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Abstract

Uncertainty quantification (UQ) tasks, such as sensitivity analysis and parameter estimation, entail a
huge computational complexity when dealing with input-output maps involving the solution of nonlinear
differential problems, because of the need to query expensive numerical solvers repeatedly. Projection-
based reduced order models (ROMs), such as the Galerkin-reduced basis (RB) method, have been exten-
sively developed in the last decades to overcome the computational complexity of high fidelity full order
models (FOMs), providing remarkable speedups when addressing UQ tasks related with parameterized
differential problems. Nonetheless, constructing a projection-based ROM that can be efficiently queried
usually requires extensive modifications to the original code, a task which is non-trivial for nonlinear
problems, or even not possible at all when proprietary software is used. Non-intrusive ROMs – which
rely on the FOM as a black box – have been recently developed to overcome this issue. In this work, we
consider ROMs exploiting proper orthogonal decomposition to construct a reduced basis from a set of
FOM snapshots, and Gaussian process regression (GPR) to approximate the RB projection coefficients.
Two different approaches, namely a global GPR and a tensor-decomposition-based GPR, are explored
on a set of 3D time-dependent solid mechanics examples. Finally, the non-intrusive ROM is exploited
to perform global sensitivity analysis (relying on both screening and variance-based methods) and pa-
rameter estimation (through Markov chain Monte Carlo methods), showing remarkable computational
speedups and very good accuracy compared to high-fidelity FOMs.

Keywords: uncertainty quantification; reduced order modeling; Gaussian process regression; nonlinear
solid mechanics; sensitivity analysis; parameter estimation

1 Introduction

Applied sciences and engineering problems, such as those arising in structural mechanics, are often described
in terms of (time-dependent, nonlinear) partial differential equations (PDEs) that may be parameterized,
i.e., involving several parameters to account for, e.g., different material properties, source terms, data, or
geometrical features. Discrete, high-fidelity approximations of the PDE solutions can be computed by means
of full order models (FOMs), which are usually computationally demanding - both in terms of CPU time
and memory requirements - as fine computational grids and small time steps are needed to ensure accuracy
of the solution. Despite the computational power available nowadays, relying on FOMs remains prohibitive
in multi-query contexts, such as in the case of uncertainty quantification (UQ) tasks.

When dealing with differential models hampered by uncertainty on the (possibly, many) input parameters,
it may be useful for multiple purposes (i) to detect and rank those inputs which need to be measured in order
to reduce the output variance, (ii) to detect the parameters that have a better chance of being estimated in
a subsequent estimation process, and (iii) to identify non-influential inputs in order to fix them to nominal
values within their range of variability. To perform these tasks, global sensitivity analysis (SA) methods,
such as screening methods [Mor91] and variance-based methods [Sob90], are commonly used in a variety
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of applications. However, computing sensitivity indices in the case of high-dimensional parameter spaces
requires a large number of input-output evaluations (especially when SA is performed through Monte Carlo
integration), so that the overall computational cost can become prohibitively expensive when relying on high-
fidelity FOMs. Efficient surrogate models may be built [LGMS17], e.g., to compute the sensitivity indices
directly using analytic formulas based on suitable regression predictors [Sud08, CLLZ20], or to alleviate the
cost of each forward simulation, eventually in a multi-fidelity framework [QPO+18].

Another important problem addressed in real-world applications is the necessity to recover information
about input parameters from limited and noisy observations of quantities of interest (QoIs), that are outputs
computed using the problem solution. When addressing parameter estimation in a Bayesian framework,
the solution to this inverse UQ problem is provided in terms of the posterior distribution of the unknown
inputs conditioned on the observations. However, this distribution is not known analytically, and one needs
to rely on sampling techniques, such as Markov chain Monte Carlo (MCMC), to characterize it and derive
suitable statistics. Nonetheless, these methods require repeated (often, millions of) evaluations of the input-
output map, so that relying on expensive high-fidelity FOMs becomes unfeasible. Different approaches can
be employed to reduce the cost of solving parameter estimation problems [FMWvBW10], such as lowering
the number of forward simulations required, reducing the dimensionality of the input space, or relying on
efficient surrogate models for the solution to the forward problem [LM14, LMQR14, CMW15, YMK21].

To tackle both SA and inverse UQ scenarios, we adopt a semi-intrusive approach by relying on a reduced
order model (ROM) to compute efficient sensitivity estimates and posterior densities of the problem param-
eters, while keeping a good level of accuracy. ROMs featuring smaller dimension, i.e., a lower number of
degrees of freedom (DOFs), have been extensively developed during the last decades to overcome the compu-
tational complexity of high-fidelity FOMs. Many of these reduction approaches rely on the assumption that
the high-fidelity solution manifold, that is the set of all FOM solutions as the input parameters change, can
be well approximated by a low-dimensional linear space, and employ the proper orthogonal decomposition
(POD) to build such a reduced basis (RB) able to capture the most dominant features of the original system.
The high-dimensional solution is thus reconstructed as a linear combination of these (hopefully) few modes
with a small loss of accuracy. In particular, the evaluation of high-fidelity solutions at several points in the
time and parameter domains, the construction of the POD basis and the assembling of the ROM arrays,
can be performed only once, offline. Then, for unseen time-parameter instances, the RB coefficients can be
rapidly computed online, in order to reconstruct the high-dimensional solution. The key of success of these
ROMs lies in the full decoupling of the two stages, meaning that the online phase is independent of the
high-fidelity dimension. ROMs can then be divided into intrusive and non-intrusive, according to the way
the ROM approximation is generated and the reduced arrays are built.

Intrusive projection-based ROMs (see, e.g., [BGW15] and references therein), such as reduced basis
methods [QMN16, HRS16], are constructed by projecting the high-fidelity model operators onto the linear
subspace spanned by a set of problem-dependent basis functions. These methods have been successfully
applied to a wide range of problems [DHO12, AZF12, RR16, GTS17, BMQ17], as they allow to retain the
underlying structure of the high-fidelity FOM and to approximate the whole field variables that solve the
FOM. Nonetheless, they require extensive code modifications, which might be non-trivial or even not possible
when proprietary software is used. Moreover, in the case of nonlinear problems, or problems featuring a non-
affine parametric dependence, assembling ROM operators requires a further level of hyper-reduction, relying
on, e.g., the empirical interpolation method (EIM) [BMNP04] and its variants [CS10, TDR13, LMQR14,
NMA15]. To overcome this difficulty, deep learning-based strategies for the approximations of nonlinear
ROM operators have been recently developed in [CFM22], showing a remarkable speed-up of the online
phase also for complex time-dependent nonlinear applications, as reported in [CFMQ22]. Nonetheless, at
every time step one must still solve the reduced problem and compute the solution vector, thus hampering
the efficiency of the ROM in those cases where only scalar or low-dimensional QoIs need to be evaluated, or
only the solution at prescribed time instances is required.

To overcome these issues, alternative data-driven methods can be used for the approximation of the RB
coefficients without resorting to (Galerkin) projection. In these cases, the FOM solution is projected onto the
RB space and the combination coefficients are approximated by means of a surrogate model, exploiting, e.g.,
Gaussian process regression (GPR) [GH18, GH19, KGH20, ZGH19], radial basis function (RBF) approxi-
mation [ADVN13] or artificial neural networks (ANNs) [HU18, GLH+21, SDM21]. The high-fidelity solver
is thus used only offline as a “black-box” to generate the necessary data for the RB construction and the
training of the surrogate model. Non-intrusive POD-based approaches using RBFs to interpolate the ROM
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coefficients have been proposed in [ADVN13, WHM13, XFPN17] and applied to nonlinear parameterized
time-dependent PDEs. In [HU18] ANNs have been employed to build a regression model to compute the
coefficients of a POD-based ROM, focusing on steady PDEs; a further extension to time-dependent nonlinear
problems, i.e., unsteady flows, has been addressed in [WHR19]; see also, e.g., [SMPW19, YYG19] for the
use of machine learning strategies to approximate the POD coefficient. Alternatively, POD-GPR reduced
order models have been developed in [GH18] for steady nonlinear structural analysis and in [GH19] for time-
dependent problems, and successfully used in engineering applications, such as electromagnetic scattering
problems [ZLL21] and naval engineering problems [ODR20]. Non-intrusive ROMs using RBF, GPR, and
ANN regressions are compared in [BHKE20] and applied to complex flow problems in a time-dependent,
deforming computational domain. See instead [GMA+22, CGMH23] for an alternative use of ANNs to per-
form regression in the context of multi-fidelity methods relying on models of different fidelities. These latter
may involve data-driven projection-based [PW16, GMW22] ROMs or recently developed deep learning-based
ROMs [FDM21, FM22, FMZ23, BGB22].

In this work, we apply non-intrusive ROMs for the efficient solution to nonlinear time-dependent param-
eterized problems arising in solid mechanics, in order to accelerate SA and the solution to Bayesian inverse
problems. Once POD has been used to construct a low-dimensional linear subspace – thus providing a way
to embed physics into the ROM and to make it explainable – the RB expansion coefficients are approximated
by means of GPR models, taking into account (and comparing) two different approaches [GH18] and [GH19],
both ensuring non-intrusiveness and online efficiency. With respect to other data-driven approaches, such
as DNNs, the advantages of POD-GPR ROMs are twofold: on one hand, they require a relatively small
amount of data to be trained; on the other hand, they allow to reconstruct the whole solution field, so that
any quantity of interest can be evaluated without the need to retrain the model, whereas surrogate models
would directly approximate the input-output map. Moreover, relying on GPRs allows to take into account
the emulator uncertainty, which represents a further source of uncertainty in our problem.

Compared to the existing literature – see, e.g., [GH18, GH19] – we address in this paper the approximation
of time-dependent, nonlinear problems set over three-dimensional domains, also featuring a rather large
number of input parameters. Moreover, a full UQ pipeline is shown, including both sensitivity analysis and
parameter estimation, exploiting the non-intrusive ROM approximation enabled by the combined POD-GPR
framework, and assessing its accuracy against the results obtained with a high-fidelity FOM based on the
finite element method.

This work is structured as follows. In Section 2, we review some basic facts about the RB method for
time-dependent parameterized problems, describing in Section 3 two different approaches based on GPRs for
the efficient approximation of the RB coefficients. Numerical results related with two test cases in nonlinear
solid mechanics are then presented in Section 4, where POD-GPR ROMs are compared in terms of efficiency
and accuracy. In Section 5 the solution to SA and inverse UQ problems is carried out by means of the
POD-GPR ROMs. Finally, some conclusions are drawn in Section 6.

2 RB methods for parametrized PDEs: basic facts and notation

Our goal is to efficiently solve nonlinear time-dependent PDE problems depending on a set of input parame-
ters µ ∈ P, where P ⊂ Rp is a compact set representing the parameter space, and p is the number of inputs.
In particular, we focus on problems governed by the elastodynamics equation

ρ∂2tu(X, t;µ)−∇X · P (u(X, t;µ);µ) = 0 in Ω0 × T , (1)

suitably complemented by initial and boundary conditions. We denote the unknown state solution, i.e., the
displacement field, by u = u(X, t;µ), depending on the spatial coordinate X∈ Ω0 ⊂ R3 in the reference
configuration, the time variable t∈ T ⊂ R and the parameter vector µ ∈ P, and by P the first Piola-Kirchhoff
stress tensor. Moreover, ρ refers to the material density, which is assumed to be constant throughout the
deformation. Once this problem has been discretized in space relying, e.g., on the Galerkin finite element
method, a dynamical system of dimension Nh is obtained under the form{

ρMüh(t;µ) +N(uh(t;µ), t;µ) = Fext(t;µ) in T ,
uh(0;µ) = uh,0(µ), u̇h(0;µ) = u̇h,0(µ),

(2)

where M ∈ RNh×Nh denotes the mass matrix, N ∈ RNh is the (nonlinear) vector of internal forces, Fext ∈
RNh is the vector of external forces and uh(t) ∈ RNh collects the degrees of freedom (DOFs) that represent
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the (semi-discrete) high fidelity solution at time t. Note that fully implicit schemes are employed for the
sake of numerical stability, since they do not pose restrictions on the time step, otherwise required due to
the highly nonlinear terms of the strain energy density function considered in this work. Here, Nh denotes
the number of DOFs, which depends on the underlying computational mesh and the space discretization
used. Relying on finite differences for time discretization, and therefore approximating

u̇h(t
n,µ) ≈ uh(t

n,µ)− uh(t
n−1,µ)

∆t
, üh(t

n,µ) ≈ uh(t
n,µ)− 2uh(t

n−1,µ) + uh(t
n−2,µ)

∆t2
,

where {t0 < t1 < · · · < tNt} is a uniform partition of T with time step ∆t, we obtain a sequence of fully-
discrete problems that in algebraic form read as follows: given µ ∈ P, for tn, n = 1, . . . , Nt, find the discrete
high-fidelity displacement uh(t

n;µ) ∈ RNh such that

ρ

∆t2
Muh(t

n,µ) +N(uh(t
n,µ), tn;µ)− 2ρ

∆t2
Muh(t

n−1,µ) +
ρ

∆t2
Muh(t

n−2,µ)− Fext(tn,µ) = 0, (3)

where uh(t
−1,µ) and uh(t

0,µ) are given by the initial conditions. The solution to the nonlinear system (3)
can be finally computed by means of iterative algorithms, such as the Newton-Raphson method. However, to
achieve sufficient accuracy for real-world applications, either the FOM dimension Nh or the number of time
steps Nt, as well as the total Newton iterations, can become extremely large, implying huge computational
costs.

Therefore, we rely on the RB method [QMN16, HRS16, HPR22] to seek a low-dimensional approximation
of uh(t;µ) ∈ RNh as a linear combination of N ≪ Nh parameter-independent basis functions constructed
by performing proper orthogonal decomposition (POD) on a set of sampled FOM solutions. By denoting
as V ∈ RNh×N the matrix collecting column-wise the DOFs of the RB functions, a reduced order solution
uRB
h (t;µ) ∈ RNh can be computed by projecting the FOM solution onto Col(V), i.e.,

uRB
h (t;µ) = VVTuh(t;µ),

so that we only need to recover the underlying map between (t,µ) and the reduced coefficients, that is

q : (t,µ) 7→ VTuh(t;µ),

for (t;µ) ∈ T × P. Note that, in this case, it holds uRB
h (t;µ) = arg minx∗

h∈Col(V)∥uh(t;µ)− x∗
h∥. However,

when employing a Galerkin projection to compute the RB coefficients, the assembly of the reduced system
still depends on the high-fidelity dimension due to nonlinearity of the problem, so that a further level of
hyper-reduction is required to ensure computational efficiency, see, e.g., [BMNP04, CS10, NMA15, TR13].
The RB method thus yields an intrusive strategy to generate the reduced-order solution, with hyper-reduction
techniques possibly hampering the convergence properties of the nonlinear solvers at the ROM level. Based on
[GH18, GH19], we resort to nonlinear regression to build efficient non-intrusive ROMs and obtain probabilistic
distributions of the projection coefficients for each new value of the input vector, useful to perform UQ studies.

3 Reduced order surrogate modeling with GP Regression

To obtain the projection coefficients q(t;µ), for (t,µ) ∈ T ×P, and thus recover the RB solution uRB
h (t;µ) ≈

uh(t;µ), we rely on two different regression-based approaches, to which we refer to as global, outlined in
Section 3.2, and tensor-decomposition-based, proposed in [GH19] and described in Section 3.3. We point out
that, since the RB coefficients are uncorrelated, we rely on independent single-output GPs. This strategy
has the great advantage that the output to each GP is a scalar, thus requiring the inversion of a matrix of
dimension Ndata, rather than N · Ndata as formulated in vector-valued GPRs. Since the time required to
invert a matrix scales almost cubically, a lower overall training cost is expected for single-output GPs with
respect to multi-output ones. Moreover, multiple GPs can be trained simultaneously on different processors.

3.1 Gaussian Process (GP) Regression

Given a dataset D = (X,y) =
{
(x(i), y(i)) ∈ X × Y ⊂ Rd × R | i = 1, . . . , Ndata

}
, where

X =
[
x(1)| . . . |x(Ndata)

]
and y = [y(1), . . . , y(Ndata)]T
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are the observed input matrix and the associated output vector, respectively, one wants to build a model
f : X → Y which is able to infer the relationship between the d-dimensional independent variable x and
the scalar dependent variable y, hence to determine the conditional distribution of the target output given
the input. Since there may be more than a regression function f that fit the data equally well, a Gaussian
process (GP) [WR06] is used to assign a probability to each of these functions. Hence, given a mean m(x)
and a covariance function (or kernel) κ(x,x′), one assumes that the prior of f is a GP and write

f(x) ∼ GP(m(x), κ(x,x′)).

Remark 1. Typically, the mean is chosen to be constant, e.g., equal to the mean of the training set (or to
zero), whereas many different choices are available for the covariance κ : X ×X → R, such as the radial basis
function (RBF) kernel

κ(x,x′) = σ2
f exp

(
−∥x− x′∥2

2γ2

)
= σ2

f exp

−1

2

d∑
j=1

(xj − x′j)
2

γ2

 , (4)

whose hyperparameters are the signal variance σ2
f and the length scale γ. Alternatively, the automatic

relevance determination (ARD) RBF kernel assumes each dimension as independent from the others, thus
allowing for different length scales γj, for j = 1, . . . , d. A non-stationary covariance function may also be
defined via a deep neural network architecture [LBN+17, Guo21].

The goal of GP regression is to incorporate the knowledge provided by the training data D into the
prior to obtain the posterior (predictive) distribution. Even though in this work we rely on synthetic data,
GPs can be trained on experimental outputs, so that measurement errors should be taken into account.
Hence, in order to be as extensive as possible, we assume that the training output labels are corrupted
by an additive independent identically distributed Gaussian noise ϵ ∼ N (0, σ2

y), i.e., y
(i) = f(x(i)) + ϵ, for

i = 1, . . . , Ndata. Given a new set of testing point x∗ /∈ D, according to the theorem of conditional Gaussian
(see, e.g., [Mur12]), the conditional distribution of the predicted GP realization is given by

f(x∗) | X,y,x∗ ∼ GP(m̂(x∗), κ̂(x∗,x∗′)),

where

m̂(x∗) = m(x∗) + κ(x∗,X)(κ(X,X) + σ2
yI)

−1(y −m(X)),

κ̂(x∗,x∗′) = κ(x∗,x∗′)− κ(x∗,X)(κ(X,X) + σ2
yI)

−1κ(X,x∗).

The hyperparameters of the GPR model, such as θ = (σy, σf , γ) for the RBF kernel, highly influence the
predictive performances and should be optimized, e.g., by maximizing the log-likelihood

ln(π(y|X,θ)) = −1

2

(
yT (κ(X,X) + σ2

yI)
−1y + ln( det(κ(X,X) + σ2

yI)) +Ndataln(2π)
)
. (5)

Once the hyperparameters have been optimized on the training set D, the GPR model can be used to perform
inference on an unseen test set, using for the regression the mean function calculated by the posterior, denoted
from now on – with a slight abuse of notation – as f̂ .

Remark 2. A common practice to handle inputs of varying magnitude is to perform feature scaling on the
training and test datasets. Widely used transformations of the data v ∈ Rm and M ∈ Rm×n are:

1. the min-max normalization ξvmin-max and ξMmin-max, such that for i = 1, . . . ,m,

(ξvmin-max)i : vi 7→
vi −minv

maxv −minv
, (ξMmin-max)i : Mi: 7→

Mi: −mink Mik

maxk Mik −mink Mik
; (6)

2. the standardization ξMstand or ξvstand, such that for i = 1, . . . ,m,

(ξvstand)i : vi 7→
vi −mean v

std v
, (ξMstand)i : Mi: 7→

Mi: −meank Mik

stdk Mik
. (7)
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3.2 Global approach

In a first attempt, our goal is to directly learn the map between the time/parameter values and the projection
coefficients onto the RB space, that is

(t,µ) 7→ q(t;µ) = VTuh(t;µ),

by means of a regression model. In particular, we want to infer each RB coefficient qℓ(t;µ), for ℓ = 1, . . . , N ,
by means of a GP trained on a NtNs-dimensional dataset of input-output pairs (X,yℓ), where

X =

[
t1 . . . tNt . . . t1 . . . tNt

µ1 . . . µ1 . . . µNs
. . . µNs

]
∈ R(p+1)×NtNs ,

yℓ = [qℓ(t
1;µ1), . . . , qℓ(t

Nt ;µ1) | . . . | qℓ(t1;µNs
), . . . , qℓ(t

Nt ;µNs
)]T + ε ∈ RNtNs ,

such that the mean of the posterior distribution, for ℓ = 1, . . . , N , can be used to make predictions for every
new input x∗ = (t∗,µ∗) ∈ T × P. This approach has been proposed in [GH18] for nonlinear structural
analysis, however restricted to quasi-static problems, and we refer to it as global, since time and parameter
are treated as a unique input variable. According to the notation of Section 3.1, we have Ndata = NtNs,
x(i) = (tni ,µmi

) and y(i) = qℓ(t
ni ,µmi

) + ε, for ℓ = 1, . . . , N , where ni ∈ {1, . . . , Nt} and mi ∈ {1, . . . , Ns}.
To handle values of different magnitudes, we apply the transformation (6) (or (7)) reported in Remark 2 to

(X,X∗) and (yℓ, f̂(X
∗)), for ℓ = 1, . . . , N , with M = X and v = yℓ, respectively. Here, X∗ ∈ R(p+1)×NtN

test
s

denotes the matrix whose columns are inputs x∗ unseen during training. Note that the minimum and the
maximum (or the mean and the standard deviation) are computed over the training arrays.

3.3 Tensor-decomposition-based regression approach

A different approach is the so-called tensor-decomposition-based regression developed in [GH19], here briefly
described. Let P ∈ RNt×Ns×(p+1) be such that

Pn,m,: =

[
tn

µm

]
, for n = 1, . . . , Nt, m = 1, . . . , Ns,

and let Qℓ ∈ RNt×Ns be the corresponding output matrix for the ℓ-th RB coefficient, that is

Qℓ =


qℓ(t

1;µ1) . . . qℓ(t
1;µNs

)
...

...

qℓ(t
Nt ;µ1) . . . qℓ(t

Nt ;µNs
)

 ,
for ℓ = 1, . . . , N . The (truncated) singular value decomposition (SVD) of Qℓ can be written as

Qℓ ≈ ΨℓΛℓ(Φℓ)T =

Nqℓ∑
k=1

λℓkΨ
ℓ
k(Φ

ℓ
k)

T ,

where Ψℓ
k and Φℓ

k are the k-th discrete time- and parameter-modes, respectively, and the truncation rank
Nqℓ is obtained for a chosen value of the SVD tolerance εSV D > 0, according to the percentage of variance
one wants to account for. By splitting P into two input matrices, we define the following arrays

Xt =


t1

...

tNt

 ∈ RNt×1, Xµ =


(µ1)

T

...

(µNs
)T

 ∈ RNs×p

related to the time instances and the model parameters, respectively, and the corresponding target outputs
yℓ,t := Ψℓ ∈ RNt×Nqℓ and yℓ,µ := Φℓ ∈ RNs×Nqℓ , possibly corrupted by noise.
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For k = 1, . . . , Nqℓ , our aim is to the learn the k-th continuous time-mode ψ̂ℓ
k(t) given {Xt, (yℓ,t)1:Nt,k},

and the k-th continuous parameter-mode ϕ̂ℓk(µ) given {Xµ, (yℓ,µ)1:Ns,k}, so that, for a new value x∗ =
(t∗;µ∗) ∈ T × P, we can compute

qℓ(x
∗) ≈ q̂ℓ(x

∗) =

Nqℓ∑
k=1

λℓkψ̂
ℓ
k(t

∗)ϕ̂ℓk(µ
∗).

Remark 3. For each component of the truncated SVD, i.e., for k = 1, . . . , Nqℓ , two Gaussian processes –
one for the time variable and the other for the parameter vector variable – are trained, so that 2

∑
ℓ=1,...,N Nqℓ

GPs are considered. Nonetheless, the dimensions of the training datasets are now much smaller with respect
to the previous global approach (Nt or Ns instead of NtNs), thus reducing the overall computational time
required for computing the optimal hyper-parameters.

As before, we employ two scaling strategies, namely the min-max normalization and the standardization.
In this case, the transformations in (6) or in (7) are applied to the time- and parameter-datasets separately.
To be more specific, the input datasets (Xt,X

∗
t ) and (Xµ,X

∗
µ) are scaled according to maps ξXt

⋆ and

ξXµ
⋆ , respectively, where ⋆ ∈ {min-max, stand}. Meanwhile, for ℓ = 1, . . . , N and k = 1, . . . , Nqℓ , the output

datasets are scaled by applying ξ
(yℓ,t)1:Nt,k
⋆ to ((yℓ,t)1:Nt,k, ψ̂

ℓ
k(X

∗
t )) and ξ(yℓ,µ)1:Ns,k

⋆ to ((yℓ,µ)1:Ns,k, ϕ̂
ℓ
k(X

∗
µ)).

We recall that X∗
t ∈ R(p+1)×Nt and X∗

µ ∈ R(p+1)×Ntest
s denote the matrices whose columns are inputs t∗ and

µ∗ unseen during training, respectively.

4 Numerical results

In this section, we present the results obtained on two benchmark problems inspired by those used for
verification of cardiac mechanics software [LGA+15], namely the deformation of a clamped rectangular
beam and the active contraction of a truncated ellipsoid, governed by the elastodynamics equation (1). In
particular, we focus on soft tissue mechanics [HO03], a vivid area of research in computational mechanics
characterized by many difficulties due do the presence of strong material anisotropy, large deformations,
highly nonlinear stress-strain behaviors. Although specific for this field, the proposed test cases can also
be of interest for other fields of application sharing similar features. For both test cases, we evaluate the
performances of the global and the tensor-decomposition-based approaches, either in terms of training time,
computational speed-up with respect to the high fidelity model and accuracy. Specifically, to test the fidelity
of the GPR predictions on the RB coefficients qℓ, for ℓ = 1, . . . , N , over the test set, we use the mean square
error (MSE)

MSE(qℓ) =
1

N test
s N test

t

Ntest
s∑

m=1

Ntest
t∑

n=1

(qℓ(t
n;µm)− q̂ℓ(t

n;µm))2

and the relative squared error (RSE)

RSE(qℓ) =

∑Ntest
s

m=1

∑Ntest
t

n=1 (qℓ(t
n;µm)− q̂ℓ(t

n;µm))2∑Ntest
s

m=1

∑Ntest
t

n=1 (qℓ(tn;µm)− q̄ℓ)2
, with q̄ℓ =

1

N test
s N test

t

Ntest
s∑

m=1

Ntest
t∑

n=1

qℓ(t
n;µm).

The overall accuracy of the ROMs with respect to the FOM is evaluated using the time-averaged absolute
and relative L2-errors defined as

tAE(µ) =
1

N test
t

Ntest
t∑

n=1

∥uh(t
n;µ)−Vq̂(tn;µ)∥L2 ,

tRE(µ) =
1

N test
t

Ntest
t∑

n=1

∥uh(t
n;µ)−Vq̂(tn;µ)∥L2

∥uh(tn;µ)∥L2

,

respectively, and their mean over the test set, i.e., mean
m=1,...,Ntest

s

tAE(µm) and mean
m=1,...,Ntest

s

tRE(µm).

The GPR models are implemented in Python using the library GPy [GPy12], a Gaussian processes
framework. All the computations have been performed on a Notebook with 2.60GHz Intel Core i7-9750H
CPU and 16GB RAM.
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Remark 4. Numerical simulations have been run in serial and GPs have been trained and tested sequentially,
i.e., on a outer loop from ℓ = 1 to ℓ = N . However, better performances with respect to CPU time can be
achieved by exploiting the independence of the GPR models associated to different RB coefficients, thus
performing training and testing in parallel.

4.1 Benchmark tests for nonlinear solid mechanics

For the setup of the benchmark test cases, we partition the boundary in three regions, corresponding to
displacement, pressure and stress-free conditions respectively. More precisely, we set Dirichlet boundary
conditions on a specific portion of the boundary ∂ΩD

0 and the pressure load

p(t;µ) = p̃
t

T

is applied on ∂ΩP
0 . Moreover, Neumann conditions are set on all other surfaces, i.e., ∂ΩN

0 = ∂Ω0\(∂ΩD
0 ∪

∂ΩP
0 ), and homogeneous initial conditions are prescribed at time t = 0 s.
Equation (1) must be further complemented with a suitable constitutive relation for the material which

can be expressed, e.g., as a nonlinear operator mapping the Green-Lagrange strain tensor

E(u) =
1

2
(F (u)TF (u)− I)

to the first Piola-Kirchhoff stress tensor P (u), where F (u) = I +∇Xu is the deformation gradient. In this
work, we consider a nearly-incompressible hyperelastic material with the following strain-energy function

W(F ) =
C

2
(eQ(E)−1) +

K

2
(J − 1) ln(J), (8)

such that P (u) = ∂W(F )/∂F . The first term is given by the Guccione’s constitutive law proposed in
[GCM95], and the second one is used to enforce incompressibility. Here, C > 0 is a scaling constant,
J = det(F (u)) measures the change in volume during motion, and K > 0 is the bulk modulus penalizing
large volume variations. In particular, we consider the following form for Q,

Q = bxE
2
xx + byE

2
yy + bzE

2
zz + bxy(E

2
xy + E2

yx) + bxz(E
2
xz + E2

zx) + byz(E
2
yz + E2

zy),

where bi, for i ∈ {x, y, z}, are related to the material stiffness in the different directions, and Eij , for
i, j ∈ {x, y, z}, are the components of the strain tensor E(u). Therefore, we end up with the following initial-
boundary value problem: given µ ∈ P, find the parameterized displacement field u(µ) : Ω0 × (0, T ) → R3

such that 

ρ∂2tu(X, t;µ)−∇X · P (u(X, t;µ);µ) = 0 in Ω0 × (0, T )

u(X, t;µ) = 0 on ∂ΩD
0 × (0, T )

P (u(X, t;µ);µ)ν = −p(t;µ)JF (u(X, t;µ);µ)−Tν on ∂ΩP
0 × (0, T )

P (u(X, t;µ);µ)ν = 0 on ∂ΩN
0 × (0, T )

u(X, t;µ) = 0, ∂tu(X, t;µ) = 0 in Ω0 × {0},

(9)

where ν denotes the outer normal unit vector.

4.1.1 Test 1: deformation of a beam

The first benchmark test deals with the deformation of a clamped rectangular beam due to a pressure load
acting on the bottom face ot the body. The problem is defined on the reference domain Ω0 = [0, 10−2]m×
[0, 10−3]m×[0, 10−3]m, reported in Figure 1 together with the computational hexahedral mesh. With respect
to system (9), we define ∂ΩD

0 = Ω0 ∩ {x = 0} and ∂ΩP
0 = Ω0 ∩ {z = 0}.

As input parameters, we consider those of the Guccione’s law, i.e., bf , bs, bn, bfs, bfn, bsn,K and G, and

the slope p̃ of the pressure load, such that µ = [bf , bs, bn, bfs, bfn, bsn,K,G, p̃] ∈ P =
⋃9

i=1[li, ri] ⊂ R9, see
Table 1.

The FOM is built on an hexahedral mesh with 1025 vertices using Q1-FE in space and a BDF1 scheme in
time with time step ∆t = 0.005 s and final time T = 0.25 s, so that Nh = 3075 and Nt = 50. In this setting,
the average CPU time required for computing the FOM solution for a given parameter vector is 48 s.
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Figure 1: Deformation of a beam. Reference geometry (left) and computational mesh (right).

bf bs bn bfs bfn bsn K C p̃

[kPa] [kPa] [kPa]

li 4 1 1 2 2 1 25 1 0.002

ri 12 3 3 6 6 3 75 3 0.006

Table 1: Deformation of a beam. Lower and upper bounds for the components of the parameter vector.

With the aim of analyzing and comparing the two POD-GPR approaches, namely the global the and
tensor-decomposition-based, we collect full-order snapshots at Ns = 100 parameter locations sampled in P
by latin hypercube sampling (LHS) for the construction of the RB functions. The same set solution vectors
is then split (8:2) into training and testing datasets, and used for the construction of the GPR models. We
point out that, unless otherwise specified, we use the same time points for training and testing, so that
N test

t = Nt.

Remark 5. For the POD-based ROMs to accurately approximate the FOM displacement field for any in-
put parameter, one needs to guarantee that the snapshots used for the construction of the RB basis suf-
ficiently capture the solution dynamics, so that the choice of the sampled parameter locations highly in-
fluences the accuracy of the ROM. Relying on random strategies may require a large number of high-
fidelity snapshots, leading to extremely expensive offline computational times. To overcome this issue,
[GH18, APLK19, GLH+21, CHJ+18] have adopted suitable adaptive sampling strategies. However, since
the overall computational cost of the test cases considered in this work is not cumbersome, these options have
not been taken into account. For instance, in [GH18] an active data selection strategy is adopted, based on
standard-deviation-based error indicator; GPR performances are then evaluated on a training set of increas-
ing size, up to the fulfillment of a suitable quality criterion. A locally adaptive sparse grid is employed in
[APLK19], whereas an adaptive greedy approach is considered in [CHJ+18], based on the idea of selecting as
samples those candidate points with highest ROM errors, according to a prescribed criterion.

4.1.2 Test 2: active contraction of a truncated ellipsoid

For the second problem, we assume as reference geometry Ω0 the truncated ellipsoid described in [LGA+15]
and reported in Figure 2, and consider a nearly-incompressible material governed by the Guccione et al.
strain-energy function (8). Moreover, we integrate active tension into the passive stress tensor by adding a
parameterized time-dependent term which is assumed to act only in the fiber direction, that is

P(u) =
∂W(F)

∂F
+ Ta(t;µ)(Ff ⊗ f),

where f ∈ R3 denotes the reference unit vector in the fiber direction and we assume

Ta(t;µ) = T̃a
t

T
,

for T̃a > 0. The base plane ∂ΩD
0 = Ω0∩{z = z̄} is fixed in all directions, and an external pressure in applied

at the inner boundary ∂ΩP
0 . Neumann conditions are finally applied at the outer surface ∂ΩN

0 .

9



Figure 2: Active contraction of a truncated ellipsoid. Reference geometry (left) and computational mesh
(right) of a truncated ellipsoid.

In addition to the material parameters and the slope p̃ of the pressure load, we consider the maximum
value T̃a of the active tension and the fiber orientation angles αepi and αendo at the outer and the inner

surfaces, respectively. Hence, µ = [bf , bs, bn, bfs, bfn, bsn,K,G, p̃, T̃a,αepi,αendo] ∈ P ⊂ R12, where the
parameter space P is reported in Table 2.

bf bs bn bfs bfn bsn K C p̃ T̃a αepi αendo

[kPa] [kPa] [kPa] [kPa] [◦] [◦]

li 6.6 1.65 1.65 3.3 3.3 1.65 40 1.5 14 49.5 −105.5 74.5

ri 9.4 2.35 2.35 4.7 4.7 2.35 60 2.5 16 70.5 −74.5 105.5

Table 2: Active contraction of a truncated ellipsoid. Parameters’ range.

The FOM is built on an hexahedral mesh with 6455 vertices using Q1-FE, thus obtaining Nh = 19365,
and a BDF1 scheme in time with ∆t = 0.005 s and T = 0.25 s, such that Nt = 50. For the construction
and evaluation of the reduced model, we sample 100 points in P using LHS and compute the corresponding
high-fidelity displacements, which are then split (8:2) into training and test sets. In this case, the CPU time
required to compute a single FOM solution is in average 6 min 11 s.

4.2 Comparison of global and tensor-decomposition POD-GPR approaches

4.2.1 Test 1: deformation of a beam

Reduced basis of different dimensions N can be constructed by performing POD on the FOM snapshots
matrix Sd using different truncation tolerances εPOD, as reported in Table 3. For the case at hand, N = 5
RB functions (corresponding to a POD tolerance of 5 · 10−4) are sufficient to obtain a good approximation
of the high-fidelity FOM solutions, given the fast decay of the singular values.

εPOD 10−3 5 · 10−4 10−4 5 · 10−5 10−5

N 4 5 8 12 22

Table 3: Deformation of a beam. Dimension of RB subspaces for different POD tolerances.

Since the GPR models highly depend on the choice of the covariance functions, we analyze their pre-
dictive performances using different kernels, namely polynomial, RBF and ARD-RBF, and different scaling
techniques, i.e., standardization and min-max normalization. For this comparison, we consider only the first
Ns = 50 training samples collected offline for the construction of the RB matrix V. We point out that, for
the tensor-decomposition-based approach, time- and parameter-modes are trained as GPs after the truncated
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SVD with tolerance 10−2 is computed, obtaining 3 ≤ Nℓ ≤ 6. We present here the results subdivided in
two parts: (i) first we address the GPRs predictions on the RB coefficients; (ii) then we assess the overall
accuracy of the ROM with respect to the FOM.

Predictions of GPRs on RB coefficients. Figure 3 reports the MSEs computed using different covari-
ance functions and scaling techniques, for both global and tensor-decomposition-based GPR models. In this
case, the ARD-RBF kernel is more accurate than the other covariance functions, whereas the standardiza-
tion and min-max normalization are almost comparable, with slightly better accuracy obtained using the
former option. As a consequence, from now on we will focus only on ARD-RBF kernels and scale the dataset
according to (7).

Figure 3: Deformation of a beam. Mean square error of global (left) and tensor-decomposition-based (right)
POD-GPR ROMs computed using different kernel types and scaling techniques, for N = 5.

We analyze the performances of the global and the tensor-decomposition-based POD-GPR ROMs in terms
of accuracy and efficiency by increasing the size of the training set from Ns = 10 to Ns = 80. The RSE
computed over the testing set is reported in Figure 4, showing a good improvement of the approximation
by both approaches as we increase the size of the training set from Ns = 10 to Ns = 40. As a larger
number of data has to be processed for increasing values of Ns, the offline computational cost also becomes
larger. However, we point out that the tensor-decomposition-based approach beats the global one in terms
of computational efficiency during training, as this is performed for each GP on a much smaller dataset (see
Remark 3).

In Table 4, we report the training time and the RSEs computed when Ns = 50. The true projection
coefficients, the predictive means and their 95% confidence level computed for two different input parameters
are shown in Figure 5 and 6 for the global and the tensor-decomposition-based GPR models, respectively. We
observe that, in both cases, the errors between the POD-GPR ROMs approximation and the true solution
are essentially bounded by the 95% confidence levels.

Accuracy of ROM w.r.t FOM. The reduced-order solutions Vq̂(tn; ·), for n = 1, . . . , Nt, are recon-
structed online to validate the overall accuracy of the regression models with respect to the FOM. First of
all, we compute the errors between the high-fidelity solution uh and its projection onto the RB space, i.e.,
VVTuh, averaged over the whole test set, obtaining tAE ≈ 1.27·10−5 and tRE ≈ 2.01·10−3. These represent
the best (linear) approximation errors in Col(V), and thus the comparative values for our ROMs. From the
results reported in Table 5, we observe good accuracy of the GPR models with respect to either the high-
fidelity solutions as well as to the RB projection approximations. We recall that the tensor-decomposition-
based approach beats the global one in terms of CPU time required during the offline training. For this
test case the FOM requires in average 48 s to compute the solution dynamics given the parameter vector,
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Figure 4: Deformation of a beam. Relative squared error of the global (top left) and the tensor-
decomposition-based (top right) POD-GPR ROMs over the size of the training set. Corresponding training
times (bottom) are also reported. These results have been obtained taking into account a testing set of
N test

s = 20 parameters, unseen during training.

Global GPR TD-based GPR

Training CPU time 881 s 6 s

RSE(q1) 0.0029 0.0020

RSE(q2) 0.0545 0.0535

RSE(q3) 0.0732 0.0612

RSE(q4) 0.1061 0.1532

RSE(q5) 0.1206 0.0705

Table 4: Deformation of a beam. Computational data related to the global and the tensor-decomposition-
based regression approaches with ARD-RBF kernels, for N = 5, Ns = 50 and Nt = 50.

whereas the global and the tensor-decomposition-based POD-GPR ROMs are able to reduce the online
CPU time up to 364 and 270 times, respectively. Furthermore, we compare the accuracy and efficiency of
standard POD-Galerkin ROMs equipped with the discrete empirical interpolation method (DEIM) [CS10]
hyper-reduction technique. In particular, we take into account |I| = 83 and |I| = 119 DEIM interpolation
points, corresponding to a POD tolerance equal to 10−4 and 10−5 on residual snapshots, respectively. The
results are reported in Table 5.

Figure 7 shows the evolution in time of the mean (over the test set) absolute error for a different number of
training samples Ns, whilst the corresponding computational speed-ups are reported in Figure 8. We observe
that both approaches perform well and with comparable accuracy when the training dataset is sufficiently
large. In particular, the tensor-decomposition-based approach achieves very high accuracy for t < 0.05 s.
We believe that this is due to the fact that this method requires the solution to 1-dimensional regression
tasks, which is less involved that the 2-dimensional regression task solved by the global approach. This is
especially true for low time instances, as no data are available for t < 0 s. On the other hand, the global
GPRs are able to achieve higher computational speed-ups than tensor-decomposition-based ones, although
the difference between the two POD-GPR ROMs reduces as Ns increases.

The FOM displacement and the approximation error of the POD-GPR ROMs at different time instances
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Figure 5: Deformation of a beam. Evolution over time of the exact RB coefficients (black) – from left to
right – and the corresponding global POD-GPR ROM means (dotted red) for different testing parameters,
from top to bottom. Moreover, we report the 95% confidence levels.

Figure 6: Deformation of a beam. Evolution over time of the exact RB coefficients (black) – from left to
right – and the corresponding tensor-decomposition-based POD-GPR ROM means (dotted red) for different
testing parameters, from top to bottom. Moreover, we report the 95% confidence levels.

are reported in Figure 9, for a given values of the input vector.

So far, we have always considered during the online stage the same time instances used for training
the GPRs, since out main focus is on the influence of the parameters on the deformation of the body.
However, GPRs can generalize to unseen values also for the time component, as shown by the computational
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POD-Galerkin-DEIM Global GPR TD-based GPR

|I| = 83 |I| = 119

Online CPU time 11.4 s 13.4 s 0.13 s 0.18 s

Speed-up 4.2 3.6 364 270

meanµ tAE(µ) 2.3 · 10−4 1.2 · 10−4 4.4 · 10−4 4.1 · 10−4

meanµ tRE(µ) 1.6 · 10−2 1.3 · 10−2 1.0 · 10−1 2.1 · 10−2

Table 5: Deformation of a beam. Efficiency and accuracy of POD-Galekin-DEIM ROM, global POD-GPR
ROM and tensor-decomposition-based POD-GPR ROM.

Figure 7: Deformation of a beam. Average absolute error of the global (left) and tensor-decomposition-based
(right) POD-GPR ROMs approximations over the size of the training set.

Figure 8: Deformation of a beam. Average computational speed-up of the global (left) and tensor-decom-
position-based (right) POD-GPR ROMs approximations over time, varying the size of the training set, with
respect to the full-order solution.

results reported in Table 6 when a time step size ∆t = 3.5 · 10−3 s is used online. In this case,the total
number of time stops is N test

t = 71, and the FOM requires 75 s in average for a given parameter vector.
The corresponding time-average L2-absolute error is reported in Figure 10 for different values of the input
parameter. Within each plot we also report, in light gray color, the error computed using the same time step
used during training, showing good prediction properties of the POD-GPR ROMs with respect both time
and parameters.

4.2.2 Test 2: active contraction of a truncated ellipsoid

In this second test case, a larger number of RB functions is required to achieve the same POD accuracy with
respect to the previous problem (see Table 7), given the slower decay of the singular values, thus increasing
the complexity of the surrogate model due to the higher number of GPs that must be trained.
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Figure 9: Deformation of a beam. FOM displacement (top), and approximation error of the global
(middle) and tensor-decomposition-based (bottom) POD-GPR ROM, at different time instances, for µ =
[4.20, 2.63, 2.51, 4.54, 4.46, 2.81, 27.25 kPa, 2.51 kPa, 0.0052 kPa].

Global GPR TD-based GPR

Online CPU time 0.18 s 0.20 s

Speed-up 385 366

mean
µ

tAE 1.1 · 10−3 1.0 · 10−3

mean
µ

tRE 3.9 · 10−1 7 · 10−2

Table 6: Deformation of a beam. Efficiency and accuracy of global and tensor-decomposition-based POD-
GPR ROMs, computed over 20 testing parameters, using ∆t = 3.5 · 10−3 s.

εPOD 10−3 5 · 10−4 10−4 5 · 10−5 10−5

N 20 30 71 100 202

Table 7: Active contraction of a truncated ellipsoid. Dimension of RB subspaces for different POD tolerances.

Predictions of GPRs on RB coefficients. Once fixed the RB dimension equal to N = 30, we analyze
the fidelity of approximations computed using the global and the tensor-decomposition-based POD-GPR
ROMs built using different covariance functions, trained on Ns = 50 parameter samples. Regarding the
tensor-decomposition-based approach, time- and parameter-modes for each RB coefficient are obtained by
computing the truncated SVD, obtaining 3 ≤ Nℓ ≤ 9. Based on the observation of Section 4.2.1, we only
rely on the standardization scaling of the training and test sets.

From the MSE reported in Figure 11, we observe that the choice of the kernel function has a smaller
impact on the accuracy of the GPR predictions with respect to the previous test. However, since the ARD-
RBF kernel shows better agreement to the true values of the first RB coefficient than the other kernels, we
restrict ourselves to this choice for the GPs covariance function, unless otherwise specified.

Hence, we analyze the accuracy and the efficiency of the POD-GPR ROMs by increasing the size of the
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Figure 10: Deformation of a beam. Evolution of the time-average L2-absolute error of the global (left) and
tensor-decomposition-based (right) POD-GPR ROMs, using ∆t = 3.5 · 10−3 s.

training set from Ns = 10 up to 80. We point out that the global approach requires approximately 4 h to
train the GPs on Ns = 50 sample parameters, probably due to the high FOM dimension Nh, in addition
to the large number of RB coefficients. To reduce this burden without restoring to parallel computing, we
restrict from now on the size of the training set by keeping only the data associated with time instant t5i,
for i = 1, . . . , ⌊Nt/5⌋. From Figure 12, we observe that a dataset composed of Ns = 40 or Ns = 50 sampled
parameters represents a good trade-off between accuracy and CPU training times.

For the RB coefficients q1, . . . , q5, we report in Table 8 the computational data obtained with Ns = 50,
whilst the corresponding true projection coefficients, predictive means and 95% confidence level are depicted
in Figures 13 and 14. The two approaches are almost comparable in terms of accuracy, whilst the tensor-
decomposition-based approach shows faster training times.

Global GPR TD-based GPR

Training CPU time 501 s 28 s

RSE(q1) 0.1487 0.0753

RSE(q2) 0.2517 0.1384

RSE(q3) 0.0092 0.0103

RSE(q4) 0.2331 0.1369

RSE(q5) 0.2501 0.5711

Table 8: Active contraction of a truncated ellipsoid. Computational data related to the global and the tensor-
decomposition-based regression approaches with ARD-RBF kernels, for N = 30, Ns = 50 and Nt = 50.

Accuracy of ROM w.r.t. FOM. Finally, we compare the accuracy of the surrogate GPR models on
the approximation of the whole high-fidelity displacement field, that is how Vq̂(·;µ) differs from uh(·;µ),
as well as its computational efficiency. We recall that the FOM requires 6 min 11 s in average to compute
the solution dynamics for a given parameter. The results obtained are reported in Figure 15 and 16, and
summarized in Table 9. As already observed, the speed-up achieved online by the global POD-GPR ROMs
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Figure 11: Active contraction of a truncated ellipsoid. Mean square error of global (left) and tensor-
decomposition-based (right) POD-GPR ROMs computed using different kernel types, for N = 30.

Figure 12: Active contraction of a truncated ellipsoid. Relative squared error – associated with the first 5
RB coefficients – of the global (top left) and the tensor-decomposition-based (top right) POD-GPR ROMs
over the size of the training set. Corresponding training times (bottom) are also reported. These results
have been obtained taking into account a testing set of N test

s = 20 parameters, unseen during training.

is the highest between the two approaches. Figure 17 shows the FOM displacement and the approximation
error of the POD-GPR ROMs at different time instances, for a given values of the input vector.

5 Multi-query problems in UQ using POD-GPR ROMs

Mathematical models describing physical phenomena depend on a (large) set of parameters that characterize
different physical responses, and whose knowledge is severely limited due difficulties in performing measure-
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Figure 13: Active contraction of a truncated ellipsoid. Evolution over time of the exact RB coefficients
(black) – from left to right – and the corresponding global POD-GPR ROM means (dotted red) for different
testing parameters, from top to bottom. Moreover, we report the 95% confidence levels.

Figure 14: Active contraction of a truncated ellipsoid. Evolution over time of the exact RB coefficients
(black) – from left to right – and the corresponding tensor-decomposition-based POD-GPR ROM means
(dotted red) for different testing parameters, from top to bottom. Moreover, we report the 95% confidence
levels.

ments. However, only a smaller subset of inputs have a great impact on specific outputs quantities, that
are scalar-valued functions of the displacement field, for the application at hand. Hence, it is important
to identify which factors should be properly measured and which others can be arbitrarily fixed without
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Figure 15: Active contraction of a truncated ellipsoid. Average absolute error of the global (left) and tensor-
decomposition-based (right) POD-GPR ROMs approximations over time, varying the size of the training
set.

Figure 16: Active contraction of a truncated ellipsoid. Average computational speed-up of the global (left)
and tensor-decomposition-based (right) POD-GPR ROMs approximations over the size of the training set,
with respect to the full-order solution.

Global GPR TD-based GPR

Online CPU time 0.25 s 2.1 s

Speed-up 1487 174

meanµ tAE(µ) 3.1 · 10−2 2.8 · 10−2

meanµ tRE(µ) 1.6 · 10−1 1.4 · 10−1

Table 9: Active contraction of a truncated ellipsoid. Efficiency and accuracy of global POD-GPR ROM and
tensor-decomposition-based POD-GPR ROM.

affecting the selected QoIs. Another key task when dealing with parameterized models is to infer about the
unknown parameters based on observed data. We show how, using the mean of the posterior distribution
of the GPRs to make predictions, we are able to efficiently address the solution to both types of problems,
i.e., sensitivity analysis and parameter estimation, which require the repeated evaluation of the input-output
map.

In the following, we address the solution to these multi-query problems on the numerical test cases
reported in Sections 4.1.1 and 4.1.2. For the deforming beam, we consider as k-th QoI the displacement
along the z-axis of a prescribed point with coordinates X̄ = (10−2m, 5 · 10−2m, 5 · 10−2m) in the reference
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Figure 17: Active contraction of a truncated ellipsoid. FOM displacement (top), and approximation error of
the global (middle) and tensor-decomposition-based (bottom) POD-GPR ROM, at different time instances,
for µ = [7.85, 1.81, 2.21, 4.11, 4.29, 1.76, 51.30 kPa, 1.92 kPa, 64.94 kPa, 14.73 kPa,−98.53◦, 104.72◦].

domain Ω0, measured at time t = jk∆t, that is

yk(µ) = u(X̄, jk∆t;µ) · ez,

for jk∈ {10, 30, 50}. In the case of the active contraction of a truncated ellipsoid, we take into account the
horizontal and vertical displacements of different points located on the outer and inner surfaces and reposted
in Figure 18, acquired at different time instances, such that the outputs are given by

yk(µ) = u(X̄ik , jk∆t;µ) · eηk
,

for ik ∈ {1, . . . , 8}, jk ∈ {10, 30, 50}, and ηk ∈ {x, y, z}. The index k spans through all possible combinations
of the triplet (i, j, η). With an abuse of notation, we denote as µ (or y) the parameter vector both as random
variable (or model output random variable) and as its outcome. To perform the UQ studies, we employ the
Dakota toolkit [ABD+20], exploiting its Python direct interface.

5.1 Sensitivity Analysis (SA)

First of all, we perform global SA, which allows us to rank the parameters according to their influence on
the QoIs and thus gain useful information. To begin, we employ the screening method of Morris’ elementary
effects [Mor91], which provides a qualitative analysis relying only on a small number of numerical simulations.
In this case, we compare the results obtained using the GPR models (that, we recall, are trained on a dataset
built from Ns = 50 sampled parameters, and suitable scaled using the standardization technique) with the
high-fidelity ones. Hence, we perform a variance-based global SA by computing Sobol’ first order and total
effects indices [Sob90], providing a more quantitative ranking criterion, although a much larger number
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Figure 18: Active contraction of a truncated ellipsoid. Tissue displacement is measured at the outer (light
red) and at the inner (dark red) surfaces, at three different time instances.

of input-output evaluations is required. Since multiple outputs are analyzed by conducting independent
sensitivity studies, we restrict the formal introduction to a univariate model output.

5.1.1 Elementary Effects

The elementary effect test is a screening method able to overcome the main limitation of one-at-a-time
designs and derivative-based methods, by considering wide ranges of variations for the inputs and averaging
over a number of local derivative approximations, which allows to identify those input factors that are (i)
negligible, (ii) linear and additive, or (iii) nonlinear or involved in interactions with other factors, with a
relatively small number of model evaluations. Without loss of generality, we assume that the parameter
domain is the p-dimensional unit hypercube. Hence, given a partition Ωι of [0, 1]p into ι ∈ N levels, the
elementary effect associated with the i-th input factor, for i = 1, . . . , p, is defined as

EEi(µ) =
y(µ+ ei∆

µ)− y(µ)

∆µ
,

where µ,µ + ei∆
µ ∈ Ωι, being ei the unit vector of all zeros but the i-th component, and ∆ the step

size with value in {1/(ι− 1), . . . , (ι− 2)/(ι− 1)}. Since each elementary effect quantifies a local behavior,
statistics of their distribution are estimated to obtain a global sensitivity measure. The mean and standard
deviation of the distribution of EEi is constructed by randomly sampling different µ from Ωι. Moreover, to
avoid cancellation effects, the mean of the distribution |EEi| of the absolute values is also computed. Thus,
for r ∈ N trajectories, that is, sets of points µ1, . . . ,µr sampled in Ωι, we obtain the following sensitivity
measures for the i-th input

mi =
1

r

r∑
j=1

EEi(µj), m∗
i =

1

r

r∑
j=1

∣∣EEi(µj)
∣∣ , sdi =

1

r − 1

r∑
j=1

(
EEi(µj)−mi

)2
, i = 1, . . . , p.

In our setting, we fix the number of levels ι = 6 and choose ∆µ = ι
2(ι−1) to guarantee an equal probability

sampling. Moreover, we consider r = 20 trajectories, corresponding to r(p + 1) input-output evaluations,
yielding a good balance between reliability of the results and computational resources required for the
analysis.

Both mi and m
∗
i can be used to quantify the individual influence of the i-th input factor on the output y,

whereas sdi estimates the ensemble of its effects due to nonlinearities and interactions with the other factors.
Low values for sdi can be interpreted as the fact that the effect of the i-th parameter is independent of the
point in which EEi is evaluated, and thus of the values taken by the other inputs.

Test 1: deformation of a beam. For the first problem, we report in Figure 19 (top panel) the estimated
mean m∗ = [m∗

1, . . . ,m
∗
p]

T and standard deviation sd = [sd1, . . . , sdp]
T of the elementary effects of each QoI

computed using the FOM, whereas on the middle and bottom panels we show the same statistical quantities
computed using the POD-GPR ROMs outputs. Further details are reported in Table 10.

The elementary effects computed by means of the global and the tensor-decomposition-based approaches
are overall in agreement with the high-fidelity ones. In particular, the most influential input parameters
are always correctly identified. Relying on surrogates models allows to obtain accurate results of the SA in
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seconds, rather than hours, and thus reduce the size of the parameter space by identifying the less influential
inputs.

Figure 19: Deformation of a beam. Morris metrics computed using the outputs of the FOM (top), the global
POD-GPR ROM (middle), and the tensor-decomposition-based POD-GPR ROM (bottom). The QoIs are
given by the displacement along the z-axis of a point P , at three different time instants (from left to right,
t = 0.05, 0.15, 0.25).

FOM Global GPR TD-based GPR

Online CPU time 3 h 11 min 18 s 25 s

Speed-up – 645 450

mean of |EE1| (bf ) at t = 0.25 s 2.5 · 103 2.0 · 103 2.3 · 103

mean of |EE8| (C) at t = 0.25 s 2.8 · 103 2.3 · 103 2.8 · 103

mean of |EE9| (p̃) at t = 0.25 s 3.0 · 103 2.7 · 103 3.2 · 103

Table 10: Deformation of a beam. Computational performance of the POD-GPR-ROM methods for the
computation of the elementary effects.
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Test 2: active contraction of a truncated ellipsoid. Due to the higher complexity of this benchmark,
we compute the elementary effects relying only on the POD-GPR ROMs. In particular, the global approach
requires 18 s to run the analysis, whereas the tensor-decomposition-based approach takes around 6 min,
almost 100% of the time required to compute r(p+ 1) = 260 input-output evaluations.

In Figures 21 and 22, we report the scatter plots of Morris indices computed using the POD-GPR ROMs
for different QoIs associated with two points located on the outer surface and highlighted in Figure 20. In
particular, the outputs reported in Figures 21 show the vertical displacement at different time instances of
a point P1 located near the apex, whereas 22 focuses on the displacements along the x-axis of a point P2

located between the apex and the base. The choice of the outputs of interest, differing in time, location or
direction of the displacement, may have a great impact on the ranking of the input parameters, so that they
have to be carefully chosen. However, by relying on POD-GPR approaches, one does not need to define the
outputs in advance, since the training of the GPR is independent of the QoIs. Despite few discrepancies
between the global and the tensor-decomposition-based approaches, we observe that the slope T̃a of the
active tension has large values for both the statistics, especially when taking into account the displacement
along the z-axis. On the other hand, the fiber angle αepi shows a stronger influence on QoIs associated
with the horizontal displacement. In any case, the less influential parameters are correctly located by both
POD-GPR ROMs, thus allowing to identify those inputs that can be arbitrarily fixed without affecting the
variance of the output, which is the main purpose of screening methods.

Figure 20: Active contraction of a truncated ellipsoid. Points P1 and P2 at time 0.25s from three different
points of view.

5.1.2 Sobol’ indices

Variance-based methods are even more powerful tool to quantify the relative importance of individual factors,
and are based on a decomposition of the variance of the model output y into terms related to each input
and to the interactions between them, that is

Var(y) =
∑
i

Vi +
∑
i<j

Vij + · · ·+ V1...p, (10)

where Vi = Var(E[y|µ(i)]), Vij = Var(E[y|µ(i),µ(j)])− Vi − Vj , and so on, being µ(i) the i-th component of
the parameter vector, for i = 1, . . . , p. A primary measure of sensitivity is given by the first Sobol’ index

Si =
Vi

Var(y)
=

Var(E[y|µ(i)])

Var(y)
, i = 1, . . . , p,

which measures the effect of varying the i-th input alone averaged over variations in all input parameters:
the higher is Si, the greater is the influence of µ(i) on the output y. Note that

∑
i Si ≤ 1. However, it is

often impossible to separate the effects of the inputs on the output and one should look for higher order
interactions. Rather than performing a full sensitivity analysis, which requires the evaluation of 2p − 1
indices, we rely on the total effect indices

STi =
E[Var(y|µ(∼i))]

Var(y)
=

Var(y)−Var(E[y|µ(∼i)])

Var(y)
= 1− Var(E[y|µ(∼i)])

Var(y)
,
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Figure 21: Active contraction of a truncated ellipsoid. Scatter plots of Morris metrics computed using the
global POD-GPR ROM (top) and the tensor-decomposition-based POD-GPR ROM (bottom). The QoIs
are given by the displacement along the z-axis of a point P1 at the outer surface located near the apex, at
three different time instants (from left to right, t = 0.05, 0.15, 0.25).

Figure 22: Active contraction of a truncated ellipsoid. Scatter plots of Morris metrics computed using the
global POD-GPR ROM (top) and the tensor-decomposition-based POD-GPR ROM (bottom). The QoIs
are given by the displacement along the x-axis of a point P2 at the outer surface located between the apex
and the base, at three different time instants (from left to right, t = 0.05, 0.15, 0.25).
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for i = 1, . . . , p, where µ(∼i) = (µ(1), . . . ,µ(i−1),µ(i+1), . . . ,µ(k)) denotes the random vector of all input
factors but µ(i). In this case, the smaller is STi

, the less influential is µ(i), which can thus be arbitrarily
fixed within its range of uncertainty without appreciably affecting the output of interest. Unlike Si, it holds∑

i STi
≥ 1, since STi1

and STi2
(i1 < i2) take both into account the interactions between µ(i1) and µ(i2).

In this work, we employ the Saltelli method [Sal02], which is one of the most used and efficient procedure
to evaluate Sobol’ indices relying on Nsamples evaluations of the output quantity of interest, yielding a total
number of Nsamples(p+2) output evaluations to compute both first Sobol’ and total effect indices – therefore
entailing a huge gain compared to a crude Monte Carlo estimate of the variance-based sensitivity indices.

Test 1: deformation of a beam We consider Nsamples = 200 output evaluations, thus corresponding to
Nsamples(p+2) = 2200 input-output evaluations, and rely on the global and the tensor-decomposition-based
GPR models. Figure 23 confirms the results of the SA previously conducted using Morris elementary effects,
that is the scaling factor C, the slope p̃ of the pressure load and the material stiffness in the fiber direction bf
are the most influential parameters for the test at hand, whereas little to no influence on the selected output
is given by the other parameters, which can thus be fixed in their domain. Further details are reported in
Table 11.

Figure 23: Deformation of a beam. Bar plot of Sobol’ indices computed using the global (top) and the
tensor-decomposition-based (bottom) POD-GPR ROMs. The QoIs are given by the displacement along the
z-axis of a point P , at three different time instants.

Furthermore, we compute Sobol’ indices for all n = 1, . . . , Nt. Figure 24 shows how the following
generalization of Sobol’ indices∫ t

0
Var(E[y(τ)|µ(i)])dτ∫ t

0
Var(y(τ))dτ

,

∫ t

0
E[Var(y(τ)|µ(∼i))]dτ∫ t

0
Var(y(τ))

,

evolve over time for the most effective inputs, i.e., bf , C and p̃. We observe that the indices associated
with the material inputs increase as time grows, whereas the pressure parameter reduces its influence on the
output as the maximum slope is reached. However, when interested in, e.g., time-dependent model outputs,
performing independent SAs on each prediction associated with a given time step tn, with n = 1, . . . , Nt,
may lead to unsatisfactory results. In fact, the Nt variables are correlated, so that important information
cannot be extracted from separated analysis. In this scenario, one needs to rely on methods specific for SA
on functional or multivariate outputs, such as [CMW06], where the output is expanded in a proper basis and
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FOM Global GPR TD-based GPR

Online CPU time 1 d 8 h 45 min 147 s 290 s

Speed-up – 804 406

S1 (bf ) at t = 0.25 s 0.25 0.23 0.24

S8 (C) at t = 0.25 s 0.37 0.33 0.36

S9 (p̃) at t = 0.25 s 0.35 0.39 0.36

ST1 (bf ) at t = 0.25 s 0.28 0.27 0.26

ST8
(C) at t = 0.25 s 0.38 0.35 0.37

ST9
(p̃) at t = 0.25 s 0.38 0.41 0.40

Table 11: Deformation of a beam. Computational performance of the POD-GPR-ROM methods for the
computation of Sobol’ indices.

standard SA methods are then applied to the coefficients of this expansion, and [GJKL14, LMM11, AGS20],
where generalized Sobol’ sensitivity indices are proposed.

Figure 24: Deformation of a beam. Evolution in time of Sobol’ main (top) and total (bottom) effect indices
for bf , C and p̃ computed using the global and the tensor-decomposition-based POD-GPR ROMs.

Test 2: active contraction of a truncated ellipsoid For the second benchmark, we consider again
Nsamples = 200, corresponding in this case to Nsamples(p + 2) = 2800 runs of the POD-GPR ROMs. The
results obtained with Sobol SA regarding the ranking of the input parameters, especially the detection of
the less influential ones, is in agreement with Morris screening. Figures 25 and 26 show the sensitivity
indices obtained for the QoIs related to the same points reported in Section 5.1.1, showing that T̃a has a
great influence, in particular on the displacement towards the base; moreover, it exhibits strong nonlinear
interactions, as pointed out by the large value of the total effects at different times. Regarding the fiber
angle an the outer surface αepi, its impact is clearly visible on the horizontal displacement of the second
point, which is located between the apex and the base. Almost all the parameters related to the material law
have very small indices, meaning that they can be arbitrarily fixed within their range of variation without
significantly affecting the computation of the outputs of interest.

26



Figure 25: Active contraction of a truncated ellipsoid. Bar plot of Sobol’ indices computed using the
global (top) and the tensor-decomposition-based (bottom) POD-GPR ROMs. The QoIs are given by the
displacement along the z-axis of a point P1 at the outer surface located near the apex, at three different
time instants.

Figure 26: Active contraction of a truncated ellipsoid. Bar plot of Sobol’ indices computed using the
global (top) and the tensor-decomposition-based (bottom) POD-GPR ROMs. The QoIs are given by the
displacement along the x-axis of a point P2 at the outer surface located between the apex and the base, at
three different time instants.
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5.2 Parameter estimation

Finally, we address the solution of parameter estimation problems in a Bayesian framework, thus describing
all inputs as random variables and seeking their probability density functions (PDFs), which, starting from
a prior intuition, are updated as new data becomes available.

Given an observation yobs, corresponding to the realization of the output random variable y, we want to
infer the underlying probability distribution that produced the data. Note that, with respect to the previous
section, we do not assume y to be a univariate model output, hence the change in notation. In particular,
we consider yobs to be the vector of QoIs evaluated on the FOM solution uh(µ

∗), computed for a specified
parameter vector µ∗ ∈ P. To mimic experimental error, we consider an additive independent identically
distributed Gaussian noise ε ∼ N (0,Σε), so that yobs = y(µ∗)+ε. The posterior PDF of the random vector
µ can be obtained using Bayes’ formula as

π(µ|yobs) ∝ π(yobs|µ)π0(µ),

where

• π(yobs|µ) is the likelihood ;

• π0(µ) is the prior PDF of the inputs, which reflects any previous knowledge one might have about the
parameters. If no previous knowledge is available, non-informative priors can be used.

Thanks to the assumption on the measurement error, the likelihood is given by π(y|µ) = πε(y−y(µ)), where
πε is the PDF of the noise ε. Finally, one can compute useful statistical indicators, such as the posterior
mean and covariance, by repeatedly sampling from the posterior distribution.

Markov Chains Monte Carlo (MCMC) methods represent a well-known class of techniques used for
sampling from a probability distribution. In this work, we rely on the Metropolis-Hastings algorithm, whose
key idea is to generate a sequence of NMC samples (with NMC fixed, but sufficiently large) such that, at
each iteration, the new candidate value is chosen according to a specified proposal distribution πprop, and it
is either accepted or rejected with some probability determined by the properties of the likelihood and the
prior. To reduce the bias introduced by the choice of the initial sample, we perform burn-in, i.e., we discard
Nburn-in iterations at the beginning of an MCMC run; moreover, we keep only one sample every Nthin, so
that the total number of chain iterations is given by ⌊(NMC −Nburn-in)/Nthin⌋.

Test 1: deformation of a beam. Going back to the problem of the deformation of a beam discussed in
Section 4.1.1, we employ the global and the tensor-decomposition-based POD-GPR ROMs built for Ns = 50,
which are characterized by a time-average L2(Ω0)-absolute error of 4 · 10−4 with respect to the FOM for the
solution to the forward problem. The values of the target parameter µ∗ used to generate the observation
yobs and those of the chain starting point µ0 are reported in Table 12. The inputs to the Metropolis-Hastings
algorithm are instead listed in Table 13.

bf bs bn bfs bfn bsn K C p̃

[kPa] [kPa] [kPa]

(·)∗ 6.2 1.2 2.8 5.8 5.8 2.8 27 1.2 0.0058

(·)0 8 2 2 4 4 2 50 2 0.004

Table 12: Deformation of a beam. Target and starting values of the Markov chain for the input parameters.

NMC 10000 π0 U [P]

Nburn-in 500 πε N (0, σ2
εI), with σ2

ε = 10−5 or 10−6

Nthin 4 πprop U [P]

Table 13: Deformation of a beam. Inputs to the Metropolis-Hastings algorithm.

The samples of the MCMC chain obtained after the burn-in and the thinning operations are used to com-
pute the posterior density functions reported in Figure 27 for Σε = 10−5I and 10−6I, where I ∈ RNQoI×NQoI
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denotes the identity matrix and NQoI = 3. Moreover, the chain starting point µ0 and the target parameter
µ∗ are plotted as a black dashed line and a black solid line, respectively, for each parameter. We observe
that, using the POD-GPR ROMs, we are able to correctly identify the parameter related to the material
stiffness in the fiber direction bf , the multiplicative constant C and the slope of the pressure p̃, whereas the
other parameters are not captured. These results confirm those of the SA reported, e.g., in Figure 23, which
identify bf , C and p̃ as the most influential inputs, while the others as non-influential. For what concerns the
CPU time required for the generation of the MCMC chain, the global approach requires less that 12 min of
computation, while the tensor-decomposition-based approach has a total run time around 23 min. Relying
on the FOM would have required 8 d 17 h, showing how crucial is the need to rely on efficient reduced
models in multi-query scenarios.

Figure 27: Deformation of a beam. Fitted posterior density function obtained from the MCMC samples of
the most influential input parameters computed using the global and tensor-decomposition-based POD-GPR
ROMs, for two different values of σ2

ε . The vertical lines shows the chain starting point (dashed) and the
target values (solid).

Remark 6. Since the likelihood is defined by the input-output map and the level of noise, the choices of both
the ROM and σ2

ε have an important influence of the posterior estimate. Nonetheless, the level of noise –
chosen by taking into account the computed values for the QoIs – is predominant over the predictive errors
between the two ROMs, an thus the posterior estimations perform similarly.

Test 2: active contraction of a truncated ellipsoid. To conclude, we perform parameter estimation
in the case of a contracting truncated ellipsoid. However, due to the high computational complexity of this
benchmark test and the large number of numerical simulations required, we rely only on the global POD-
GPR based model, which is characterized by fast CPU times during the online stage. We recall that, in this
case, the time-average L2(Ω0)-absolute error is around 3 · 10−2 with respect to the FOM.

The chain starting point and the target are reported in Table 14. Moreover, assuming some previous
knowledge about the input values that have generated the observation, we reduce the support of the uniform
distribution with respect to the whole parameter domain. The numerical setting used for the MCMC
simulation is the same as in the previous test case reported in Table 13, apart from the number of chain
samples, which is increased to NMC = 25000, and the standard deviation of the Gaussian noise for which
we now defined with σ2

ε = 10−7.

bf bs bn bfs bfn bsn K C p̃ T̃a αepi αendo

[kPa] [kPa] [kPa] [kPa] [◦] [◦]

(·)∗ 7.16 2.21 1.79 4.42 3.58 2.21 56 1.7 66.3 14.4 −99.3 80.7

(·)0 8 2 2 4 4 2 50 2 60 15 −90 90

Table 14: Active contraction of a truncated ellipsoid. Target and starting values of the Markov chain for the
input parameters.

The PDF computed using the global GPR model, the chain starting point µ0 and the target parameter
µ∗ are reported in Figure 28 using a dark blue dotted line, a black dashed line and a black solid line,
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respectively, for four different parameters. We observe that both the active tension T̃a and the fiber angle
at the outer surface αepi are correctly inferred, as we might expect from the SA results, which identified
these inputs to be overall the most influential ones. On the other hand, the posterior distribution of both
bf and bs does not give any insight on which could be the most plausible observed value. Coherently, the
identification of the remaining parameters is in general not good. For what concerns the CPU time required
for the generation of the MCMC chain, the global approach requires 25 min of computation, while relying on
the FOM would have required more than 100 days, becoming computationally unaffordable if the dimension
Nh of the underlying problem is further increased.

Figure 28: Active contraction of a truncated ellipsoid. Fitted posterior density function obtained from the
MCMC samples of two non-influential input parameters (top) and two of the most influential ones (bottom)
computed using the global POD-GPR ROM, for σ2

ε = 10−7. The vertical lines shows the chain starting
point (dashed) and the target values (solid).

6 Conclusions

In this work, we have addressed the solution to parameterized, nonlinear, time-dependent problems by
means of POD-GPR ROMs, able to capture with sufficient accuracy the state solution dynamics at much
lower computational cost with respect to high-fidelity FOMs. In particular, exploiting GP regression to
approximate the POD projection coefficient allows to avoid intrusive hyper-reduction techniques. Another
advantage of these methods is that, on one hand, they do not need to compute the whole solution dynamics
when required only at specific points in space or time, and, on the other hand, one does not need to specify
in advance the output quantities, being the training of the GPs independent of them, so that the QoIs can
be chosen online according to the specific application.

Regarding the construction of the GPRs, we have compared a global approach and a tensor-decomposition-
based one. Different kernels have been tested, as well as scaling techniques for the input/output data to
the GPs, showing that a ARD-RBF covariance function and the standardization scaling are to be preferred.
Finally, a convergence analysis with respect to the training set size has allowed to find a good trade-off
between accuracy and online efficiency.

Both POD-GPR ROMs show low approximation errors with respect to the high-fidelity FOM, being
able to accurately predict the system solution for new input values within the parameter space, as well as
time instances within the given time range not used during training. Regarding the computational costs,
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the tensor-decomposition-based approach is the most efficient during the offline stage, especially as the size
of the problem increases. On the other hand, global POD-GPR ROMs shows higher online efficiency, and
thus have to be preferred when hundreds or thousands input-output evaluations are required. Finally, the
capabilities of the POD-GPR ROMs have been successfully tested on the solution to multi-query problems,
namely global sensitivity analysis and parameter estimation.
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