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Abstract

In cardiovascular mechanics, reaching consensus in simulation results within a phys-
iologically relevant range of parameters is essential for reproducibility purposes. Al-
though currently available benchmarks contain some of the features that cardiac me-
chanics models typically include, some important modeling aspects are missing. There-
fore, we propose a new set of cardiac benchmark problems and solutions for assessing
passive and active material behaviour, viscous effects, and pericardial boundary condi-
tion. The problems proposed include simplified analytical fiber definitions and active
stress models on a monoventricular and biventricular domains, allowing straightforward
testing and validation with already developed solvers.

1 Introduction

In computational biomechanics in general, efforts of defining benchmarks for verification
and validation have been sparse throughout the years and are application dependent [1–4].
In particular, in the context of cardiovascular mechanics, reaching consensus in simulation
results is an important task, since, for a given set of physical constants, different numerical
solutions can be obtained, e.g., due to discretization strategies, polynomial degree of basis
functions, numerical quadratures and time integrators [5–14]. Specially, when parameters
are optimized from clinical data, it is crucial that these parameters may be valid for other
groups and hence could be reused, given the high complexity involved in solving these inverse
problems [15–17]

In [2] was proposed a first benchmark containing some of the features that cardiac me-
chanics models typically include. However some important features are lacking, such as
the inclusion of state-of-the-art passive and active models, idealized geometrical dimensions,
boundary conditions as well as time dependent effects (i.e. inertia and viscosity).

Therefore, we propose here a new set of cardiac benchmark problems and computed
solutions for assessing passive and active material behaviour as in [18] with viscous effects
and pericardial boundary conditions as in [7]. The problems proposed in this work include a
simplified analytical fiber definition with active stress model by [19], allowing straightforward
testing and validation with already developed solvers. The benchmark definition is agreed
upon nine different research groups, who computed their solutions with numerical methods
and software of their choice. A comparison is carried out among the solutions computed
by the different groups, whose results demonstrate a substantial agreement between the
participating teams.

The remainder of this article is organized as follows. Section 2 describes the mechani-
cal problem in continuous form, its material properties and boundary conditions. Section
3 proposes the first benchmark problem in a monoventricular domain, with analytical ge-
ometry, fibers orientation and simulations setup for blinded and non-blinded phases among
participants. Section 4 proposes a second benchmark for a biventricular domain, with state-
of-the-art fiber orientation, constitutive law and analogous setups to Section 3 comprising a
non-blinded phase only. Section 5 describes all participant software as well as their solver
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strategies. Section 6 contains computed results with a qualitative and quantitative analysis
of the first and second benchmark. Section 7 provides a discussion of the different approaches
and results, finally in Section 9 the conclusion.

2 The mathematical model

2.1 Strong form

We define the problem in a domain Ω ⊂ R3 with boundary ∂Ω := Γtop ∪ Γepi ∪ Γendo. Let
us denote by u : Ω → R3 the displacement field to be found, u(X) its evaluation in X for
X ∈ Ω, by F := I + Grad(u) := I + ∂u

∂X
the deformation gradient, Div(u) := ∂

∂X
· u the

divergence, J := det(F(u)) := det(F) the jacobian, E = 1
2
(C− I) the Green-Lagrange tensor,

C := F⊤F the right Cauchy tensor and I and the identity matrix respectively.
Let us denote T := T(u) the Cauchy stress tensor associated to the unknown displacement

field u and the second Piola Kirchhoff stress tensor denoted by S := JF−1TF−⊤, the problem
to solve over the time-interval (0, 1], is described by the equations:

ρü−Div
(
JTF−⊤) = 0 in Ω

JTF−⊤N = pJF−⊤N on Γendo

JTF−⊤N ·N+ αepiu ·N+ βepiu̇ ·N = 0 on Γepi

JT(F−⊤N)×N = 0 on Γepi

JTF−⊤N+ αtopu+ βtopu̇ = 0 on Γtop

(1)

with N the unit wall normal vector and ⊤ the transpose if used as superscript.

2.2 Material model

The material behaviour is characterized via S including the anisotropic, viscous and active
parts, namely

S(t) :=
∂Ψaniso

∂E
+
∂Ψvisco

∂Ė
+ τ(t)f ⊗ f , (2)

with each term described below�:

� The anisotropic material energy Ψaniso describes the nearly incompressible Holzapfel-
Ogden material [18] with isochoric-volumetric split, via the isotropic invariant I1 =
J−2/3tr(C), the transverse isotropic invariants I4f := f · Cf and I4s := s · Cs for

�Models aiming at characterizing the strain-stress behavior have been substantially studied [18, 20–22].
The literature points at the work of Guccione et al. [23] and Holzapfel et al. [18], the latter widely used
for human cardiac models. Nevertheless, not only one convention has been used to characterize the fiber
orientation, especially with the choice of the sheet and sheet-normal directions. Several works implementing
either case have shown consistent deformations, endocardial pressure as well as ejection volumes [6, 24–30].
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the fiber directions at the reference domain f , s : Ω → R3 and anisotropic invariant
I8fs := f · Cs. Explicitly Ψaniso is given by:

Ψaniso =
a

2b
exp

{
b(I1 − 3)− 1

}
+

∑
i∈{f,s}

ai
2bi

χ(I4i)
(
exp

{
bi(I4i − 1)2

}
− 1

)
+

afs
2bfs

(
exp{bfsI28fs} − 1

)
+
κ

4

(
J2 − 1− 2 ln(J)

) (3)

with χ(x) = x if x > 1 and 0 elsewise, for x ∈ R+, denoting the fiber compression
switch model. The last term denotes the incompressibility penalty proposed in [31]
with parameter κ > 0.

A suggested approximation is given by χ(x) ≈ 1
1+e−k(x−1) , for k > 0 a fixed parameter

specified later on.

� The viscoelastic energy is characterized with parameter η in the form [32]:

Ψvisc :=
η

2
tr(Ė2) (4)

� The active stress is taken as in [19], characterized by a time-dependent stress function
τ , solution to the evolution equation

τ̇(t) = −|a(t)|τ(t) + σ0|a(t)|+ (5)

denoting a(·) the activation function and σ0 contractility, and the remaining terms
defined as:

|a(t)|+ = max{a(t), 0}
a(t) := αmax · f(t) + αmin · (1− f(t))

f(t) = S+(t− tsys) · S−(t− tdias)

S±(∆t) =
1

2

(
1± tanh(

∆t

γ
)
)
.

(6)

2.3 Pressure model

We consider a time-dependent pressure for (1), derived from the active stress function. The
solution p = p(t) is characterized by the evolution equation

ṗ(t) = −|b(t)|p(t) + σmid|b(t)|+ + σpre|gpre(t)|+ (7)

with b(·) the activation function described as:

b(t) = apre(t) + αpregpre(t) + αmid

apre(t) := αmax · fpre(t) + αmin · (1− fpre(t))

fpre(t) = S+(t− tsys−pre) · S−(t− tdias−pre)

gpre(t) = S−(t− tdias−pre)

(8)

and S± defined as in (6).
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3 Benchmark 1: monoventricular mechanics

3.1 Geometry

Using the same analytical formula as in [2], we define the domain via the parametrization
(in R3) for a truncated ellipsoid, i.e., satisfying:

(x, y, z) =
(
rlong cos(µ), rshort sin(µ) cos(θ), rshort sin(µ) sin(θ)

)
(9)

with the following dimensions:

� The endocardial surface

rshort = 2.5× 10−2[m], rlong = 9.0× 10−2[m], µ ∈ [−π,−arccos(
5

17
)], θ ∈ [−π, π]

(10)

� The epicardial surface

rshort = 3.5× 10−2[m], rlong = 9.7× 10−2[m], µ ∈ [−π,−arccos(
5

20
)], θ ∈ [−π, π]

(11)

The domain is created using the software Gmsh [33] and distributed to all participants
in different formats, created with an element size§ h = 5× 10−3[m]. Supplemented material
is provided with such data as well as a repository including implementation details�.

3.2 Fibers

The definition of fibers is based on a local coordinate system derived from the ellipsoid
parametrization. Using the ellipsoid parametrization, a point x in the domain Ω is described
as:

x(µ, θ, t̄) =
(
rl(t̄) cos(µ), rs(t̄) sin(µ) cos(θ), rs(t̄) sin(µ) sin(θ)

)
, (12)

with µ, θ as defined previously and t̄ : Ω → [0, 1] is defined as the solution to the problem:

∆t̄ = 0 in Ω

t̄ = 0 on Γendo

t̄ = 1 on Γepi

∂t̄

∂N
= 0 on Γtop.

(13)

§The element size is defined as the optimal edge length around any point node in the mesh with specified
target size h > 0. Therefore, not a lower or upper edge limit, rather, an averaged value computed to match
a user-provided target size. For further details, we refer to [33].

�The repository cardiac-benchmark-toolkit stores the data provided to all teams in several formats
.geo, .msh, .xdmf, .h5, as well as an user-friendly interface to recreate the monoventricular domain
at different mesh sizes.
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The tangent basis derived from (12), denoted as [et̄, eµ, eθ], is defined as:

ẽt̄ =
∂x

∂t̄
, ẽµ =

∂x

∂µ
, ẽθ =

∂x

∂θ

et̄ =
ẽt̄

∥ẽt̄∥R3

, eµ =
ẽµ

∥ẽµ∥R3

, eθ =
ẽθ

∥ẽθ∥R3

,
(14)

Using (14), the fiber, sheet-normal and sheet directions are defined as follows:

f(t̄, µ, θ) = sin(α(t̄)) eµ + cos(α(t̄)) eθ

n(t̄, µ, θ) =
eµ × eθ

∥eµ × eθ∥R3

s(t̄, µ, θ) =
f(t̄, µ, θ)× n(t̄, µ, θ)

∥f(t̄, µ, θ)× n(t̄, µ, θ)∥R3

(15)

with α(t̄), rl(t̄), rs(t̄) parameters defined as:

α(t̄) =
(
αendo + (αepi − αendo)t̄

) π

180
rl(t̄) = rlong endo + (rlong epi − rlong endo)t̄

rs(t̄) = rshort endo + (rshort epi − rshort endo)t̄

(16)

for rlong endo, rshort endo the long/short radius in (10) and rlong epi, rshort epi the long/short radius
in (11).

The computation of the fibers close to the apex is problematic. Given a point in the
ellipsoid x = (x, y, z) and t̄ = t̄(x) we propose to compute the associated parameters µ, θ

to such a point as µ = atan2(a, b) for a =

√
y2+z2

rs(t̄)
, b = x

rl(t̄)
and θ = 0 if µ ≤ 10−7 else

θ = π − atan2(z,−y).
Depicted in Figure 1 is the labeled ellipsoid geometry, including the fiber and sheet

directions.
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Figure 1: The labeled ellipsoid geometry (left) includes positions of particles p0,p1 for
reference. The fiber (center) and sheet (right) directions described in (15) for a ∓60◦ angle
configuration, are colored using the transmural distance t̄ over the domain.

3.3 Step 0 (non-blinded): Splitting passive and active responses

We first perform a validation with teams having access to the solutions of the rest of partic-
ipants. This served to refine the problem description and to encourage a larger number of
participants.

3.3.1 Case A: Active response

Each group solves numerically the equations described in Section 2, with geometry and fibers
as in Sections 3.1 and 3.2 respectively, parameters as in Tables 1, 2, 3 and a zero endocardial
pressure, i.e. p = 0 on Γendo over all timesteps.

The groups are requested to provide the displacement field uh(X) over time at two spatial
locations, p0 = (0.025, 0.03, 0), p1 = (0, 0.03, 0). Such spatial locations do not describe
points of the mesh provided to the participants, thus each team must have interpolation
algorithms available.

Parameter ρ[ kg
m3 ] η[Pa s] κ[Pa] k[−] αtop[

Pa
m
] αepi[

Pa
m
] βtop[Pa

s
m
] βepi[Pa

s
m
]

Value 103 102 106 100 105 108 5× 103 5× 103

Table 1: Parameters describing the strong form of the problem defined in (1).
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Parameter a[Pa] af [Pa] afs[Pa] as[Pa] b[·] bf [·] bfs[·] bs[·]
Value 59.0 18472.0 216.0 2481.0 8.023 16.026 11.436 11.12

Table 2: Parameters of the constitutive law describing the directional behavior through fiber
and sheet directions, described in (3).

Parameter σ0[Pa] γ[s] αmin αmax tsys[s] tdias[s] αendo αepi

Value 1.5× 105 0.005 −30 5 0.16 0.484 −60◦ +60◦

Table 3: Parameters defining the active stress activation function, solution to (5) and fibers’
angles at endo/epi-cardium, as in [7].

Depicted in Figure 2 is the evolution of the stress function τ over time for physical
parameters specified therein.

Figure 2: Evolution of the stress function τ described in (5) over the time interval [0, 1]
with physiological parameters proposed in Table 3 from [7]. It reaches a maximum value of
118817.07 [Pa].

3.3.2 Case B: Passive response

Each group solves numerically the equations described in Section 2 with geometry, fibers as in
Sections 3.1, 3.2, and parameters as in Tables 1, 2, 4 and no active part, i.e. τ(t) = 0 ∀t > 0.
The groups are requested to provide the displacement field uh(X) over time at p0,p1.

Depicted in Figure 3 is the evolution of the pressure p(t) over time for the parameters
specified therein.
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Parameter Values

αmin[−] -30

αmax[−] 5

αpre[−] 5

αmid[−] 1

σpre[Pa] 7000

σmid[Pa] 16000

tsys−pre[s] 0.17

tdias−pre[s] 0.484

γ[s] 0.005

Table 4: Parameters for the pressure model (7)

Figure 3: Evolution of the pressure p(t) described in (7) over the time interval [0, 1]. Param-
eters as in Table 4. It reaches a maximum of 16117.52 [Pa].
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3.4 Step 1 (non-blinded): active and passive response

Each group solves numerically the equations described in Section 2 with geometry, fibers
as in Sections 3.1, 3.2 and parameters as in Tables 1, 2, 3, 4. The groups are requested to
provide the displacement field uh(X) over time at two spatial locations, p0, p1, as described
in Subsection 3.3.1.

3.5 Step 2: Blinded variation of physical parameters

In the second step, all groups are requested to run computations – fully blinded from each
other – with modified physical constants with respect to Section 3.4. Here we changed a
specific combination of parameters, namely a, af , afs, as by a constant factor and σ0. The
values taken for each parameter combination are given in Table 5, accounting for 3 different
cases. The values have been chosen to get noticeably different results among the proposed
cases and to challenge the robustness of the solvers.

Each group is requested to compute the displacement field at points p0, p1 for each case.

Setup a af afs as σ0

Case A 177 55416 648 7443 2× 105

Case B 295 92360 1080 12405 1× 105

Case C 19 6157 72 827 2× 105

Table 5: Each case combines a change in stiffness parameters a, af , afs, as with changes in
the contractibility parameter σ0.

4 Benchmark 2: biventricular mechanics (blinded)

4.1 Strong formulation

Let us consider an idealized biventricular domain Ω ⊂ R3 with boundaries ∂Ω := Γendo−lv ∪
Γendo−rv ∪ Γepi ∪ Γtop. We denote by u : Ω → R3 the displacement field, T := T(u) the stress
tensor as in Section 2.2 and plv(t), prv(t) for each t > 0 pressure terms solving (7), with
parameters to be specified below. We define the remaining operators F, J as in Section 2.
The problem to solve is described by the equations:

ρü−Div(JTF−⊤) = 0 in Ω

JTF−⊤N = plvJF−⊤N on Γendo−lv

JTF−⊤N = prvJF−⊤N on Γendo−rv

JTF−⊤N ·N+ αepiu ·N+ βepiu̇ ·N = 0 on Γepi

JT(F−⊤N)×N = 0 on Γepi

JTF−⊤N+ αtopu+ βtopu̇ = 0 on Γtop

(17)
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4.2 Geometry

To define the geometry we will introduce some notation. Given xcen ∈ R3 and {a, b, c} ∈ R+,
we define V (xcen, (a, b, c)) ⊂ R3 an ellipsoidal domain, centered at xcen with (a, b, c) the length
of each (x̂, ŷ, ẑ) semiaxis, ∂V (xcen, (a, b, c)) its boundary.

The biventricular domain Ω ⊂ R3 is characterized by four different surfaces:

� Epicardial surface (Γepi) described as a set of points x = (x, y, z) ∈ R3 satisfying

x ∈∂V
(
0, (alv-epi, blv-epi, clv-epi)

)
∆∂V

(
xrv, (arv-epi, brv-epi, crv-epi)

)
x s.t. x < 0

(18)

for xrv = (0, 0, 0.02) and centers (alv-epi, blv-epi, clv-epi) = (0.08, 0.039, 0.039) and
(arv-epi, brv-epi, crv-epi) = (0.075, 0.038, 0.059).

� Left endocardial surface (Γendo−lv) described as the set x = (x, y, z) ∈ R3 satisfying

x ∈∂V
(
0, (alv-endo, blv-endo, clv-endo)

)
x s.t. x < 0

(19)

for (alv-endo, blv-endo, clv-endo) = (0.069, 0.025, 0.025).

� Right endocardial surface (Γendo−rv) described as the set x = (x, y, z) ∈ R3 satisfying

x ∈∂V
(
xrv, (arv-endo, brv-endo, crv-endo)

)
x s.t. x < 0

(20)

for (arv-endo, brv-endo, crv-endo) = (0.07, 0.033, 0.054).

� Base (Γtop) as the set x = (x, y, z) ∈ Γ̄epi ∪ Γ̄endo-lv ∪ Γ̄endo-rv s.t. x = 0

The proposed geometry is depicted in Figure 4.

4.3 Fibers

For the fiber directions, we use a Laplace-Dirichlet Rule-Based (BT-LDRB) algorithm [34],
modified to adhere to the convention utilized for the cross-fiber orientations�. We take a
values of ∓60◦ (with respect to a local coordinate system) for the left and right endo/epi-
cardial fiber angles§.

The fibers are created using the lifex software [41, 42]. Figure 5 depicts the step-by-
step procedure to prescribe the fiber architecture in the biventricular geometry [34, 41]. For
further details refer to [34].

�In the last decades, myocardial orientation has been studied from histological data [18, 35] and Dif-
fusion Tensor Imaging [36, 37], but their reconstructed noisy data suffers from low resolution, limiting its
characterization, especially given the thickness of ventricles, which is usually smaller than the voxel size [38].
Several construction algorithms have been proposed to recreate the fiber orientation, ranging from complex
registration data-dependent algorithms to Rule-Based Methods, which remains an active area of research [34,
39, 40].

§The convention in this work entails switching the directions s and n in relation to the formalism entailed
in the state-of-the-art [34].
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Figure 4: Geometry for the biventricular domain with colored boundaries:
Γepi,Γendo−lv,Γendo−rv and Γtop. Positions of particles of interest p0,p1 and p2 are de-
picted with circles for reference.

Figure 5: Step-by-step procedure for the fiber architecture. In 1. labelled mesh with bound-
aries, 2. transmural distances ϕl, ϕr, ϕepi, 3. transmural directions γ = ∇ϕl,∇ϕr,∇ϕepi, 4.
normal direction k = ∇ψ, 5. local coordinate definition êt, ên, êl, 6. rotation of axis and
fiber field system [f , s,n]
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4.4 Physical constants and evaluation of results

Each group is requested to solve problem (17) with parameters as in Tables 2, 7, 8, 9, with
geometry and fibers as in Sections 4.2, 4.3, for two refinement levels�. Table 6 details the
number of tetrahedra and nodes:

Mesh Num. of tetrahedra Num. of nodes

Ωh1 45,304 11,444

Ωh2 121,133 27,807

Table 6: Number of tetrahedra and nodes for two refinement levels, denoted by Ωh1 and Ωh2

Extending Step 2 of Benchmark 1, groups are requested to provide displacement fields
uh(X) over time at three spatial locations p0 = (0.025, 0.03, 0),p1 = (0, 0.03, 0),p2 =
(0.025, 0, 0.072).

Parameter ρ[ kg
m3 ] η[Pa s] κ[Pa] k[−] αtop[

Pa
m
] αepi[

Pa
m
] βtop[Pa

s
m
] βepi[Pa

s
m
]

Value 103 102 106 100 106 108 5× 103 5× 103

Table 7: Parameters describing the strong form of the problem defined in (17).

Parameter σ0[Pa] γ[s] αmin αmax tsys[s] tdias[s]

Value 1.5× 105 0.005 −30 5 0.163 0.5

Table 8: Parameters defining the active stress activation function, solution to (5), for the
biventricular model.

�The repository cardiac-benchmark-toolkit stores the biventricular domain in several formats
.geo, .msh, .xdmf, .h5.
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Parameter (plv) Value

αmin[·] -30

αmax[·] 5

αpre[·] 5

αmid[·] 15

σpre[Pa] 12000

σmid[Pa] 16000

tsys−pre[s] 0.17

tdias−pre[s] 0.484

γ[s] 0.005

Parameter (prv) Value

αmin[·] -30

αmax[·] 5

αpre[·] 1

αmid[·] 10

σpre[Pa] 3000

σmid[Pa] 4000

tsys−pre[s] 0.17

tdias−pre[s] 0.484

γ[s] 0.005

Table 9: Left table: parameters used for plv(t), so that it attains a maximum of
16491.14 [Pa] ≈ 123 [mmHg]. Right: parameters used for prv(t) with a maximum of
4166.66 [Pa] ≈ 31 [mmHg].

Depicted in Figures 6 and 7 are the time-evolution of the activation function and pressure
curves with parameters specified therein.

Figure 6: Evolution of the stress function τ described in (5) over the time interval [0, 1] with
parameters as in Table 8. It reaches a maximum value of 120775.56 [Pa].
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Figure 7: Evolution of pressure plv(t), prv(t) are shown with blue and brown colors re-
spectively over the time interval [0, 1]. Parameters as in Table 4. Maximum values of
16491.15 [Pa] and 4171.07 [Pa] for plv, prv respectively.

5 Numerical solvers and participants

Each group was requested to disclose their strategies to solve problems (1) and (17). Settings
for the software, spatial and temporal discretization methods are described in Table 10. The
notation P2 indicates that the incompressibility is handled via penalization (as described in
the previous sections), and therefore only the displacements are discretized with quadratic
basis functions. The notation P1 indicated the analogous case for linear basis functions. The
notation P1 − P1 indicates that incompressibility is handled directly using the pressure as
unknown, where the saddle-point problem is discretized with linear basis functions, including
a stabilization term for the pressure field. This variable, defined in the muscle, differs from
the pressure prescribed at the boundaries, describing chamber and epicardial effects.
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6 Results

In this section, we provide comparison results for the two benchmark problems. Quantitative
and qualitative assessment is done using displacement tracking and by defining a measure
of discrepancy between teams. Solutions from different teams can be distinguished with
different colors, which are provided in displacement curves for benchmark 1 and includ-
ing visualizations for benchmark 2. Comparisons between P1 and P2 are also provided for
benchmark 2.

6.1 Benchmark 1

6.1.1 Step 0 (non-blinded): Splitting passive and active response

The comparison of displacement curves at particles p0,p1 is depicted in Figure 8 for active
response alone and in Figure 9 for passive response. Each figure presents displacements
for each of the component, allowing a straightforward assessment of differences between
teams. The largest differences can be observed primarily along the interval (0.2, 0.6) [s], and
especially for the x-component of both particles in the case of passive response.
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Figure 8: Comparison per component of displacement uh(p0) and uh(p1) for Step 0, case A
- active response.
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Figure 9: Comparison per component of displacement uh(p0) and uh(p1) for Step 0, case B
- passive response.
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6.1.2 Step 1 (non-blinded): active and passive response

The comparison results for each requested quantity are depicted in Figure 10. The compo-
nentwise representation of displacement showcases the differences in the order of magnitude
of deformation. Displacements along the z-component are one order of magnitude smaller
than those of the x-component. Maximum differences between teams remain smaller than
0.5 [mm] in the worst case, as seen in the z-component.

Figure 10: Comparison per component of displacement uh(p0) and uh(p1) for Step 1, case
of joint active and passive response.
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6.1.3 Step 2

A qualitative comparison of displacement curves at different particles is depicted in Figures
11-13. For a quantitative assessment of the curves, we propose a [RE]lative [D]iscrepancy
between each dataset, denoted by RED, defined as:

RED(p) =
1

T

T∑
tn=0

∥u(tn,p)− ū(tn,p)∥ℓ2
∥ū(tn,p)∥ℓ2

p ∈ {p0,p1} (21)

with ū(t, ·) = 1
N

∑N
i=1 u

i(t, ·) for t ∈ (0, 1), ui the displacement field of team i and N the
total number of teams. The datasets are subsampled at 10[ms], i.e. T = 101 datapoints. If
a group simulated with a different timestep, then linear interpolation is used to compute the
corresponding displacement values. Intuitively, the relative discrepancy function provides
a time-averaged discrepancy to an average result, using the ℓ2 norm to add each direction.
Table 11 summarizes the relative discrepancies for each team.

Setup Case A Case B Case C
RED(p0) RED(p1) RED(p0) RED(p1) RED(p0) RED(p1)

CARPentry 0.134 0.229 0.360 0.301 0.060 0.118

Ambit 0.115 0.185 0.79 0.243 0.060 0.168

4C 0.080 0.115 0.171 0.136 0.059 0.059

Simula 0.094 0.200 0.311 0.352 0.041 0.054

CHIMeRA 0.078 0.108 0.149 0.135 0.045 0.056

CHeart 0.202 0.198 0.300 0.250 0.048 0.045

lifeX 0.108 0.154 0.273 0.252 0.049 0.129

SimVascular P1 0.220 0.371 0.309 0.267 0.156 0.211

SimVascular P2 0.276 0.370 0.360 0.328 0.146 0.157

COMSOL 0.186 0.196 0.287 0.329 0.105 0.111

Table 11: Comparison of relative deviations for each participant group.
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Figure 11: Comparison per component of displacement uh(p0) and uh(p1), case A.
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Figure 12: Comparison per component of displacement uh(p0) and uh(p1), case B.
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Figure 13: Comparison per component of displacement uh(p0) and uh(p1), case C.
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6.2 Benchmark 2

To analyze the results, qualitative assessment is done through visual inspection and the
displacement tracking at three particles p0,p1 and p2. We provide quantitative assessment
using the measure of discrepancy RED, as in Section 6.1.3, for all particles in both meshes.
Visual comparison between solutions can be depicted in Figure 14 using overlapped views at
two different times, namely, 0.3[s] and 0.5[s]. The views are defined using the two-chamber
(long) axis and the base-to-apex (short) axis. Particle trajectories are depicted in Figures 15
for the coarse mesh Ωh1 and 16 for the fine mesh Ωh2 . Table 12 summarizes the discrepancies
in each case. Comparison curves between spatial discretization in P1 and P2 are depicted in
Figures 17 and 18, including only teams that provided both datasets.

Setup Blinded on Ωh1 Blinded on Ωh2

RED(p0) RED(p1) RED(p2) RED(p0) RED(p1) RED(p2)

CARPentry 0.915 0.545 0.415 1.019 0.504 0.452

Ambit 0.094 0.086 0.21 0.136 0.084 0.288

4C 0.104 0.129 0.221 0.108 0.094 0.278

Simula 0.564 0.848 1.472 0.446 0.513 1.769

CHIMeRA 0.121 0.108 0.182 0.111 0.079 0.347

CHeart 0.144 0.11 0.226 0.137 0.085 0.406

lifeX 0.125 0.099 0.144 0.103 0.077 0.318

SimVascular P1 0.483 0.295 0.95 0.294 0.184 0.508

COMSOL 0.14 0.158 0.335 0.183 0.155 0.326

Table 12: Comparison of relative deviations for each participant group in Benchmark 2.
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7 Discussion

This work proposed a set of benchmark problems and solutions for cardiac elastodynamics,
in both, monoventricular and biventricular geometries. In depth evaluation of the solutions
is done using the discrepancy measure RED. For reproducibility and verification reasons, the
results are available as supplemented material.

The benchmarks proposed here not only assess nonlinear elastodynamics but also test
active material behavior and pericardial boundary conditions [7]. They also showcase the
the variability of the numerical approaches used by the scientific community in cardiac
biomechanics. This work not only provides the analytical description for the monoventricular
case, as done in [2], but also utilizes the state-of-the-art fiber generation pipeline [34] for the
biventricular domain.

This report provides an unambiguous mathematical description of cardiac benchmark
problems, sufficient for reproducibility purposes with agreement of solutions between teams
for all proposed problems. In total, nine different research groups submitted solutions to the
benchmark problems. All computational setups relied on the finite-element method and three
different approaches were considered, two by handling incompressibility via penalization with
the displacement field unknown, discretized in P1, P2 and incompressibility handled using
stabilization with pressure and velocity (or displacement) as unknowns in P1 − P1.

The monoventricular benchmark case comprises three different problems that aim to
assess passive 3.3.2 and active 3.3.1 responses of the cardiac contractility, as well as their
combined effect 3.4. The splitting between each independent response and their combined
effect allows for separated benchmarking of different model components.

In the non-blinded phase, teams had access to numerical solutions provided by other
participants. In this phase, solutions agree closely on the active, passive and joint responses,
as depicted in Figures 8-10. The difference between curves is below 0.5 [mm], only a small
fraction of the typical element size employed (3−5 [mm]). The largest differences are observed
when the discrete system is passively loaded as seen in Table 11.

In the blinded-phase, teams test their numerical setup in three new sets of parameters
and assess agreement between solutions. The choice of parameters defines different material
regimes, a high and low stiffness set of parameters (Case A and C, respectively), tuned to have
physiological contraction and a third case tuned to have small deformations to test robustness
of the solvers. In all cases, a reasonable agreement is observed among teams, as depicted
in Figures 11-13. This agreement is present despite some groups (SimVascular, CHIMeRA,
CHeart and lifex) using different ways to generate or interpolate the fiber directions, as
summarized in Table 10.

The blinded biventricular case 4.4, aims to assess each solver in a more realistic scenario
with a non-parametric fiber configuration and a generalized elastodynamic formulation. As
depicted in Figures 15 and 16, there is a closer match between results when using the finer
mesh Ωh2 compared to Ωh1 . A qualitative comparison of the solutions along the short and
long axis planes is depicted in Figure 14. Greater discrepancy is observed between solutions
based on P1−P1 compared to P2 formulations. Discrepancies are noticeable across all particle
displacements in the coarser mesh, particularly for the particle p2, reflecting the variability of
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the solutions across the mesh. Effects of the spatial discretization are also considered in this
work. Comparisons between solution fields in P1 and P2, depicted in Figures 17 and 18 for
the coarse and fine mesh, showcase a dependency of the solution on the discretization space
and to the fibers orientation, with differences larger than 5[mm] in the interval (0.2, 0.5) [s].

A close agreement between most of the groups in the monoventricular case (Table 11)
using different software and methods. However, in the biventricular case, an increased dis-
crepancy is evident (Table 12), even among the teams that used similar software platform,
e.g. FEniCS (Ambit, Simula, CHIMeRA). This is likely due not only to differences in geometry
but also to the rule-based calculation of fibers, which were provided at the degrees of freedom
and then interpolated to the quadrature points. This interpolation process may introduce
additional variability in the simulation outputs across the groups.

8 Limitations

This work presents a number of limitations that could be tackled in future studies.
Though this study represents a considerable improvement in modeling complexity, it

still addresses only one physical field, namely mechanics. Including additional fields in a
multiphysics framework —such as fluid-solid interaction, poromechanics, electromechanics,
and 0D-3D models —would likely be the most reasonable next steps. However, this approach
may reduce the number of groups participating in each of these benchmarks.

In principle, the observed differences may disappear if the discretization is refined to the
point where all solvers reach convergence, but no detailed convergence analysis was performed
in this study. At that stage, the comparison would focus primarily on computational cost,
assuming that, as one would hope, all the solvers converge to the same solution but with
different accuracy orders.

The present work also has limitations regarding the realism of the fiber model. While
the fiber-sheet-normal model is well established for left ventricular geometries, there is a
lack of data for the right ventricle and interventricular region [67]. The benchmark could
be updated with more realistic biventricular fiber models [34, 68]. However, this is likely to
introduce additional numerical challenges and require more careful discretization due to the
thinness of the right ventricular wall.

While incorporating a human or animal geometry, especially one including the atria, is
feasible in principle, it falls outside the scope of the proposed benchmark and would overly
complicate the setup. Additionally, generating atrial fibers remains a significant challenge
[34, 69]. Therefore, given the focus of our work, we rely on idealized ventricular geometries
paired with state-of-the-art fiber models. A more realistic and complex geometry could
also lead to challenges in incorporating the fiber orientation and in the comparison and
interpretation of the results. The current study seeks to achieve a balanced model complexity,
which would render the results useful and relevant but still allow control of relevant model
properties and facilitate the comparison of the results. The study represents a significantly
increased complexity compared with previous benchmarks in the field, and the inclusion of
a more realistic geometry is left for a potential follow-up.
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We restricted ourselves to the study of the constitutive model in [18], which is the most
commonly used one in continuum-based, organ-scale simulations. In any case, apart from the
newest viscoelastic model [70], we are not aware of important more recent developments in
this field. Therefore, we believe our choice remains highly relevant due to the widespread use
of the presented model. Providing benchmarks for other models, such as the ones reviewed
recently in [71, 72] is out of the scope of the present study.

Another limitation of this study consists in that the variability of the output to all model
parameters (such that representing viscoelasticity and (in)compressibility) was not studied,
though those effects where included in the model.

Though some insights for mesh sensitivity are given in Benchmark 2, this aspect was
not fully explored in this article, and we consider relevant for future benchmarking efforts,
together with reporting more quantities such as strains and stresses, which are often more
sensitive to the discretization methods.

9 Conclusion

Consensus in simulation results is an important task, as several discretization parameters
need to be selected. In this software benchmark for cardiac elastodynamics, a set of phys-
iological test cases is proposed, comprising two different geometries. The methodology for
assessment of results is based on a non-blinded calibration step and consecutive blinded steps.
Nine research teams within the domain of cardiac mechanics participated in this benchmark.
The benchmarks are structured as a series of steps with progressively increasing complex-
ity, offering a step-by-step approach for verifying newly developed code. In the case of the
monoventricular domain, which includes analytical fiber definition, consensus of solutions is
observed in all displacement directions when changing the material parameters. Notably,
different numerical methods and software implementations produced comparable results,
with agreement between all participating teams. For the biventricular domain, an idealized
geometry is introduced, with fibers based on the state-of-the-art in cardiac mechanics. Fur-
thermore, tuned parameters for a physiological contraction are introduced, generalizing the
previous monoventricular benchmark. The results for the biventricular model become more
subject to differences arising from the incompressibility handling and space discretization as
well as the fiber discretization. In this more challenging case, a few groups produced con-
sistently comparable results (qualitatively and quantitatively), though using fully different
software platform and libraries. However, it is important to note that since the test cases
were deliberately chosen to be realistic and complex, it makes it difficult to determine the
“reference” solutions. Nevertheless, overall the results will still serve as a range of values for
valuable guidance to future authors and solver developers.

The input data and simulation results are publicly available in Zenodo. Some of the
computational codes are also openly available: CARPentry, Ambit, Simula’s, SimVascular,
lifex.
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A Appendix: Fiber convention

The most appropriate modeling choice for the fiber, sheet, and normal directions in the ven-
tricular region remains an active area of debate within the community of cardiac mechanics.
Variability in histological studies and computational methods to extract principal tissue di-
rections exacerbate this discussion [20, 21, 34, 73–75]. Whereas the transmural evolution
of the myocardial fiber direction across the transmural wall seems to be well accepted, two
main modeling approaches can be distinguished with respect to the assigned sheet and nor-
mal directions in computational ventricle models. Following the works in [18, 20], various
groups take the sheet direction (s) to be oriented along the transmural direction and the
normal direction (n) to be orthogonal to both fiber and sheet directions [21, 73, 74, 76, 77].
Following the works in [6, 7], other groups assume the normal direction (n) to be oriented
along the transmural direction and the sheet direction (s) to be orthogonal to both fiber and
normal directions. With proper tuning of the constitutive parameters, both approaches can
lead to realistic deformation profiles during diastolic loading and systolic contraction. Given
our choice to use tuned constitutive parameters from a group using the second convention,
we followed their myocardial architecture convention for our monoventricular benchmark
cases. In reality, sheet and normal vector fields can be considered to have transmural radial-
longitudinal angle variations [34, 75]. As such, both conventions provide a simplified but
relevant approach towards simulating cardiac mechanics starting from the end-systolic and
end-diastolic configuration, respectively.

34



Acknowledgements

R.A., D.N. and C.B. acknowledge the funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 852544 - CardioZoom).

H.F. and J.S. benefited from the Experimental Infrastructure for Exploration of Exascale
Computing (eX3), which is financially supported by the Research Council of Norway under
contract 270053.

R.P., M.B. and L.D. have received support from the project PRIN2022, MUR, Italy,
2023–2025, 202232A8AN “Computational modeling of the heart: from efficient numerical
solvers to cardiac digital twins”. R.P. also has received support from the INdAM GNCS
project CUP E53C23001670001.

F.R. has received support from the project PRIN2022, MUR, Italy, 2023–2025, P2022N5ZNP
“SIDDMs: shape-informed data-driven models for parametrized PDEs, with application to
computational cardiology”.

R.P., M.B., F.R. and L.D. acknowledge the ”Dipartimento di Eccellenza 2023-2027”,
MUR, Italy, Dipartimento di Matematica, Politecnico di Milano.

P.C.A. acknowledges the consortium iNEST (Interconnected North-East Innovation Ecosys-
tem), Piano Nazionale di Ripresa e Resilienza (PNRR) – Missione 4 Componente 2, Inves-
timento 1.5 – D.D. 1058 23/06/2022, ECS00000043, supported by the European Union’s
NextGenerationEU program.

R.P., M.B., F.R., P.C.A. and L.D. acknowledge their membership to INdAM GNCS -
Gruppo Nazionale per il Calcolo Scientifico (National Group for Scientific Computing, Italy).

M.P. acknowledges support through the NWO Veni Talent Award 20058 and the Euro-
pean Union’s Horizon Europe research and innovation programme under grant agreement
No 101136728 (VITAL).

C.A. acknowledges funding by the Austrian Science Fund (FWF), grant DOIs 10.55776/P37063
and 10.55776/I4652. For open access purposes, the author has applied a CC BY public copy-
right license to any author-accepted manuscript version arising from this submission.

References

[1] Andrew E Anderson, Benjamin J Ellis, and Jeffrey A Weiss. “Verification, valida-
tion and sensitivity studies in computational biomechanics”. In: Computer methods in
biomechanics and biomedical engineering 10.3 (2007), pp. 171–184.

[2] Sander Land, Viatcheslav Gurev, Sander Arens, Christoph M. Augustin, Lukas Baron,
Robert Blake, Chris Bradley, Sebastian Castro, Andrew Crozier, Marco Favino, Thomas
E. Fastl, Thomas Fritz, Hao Gao, Alessio Gizzi, Boyce E. Griffith, Daniel E. Hur-
tado, Rolf Krause, Xiaoyu Luo, Martyn P. Nash, Simone Pezzuto, Gernot Plank, Si-
mone Rossi, Daniel Ruprecht, Gunnar Seemann, Nicolas P. Smith, Joakim Sundnes,
J. Jeremy Rice, Natalia Trayanova, Dafang Wang, Zhinuo Jenny Wang, and Steven A.

35



Niederer. “Verification of cardiac mechanics software: benchmark problems and solu-
tions for testing active and passive material behaviour”. In: Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 471.2184 (Dec. 2015),
p. 20150641. doi: 10.1098/rspa.2015.0641.

[3] Katherine R Saul, Xiao Hu, Craig M Goehler, Meghan E Vidt, Melissa Daly, Anca
Velisar, and Wendy M Murray. “Benchmarking of dynamic simulation predictions in
two software platforms using an upper limb musculoskeletal model”. In: Computer
methods in biomechanics and biomedical engineering 18.13 (2015), pp. 1445–1458.

[4] Christoph Oefner, Sven Herrmann, Maeruan Kebbach, Hans-E Lange, Daniel Kluess,
and Matthias Woiczinski. “Reporting checklist for verification and validation of finite
element analysis in orthopedic and trauma biomechanics”. In: Medical Engineering &
Physics 92 (2021), pp. 25–32.

[5] Vijay Vedula, Stefania Fortini, Jung-Hee Seo, Giorgio Querzoli, and Rajat Mittal.
“Computational modeling and validation of intraventricular flow in a simple model
of the left ventricle”. In: Theoretical and Computational Fluid Dynamics 28.6 (Nov.
2014), 589–604. doi: 10.1007/s00162-014-0335-4.

[6] Marc Hirschvogel, Marina Bassilious, Lasse Jagschies, Stephen M.Wildhirt, and Michael
W. Gee. “A monolithic 3D-0D coupled closed-loop model of the heart and the vascular
system: Experiment-based parameter estimation for patient-specific cardiac mechan-
ics”. In: International Journal for Numerical Methods in Biomedical Engineering 33.8
(2017), e2842. doi: 10.1002/cnm.2842.
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vacheva, Robin Moss, Eike Moritz Wülfers, Gunnar Seemann, Christian Wieners,
and Axel Loewe. “Electro-Mechanical Whole-Heart Digital Twins: A Fully Coupled

36

https://doi.org/10.1098/rspa.2015.0641
https://doi.org/10.1007/s00162-014-0335-4
https://doi.org/10.1002/cnm.2842
https://doi.org/10.1007/s10237-018-1098-4
https://doi.org/10.1007/s10237-018-1098-4
https://doi.org/10.1002/cnm.3140
https://doi.org/10.1016/j.cma.2021.114092


Multi-Physics Approach”. In: Mathematics 9.11 (May 2021), p. 1247. doi: 10.3390/
math9111247.

[11] M. Peirlinck, F. Sahli Costabal, J. Yao, J. M. Guccione, S. Tripathy, Y. Wang, D.
Ozturk, P. Segars, T. M. Morrison, S. Levine, and E. Kuhl. “Precision medicine in
human heart modeling”. In: Biomechanics and Modeling in Mechanobiology 20.3 (Feb.
2021), pp. 803–831. doi: 10.1007/s10237-021-01421-z.

[12] Michele Bucelli, Alberto Zingaro, Pasquale Claudio Africa, Ivan Fumagalli, Luca Dede’,
and Alfio Quarteroni. “A mathematical model that integrates cardiac electrophysiol-
ogy, mechanics, and fluid dynamics: Application to the human left heart”. In: Inter-
national Journal for Numerical Methods in Biomedical Engineering 39.3 (Jan. 2023).
doi: 10.1002/cnm.3678.

[13] Marco Fedele, Roberto Piersanti, Francesco Regazzoni, Matteo Salvador, Pasquale
Claudio Africa, Michele Bucelli, Alberto Zingaro, Luca Dede’, and Alfio Quarteroni.
“A comprehensive and biophysically detailed computational model of the whole human
heart electromechanics”. In: Computer Methods in Applied Mechanics and Engineering
410 (May 2023), p. 115983. doi: 10.1016/j.cma.2023.115983.

[14] Will Zhang, Javiera Jilberto, Gerhard Sommer, Michael S. Sacks, Gerhard A. Holzapfel,
and David A. Nordsletten. “Simulating hyperelasticity and fractional viscoelasticity in
the human heart”. In: Computer Methods in Applied Mechanics and Engineering 411
(June 2023), p. 116048. doi: 10.1016/j.cma.2023.116048.

[15] Cesare Corrado, Jean-Frédéric Gerbeau, and Philippe Moireau. “Identification of weakly
coupled multiphysics problems. Application to the inverse problem of electrocardiogra-
phy”. In: Journal of Computational Physics 283 (Feb. 2015), 271–298. doi: 10.1016/
j.jcp.2014.11.041.

[16] Radomir Chabiniok, Vicky Y Wang, Myrianthi Hadjicharalambous, Liya Asner, Jack
Lee, Maxime Sermesant, Ellen Kuhl, Alistair A Young, Philippe Moireau, Martyn P
Nash, et al. “Multiphysics and multiscale modelling, data–model fusion and integration
of organ physiology in the clinic: ventricular cardiac mechanics”. In: Interface focus
6.2 (2016), p. 20150083.

[17] Alexandre Imperiale, Dominique Chapelle, and Philippe Moireau. “Sequential data
assimilation for mechanical systems with complex image data: application to tagged-
MRI in cardiac mechanics”. In: Advanced Modeling and Simulation in Engineering
Sciences 8.1 (Jan. 2021). doi: 10.1186/s40323-020-00179-w.

[18] Gerhard A. Holzapfel and Ray W. Ogden. “Constitutive modelling of passive my-
ocardium: a structurally based framework for material characterization”. In: Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 367.1902 (Sept. 2009), pp. 3445–3475. doi: 10.1098/rsta.2009.0091.

[19] J. Bestel, F. Clément, and M. Sorine. “A Biomechanical Model of Muscle Contraction”.
In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001.
Springer Berlin Heidelberg, 2001, pp. 1159–1161. doi: 10.1007/3-540-45468-3_143.

37

https://doi.org/10.3390/math9111247
https://doi.org/10.3390/math9111247
https://doi.org/10.1007/s10237-021-01421-z
https://doi.org/10.1002/cnm.3678
https://doi.org/10.1016/j.cma.2023.115983
https://doi.org/10.1016/j.cma.2023.116048
https://doi.org/10.1016/j.jcp.2014.11.041
https://doi.org/10.1016/j.jcp.2014.11.041
https://doi.org/10.1186/s40323-020-00179-w
https://doi.org/10.1098/rsta.2009.0091
https://doi.org/10.1007/3-540-45468-3_143


[20] Gerhard Sommer, Andreas J. Schriefl, Michaela Andrä, Michael Sacherer, Christian
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[75] David Holz, Denisa Martonová, Emely Schaller, Minh Tuan Duong, Muhannad Alka-
ssar, Michael Weyand, and Sigrid Leyendecker. “Transmural fibre orientations based
on Laplace–Dirichlet-Rule-Based-Methods and their influence on human heart simu-
lations”. In: Journal of Biomechanics 156 (July 2023), p. 111643. doi: 10.1016/j.
jbiomech.2023.111643.

[76] Mathias Peirlinck, Matthieu De Beule, Patrick Segers, and Nuno Rebelo. “A modular
inverse elastostatics approach to resolve the pressure-induced stress state for in vivo
imaging based cardiovascular modeling”. In: Journal of the Mechanical Behavior of
Biomedical Materials 85 (2018), pp. 124–133. doi: https://doi.org/10.1016/j.
jmbbm.2018.05.032.

[77] Debao Guan, Faizan Ahmad, Peter Theobald, Shwe Soe, Xiaoyu Luo, and Hao Gao.
“On the AIC-based model reduction for the general Holzapfel–Ogden myocardial con-
stitutive law”. In: Biomechanics and Modeling in Mechanobiology 18.4 (Apr. 2019),
1213–1232. doi: 10.1007/s10237-019-01140-6.

43

https://doi.org/10.1371/journal.pone.0092792
https://doi.org/10.1016/j.euromechsol.2013.10.009
https://doi.org/10.1016/j.jbiomech.2023.111643
https://doi.org/10.1016/j.jbiomech.2023.111643
https://doi.org/https://doi.org/10.1016/j.jmbbm.2018.05.032
https://doi.org/https://doi.org/10.1016/j.jmbbm.2018.05.032
https://doi.org/10.1007/s10237-019-01140-6


MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

107/2024 Chen, J.; Ballini, E.; Micheletti, S.

Active Flow Control for Bluff Body under High Reynolds Number Turbulent Flow Conditions

Using Deep Reinforcement Learning

106/2024 Brunati, S.; Bucelli, M.; Piersanti, R.; Dede', L.; Vergara, C.

Coupled Eikonal problems to model cardiac reentries in Purkinje network and myocardium

105/2024 Bartsch, J.; Barakat, A.A.; Buchwald, S.; Ciaramella, G.; Volkwein, S.; Weig, E.M.

Reconstructing the system coefficients for coupled harmonic oscillators

104/2024 Cerrone, D.; Riccobelli, D.; Vitullo, P.; Ballarin, F.; Falco, J.; Acerbi, F.; Manzoni, A.; Zunino,

P.; Ciarletta, P.

Patient-specific prediction of glioblastoma growth via reduced order modeling and neural

networks

103/2024 Fois, M.; Gatti, F.; de Falco, C.; Formaggia, L.

A comparative analysis of mesh-based and particle-based numerical methods for landslide

run-out simulations

102/2024 Bucelli, M.

The lifex library version 2.0

101/2024 Bonetti, S.; Corti, M.

Unified discontinuous Galerkin analysis of a thermo/poro-viscoelasticity model

100/2024 Farenga, N.; Fresca, S.; Brivio, S.; Manzoni, A.

On latent dynamics learning in nonlinear reduced order modeling

99/2024 Ragni, A.; Masci, C.; Paganoni, A. M.

Analysis of Higher Education Dropouts Dynamics through Multilevel Functional Decomposition

of Recurrent Events in Counting Processes

98/2024 Castiglione, C.; Arnone, E.; Bernardi, M.; Farcomeni, A.; Sangalli, L.M.

PDE-regularised spatial quantile regression


	qmox108-copertina
	mox-2024122711454
	Introduction
	The mathematical model
	Strong form
	Material model
	Pressure model

	Benchmark 1: monoventricular mechanics
	Geometry
	Fibers
	Step 0 (non-blinded): Splitting passive and active responses
	Case A: Active response
	Case B: Passive response

	Step 1 (non-blinded): active and passive response
	Step 2: Blinded variation of physical parameters

	Benchmark 2: biventricular mechanics (blinded)
	Strong formulation
	Geometry
	Fibers
	Physical constants and evaluation of results

	Numerical solvers and participants
	Results
	Benchmark 1
	Step 0 (non-blinded): Splitting passive and active response
	Step 1 (non-blinded): active and passive response
	Step 2

	Benchmark 2

	Discussion
	Limitations
	Conclusion
	Appendix: Fiber convention

	qmox108-terza_di_copertina

