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CH-8092 Zürich, Switzerland

federico.gatti@math.ethz.ch

Keywords: Semi-conservative Depth Averaged MPM, Path-conservative methods, Implicit-explicit
Runge-Kutta-Chebychev scheme, Depth-averaged models, Geohazard analysis.

AMS Subject Classification: 35Q35, 35L65, 35Q70, 65Z05, 76D05, 76D99

Abstract

Landslides are among the most dangerous natural disasters, with their unpredictability and
potential for catastrophic human and economic losses exacerbated by climate change. Continuous
monitoring and precise modeling of landslide-prone areas are crucial for effective risk management
and mitigation. This study explores two distinct numerical simulation approaches: the mesh-based
finite element model and the particle-based model. Both methods are analyzed for their ability to
simulate landslide dynamics, focusing on their respective advantages in handling complex terrain,
material interactions, and large deformations. A modified version of the second-order Taylor-
Galerkin scheme and the depth-averaged Material Point Method are employed to model gravity-
driven free surface flows, based on depth-integrated incompressible Navier-Stokes equations. The
methods are rigorously tested against benchmarks and applied to a real-world scenario to assess
their performance, strengths, and limitations. The results offer insights into selecting appropriate
simulation techniques for landslide analysis, depending on specific modeling requirements and
computational resources.

1 Introduction and motivations

Given their intrinsic unpredictability and potential for catastrophic human and economic losses, land-
slides are among the most dangerous types of natural disasters exacerbated by climate change [1, 2].
Continuous monitoring of landslide-prone areas is essential. Although in-situ detection techniques,
such as strain gauges and piezometers, enable accurate monitoring of surface displacement and inter-
nal pressure, satellite surveys provide comprehensive topography and elevation data for the research
region [3]. However, empirical monitoring alone is frequently insufficient for managing hazardous situ-
ations, including prevention [4, 5]. The high expense and technical complexity of realistic experimental
assessments underscore the need for precise numerical simulation models for landslides.

Landslides exhibit multifaceted phenomenology that occurs in multiple stages. In the initial
stage, landslides can be thought of as rigid structures affected by hydrodynamic soil conditions, pore
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pressure, and gravity, leading to sporadic slides and sudden changes in velocity. Conversely, the
progression and evolution of the landslide front during the run-out phase depend on local rheology
and topography, which are primarily controlled by advection and involve viscoplastic behavior. With
sustained horizontal velocities [6], the run-out phase behaves like a fluid in situations such as debris
flows or mudslides. The goal of this effort is to track the advancing front and simulate the evolution
of rapidly moving landslides immediately upon their initiation. This is a crucial step in forecasting
affected areas and calculating or preventing damage.

In the context of numerical simulations of landslide scenarios, mesh-based finite element models
and particle-based models represent two distinct approaches, each with specific advantages and lim-
itations [7, 8]. Mesh-based finite element models divide the domain into discrete elements and solve
differential equations locally on each element. They offer good adherence to terrain geometry and
material interfaces, making them suitable for modeling both solid and fluid behaviors. However, they
are computationally intensive, especially for complex geometries and fine meshes, and may struggle
with fracture propagation and discontinuities. In contrast, particle-based models represent materials
through discrete particles that carry physical properties. They are adaptable to large deformations
and fracture phenomena and handle solid-fluid interactions effectively. This makes them efficient for
simulations involving significant deformations and fractures, particularly in scenarios with complex
flow patterns [9, 10]. However, they can become more computationally demanding with increasing
particle counts compared to the finite element approach. The choice between these methods depends
on the specific scenario and simulation goals. Large deformations and solid-fluid interactions may be
better handled by particle-based methods in large-scale occurrences, such as landslides over extensive
terrains. Finite element approaches, however, might be preferred for simulations requiring precise
structural modeling or accurate depiction of material interactions. A comparative analysis helps in
choosing the best strategy based on the specific needs of the problem and the available computational
resources.

To this end, we select two numerical methods: a modified version of the second-order Taylor-
Galerkin (TG2), and the Depth-averaged MPM (DAMPM). Regarding the TG2 scheme, we consider a
modified version of the classical implementation that achieves well-balancing and the ability to handle
stiff reaction-diffusion operators, which is the Path-conservative Implicit-Explicit TG2 (IMEX-TG2-
PC). This modified TG2 has been described in a series of works [6, 11, 12, 13]. For the DAMPM,
we particularly rely on the implementation described in [14]. Both methods were applied to the
same set of equations to describe gravity-driven free surface flows, derived from the depth-integrated
incompressible Navier-Stokes equation, and were rigorously tested against benchmarks. Finally, we
assess their performance in a real-world scenario, analyzing strengths and limitations. The paper is
organized as follows. Section 2 presents the physical model, including the constitutive and rheological
laws. Section 3 discusses the numerical framework adopted, analyzing both methods and discretizing
the differential problem. In Section 4, we show some numerical results, including reliability and well-
balancing tests. At the end of Section 4, a real test case is presented, and some conclusions and
perspectives are presented in Section 5.

2 Governing equations

Depth-averaged models are one of the better solutions for modeling the dynamics of mudflows and
landslides because they make flow on sloping terrain with shallow depths easier to portray. These
models are valid approximations for free-surface flows over gently sloping terrains with fluid depths
substantially smaller than the horizontal length scale of the terrain, based on the conservation equa-
tions of mass and momentum. The following are important presumptions under which these models
can be used:

(i) hydrostatic pressure predominates over dynamic pressure in a flow that is extensively controlled
by gravity.

(ii) Since the fluid depth is assumed to be much smaller than the horizontal extent of the terrain,
flow equations can be simplified and motion is treated as primarily two-dimensional.
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(iii) The terrain features moderately inclined slopes where the vertical component of velocity is
negligible compared to the horizontal component, and negligible three-dimensional effects are
present, such as vertical currents, which may be trifling in situations where fluid depth is small
relative to the horizontal extent of the terrain.

Under these assumptions, depth-integrated models offer an accurate portrayal of fluid-like flow
dynamics on complex terrains, encompassing erosion, sediment transport, and deposition phenomena
pivotal in landslide and mudflow simulations.

Let Ω ⊂ R2 be a Cartesian domain and let (0, T ] be a time interval with T > 0. On Ωw ⊂ Ω
defined as the region where the material height h > 0, we consider the following set of depth-averaged
balance equations derived from the Saint Venant equations [15, 16, 17, 18] for h and linear momenta
hu, hv 

∂th+ ∂x(hu) + ∂y(hv) = 0,

∂t(hu) + ∂x

(
hu2 +

1

2
gh2

)
+ ∂y(huv) =

1

ρ
∂x(hσxx) +

1

ρ
∂y(hσxy) +

1

ρ
Bf

x − gh∂xZ,

∂t(hv) + ∂x(hvu) + ∂y

(
hv2 +

1

2
gh2

)
=

1

ρ
∂x(hσxy) +

1

ρ
∂y(hσyy) +

1

ρ
Bf

y − gh∂yZ,

(1)

where v := [u, v]T is the horizontal velocity vector, g the gravitational acceleration, ρ the constant

density of the material, Bf := [Bf
x , B

f
y ]T the bed friction, Z = Z(x, y) the orography profile and

σ := [σxx, σyy, σxy] the deviatoric part of the Cauchy stress tensor.

2.1 Rheological and constitutive model

The combination of a turbulent and a frictional model is justified by the nature of the phenomena
under investigation, and it has been demonstrated that this assumption yields favorable results for
velocity and deposition in simulations [19, 20, 21]. For this purpose, we have considered in the
right-hand-side of equation (1) a bed friction Bf described by the Voellmy model and defined by

Bf = −
(
ρgh tanφ sgnv +

ρg|v|2

ξ

)
v

|v|
, (2)

where φ represents the friction angle, sgn the the signum function and ξ the turbulence coefficient.
Regarding the constitutive law, we adopted a depth-integrated variant of the Bingham rheological
model for visco-plastic materials, by defining the Cauchy stress tensor σ as

σ =

(
2µ+

τY
I2

)
D. (3)

where µ is the material viscosity, τY the yield shear stress, D represents the strain rate tensor defined
by

D =

[
∂xu

1
2(∂yu+ ∂xv)

1
2(∂xu+ ∂yv) ∂yv

]
, (4)

and I2 := 1
2D̄ : D̄ is the second invariant of the depth-averaged strain rate tensor

D̄ =


D11 D12

1
2∂zu

D21 D22
1
2∂zv

1
2∂zu

1
2∂zv −(D11 +D22)

 . (5)

Here we used the hyphotesis of incompressibility constraint to set D̄33 = −(D11 +D22).
In order to compute the second invariant I2 we need to estimate ∂zu and ∂zv. Under the assump-

tions of steady-state, laminar, and simple shear fluid, the vertical derivative of the velocity field can
be estimate as

∂zv =
3

2 + ψ

v

h
, (6)
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where ψ = τY /τB ∈ [0, 1] and τB is the bed resistance force. To compute the quantity ψ, we resort to
the optimal second-degree approximation, which provides a maximum error equal to 1/32, by taking
the positive solution of the equation

48ψ2 − (114 + 32a)ψ + 65 = 0, with a =
6µ|v|
τY h

. (7)

Finally, the invariant I2 can be obtained by replacing the solution of Equation (7) with (6).

3 Numerical Methods

In this section, we describe the two numerical methods used to solve system (1). We first review the
improved version of the TG2 scheme, the split IMEX-TG2-PC, developed in [6, 11, 12, 13]. This
enhanced scheme modifies the classical TG2 method by achieving the well-balancing property and
overcoming the stiffness of diffusion-reaction terms while maintaining strong scaling performances
characteristics of the original TG2 implementation. In particular, this modified TG2 scheme is able
to separate the time scales. Then, in Section 3.2, we describe the particle-based method employed in
this study, which has been extensively detailed in [14, 22, 23] and which is a semi-conservative variant
of the Depth-averaged Material Point Method (DAMPM).

3.1 The TG2-PC scheme

Before proceeding with the description of the method, it is appropriate to provide a more compact
formulation of the model equations. This will simplify the presentation and facilitate the discussion
of the numerical approach.

We consider a rectangular domain Ω ⊂ R2 with a subdomain Ωw ⊂ Ω, representing the time-
dependent region where the landslide material depth h > 0. The system shown in (1) can be expressed
in a more general and compact way as

∂tq+∇ · F+∇ ·G+B∇Z = r in Ωw × (0, T ], (8)

The system is equipped with appropriate boundary and initial conditions, where q ∈ R4 is the vector of
conserved variables, F ∈ R4×2 the transport flux tensor, G ∈ R4×2 the diffusive flux tensor, B ∈ R4×2

the matrix of non-conservative terms, Z the orography profile, r ∈ R4 the reaction term, and (0, T ]
the time window of interest.

Here, q = [h, Ux, Uy, Z]
T , with Ux = hu and Uy = hv as the mass fluxes in the x- and y-directions,

respectively.
The transport flux tensor is:

F(q) =



Ux Uy

U2
x
h + 1

2gh
2 UyUx

h

UyUx

h

U2
y

h + 1
2gh

2

0 0


,

where g is the gravitational constant.
The diffusive flux tensor is:

G(q,∇q) =



0 0

−1
ρσxxh −1

ρσxyh

−1
ρσxyh −1

ρσyyh

0 0


,
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where ρ is the material density (assumed constant), and {σij}i,j=x,y are the components of the devi-
atoric Cauchy stress tensor σ.

The non-conservative matrix is:

B(q) =



0 0

gh 0

0 gh

0 0


.

The reaction term is:

r(q) =



0

1
ρB

f
x

1
ρB

f
y

0


,

where Bf
i (q), i = x, y, represents the bed friction described in (2) .

The two-step Taylor-Galerkin (TG2) method relies on a Taylor series expansion in time, which,
as highlighted in [24], provides an effective alternative to Runge-Kutta time integration for non-stiff
problems. One notable advantage of the TG2 scheme is that it requires applying the flux limiting
procedure only once per time step, whereas Runge-Kutta methods necessitate this correction at every
stage of the process.

In this work, we introduce a novel modification to the conventional explicit TG2 scheme by incor-
porating non-conservative contributions using a predictor-corrector (PC) approach. For an overview
of the explicit TG2 scheme applied to fast landslide simulations, we refer the reader to [25, 6].

Let us now consider a hyperbolic problem with non-conservative terms, corresponding to model
(8) where the diffusive fluxes G and the source term r are neglected. This simplification is equivalent
to frictionless shallow-water equations over a fixed bottom topography (i.e., ∂tZ = 0).

At a generic time level tn+o, where o = 0, 12 , 1, we denote by Qn+o ≈ qn+o the discrete approxima-
tion of the conservative variable at tn+o. Let Fn+o = F(Qn+o) and Bn+o = B(Qn+o). The following
two-step, second-order semi-discrete scheme is employed for time integration of system (8) between
the time levels tn and tn+1:

Qn+ 1
2 = Qn +

∆t

2
(−∇ · Fn −Bn∇Zn) ,

Qn+1 = Qn +∆t
[
−∇ · Fn+ 1

2 −Bn+ 1
2∇Zn+ 1

2

]
,

(9)

where the first equation coincides with a first-order predictor step used to approximate the conservative
variables at the intermediate time.

Next, we consider the spatial discretization using the finite element method to derive the fully
discrete scheme. The domain Ω is divided into a family {Dh} of structured quadrilateral meshes with
a characteristic spacing h. For the discretization, we define two finite-dimensional spaces associated
with Dh: the space Q0, consisting of (discontinuous) piecewise constant polynomials, is used for the
first step in (9), while the space Q1, composed of continuous piecewise bilinear polynomials, is used
for the second step.

Specifically, the intermediate variableQn+ 1
2 is approximated in the space Q0, whereas the variables

Qn and Qn+1 are chosen in Q1. The basis functions for the spaces Q0 and Q1 are denoted by

{ϕ(0)j , j = 1, . . . ,M} and {ϕ(1)i , i = 1, . . . , N}, respectively, where M is the number of quadrilateral
elements inDh, andN is the total number of mesh nodes. The resulting fully discrete weak formulation
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can be expressed as:

(Qn+ 1
2 , ϕ

(0)
j ) = (Qn, ϕ

(0)
j )− ∆t

2
(∇ · Fn, ϕ

(0)
j )− ∆t

2
(Bn∇Zn, ϕ

(0)
j ),

(Qn+1, ϕ
(1)
i ) = (Qn, ϕ

(1)
i ) + ∆t (F∗,n+ 1

2 ,∇ϕ(1)i )−∆t (Bn+ 1
2∇Zn+ 1

2 , ϕ
(1)
i ), (10)

for j = 1, . . . ,M , i = 1, . . . , N , where (·, ·) indicates the L2(Ω)-scalar product, while F∗,n+ 1
2 is a

discretization flux that we define below.
In this fully discrete weak formulation, we have omitted the boundary integrals over the com-

putational domain boundary ∂Ω, specifically the term
∫
∂ΩF∗,n+ 1

2 n ϕ
(1)
i dΣ, where n represents the

outward unit normal vector to ∂Ω. Boundary conditions are imposed on this boundary. A compre-
hensive analysis of boundary conditions for hyperbolic problems lies beyond the scope of this work.
Here, we employ non-reflecting boundary conditions; for further details, the reader is referred to [26].

Following the approach in [27], we apply the mass lumping technique in the second step of Equa-
tion (10) to avoid inverting the consistent mass matrix. This choice is particularly advantageous for
parallel computation, as it allows each computation in the second step to be performed independently
at each node.

Furthermore, we emphasize two key challenges in the computation of this step: the evaluation of
the integral of the non-conservative product and the development of a high-order flux discretization
that ensures both the well-balancing and positivity-preserving properties. Let us focus on the former
issue.

We build upon the path-conservative (PC) framework, which offers a rigorous analytical inter-
pretation of non-conservative products in a weak sense [28]. Utilizing a PC approach enables the
modification of the scheme to guarantee the well-balancing property by appropriately choosing a
path.

Although the PC strategy has been extensively used in discrete formulations, such as finite volume
methods [29, 30] and discontinuous Galerkin (DG) schemes [31], to the best of the authors’ knowledge,
it has not yet been applied within a continuous finite element framework, nor specifically within the
context of the TG2 scheme.

The PC approach provides an analytical interpretation of the non-conservative products evaluated
during the intermediate step in the second stage of the method, ensuring the well-balancing property
for the system of equations under consideration. However, it is important to note that the PC
method is not without limitations. As discussed in [32], the PC framework may not always replicate
the solution expected from a conservative numerical solver.

We now proceed to define a path that ensures the desired properties.

Ψ = Ψ(Q
n+ 1

2
− ,Q

n+ 1
2

+ , s) = Q
n+ 1

2
− + s(Q

n+ 1
2

+ −Q
n+ 1

2
− ), (11)

which connects two orography states, Q
n+ 1

2
− and Q

n+ 1
2

+ , related to two mesh elements sharing the
same edge e, with s the parameter spanning the path, for 0 ≤ s ≤ 1. We choose a standard linear
path.

As discussed in [33], the motivation for the specific choice of the path lies in its simplicity, as well
as its ability to ensure that the resulting scheme is exactly well-balanced for the so-called lake-at-rest
solutions of shallow-water-type equations.

Let us denote by Ei the set of edges e connected to the node i. The path-conservative (PC) nodal
formulation for the non-conservative product in the second step (10) becomes

(Bn+ 1
2∇Zn+ 1

2 , ϕ
(1)
i ) =

∑
e∈Ei

∫
e
ϕ
(1)
i dl

∫ 1

0
B
(
Ψ(Q

n+ 1
2

− ,Q
n+ 1

2
+ , s)

)
ne ∂sΨds, (12)

where ne is the unit normal to the edge, such that ne · (x+−x−) > 0 with x+ and x− the coordinates
of the barycenter of two elements sharing edge e, while ∂sΨ denotes the derivative along the selected
path. Finally, the two integrals are numerically computed with the trapezoidal quadrature rule. The
well-balancing property is ensured by the proposition proved in [11] and which is given by

6



Proposition 3.1. The fully discrete weak-form (10) with the non-conservative contribution in (12)
is exact in the modeling of the lake-at-rest condition at the discrete level.

We now turn to the development of a high-order discretization flux F∗,n+ 1
2 . Since the TG2

scheme, being second-order accurate in both space and time [34], is neither monotone nor positivity-
preserving, we employ Zalesak multidimensional Flux Corrected Transport (FCT) method [35, 36, 37]
to suppress spurious oscillations near discontinuities (e.g., the Gibbs phenomenon) and ensure a
positivity-preserving, oscillation-free physical solution.

To formalize the well-balanced FCT method used, consider a single quadrilateral element Q of
the discretized domain, with resolution ∆x ×∆y, and define the variable ṽ = Uq. As noted in [6],
the procedure relies on the Rusanov first-order monotone flux, adjusted by a flux-limiting correction
coefficient to achieve the desired properties.

However, it is important to note that the FCT strategy does not inherently preserve the well-
balanced property of the numerical scheme. This limitation, common to many flux limiters, has
already been addressed in the context of discontinuous Galerkin (DG) methods [38]. Below, we
describe a similar procedure tailored to the approximation of shallow water equations, inspired by the
DG approach presented in that work.

To formalize the adopted well-balanced FCT method, let us consider a single quadrilateral element,
Q, of the domain discretization with resolution ∆x×∆y and consider the variable ṽ = Uq, with

U =


1 0 0 u
0 1 0 0
0 0 1 0
0 0 0 0

 (13)

and u = u(H − Hmin) the Heaviside step function. Then, the Rusanov anti-diffusive flux is defined
as,

δFn
Q = min(∆x

∆t
,∆y
∆t )

1

2∆t
(∇Ṽn, ϕ

(0)
Q ), (14)

with ϕ
(0)
Q the Q0-basis function associated with element Q and Ṽn the time discrete counter-part of

the variable ṽ, i.e., Ṽn = UnQn.
The exact integration in (14) produces an anti-diffusive flux, expressed as a linear function of

the ratios ∆x
∆t and ∆y

∆t . Due to the Courant–Friedrichs–Lewy (CFL) condition, these ratios are lower
bounded by the maximum absolute value of the simple wave speeds within the element Q along the
x- and y-directions. The simple waves correspond to the eigenvalues of the full semi-linear system,
which incorporates both conservative and non-conservative contributions.

The discrete flux within the element Q is then expressed as:

F
∗,n+ 1

2
Q = (F

n+ 1
2

Q − δFn
Q) + αQδF

n
Q, (15)

where αQ ∈ Q0 is the piecewise constant FCT coefficient, determined following the Zalesak proce-
dure [35, 36, 37] (for details on the implementation, see [6]).

It is important to note that the Zalesak procedure ensures a positivity-preserving approximation
only if the underlying low-order scheme itself is positivity-preserving. For the specific low-order
discretization flux considered here, the following result, proved in [11], holds:

Proposition 3.2. The low-order TG2-PC scheme yields a positivity-preserving discretization for the
free-surface height.

3.1.1 The second order IMEX-RKC finite element scheme

To address the stiffness of the diffusion and source terms, we employ a second-order space-time
Implicit-Explicit Runge-Kutta-Chebychev (IMEX-RKC) finite element scheme. This method avoids
the computational cost of constructing a global matrix, as required by fully implicit schemes, while
retaining a node-wise operation structure well-suited for parallel implementation.
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Focusing on the diffusion-reaction equation, we neglect the hyperbolic contributions from F and
B in model (8). The spatial discretization is performed using the finite element space Q1 associated
with the structured quadrilateral mesh Dh over Ω. Consequently, at each node i (for i = 1, . . . , N),
we solve the resulting semi-discrete problem given by

d
dtṼi = FD(t, ṼNi) + FR(t, Ṽi),

FD(t, ṼNi) = (G,∇ϕ(1)i ),

FR(t, Ṽi) = (r, ϕ
(1)
i ).

(16)

Here, Ṽi = (q, ϕ
(1)
i ) represents a vector of time-dependent functions, discretizing the conserved

variable q at node i, with the integral computed using a mass lumping approach. The terms
FD(t, ṼNi) and FR(t, Ṽi) represent the spatial discretizations of the diffusive fluxes and the reac-
tion term, respectively. The symbol ṼNi denotes the discretization of q at the nodes within the patch
of elements associated with node i.

In this semi-discrete formulation, we omit boundary conditions on the diffusive fluxes by assuming∫
∂ΩGn ϕ

(1)
i dΣ = 0. A detailed treatment of boundary conditions for purely diffusive problems

lies outside the scope of this work. For simplicity, we consider null boundary fluxes, noting that in
advection-dominated problems, transport fluxes typically have the most significant impact.

It is well-established that when using linear finite elements for the spatial discretization of diffusive
fluxes, the resulting space-discrete operator has eigenvalues that lie on the real axis and are all negative,
as noted in [39, 40].

To address this, we employ the IMEX-RKC time integration scheme [41], which is an extension
of the RKC scheme specifically designed for time integration in diffusion problems [39]. This method
has already been applied with linear finite elements in [42].

The second-order IMEX-RKC scheme can be formulated as follows: given the numerical solution
Ṽn

i at time tn, the updated solution, Ṽn+1
i , is computed by:

W0
i = Vn

i ,

W1
i − µ̃1∆tF

1
R(W

1
i ) = W0

i + µ̃1∆tF
0
D(W0

Ni
),

Wj
i − µ̃1∆tF

j
R(W

j
i ) = (1− µj − νj)W

0
i + µjW

j−1
i + νjW

j−2
i

+ µ̃j∆tF
j−1
D (Wj−1

Ni
) + γ̃j∆tF

0
D(W0

Ni
)

+ (γ̃jµ̃1µj/µ̃j − (1− µj − νj)µ̃1)∆tF
0
R(W

0
i )

− νjµ̃1∆tF
j−2
R (Wj−2

i ), j = 2, . . . ,m,

Vn+1
i = Wm

i ,

(17)

where W0
i , . . . ,W

m
i are intermediate vectors in the node i, fluxes Fj

D(Wj
Ni
), Fj

R(W
j
i ) stand for

FD(tn + cj∆t,W
j
Ni
),FR(t

n + cj∆t,W
j
i ) respectively, with 0 = c0 < c1 < · · · < cm = 1. Again, Wj

Ni

denotes the set of vectors Wj
k, for k = 1, . . . , N , defined at the nodes of the elements that share node

i, including node i itself.
The number of stages, m, required to stabilize the second-order RKC method depends on the

stiffness of the diffusion term.
As derived in [41], we define the number of stages, m, as

m = 1 +

⌈(
1 +

∆t σJ
0.653

) 1
2

⌉
, (18)

where σJ represents the spectral radius of the Jacobian matrix associated with the space-discrete
diffusion operator FD.

In practice, σJ is estimated using the Gershgorin circle theorem, and the derivatives in the Jacobian
matrix are computed via numerical differentiation. It is worth noting that for applications with a
very stiff diffusion term, the spectral radius can become extremely large, reducing the efficiency of
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the RKC scheme, as it requires a substantial number of internal stages to stabilize. However, formula
(18) remains valid when the diffusion operator is only mildly stiff, while the reaction terms are highly
stiff, as in the problem considered in this paper.

For the coefficients in (17), we adopt the definitions from [41], which are provided here for com-
pleteness. Specifically, we introduce the Chebychev polynomials of the first kind, defined by the
recursive relation:

T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x)− Tj−2(x), (19)

for 2 ≤ j ≤ m and x ∈ R, where index j keeps trace of the polynomial degree; the positive real
parameter ϵ, known as dumping parameter, that we set to 2/13 in order to ensure a second order
scheme as underlined in [39, 41]; quantities

ω0 = 1 +
ϵ

m2
, ω1 =

T
′
m(ω0)

T ′′
m(ω0)

; b0 = b1 = b2, bj =
T

′′
j (ω0)[

T
′
j (ω0)

]2 .
Thus, coefficients µj , νj , µ̃j , γ̃j and cj are computed by

µj =
2bjω0

bj−1
, νj =

−bj
bj−2

, µ̃j =
2bjω1

bj−1
with µ̃1 = b1ω1,

γ̃j = −(1− bj−1Tj−1(ω0))µ̃j , cj =
T

′
m(ω0)

T ′′
m(ω0)

T
′′
j (ω0)

T
′
j (ω0)

with c0 = 0, c1 =
c2
4ω0

,

with 2 ≤ j ≤ m.
The explicit treatment of the diffusion term in (17) results in a nonlinear algebraic system of

equations that is spatially decoupled. Consequently, only a single nonlinear equation needs to be
solved at each mesh node for every internal stage of the IMEX-RKC method, facilitating a fully
decoupled system similar to the TG2 scheme. Since the mass conservation equation does not depend
on the diffusion term, the RKC internal stages are performed solely for the momentum equation.

Moreover, the bed friction term included in FR depends on the x- and y-mass fluxes separately (as
specified by the rheology law in (2)), allowing the nonlinearity at each mesh node to be addressed with
a scalar semi-smooth Newton method along both the x- and y-directions without requiring matrix
inversion. The semi-smooth Newton method used is similar to those described in [43, 44, 45] for
contact problems.

The semi-smooth scheme is chosen because the bed friction term depends on the absolute value
of the velocity components, leading to a piecewise differentiable function due to the presence of the
signum function. To ensure piecewise differentiability, a linear relaxation of the signum function in
(2) is adopted. Specifically, for x ∈ R, the function sgn(x) is replaced by the relaxed version

sgnγ(x) =


1 if x > γ,

−1 if x < −γ,
x

γ
otherwise,

(20)

such that sgn(x) = limγ→0 sgnγ(x), where γ is a strictly positive relaxation parameter. In the simu-
lations presented here, γ is set to 10−2. Finally, the selected time discretization in the presence of a
Q1 spatial finite element discretization leads to a numerical scheme that is second order in space and
time.

3.1.2 Strang splitting IMEX-RKC TG2-PC method

In this section, we present the approximation scheme used for the numerical assessment in the next
section. In model (8), the transport and diffusion-reaction terms exhibit distinct numerical charac-
teristics, justifying the use of a splitting method [46, 47] for efficient time integration. Here, we adopt
the second-order accurate and strongly stable Strang splitting [46].

9



For clarity, we define the transport and diffusion-reaction continuous operators as T (q) = −∇ ·
F−B∇Z and D(q,∇q) = r−∇·G, respectively. The Strang splitting method follows this three-step
procedure: given qn,

∂tq
(1) = T (q(1)) with q(1)(x, tn) = qn,

∂tq
(2) = D(q(2),∇q(2)) with q(2)(x, tn) = q(1)

(
x, tn +

∆t

2

)
,

∂tq
(3) = T (q(3)) with q(3)

(
x, tn +

∆t

2

)
= q(2)(x, tn +∆t),

qn+1 = q(3)(x, tn +∆t),

for n ≥ 0. The Split IMEX-RKC TG2-PC method integrates the first and third steps with the TG2-
PC method, and the second step, involving the stiff reaction-diffusion operator, with the IMEX-RKC
scheme. The overall scheme is governed only by the CFL condition of the transport operator, as the
IMEX-RKC scheme is unconditionally stable. The CFL condition is limited to 2, since the first and
third steps use a time step of ∆t/2. Unlike the TG2 method [25, 17, 48, 6], this approach avoids
stricter time step restrictions from the reaction or diffusion terms.

3.2 Depth-Averaged MPM formulation

Following the works [22, 23, 14], we employ a semi-conservative variant of the Material Point Method
(MPM) tailored to depth-averaged models. The MPM, initially developed as an extension of the
Particle In Cell (PIC) method [49, 50], has recently gained significant attention due to its suitability
for acceleration on modern parallel computing platforms [51, 52].

To adapt the MPM framework for the system of equations (1), it is essential to reformulate the left-
hand side of the momentum equations by explicitly evaluating the spatial derivatives of the transport
flux. For clarity, we restrict our focus to the x-momentum equation.

u∂t(h) + h∂t(u) + u∂x(hu) + hu∂x(u) + ∂x

(
1

2
gh2

)
+ u∂y(hv) + hv∂y(u) = R.H.S. (21)

By using the continuity equation in (1), we replace the term ∂t(h), obtaining, after a few simplifica-
tions,

h ∂t(u) + hu ∂x(u) + hv ∂y(u) + ∂x

(
1

2
gh2

)
= R.H.S. (22)

Note that we have left the pressure term ∂x(
1
2gh

2) in the conservative form.
Now, since v = [u, v]T and

du

dt
= ∂t(u) + v · ∇u = ∂t(u) + u ∂x(u) + v ∂y(u), (23)

collecting the term h in (22) and moving the pressure term ∂x(
1
2gh

2) at the right-hand-side, we reach
the form

h
du

dt
=

1

ρ
Bx +

1

ρ
∂x

(
σxxh− 1

2
ρgh2

)
+

1

ρ
∂y(σxyh)− gh∂xZ. (24)

Thus, the x-momentum equation is reformulated in terms of the material acceleration du
dt . Next,

all terms are multiplied by the density ρ, and the x-component of the pressure gradient, ∂x
(
1
2ρgh

2
)
,

is combined with the x-component of the stress tensor term, ∂x (σxxh), ensuring that:

ρh
du

dt
= Bx + ∂x

([
σxx −

1

2
ρgh

]
h

)
+ ∂y(σxyh)− ρgh∂xZ. (25)

The whole procedure can be applied to the y momentum in a similar fashion.
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We now can define an effective stress tensor σ∇ that takes into account the hydrostatic pressure
gradient simply as

σ∇ = σ − 1

2
ρgh⊗ 1, (26)

where σ is the Cauchy stress tensor defined in (3) and 1 is the identity tensor.
Finally, by setting b = −g∇Z we obtain a compact form that reads

ρh
dv

dt
= Bf +∇ · (σ∇h) + ρbh, (27)

and hence apply the MPM framework, according to [22, 23, 49, 50].

3.2.1 The DAMPM scheme

The initial stage involves examining the weak formulation of the momentum equations delineated in
system (26). To accomplish this, we employ the Galerkin method, multiplying the equation by a
suitably smooth test function ϕ and subsequently integrating it across the domain Ω. Ultimately,
through the application of Green Theorem, we arrive at∫

Ω
ρh

dv

dt
ϕ dx =

∫
Ω
(Bf + ρbh)ϕdx−

∫
Ω
σ∇h∇ϕdx+

∫
∂Ω

σ∇hϕn ds. (28)

Here, n represents the outward unit normal to the boundary ∂Ω. Concerning the boundary conditions
of (28), we enforce a zero diffusive interface flux.

To discretize (28) we consider the material of interest composed by a finite collection Ωp of Np

Lagrangian material points, which represent in this context columns of material. Each particle is
provided with a mass mp, which will be kept fixed throughout the simulations, and with the initial
conditions on every physical quantity necessary to the constitutive model, such as velocities vp =
[up, vp]

T , locations xp = [xp, yp]
T , volumes Vp, areas Ap and stresses σp, for all p ∈ {1, ..., Np}.

Following the standard MPM procedure [49, 22, 8], the mass mp is concentrated on each columns as

ρh(x, t) =

Np∑
p=1

mpδ(x− xp), ∀x ∈ Ω, ∀t > 0, (29)

where δ(x− xp) is the Dirac delta function. By diving (29) by ρ, which is assumed constant, and by
referring (28) with respect to (29) itself, we obtain

Np∑
p=1

mp
dvp

dt
ϕp =

Np∑
p=1

ApB
f
p ϕp +

Np∑
p=1

ρVp bp ϕp −
Np∑
p=1

Vpσ
∇
p ∇ϕp, (30)

where Ap is the area of the column associated with the pth particle, ϕp := ϕ(xp) and Vp = mp/ρ.
To calculate the differential terms in (30), we create a stationary Eulerian grid that spans the

entire physical domain Ω of interest. This grid can take the form of either Cartesian or unstructured
grids, with commonly employed element shapes including squares or triangles [8]. In the context of a
comparison between the TG2 and DAMPM scheme, we consider in this work the same space Q1 of
the piecewise bilinear polynomials as made as for the TG2 scheme, by covering the entire domain Ω
with square elements, as shown in panel (a) of Figure 1.

Under these hyphoteses, we apply the standard finite element procedure on equation (30), obtain-
ing

Nv∑
i=1

ϕi ·
Nv∑
j=1

Mij aj =

Nv∑
i=1

ϕi ·
Np∑
p=1

ApB
f
p Ni(xp) +

Nv∑
i=1

ϕi ·
Np∑
p=1

ρVp bpNi(xp)−
Nv∑
i=1

ϕi ·
Np∑
p=1

Vp σ
∇
p ∇Ni(xp),

(31)
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(a) A structured Eulerian grid is de-
fined over the domain Ω, while the
continuum material is discretized into
a set Ωp of Np Lagrangian parti-
cles, each carrying its specific phys-
ical properties.

(b) Particle-to-Grid (P2G) Proce-
dure: the physical quantities associ-
ated with the particles are projected
onto the corresponding grid nodes
using the basis functions Ni(xp).
This process is employed to compute
and assemble the nodal forces fi.

(c) Advective Phase on Grid Nodes:
nodal accelerations ai and veloci-
ties vi, illustrated with red arrows,
are determined using the nodal mo-
menta (mv)i and the total nodal
force fi.

(d) The G2P procedure. The advec-
tive phase is projected back to the
particles.

(e) Final stage of the method: once
the particle stresses σ∇

p are cal-
culated, the particle positions xp

and their depths hp are updated.
This completes one iteration of the
scheme, allowing the method to
restart.

Figure 1: Illustration of the classic MPM algorithm.
.

which becomes

Nv∑
j=1

Mijaj =

Np∑
p=1

ApB
f
p Ni(xp) +

Np∑
p=1

ρVpbpNi(xp)−
Np∑
p=1

Vp σ
∇
p ∇Ni(xp), ∀i ∈ {1, ..., Nv}, (32)

since (31) is true for every sequence {ϕi}i∈{1,...,Nv}. Here, N
1
i := ϕ

(1)
i are the same Q1 shape functions

introduced in section 3.1 evaluated on xp and Mij is the mass matrix defined by

Mij =

Np∑
p=1

mpNi(xp)Nj(xp). (33)

With the formulation shown in (32) we are able to apply the second stage of the MPM algorithm,
which is the so called Particle-to-Grid (P2G) phase, as shown in panel (b) of Figure 1. We use the

basis function N1
i to project the particle momenta (mv)p and to collect stresses σ∇

p , friction Bf
p and

12



body forces bp on the ith grid nodes as

(mv)i =

Np∑
p=1

(mv)pNi(xp),

f exti =

Np∑
p=1

ρVp bpNi(xp),

f inti =

Np∑
p=1

ApB
f
p Ni(xp)−

Np∑
p=1

Vp σ
∇
p ∇Ni(xp),

(34)

where f exti and f inti are intended as external and internal forces respectively. By using the lumped
mass matrix Mi and by defining the total nodal forces fi as the sum of f exti and f inti we obtain, for
every i ∈ {1, ..., Nv} the final expression of (32) as

Miai = fi. (35)

The third stage of the MPM framework, depicted in panel (c) of Figure 1, deals with the advective
phase, in which the nodal forces fi and momenta (mv)i are used to computed the nodal accelerations
ai and velocities vi, respectively as

ai =
fi
Mi

, vi =
(mv)i
Mi

. (36)

The use of an explicit time integration scheme allows us to compute the new nodal velocities at tk+1,
by setting

vk+1
i = vk

i +∆t aki , (37)

where vk
i and aki are the velocities and accelerations computed with (36) at time tk.

Once the advective phase is completed, the fourth stage of the algorithm can be performed as
shown in panel (d) of Figure 1. In the Grid-to-Particle (G2P) process, the nodal velocities vk+1

i just
computed are projected back to the particles by using the shape functions N1

i as

vk+1
p =

Nv∑
i=1

vk+1
i N1

i (xp). (38)

The particle positions xk
p can be updated by using the equation of the motion as

xk+1
p = xk

p +∆tvk
p . (39)

In the last stage of the framework, depicted in panel (e) of Figure 1, we determine the updated

particle stresses σ∇, k+1
p employing the Update Stresses Last (USL) method [8, 9] and the depth hk+1

p .
In this way the stresses, based on the chosen constitutive model, are updated only after computing the
nodal velocities vk+1

i . Thus, we must evaluate the strain increment ∆εp through the grid velocities
vk+1
i obtained from (37) as

∆εp =
∆t

2

Nv∑
i=1

(
∇Ni(xp)v

k+1
i + (∇Ni(xp)v

k+1
i )T

)
. (40)

Finally, we estimate the stress increment ∆σ∇
p , by following the constitutive model shown in Section

2, as
σ∇, k+1
p = σ∇, k

p +∆σ∇
p . (41)

We point out that, while the USL approach has demonstrated a tendency towards dissipation,
its benefits in terms of stability and convergence outweigh those of other stress update techniques
[53, 54].

The final stage of the method involves updating the depth hk+1
p while ensuring the mass balance

defined in (1). According to [22, 23, 14], the updated value of hk+1
p is determined by

hk+1
p =

hkp
1 + tr(∆εp)

. (42)
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4 Numerical simulations

In this section, we focus on the numerical comparison of the two schemes described in section 3 through
accuracy and well-balancing tests. Before starting, we point out that the TG2 scheme is adaptive
in space and allows for accurate tracking of the interface, whereas the DAMPM scheme does not.
However, the Lagrangian nature of the particle-based method allows an accurate natural tracking of
the wet interface, with the additional advantage of automatic mass balance preservation. We perform
also a well-balancing test on a non-flat orography and, at the end of the section, we analyze a real
case study consisting in a debris flow occurred at Rochefort Torrent, near Courmayeur (Aosta Valley,
Italy) in September 2015.

4.1 Reliability test: dam break problem

The first test we carry out deals with a classic dam break problem on a frictionless domain Ω :=
[0, 300] × [0, 20] described by the planar topography Z(x) = 100− x/3. We set a final time equal to
11s. Non-reflective boundary conditions are enforced on ∂Ω, while we start from material at rest with
the following initial material profile

h(x, 0) =

{
100− Z(x) if x ≤ 20,

0 otherwise,
(43)

and null velocities in both x and y directions.

Figure 2: Inclined dam-break simulation. The left column represents the split IMEX-TG2-PC, while
the right column shows the DAMPM simulation, both for the time instants T = 0 s, T = 5.5 s and
T = 11 s

The water is free to collapse and flow under its own weight, and its motion is influenced solely
by gravity along the inclined direction. We carried out the test by using both DAMPM and the
IMEX-TG2-PC method.

The domain Ω has been discretized with 1.1 · 104 elements for the IMEX-TG2-PC. Regarding the
DAMPM, we used the same spatial resolution, while we employed 7 · 103 particles to discretize the
mass of water.

Despite the fundamentally different nature of the two approaches (particle-based for DAMPM and
grid-based for IMEX-TG2-PC), both show similar behavior regarding the water front propagation.
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However, it is observed that the DAMPM tends to be slightly more dissipative compared to the
IMEX-TG2-PC, which is reflected in a difference in the velocities and final positions of the water
front.
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Figure 3: Parity plot for the inclined dam-break problem at different time instances. The positions
shown correspond to the computed advancing front positions, compared with the expected positions
for uniformly accelerated motion at the given time steps.

In Figure 2, three key time instants from the simulation are shown: T = 0 s, T = 5.5 s, and
T = 11 s. Starting from the same initial conditions, the water front in the Modified TG2 case is
located at x = 97.3 m at time T = 5.5 s, while in the DAMPM case, it is slightly further back
at x = 96.2 s, and at time T = 11 s, the IMEX-TG2-PC reports the front at position x = 240.6m,
compared to x = 239.2m in the DAMPM method. This difference aligns with the observation that the
particle-based method experiences greater numerical dissipation, leading to reduced front propagation
over time.

Relative error generated on the front position

Method T = 5.5 s T = 11 s

IMEX-TG2-PC 0.0039 0.0121
DAMPM 0.0074 0.0054

Table 1: Relative errors for the wet/dry inclined dam-break problem.

We compared the computed positions with the expected estimates, considering that a body de-
scending a frictionless inclined plane follows a path of uniformly accelerated motion. The errors as-
sociated with the test are computed by comparing the two solutions with the exact one at the nodes
of the computational grid. Table 1 demonstrates that both methods provide a good approximation
of the theoretical behavior, while also highlighting the aforementioned differences in the treatment of
numerical dissipation.

As a complementary analysis, Figure 3 presents the parity plot of the positions obtained from
simulations using both methods, computed on the nodes of their respective grids, against the ex-
act positions over the entire 11-second duration of the dam-break event. The analysis is based on
sampled time instances T = {0, 2.75, 4, 5.5, 7.75, 9, 11} s, ensuring a representative distribution over
the evolution of the event. This visualization reinforces that both methods yield results consistent
with theoretical expectations, though slight discrepancies are observed. These deviations are primar-
ily attributed to the distinct discretization strategies adopted for the momentum equations and the
dissipation inherent in the DAMPM approach.
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4.1.1 Collapse of a semisphere

The last test deals with the collapse of a semisphere of water under the action of gravity g on a
flat, frictionless domain Ω described by the square [0, 50]2. By the defining xc = (25, 25), the initial
conditions on the material read

h(x, 0) =
√
25− ∥x− xc∥2

u(x, 0) = v(x, 0) = 0
x ∈ Ω. (44)

The total simulation time is set to T = 1.2 s and non-reflective boundary conditions are enforced at
∂Ω. During the simulation of the collapse of the hemisphere, the debris front is allowed to expand

Figure 4: Snapshots of the sphere collapse for three different time instants T = 0 s, T = 0.6 s and
T = 1.2 s obtained with DAMPM (on the top) and TG2 (on the bottom), shown on the top-right
quarter of the computational domain.

freely under the sole influence of hydrodynamic forces, moving across a flat, frictionless domain.
This setup eliminates the influence of surface irregularities and frictional resistance, enabling a clear
analysis of the dynamic behavior of the collapsing mass. The results obtained with both numerical
approaches are entirely consistent, as illustrated in Figure 4, which presents three different time steps
from the simulation conducted with each method.

The evolution of the debris flow demonstrates a rapid expansion of the initial mass, which starts
with a diameter of approximately 5 meters and grows to about 13 meters after 1.2 seconds of simu-
lation. This significant increase in the extent of the mass highlights the ability of both methods to
accurately capture the physical dynamics of the spreading process. The temporal snapshots in Figure
4 reveal a high degree of agreement between the two approaches, with negligible differences in the
spatial distribution and shape of the flow front over time.

These results further confirm the robustness of both numerical methods in modeling highly dy-
namic free-surface flows, where the interplay of inertial and hydrodynamic forces dominates the be-
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havior of the system. By providing consistent and physically realistic results, both methods prove
effective in capturing the fundamental characteristics of the hemisphere collapse scenario.

4.2 Well-balancing test

In order to verify the so called lake-at-rest condition in the context of MPM scheme, we need to
slightly modify the formulation of the momenta equations in (1), by referring them to the still water
level H, a straight line orthogonal to the gravity direction representing the rest position of a fluid.
Following the works in [17, 14, 55, 56] and the notation of Figure 5, we first notice that, in the steady
condition, it holds

∇H = −∇Z. (45)

Then, by replacing the term −gh∇Z in the right-hand-side of equation (1) with (45) and by adding

Figure 5: Lake-at-rest problem notation.

and subtracting the term gH∇H, after few simplifications we obtain a new, but equivalent, formula-
tion of the system that reads

∂t(hv) +∇ ·
(
v ⊗ hv +

1

2
g(h2 −H2)⊗ 1

)
=

1

ρ
Bf +

1

ρ
∇ · (hσ)− g(h−H)∇Z. (46)

We remark that the entire MPM framework can be still applied in an analogous fashion to the new
formulation, which is, unfortunately, useful only as long as the still water level H is available.

Under these hypotheses, we have performed the well-balancing test by considering a topography
Z described by the analytical equation

Z(x) = 15 exp
(
−∥x− x1∥2

)
+ 4 exp

(
−∥x− x2∥2

)
+ 12 exp

(
−∥x− x3∥2

)
, x ∈ Ω = [0, 10]2, (47)

where x1 = [7/2, 7/2]T , x2 = [7, 7]T and x3 = [8, 5/2]T . We carried out the test by setting the initial
conditions coinciding with the steady solutions, given by

h(x, t) + Zi(x) = 10,

u(x, t) = v(x, t) = 0,
∀t ∈ (0, T ], x ∈ Ω, i = 1, 2, (48)

while setting the final time T = 1 s and g = 9.81m/s2. The action of the bed friction Bf is taken
into account by considering the Voellmy model defined in (2), with φ = 26◦ and ξ = 500m/s2.
The Cauchy stress tensor σ has been defined following the Bingham model shown in (3), by setting
ρ = 1200 kg/m3, µ = 2 · 103 Pa and τY = 30Pa · s. Finally, a null normal nodal velocity has been set
at ∂Ω.
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DAMPM IMEX-TG2-PC

State variable L1(Ω) L∞(Ω) L1(Ω) L∞(Ω)

h 1.26e− 12 1.26e− 14 2.68e− 13 8.92e− 15
hu 1.08e− 13 3.57e− 14 2.38e− 13 1.41e− 14
hv 1.22e− 13 3.25e− 14 1.67e− 13 2.02e− 14

Table 2: Well-balancing test results in H1(Ω) and L∞(Ω) norms after 1 s of simulation.

4.3 Real scenario

This section is devoted to the study of a real debris flow event occurred at Rochefort Torrent, high-
lighted in blue in Figure 6, situated in the Aosta Valley, northwest Italy. This basin lies within the
Ferret Valley, nestled in the southeastern region of the Italian side of the Mont Blanc massif. Charac-
terized by a glacial valley with a NE-SW orientation, it spans from the summit of Col Ferret (2490m
a.s.l) to the Entrèves municipality. Despite its relatively small basin area, numerous events have been
documented, resulting in significant damage to local infrastructure, notably the Regional Road La
Palud and its bridge over Rochefort Torrent, depicted in the bottom-right part of Figure 6 with a
yellow cross.

In this study we focus on the analysis of the 2015 run-out event triggered by a brief yet intense
rainfall, with cumulative precipitation exceeding 40mm over three days, peaking at around 9mm/h
on the day of the event. Empirical surveys estimated approximately 6000m3 of deposition, highlighted
in red in Figure 6, reaching a maximum thickness of about 1.5− 2m, in proximity of the bridge and
along the road, while the complete event occurred in no more than few minutes.

Figure 6: Location of the debris flow event with a magnification of the Rochefort Torrent, in blue,
the bridge depicted with a yellow cross and the extension of the deposit, in red.

We carried out a simulation of the run-out phase of the debris flow with both numerical approaches,
i.e. TG2 and DAMPM. Rheological parameters used in the Voellmy friction law are chosen by
following the work of [57]. We considered only the action of the hydrostatic pressure gradient during
the run-out and we set tan(ϕ) ∼ 0.15 for friction angle, while we set a turbulence coefficient ξ equal
to 500m/s2. The density ρ is fixed to 1750 kg/m3 and it is chosen as an averaged of the span values
who tipically refer such kind of phenomena [58]. Regarding the spatial discretization, a computational
grid with 6.2 · 104 nodes was considered for both the IMEX-TG2-PC and DAMPM methods. The
total number of particles used in the simulations was 3.1 · 104.
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Figure 7: Snapshots of the Rochefort Torrent debris flow event with the split IMEX-TG2-PC and
DAMPM for four different time instants, with respect to the bridge location, depicted with a yellow
cross.

The test conducted on the debris flow in the Rochefort Torrent using the split IMEX-TG2-PC
method and the DAMPM approach demonstrates results that are highly comparable and consistent
with empirical observations. Both simulations were performed over a total time of 10 minutes, with an
average time step ∆t of approximately 0.06 s for both methods. Figure 7 presents various snapshots
of the simulation with both methods at different time steps.

A key difference between the two approaches lies in their dissipative behavior. The DAMPM ex-
hibits slightly more dissipative results compared to the split IMEX-TG2-PC method. This behavior
has also been observed in previous numerical examples and is a characteristic of the DAMPM formu-
lation. However, despite this dissipative tendency, the DAMPM proves to be exceptionally accurate
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in describing the trajectory of the debris flow front, even in the highly complex topography under
study. In contrast, the split IMEX-TG2-PC method provides a simulation where the debris flow front
propagates slightly further, as seen in the central panel of Figure 7 at T = 4min.

Despite these differences, both methods produce a run-out prediction that aligns perfectly with
empirical investigations. Both fronts reach the bridge downstream, marked with a yellow cross, in
no more than 6 minutes after the initiation of the debris flow. This observation is corroborated
by eyewitness accounts from individuals present during the event. Moreover, the average velocities
calculated in the two simulations are consistent with the estimated flow velocity of the debris mass,
which ranges between 3.0 and 3.5m/s.

Figure 7 also illustrates that the average height of the deposited mass near the bridge does not
exceed 2m for either method. This result is entirely consistent with experimental observations and
further confirms the accuracy of both approaches in modeling the event.

Finally, a comprehensive study of the efficiency and scalability of the two methods has not yet
been reported, as the parallelization of the DAMPM approach is still under development. However, a
comparison of computational times was conducted for the simulation of a realistic scenario, i.e., with
a final time of T = 10min. The solvers were executed in serial mode on a machine equipped with
an 8-core processor clocked at 1.70 GHz, using a similar spatial discretization of the computational
domain.

The simulation performed with the IMEX-TG2-PC method, which is adaptive in both space and
time, completed after approximately 16 hours, whereas the DAMPM simulation finished in 6 hours.
The substantial difference in execution times is primarily attributed to the spatial adaptivity employed
in the IMEX-TG2-PC method, as well as the front-tracking techniques, which impose smaller time-
step sizes [6, 13].

On the other hand, another key advantage of the DAMPM approach is its accurate interface
tracking capability, alongside its potential for parallelization on GPUs, enabling highly efficient and
effective results [52, 59] .

5 Conclusions

In this study, we performed a qualitative comparative analysis of two numerical approaches: the
split IMEX-TG2-PC method (mesh-based) and the Depth-averaged Material Point Method (particle-
based). Both methods were fully derived, showcasing their theoretical underpinnings, and their ac-
curacy and well-balancing properties were rigorously tested using well-established benchmarks from
the literature. The results obtained are fully comparable and align with theoretical expectations,
highlighting the robustness of both approaches.

In addition, the methods were applied to a real-world scenario involving a debris flow, with simu-
lation outcomes validated against in situ observations. Both approaches demonstrated high accuracy
in reproducing the run-out of landslides or debris flows, emphasizing their reliability in modeling
complex natural phenomena. Notably, the DAMPM showed a slightly more dissipative behavior in its
solutions, which may affect the precise quantification of energy dissipation, yet it proved particularly
effective in capturing the dynamics of the advancing front over highly intricate topographies. Con-
versely, the IMEX-TG2-PC method maintained sharper resolution in areas where dissipation played
a less dominant role but may encounter challenges in adapting to extremely irregular terrains.

Future work could focus on a detailed comparative analysis of computational efficiency and scala-
bility, leveraging the power of GPUs to conduct simulations on larger domains and finer resolutions.
This would provide a more comprehensive assessment of the strengths and limitations of these meth-
ods, enhancing their applicability to a broader range of real-world scenarios.

Data availability

Data will be made available from the corresponding author upon reasonable request.
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[30] M. J. Castro, P. G. LeFloch, M. L. Muñoz-Ruiz, C. Parés, Why many theories of shock waves
are necessary: Convergence error in formally path-consistent schemes, Journal of Computational
Physics 227 (17) (2008) 8107–8129.

[31] S. Rhebergen, O. Bokhove, J. J. van der Vegt, Discontinuous galerkin finite element methods
for hyperbolic nonconservative partial differential equations, Journal of Computational Physics
227 (3) (2008) 1887–1922.

[32] R. Abgrall, S. Karni, A comment on the computation of non-conservative products, Journal of
Computational Physics 229 (8) (2010) 2759–2763.

[33] M. Dumbser, E. F. Toro, A simple extension of the osher riemann solver to non-conservative
hyperbolic systems, Journal of Scientific Computing 48 (1) (2011) 70–88.

[34] J. Peraire, A finite element method for convection dominated flows, Ph.D. thesis, University
College of Swansea, Swansea (1986).

[35] S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of
computational physics 31 (3) (1979) 335–362.

[36] J. P. Boris, D. L. Book, Flux-corrected transport. iii. minimal-error fct algorithms, Journal of
Computational Physics 20 (4) (1976) 397–431.
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