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Abstract

The spreading of misfolded proteins is a known hallmark in some neurodegenerative diseases, known
as proteinopathies. A significant example is the tau protein, associated with many pathologies, such as
Alzheimer’s. In this work, we discuss and compare two different models for the mathematical modelling
of protein misfolding, namely the heterodimer model and the Fisher-Kolmogorov model, as well as their
numerical discretizations. We introduce a discontinuous Galerkin method on polygonal and polyhedral
grids for space discretization to accurately simulate the wavefronts typically observed in the prionic
spreading. Starting from the semidiscrete formulations, we use a Crank-Nicolson scheme to advance in
time. Finally, we simulate the spreading of the misfolded tau protein in a two-dimensional brain slice
in the sagittal plane with a polygonal agglomerated grid. The simulation is performed using both the
presented models, and we compare the results and the differences deriving from the modelling choices.

1 Introduction

Neurodegenerative diseases affect millions of people worldwide, having a major impact on global health.
Many pathologies, known as proteinopathies (e.g. Alzheimer’s and Parkinson’s diseases), have a progression
which is closely linked to the aggregation of specific toxic proteins, commonly referred to as prions [1].
In those pathologies, an alteration in the protein’s structure results in the corruption of its characteristic
and functional properties, which are typically connected to resistance to the clearance mechanisms and the
tendency to develop agglomerates, causing neuronal death [2]. It is well accepted in literature the existence
of a direct correlation between the chemical microscopic reactions of prion-like proteins and the pathological
advancement of dementia. However, these phenomena span over decades with a substantial delay between the
protein accumulation and the clinical symptoms insurgence, making the clinical observations very complex.

An important subclass of proteinopathies is the so-called tauopathies, which are associated with the
misfolding and both neuronal and glial accumulation of misfolded tau protein. This microtubule protein
is of primary importance in the stabilization of the neuronal cytoskeleton [3]. Pathologic tauopathies may
present with diverse clinical phenotypes. These ones differentiate based on the primary site of involvement,
spread and distribution. The principal pathology associated with the misfolding of tau protein is Alzheimer’s
disease [4]. However, due to the existence of many different pathologies linked to this prionic protein, there is
intense research on the construction of significant biomarkers both from the analysis of biofluid (cerebrospinal
fluid and blood) and the study of different types of medical images [5]. Moreover, constructing sophisticated
mathematical models for the evolution of the physical and chemical processes associated with tau protein
could provide valuable insights into the disease progression [6].

In this work, we compare two mathematical models of decreasing mathematical complexity to describe
the phenomenon: the heterodimer model and the Fisher-Kolmogorov (FK) model. The heterodimer model
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[7] aims to describe the microscopic mechanisms of prion chemical reactions while capturing the broader
macroscopic propagation phenomenon. This description is possible due to the separate modelling of healthy
and misfolded protein configurations. The formulation includes terms representing distinct molecular kinetic
processes (production, destruction, and conversion) explicitly, making possible the development of scenario
analyses [8]. The FK model [9, 10] is a nonlinear partial differential equation commonly used in the math-
ematical modelling of biological systems. In particular, in this context, it provides a simplified description
that can be obtained from the first one under the assumption of constant healthy protein concentration
[11]. Indeed, the latter model is more useful whenever we do not need to analyse the dynamics of healthy
protein concentration because it is almost constant. The variable of that model is a relative concentration of
misfolded proteins over a maximum value that is computable from the theoretical results of the continuum
heterodimer model [11].

Concerning the numerical approximation of these two models for the description of neurodegenerative dis-
ease progression, in literature, we find many different methods, such as finite element methods [8] or reduced
order network diffusion models [12, 13]. In this work, we discuss some recently proposed numerical schemes
that have shown to possess all the distinguishing features to make them suited for this problem. We consider
discontinuous Galerkin formulation on polygonal/polyhedral grids (PolyDG) for the space discretization [14],
coupled with a Crank-Nicolson time discretization scheme, with semi-implicit treatment of the nonlinear
term [15, 16]. The latter approach has many advantages compared to the others. First, it allows the use of
mesh composed of elements of arbitrary shape, which is particularly useful in brain geometries, where ag-
glomeration techniques allow a detailed description of the complex domain boundaries with a relatively small
number of mesh elements. Moreover, it supports high-order approximations, which are optimal for reproduc-
ing traveling-wave solutions. Finally, the use of PolyDG methods can describe correctly the heterogeneous
physical properties of the domain, which is naturally subdivided into white and grey matter.

This paper aims to compare the application of the two mathematical models on the same mesh and
with comparable physical parameters for the first time. Moreover, we discuss the differences caused by the
modelling choices and the associated computational costs. The analysis confirms that we cannot substitute
in all cases the heterodimer description with a simplified FK one. Finally, for the first time, a detailed 2D
simulation of the heterodimer model is made using also the heterogeneous properties of the brain matter.

The paper is organized as follows. Section 2 presents both the heterodimer and the FK models in
their continuous strong formulation, and then Section 3 is dedicated to presenting the PolyDG semi-discrete
formulation. In Section 4 we present the fully-discrete formulation of the problems. Finally, in Section 5,
we simulate the spreading of tau protein within a two-dimensional brain section by comparing the use of the
two methods. Finally, in Section 6, we draw some conclusions and discuss future developments.

2 Mathematical models: heterodimer and Fisher-Kolmogorov equa-
tions

In this section, we briefly introduce the mathematical models to describe the production, misfolding, clearance
and diffusion processes of prionic proteins. For a final time T > 0, the problem is dependent on time t ∈ (0, T ]
and space x ∈ Ω ⊂ Rd (d = 2, 3). Here Ω is an open, bounded domain of Rd. We denote by (·, ·)Ω the scalar
product in L2(Ω), and by || · ||Ω its induced norm.

2.1 The heterodimer model

The first model we introduce is the heterodimer model, whose mathematical formulation employed to address
the kinetics of prion pathogenesis incorporates prion conversion dynamics both considering monomeric and
polymeric seeding hypotheses [11]. The equations govern the dynamics of the overall quantity of healthy
p = p(x, t) and misfolded q = q(x, t) proteins. Indeed, the system of equations reads:

∂p

∂t
= ∇ · (D∇p)− k1 p− k12 p q + k0 in Ω× (0, T ],

∂q

∂t
= ∇ · (D∇q)− k̃1 q + k12 q p in Ω× (0, T ],

(D∇p) · n = 0, (D∇q) · n = 0 on ∂Ω× (0, T ],

p(x, 0) = p0(x), q(x, 0) = q0(x) in Ω.

(1)
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In Equation 1, we assume that the brain generates only healthy protein at a generation rate governed by
the parameter k0 = k0(x) > 0. Healthy proteins are affected by a biological destruction process at a rate
k1 = k1(x) > 0, whereas they are converted into prions at a rate k12 = k12(x) > 0. In contrast, misfolded
proteins undergo a clearance mechanism characterized by a rate k̃1 = k̃1(x) > 0. Specific relations between
the parameters need to be respected to guarantee a physically consistent description of the phenomenon [13].
The spreading of proteins through the parenchyma can be mathematically characterized by employing the
diffusion tensor defined as follows [11]:

D = dextI+ daxnā⊗ ā, (2)

where the first term models the extracellular diffusion of magnitude dext = dext(x), while the second one
models the anisotropic diffusion of magnitude daxn = daxn(x) along the axonal directions, denoted by the
vector ā = ā(x).

Concerning the boundary conditions, assuming that the parenchyma cannot exchange the proteins with
the surrounding cerebrospinal fluid, we impose homogeneous Neumann boundary conditions.

2.2 The Fisher-Kolmogorov model

A simplified formulation of problem (1) can be derived under the assumption that the concentration of healthy
proteins is much larger than the one of misfolded proteins and that its variations can be considered negligible
[11, 8]. In this case, after defining a relative misfolded protein concentration as:

c(x, t) =
q(x, t)

qmax
=

k212(x)k0(x)

k21(x)

(
k12(x)

k0(x)

k1(x)
− k̃1(x)

)−1

q(x, t), (3)

we can derive the FK model, starting from the second equation of problem (1) and using a Taylor expansion
of the concentration c as explained in [11]. The variable c = c(x, t) is a relative concentration assuming
values in the interval [0, 1], where 0 means the absence of misfolded proteins and 1 is the high prevalence of
them. Finally, the governing equation reduces to the FK model:

∂c

∂t
= ∇ · (D∇ c) + α c(1− c), inΩ× (0, T ],

(D∇c) · n = 0, on ∂Ω× (0, T ],

c(x, 0) = c0(x), in Ω.

(4)

where α = k12
k0

k1
− k̃1 is the conversion rate, describing with a single term both misfolding, clearance

and protein production processes. Concerning the diffusion tensor D it is defined in Equation (2). The
homogeneous Neumann boundary condition extends naturally to the concentration c we introduce.

Remark 1. Due to the simplifications we need to derive the FK model, we remark that it would be usable
only in some conditions, which are not always respected in the reality of the applications. However, the
completeness of the heterodimer model is associated with a higher computational cost, due to the need to solve
the problem for two variables.

3 Polytopal discontinuous Galerkin semi-discrete formulation

In this section, after defining some preliminary concepts, we introduce the semi-discrete formulation in space
of the two proposed models of (7) and (4) using the PolyDG method. We introduce a polytopic mesh partition
Th of the domain Ω made of disjoint polygonal/polyhedral elements K. For each element K ∈ Th, we denote
by |K| the measure of the element, by hK its diameter, and set h = maxK∈Th

hK . We define the interface
as the intersection of the (d − 1)−dimensional facets of two neighbouring elements and the set of interfaces
as Fh. We distinguish two cases:

• case d = 2, in which the interfaces are always line segments;

• case d = 3, in which any interface consists of a generic polygon, we can decompose each interface into
(planar) triangles that compose Fh.
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It is now useful to decompose Fh into the union of interior faces (F I
h) and exterior faces (FB

h ) lying on the
boundary of the domain ∂Ω, i.e. Fh = F I

h∪FB
h . We underline that in this article the boundary faces are all

associated with Neumann boundary conditions and the formulation is constructed accordingly. Concerning
the assumptions on the domain partition we refer to the properties in [15].

Let us define Pℓ(K) as the space of polynomials of total degree ℓ ≥ 1 over a mesh element K. Then we
can introduce the following discontinuous finite element space:

WDG
h = {w ∈ L2(Ω) : w|K ∈ Pℓ(K) ∀K ∈ Th}

Finally, we need to introduce the trace operators [17]. Let F ∈ F I
h be a face shared by the elements K±

and let n± be the unit normal vector on face F pointing exterior to K±, respectively. Then, for sufficiently
regular scalar-valued functions v and vector-valued functions q, respectively, we define:

• average operator {{·}} on F ∈ F I
h: {{v}} =

1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−);

• jump operator [[·]] on F ∈ F I
h: [[v]] = v+n+ + v−n−, [[q]] = q+ · n+ + q− · n.

In these relations, the superscripts ± on the functions denote the traces of the functions on F within the
interior to K±.

3.1 PolyDG semi-discrete approximation of the heterodimer model

To construct the semi-discrete formulation, we define the penalization function

η : F I
h → R+ such that η = η0 max

{
{dK}H, {kK}H

} p2

{h}H
, (5)

where η0 is a constant parameter that should be chosen sufficiently large to ensure the stability of the discrete
formulation, dK = ∥

√
D|K∥2, and kK = ∥ (1+k12|K)(k1|K + k̃1|K)∥. In Equation (5), we are considering the

harmonic average operator defined as {v}H = 2v+v−

v++v− . We define the bilinear form Ah : WDG
h ×WDG

h → R
as:

Ah(c, w) =

∫
Ω

(D∇hv) · ∇hw−
∑

F∈F I
h

∫
F

({{D∇hv}} · [[w]] + [[v]] · {{D∇hw}})+

+
∑

F∈F I
h

∫
F

η[[v]] · [[w]]dσ ∀v, w ∈ WDG
h ,

(6)

where ∇h is the elementwise gradient. Given suitable discrete approximations p0h, q0h ∈ WDG
h of the initial

conditions of Equation (1), the semi-discrete PolyDG formulation reads:

For each t > 0, find (ph, qh) = (ph(t), qh(t)) ∈ WDG
h ×WDG

h such that:

(
∂ph
∂t

, vh

)
Ω

+ Ah(ph, vh) + (k1 ph + k12 p
2
h, vh)Ω = (k0, vh)Ω ∀vh ∈ WDG

h ,(
∂qh
∂t

, wh

)
Ω

+ Ah(qh, wh) + (k̃1 qh − k12 q
2
h, wh)Ω = 0 ∀wh ∈ WDG

h ,

ph(x, 0) = p0h, qh(x, 0) = q0h.

(7)

For details regarding the derivation of the semi-discrete formulation and the stability and a-priori error
analysis, we refer to [16].

3.2 PolyDG semi-discrete approximation of the Fisher-Kolmogorov model

To construct the semi-discrete formulation, we define the penalization function

η : F I
h → R+ such that η = η0 max

{
{dK}H, {αK}H

} p2

{h}H
, (8)
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where η0 is a constant parameter that should be chosen sufficiently large to ensure the stability of the discrete
formulation, dK is defined as before, and αK = ∥α|K∥.

Using the definition of the penalty parameter in Equation (8) in the definition of the bilinear form in
Equation (6), the semi-discrete PolyDG formulation reads:

For each t > 0, find ch = ch(t) ∈ WDG
h such that ∀t > 0:

(
∂ch
∂t

, wh

)
Ω

+ Ah(ch, wh)− (αch, wh)Ω + (αc2h, wh)Ω = 0 ∀wh ∈ WDG
h ,

ch(x, 0) = c0h.

(9)

where c0h ∈ WDG
h is a suitable approximation of c0. For details regarding the derivation of the semi-discrete

formulation and the stability and a-priori error analysis, we refer to [15].

Remark 2. In both formulations, the dependency of the penalty coefficient expression on the reaction coef-
ficients (see Equation (5) and (8)) is justified by the a-priori error estimates that provide relations between
the coercivity constant of the bilinear form in Equation (6) and the reaction parameters to be respected. More
details can be found in [16, 15].

Remark 3. The construction of the PolyDG discretization can be extended to more general boundary con-
ditions and forcing terms, with minimal adjustments, for both formulations. More details can be found in
[16, 15], where the analysis is performed in a more general setting. The choice of using a simplified setting
in this work is justified by the application we focus on.

4 Fully-discrete formulation

First of all, we need to construct the vectors and matrices we need for the algebraic formulation. We consider
{ϕj}Nh

j=0 a set of basis function for WDG
h , being Nh its dimension. We can write the discrete solutions

expansion in terms of the chosen basis:

ph(x, t) =

Nh∑
j=0

Pj(t)ϕj(x) qh(x, t) =

Nh∑
j=0

Qj(t)ϕj(x) ch(x, t) =

Nh∑
j=0

Cj(t)ϕj(x).

We denote by P(t), Q(t), C(t) ∈ RNh , the corresponding vectors of the expansion coefficients. Moreover, we

define the following matrices M,A,Mω, M̂ω ∈ RNh×Nh as:

[M]i,j = (ϕj , ϕi)Ω Mass matrix

[A]i,j = Ah(ϕj , ϕi) Stiffness matrix

[Mω]i,j = (ωϕj , ϕi)Ω Linear reaction matrix of a parameter ω

[M̂ω(Φ)]i,j = (ωΦhϕj , ϕi)Ω Non− linear reaction matrix of a parameter ω

with i, j = 1, ..., Nh and ω = {α, k1, k̃1, k12}. Finally, we introduce the right-hand side vector [Fk0
]i =

(k0, ϕi)Ω with i = 1, ..., Nh.
Concerning time discretization, we adopt a time-stepping method of the second order using a Crank-

Nicolson scheme. We construct a partition 0 < t1 < t2 < ... < tNT
= T of the time interval [0, T ] into NT

intervals of constant time step ∆t = tn+1 − tn.

4.1 Fully-discrete formulation of heterodimer model

First of all, applying the above definitions we recall the semi-discrete algebraic formulation of (7):
MṖ(t) + AP(t) +Mk1

P(t) + M̂k12
(P(t))Q(t) = Fk0

, t ∈ (0, T ]

MQ̇(t) + AQ(t) +Mk̃1
Q(t)− M̂k12

(Q(t))P(t) = 0, t ∈ (0, T ]

P(0) = P0, Q(0) = Q0,

(10)
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Figure 1: Agglomerated mesh with the distinction of white matter (red) and grey matter (blue). The initial
fine triangular mesh is visible in the left image with a zoom of a particular region.

where P0 and Q0 are the vector expansions associated to the initial conditions p0h and q0h, respectively.
Then, we present the fully-discrete formulation of the heterodimer model. For n = 1, ..., NT we want to find
(Pn,Qn) solution of the following system of equations:

(
M

∆t
+

1

2
(A +Mk1)

)
Pn +

1

2
M̂k12

(
3
2P

n−1 − 1
2P

n−2
)
Qn = Fn

p ,(
M

∆t
+

1

2
(A +Mk̃1

)

)
Qn − 1

2
M̂k12

(
3
2Q

n−1 − 1
2Q

n−2
)
Pn = Fn

q ,

P0 = P0, Q0 = Q0,

(11)

where:

Fn
p =

(
M

∆t
− 1

2
(A +Mk1

)

)
Pn−1 − 1

2
M̂k12

(
3

2
Pn−1 − 1

2
Pn−2

)
Qn−1 + Fn

k0
,

Fn
q =

(
M

∆t
− 1

2
(A +Mk̃1

)

)
Pn−1 +

1

2
M̂k12

(
3

2
Qn−1 − 1

2
Qn−2

)
Pn−1.

A discussion of the performance of the Crank-Nicolson scheme versus an implicit Euler time integration
method can be found in [16].

4.2 Fully-discrete formulation of Fisher-Kolmogorov model

Concerning the FK model in (4), the semi-discrete algebraic formulation of (9) reads:MĊ(t) + AC(t)−MαC(t) + M̂α (C(t))C(t) = 0, t ∈ (0, T ]

C(0) = C0,
(12)

where C0 is the vector expansion associated to the initial conditions c0h. Then we derive the fully-discrete
formulation. For n = 1, ..., NT we want to find Cn solution of the following linear system of equations:(

M

∆t
+

1

2
(A−Mα)

)
Cn +

1

2
M̂α

(
3

2
Cn−1 − 1

2
Cn−2

)
Cn = Fn

c , (13)

where:

Fn
c =

(
M

∆t
− 1

2
(A−Mα)

)
Cn−1 − 1

2
M̂α

(
3

2
Cn−1 − 1

2
Cn−2

)
Cn−1.
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Figure 2: The initial configuration corresponds to the unstable healthy state, with a protein concentration
of ph = 1.2 uniformly distributed all over the brain. The triggering of the system is due to the presence of
misfolded proteins.

More details about the construction of this formulation and a comparison with the use of Picard iterations
to treat the nonlinear term can be found in [15].

5 Numerical results: tau protein spreading in a brain section

In this section, we perform some numerical simulations about the spreading of the tau protein in its mis-
folded form in Alzheimer’s disease to compare the predictive capabilities and performances of the models
under investigation. The numerical simulations have been obtained on the open source Lymph library [18],
implementing the PolyDG method for multiphysics. For the simulations, we consider a detailed mesh of the
brain obtained by segmentation of a structural MRI dataset sourced from the OASIS-3 database [19], as
described in [20]. The segmentation is performed using Freesurfer [21].

The sagittal section of the brain is then used to construct a fine triangulated mesh composed of 43 402
triangles. An agglomerated polygonal mesh of 534 elements is constructed starting from the triangular
one, based on employing Parmetis [22]. The versatility of the PolyDG method allows us to reduce the
computational cost of the simulation using high-order approximation on a coarse mesh. Moreover, the
advantage of using an agglomeration technique is that we preserve the level of detail of the underlying finer
mesh in the description of the domain boundary. The agglomerated mesh with the detail of the triangular
one used for the agglomeration is visible in Figure 1. In this case, the agglomeration is performed maintaining
the distinction between white and grey matters. This construction allows the specialization of the physical
parameters in the two models, considering the heterogeneity of the brain structure [23].

To construct the axonal component of the diffusion tensor D, we derive the axonal directions starting
from the Diffusion-Weighted Image (DWI) and computing the principal eigenvector of the diffusion tensor in
each voxel of the image. For more detail, we refer to [24].

Concerning the discretization parameters in space, we fix the polynomial order ℓ = 6 in every element of
the discretization and we set the penalty parameter γ0 = 10. Regarding the time discretization, we adopt a
time step ∆t = 0.01 and simulate up to T = 25 years.
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Figure 3: Misfolded protein qh, initially concentrated into the entorhinal cortex, spreads through the entire
brain section over 25 years.

Model parameter Value in white matter Value in grey matter
dext 8.0× 10−6 [m2/years] 8.0× 10−6 [m2/years]
daxn 8.0× 10−5 [m2/years] 0.0× 10−6 [m2/years]
k0 6.0× 10−1 [1/years] 6.7× 10−2 [1/years]
k12 1.0× 100 [1/years] 1.1× 10−1 [1/years]
k1 5.0× 10−1 [1/years] 5.6× 10−2 [1/years]

k̃1 3.0× 10−1 [1/years] 3.3× 10−2 [1/years]

Table 1: Physical parameter values used in the numerical simulation of the heterodimer model [13, 16].

5.1 Heterodimer model

This section is devoted to the simulation of the spread of tau protein into a two-dimensional section of
the human brain using the heterodimer model. The diffusion modelling required appropriate parameter
configurations. We report the used numerical values of the physical parameters in Table 1. As done in [11],
we adopt the assumption of fast misfolding and preferential diffusion in the white matter. The values in
the white matter are coherent with the literature works on topic [13], while the values in the grey one are
coherently computed to obtain the same equilibrium concentration with reduced velocity of the misfolding
process.

By construction we expect the system to develop from the initial state towards the stable equilibrium point
(ph, qh) = (0.3, 1.5). Moreover, we set an initial condition for the healthy protein concentration uniformly
equal to the unstable equilibrium point ph = 1.2 as in [16]. Finally, we trigger the system with an initial
seeding of the misfolded version of tau protein concentrated in the entorhinal cortex as in [11].

In Figures 2 and 3, we report the approximated solution at different time instants (t = 0, 5, 10, 15, 20, 25
years). As we can observe, the solution develops to the pathological diffusion of the misfolded tau protein
in the whole brain geometry in 25 years. The results are coherent with what is expected from the Braak
staging theory for this type of protein [3, 25]. Moreover, it is observable how the differences in the physical
parameters cause a slower increase in the concentration of misfolded proteins in the grey matter, which is
both associated with reduced reactivity and diffusion.
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Model parameter Value in white matter Value in grey matter
dext 8.0× 10−6 [m2/years] 8.0× 10−6 [m2/years]
daxn 8.0× 10−5 [m2/years] 0.0× 10−6 [m2/years]
α 9.0× 10−1 [1/years] 1.0× 10−2 [1/years]

Table 2: Physical parameter values used in the numerical simulation of heterodimer model [11, 15].

Figure 4: Relative misfolded protein ch concentration, initially concentrated into the entorhinal cortex,
spreads through the entire brain section.

5.2 Fisher-Kolmogorov model

In this section, we adopt the simplified FK modelling for the simulation of the spreading of tau protein,
comparing the results with the ones obtained with the heterodimer model, starting from comparable initial
conditions. Indeed, also in this case we trigger the system with the same seeding of the misfolded version
of tau protein in the heterodimer simulation rescaled over the value qmax = 1.5. Moreover, we impose the
values of the parameter α in the two matters, computing it from the numerical values adopted in the previous
simulation (see Table 1) and exploiting the relation α = k12

k0

k1
− k̃1. The diffusion values are the same as in

the heterodimer model simulation. We report the numerical values in Table 2.
By construction we expect the system to develop from the initial state towards the stable equilibrium

point ch = 1. Using the FK model, the results are coherent with the Braak stages in the spreading of the
tau protein [3, 25]. However, the use of a simplified model causes a slight change in the final result, with
respect to the heterodimer simulation. Indeed, by making a comparison between Figure 3 and Figure 4,
we can observe that in the FK simulation, the velocity of the spreading is faster, due to the assumptions
made on the concentration of healthy proteins p in the model derivation. This is because the heterodimer
simulation does not respect the assumption p ≫ q and this creates significant dynamics in the healthy protein
concentration, which variations slow down the diffusion of the pathology.

To compare with more detail the impact of the two different models, we compute the activation time
[11, 15] of the pathology as:

t̂(x, t) = χ{vh(x,t)>vcrit}(x, t) x ∈ Ω t ∈ [0, T ], (14)

where χ is the indicator function and vcrit is the critical value of the pathological protein concentration
we fix to be equal to 1.20 for the heterodimer model (vh = qh) and 0.80 for FK one (vh = ch), to obtain
comparable results. The indicator gives us a measure of the time after which the neurons in a specific region
will be affected by pathological communication. We report the activation time computed starting from the

9



(a) Activation time using heterodimer model. (b) Activation time using FK model.

Figure 5: Activation time computed starting from the simulations of the two different models: heterodimer
(a) and FK (b).

simulation of the heterodimer model in Figure 5a and the one from the FK one in Figure 5b. Coherently
to what we discuss from the solution analysis the activation times are generally faster in the FK simulation.
Moreover, in both cases, we can notice that the white matter activates before the grey one, due to the
assumptions made on the physical parameters value.

To confirm the fast activation which derives from the application of the FK instead of the heterodimer
one, we report the difference of the rescaled solutions in Figure 6. As we can observe, due to the asymptotic
behaviour of the two models, the differences are small inside the regions where we do not have misfolded
protein concentration (qh ≃ 0) and inside the ones completely activated (qh ≃ qmax). On the contrary, where
we have a propagating front we can notice a discrepancy in the magnitude with a maximum value of 0.2,
which confirms faster dynamics using the FK model. This confirms the differences between the models: the
heterodimer model is more informative and an appropriate pathology-specific calibration is needed before
evaluating the possibility of reducing it and simulating the FK one.

Finally, concerning the computational costs, we remark that the use of the FK model allows us to solve a
system with only 14 452 degrees of freedom, half of the 29 904 ones required by the heterodimer model. This
is reflected in smaller times both in the assembling and solving parts.

6 Conclusions

In this work, we discussed the polyhedral discontinuous Galerkin method for the modelling of prionic spread-
ing in brain neurodegeneration, considering in particular a comparison between the heterodimer model and
the Fisher-Kolmogorov model.

To carry out the comparison in a realistic configuration we present a simulation of the spreading of
tau protein associated with Alzheimer’s disease. In particular, we considered a slice of a real brain in
the sagittal plane with a polygonal agglomerated grid and on a 3D brain geometry, considering distinct
physical parameters in white and grey matters, to describe the domain heterogeneous properties. To compare
approximation capabilities with the different models, we compare also the activation times from the simulation
results. The obtained results are coherent with the medical literature. However, the results we obtained
confirm the need for the heterodimer model whenever the healthy proteins’ concentration is far to be constant.
We underline that these properties must be analysed specifically for each pathology and prionic protein.

10



Figure 6: Difference between the solution of the FK model and the solution of the heterodimer one.
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