9

k = 0.5 k = 1 k = 2
Loss pt = 0.97 pt = 0.97 pt = 0.97

βt = 3.476 βt = 3.476 βt = 3.476

0/1 None 9 3,5,9,10

Absolute None 9 3,5,9,10

Squared 9 9 3,5,9,10

LINEX 9 3,5,9,10 3,5,9,10

k = 0.5 k = 1 k = 2
Loss pt = 0.98 pt = 0.98 pt = 0.98

βt = 3.892 βt = 3.892 βt = 3.892

0/1 3,5,9,10 All All

Absolute 2,3,4,5,9,10, 1,2,3,4,5,6,7,8,9,10,All
13,15 11,13,14,15,16,17

Squared 2,3,4,5,9,10, 1,2,3,4,5,6,7,8,9,All
13,15 10,13,14,15,17

LINEX 2,3,4,5,6,7,8,9,All All
10,13,15,17
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required by the analysis. The parameter a of the LINEX loss is set to be
equal to −1. Some comments are due, observing results of the Table 1.
Firstly, as mentioned before, k describes the different approach to evalu-
ating misclassification errors. For example, people in charge with health
care government might be more interest in penalizing useless investments
in quality improvements, choosing a value less than 1 for k. On the other
hand, patients admitted to hospitals are more interested in minimizing the
risk of wrongly declaring as “acceptably performing” providers that truly
behave “worse” than the gold standards; therefore, they would probably
choose a value greater than 1 for k. Moreover, when fixing the loss func-
tions among the four proposed here, and k equal to 0.5, 1 or 2, as the
threshold βt increases, we obtain the same “implicit ranking” of providers:

9, 3, 5, 10, 2, 4, 13, 15, 6, 7, 8, 17, 1, 14, 16

(i.e. hospital 9 was classified as “unacceptable” even with small values of
βt, then, when increasing βt, hospital 3 was classified as “unacceptable”,
etc.). This result is in agreement with the provider profiling pointed out
also in [7]. On the other hand, Figure 1 shows the number of hospitals
labelled as “unacceptable” as k increases, for a fixed value of the threshold
βt, under the Squared and the LINEX Loss functions.
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Figure 1: Number of hospitals labelled as “unacceptable” as a function of k, under the
Squared Loss function (solid black) and the LINEX Loss function (dotted blue). The
threshold parameter βt is 3.6635.

Of course, the choice of the most suitable loss function is problem-driven:
in our case, it seems reasonable to consider an asymmetric loss in order to
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penalize departures from threshold in different ways. For this reason we
suggest the LINEX Loss with k 6= 1.

4 Conclusions and further developments

In this work we considered data coming from a retrospective survey on
STEMI to show an example of Operational Research applied to Regione
Lombardia health care policy. Using a logit model, we represented the sur-
vival outcome by patient’s covariates and process indicators, comparing re-
sults of different loss functions on decisions about provider’s performances.
In doing so, information coming from clinical registries was used to make
the hospital network more effective, improving the overall health-care pro-
cess and pointing out groups of hospitals with similar behaviour, as it is
required by the health-care decision makers of Regione Lombardia.

Actually, we are working on the extension of this paradigm to the
whole Regional district, having designed and activated a new registry, called
STEMI Archive (see [11]), for all patients with STEMI diagnosis admitted
to any hospital in Regione Lombardia. The analysis applied here to this
sort of decision problems is relatively simple and effective. We believe that
this approach could be considered by people in charge of the health-care
governance in order to support decision-making in the clinical context.

References

[1] Austin, P.C.: Bayes rules for optimally using Bayesian hierarchical
regression models in provider profiling to identify high-mortality hos-
pitals. BMC Medical Research Methodology, 8–30 (2008)

[2] Austin, P.C., Lawrence, J.B.: Optimal Bayesian probability levels for
hospital report cards. Health Service and Outcomes Research Method
8, 80–97 (2008)

[3] Barbieri, P., Grieco, N., Ieva, F., Paganoni, A.M., Secchi, P.:
Exploitation, integration and statistical analysis of Public Health
Database and STEMI archive in Lombardia Region. In: Complex
data modeling and computationally intensive statistical methods, pp.
41-56. Springer, Contribution to Statistics (2010)

[4] Ferguson, T.S.: A Bayesian analysis of some nonparametric problems.
Annals of Statistics 1, 209–230 (1973)

[5] Gersh, B.J., Stone, G.W., White, H.D., Holmes, D.R.: Pharmacolog-
ical Facilitation of Primary Percutaneous Coronary Intervention for
Acute Myocardial Infarction: Is the Slope of the Curve the Shape of
the Future? Journal of American Medical Association 293, 8, 979–986
(2005).

[6] Giugliano, R.P., Braunwald, E.: Selecting the Best Reperfusion Strat-
egy in ST-Elevation Myocardial Infarction Its All a Matter of Time.
Circulation. 108, 2828–2830 (2003)

8



[7] Grieco, N., Ieva, F., Paganoni, A.M.: Performance assessment using
mixed effects models: a case study on coronary patient care, IMA
Journal of Management Mathematics, In press (2011)

[8] Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F.: A Bayesian
random-effects model for survival probabilities after acute myocardial
infarction. Chilean Journal of Statistics, Accepted (2012)

[9] Guglielmi, A., Ieva, F., Paganoni, A.M., Ruggeri, F.: Process indi-
cators and outcome measures in the treatment of Acute Myocardial
Infarction patients. In: Faltin, F., Kenett, R. and Ruggeri, F. (eds.)
Statistical Methods in Healthcare. Wiley (2012)

[10] Ieva, F., Paganoni, A.M.: Multilevel models for clinical registers con-
cerning STEMI patients in a complex urban reality: a statistical anal-
ysis of MOMI2 survey. Communications in Applied and Industrial
Mathematics 1, 1, 128–147 (2010)
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