
MOX-Report No. 102/2024

The lifex library version 2.0

Bucelli, M.

MOX, Dipartimento di Matematica
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it https://mox.polimi.it

The lifex library version 2.0

Michele Bucellia,∗

aMOX Laboratory of Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, Piazza
Leonardo da Vinci 32, 20133, Milano, Italy

Abstract
This article presents updates to lifex [Africa, SoftwareX (2022)], a C++ library for high-performance finite
element simulations of multiphysics, multiscale and multidomain problems. In this release, we introduce
an additional intergrid transfer method for non-matching multiphysics coupling on the same domain, sig-
nificantly optimize nearest-neighbor point searches and interface coupling utilities, extend the support for
2D and mixed-dimensional problems, and provide improved facilities for input/output and simulation se-
rialization and restart. These advancements also propagate to the previously released modules of lifex
specifically designed for cardiac modeling and simulation, namely lifex-fiber [Africa et al., BMC Bioinfor-
matics (2023)], lifex-ep [Africa et al., BMC Bioinformatics (2023)] and lifex-cfd [Africa et al., Computer
Physics Communications (2024)]. The changes introduced in this release aim at consolidating lifex’s posi-
tion as a valuable and versatile tool for the simulation of multiphysics systems.

Keywords: High performance computing, Finite elements, Numerical simulations, Multiphysics prob-
lems

1. Introduction

This paper discusses recent updates to lifex [1] (https://lifex.gitlab.io), a C++ library tailored at
finite element simulations for multiphysics and multiscale problems (logo depicted in Figure 1). lifex builds
upon the finite element library deal.II [5, 6] by implementing high-level reusable utilities for common tasks
such as generating or reading meshes, both tetrahedral and hexahedral, solving linear and non-linear systems
of equations, preconditioning linear systems, writing output to file, or managing simulation checkpointing
and restart. Many of these features are implemented by wrapping deal.II functionality in easy-to-use
software interfaces. These are configured through human-readable and well structured parameter files in
the custom deal.II syntax [1], so that lifex can be used effectively to design simulation tools that require
minimal coding effort from the end user, if any [2–4].

The effectiveness of the framework offered by lifex was demonstrated by three modules specifically tar-
geted at applications to cardiac and cardiovascular modeling: lifex-fiber [3], for muscle fiber generation;
lifex-ep [4], for simulating electrophysiology; lifex-cfd [2], for computational fluid dynamics (CFD) sim-
ulations. The updates presented in this paper concern the general-purpose features of the library, and as
such also apply to those modules.

lifex provides the basis for a large and growing number of recent application studies [7–9, 14–23, 25–
27, 30–32, 34, 36–40], which testify to the versatility and impact of the lifex ecosystem on cardiovascular
research. An up-to-date list of publications using lifex is maintained on the dedicated page of the official
website1.

The present release aims at consolidating, optimizing and enhancing the features of lifex’s core module.
We implement a new method for transferring data between non-matching meshes [12, 13] in parallel simu-
lations (Section 2); we improve the interface and the performance of the parallel nearest-neighbor lookup of

∗Corresponding author. E-mail: michele.bucelli@polimi.it
1https://lifex.gitlab.io/lifex-public/publications.html

https://lifex.gitlab.io
https://lifex.gitlab.io/lifex-public/publications.html

Figure 1: The lifex logo. Image licensed under the CC-BY-SA 4.0 license.

Geometry Numerics Multiphysics IO

MeshHandler NonLinearSolverHandler QuadratureEvaluation CSVWriter
MeshInfo LinearSolverHandler ProjectionL2 VTKFunction
DoFLocator (*) PreconditionerHandler InterfaceHandler OutputHandler (*)
BoundaryDoFLocator (*) BlockPreconditionerHandler RBFInterpolation (*) VTKImporter (*)
GeodesicDistance (*) BDFHandler RestartHandler (*)

BCHandler
FixedPointAcceleration
TimeInterpolation
Laplace (*)

Table 1: List of lifex core’s most relevant classes, grouped by category. Classes that were introduced in the new release
are written in bold and marked with an asterisk (*). Additional details can be found in the online documentation (https:
//lifex.gitlab.io/lifex-public/index.html).

mesh vertices (Section 3), an operation used throughout the library for many tasks, including interface cou-
pling; we introduce support for simulations in dimensions other than 3D (Section 4); we enhance simulation
checkpointing and restart through a significantly improved and standardized user interface (Section 5), and
introduce several improvements to the input/output (IO) facilities in general (Section 6). All these features
greatly enhance the usability and versatility of lifex, with the aim of further improving its effectiveness as
a tool for multiphysics simulations.

Table 1 reports the most relevant classes implemented in lifex, grouped by category. The rest of this
paper presents the features in the new release and their significance, while we refer to [1] for a more extensive
description of the general lifex framework and of the features available in previous release, and to the
source code repository2 and the online documentation3 for technical details. Unless otherwise specified, all
C++ classes discussed in this document are part of the lifex::utils namespace, which we omit henceforth
in the interest of brevity.

2. Radial basis function interpolation for multiphysics coupling

lifex is designed with multiphysics cardiac applications in mind, and as such has a strong focus on the
coupling of heterogeneous models. Until previous release, the transfer of data between different domains
or different models always imposed some conformity constraints on their discretization. Interface-coupled
problems can be managed through the class InterfaceHandler and the related functionality, requiring that
the two coupled models have a conforming discretization at their interface [11]. Data transfer between
volume-coupled problems (that is, problems defined on the same domain) can be managed through the class
QuadratureEvaluation and its derived classes, which require that the two models share the same mesh,
although they can be discretized with different finite element spaces [1]. The coupling of meshes of different
resolution was, until now, only supported for nested grids of hexahedral elements [33].

With this release, we add support for radial basis function (RBF) interpolation between non-matching
meshes, with the methods described in [12, 13, 24]. This allows to transfer data between spatial discretizations

2https://gitlab.com/lifex/lifex-public
3https://lifex.gitlab.io/lifex-public/index.html

2

https://lifex.gitlab.io/lifex-public/index.html
https://lifex.gitlab.io/lifex-public/index.html
https://gitlab.com/lifex/lifex-public
https://lifex.gitlab.io/lifex-public/index.html

102 103 104 105 106

10−4

10−2

100

102

100 101 102 103 104

10−1

100

101

102

103

1 10 100
1

10

100

mesh points

w
a
ll
ti
m
e
[s
]

(a) wall time
vs. # mesh points

queries

w
a
ll
ti
m
e
[s
]

(b) wall time
vs. # queries

cores

sp
ee
d
u
p
[1
]

(c) strong
scalability

DoFLocator with R-tree DoFLocator without R-tree

find closest dof linear trend

Figure 2: Performance of the new DoFLocator class compared to the old find_closest_dof function. (a) Wall time against
the number of mesh points, for 100 repeated queries, using one parallel process. DoFLocator, both with and without R-trees,
is close to 100 times faster than the old function. (b) Computational time against number of queries, for a mesh with 274 625
vertices, using one parallel process. The advantage of R-trees becomes evident as the number of queries increases. (c) Nearly
ideal parallel speedup of a strong scalability study, with 100 repeated queries on a mesh with 2 146 689 vertices.

of arbitrary refinement, element shape (tetrahedral or hexahedral) and polynomial degree, thus greatly
enhancing the library’s flexibility in coupling heterogeneous problems. Furthermore, we support complex
geometries with dedicated methods based on approximate geodesic distance [13]. This implementation of
RBF interpolation demonstrates excellent parallel scalability up to thousands of cores, as discussed in [12, 13].

The new features are exposed through the class RBFInterpolation, providing an interface for RBF
interpolation between arbitrary sets of points. Derived classes RBFInterpolationDoFs and RBFInterpo-
lationQuadrature manage interpolation of data that is collocated at degrees of freedom (DoFs) and mesh
quadrature points, respectively. All these classes can be configured extensively through the parameter file.
A new example named ExampleRBFInterpolation showcases the new features.

3. Point locators

The release introduces new helper classes DoFLocator and BoundaryDoFLocator that offer an interface
for the task of locating the nearest DoF (or boundary DoF) to a given point in the physical space, possibly
in a parallel setting, which is a key part of many algorithms in lifex.

The locator classes internally build an R-tree representation of the points [29], using the implementation
of R-trees from boost::geometry::index [10] wrapped by deal.II. Therefore, they provide a friendly yet
computationally efficient interface for nearest-neighbor searches. A dedicated method is implemented for
efficient multi-point queries, where every parallel process needs to locate a different set of points, possibly
owned by other processes.

We stress that, until previous release, nearest-neighbor searches were done with a simple linear search
algorithm, implemented by the find_closest_dof function (now removed). The current implementation
significantly improves in terms of algorithmic complexity and performance, as shown in Figure 2, and can
take advantage from repeated queries by reusing the same R-tree.

Additionally, the new locator classes are exploited in the coupling of domains across a common interface,
as implemented by InterfaceMap and InterfaceHandler. The efficiency and parallel performance of the
construction of interface maps has been significantly enhanced in this release. As depicted in Figure 3a, the
task of establishing a map between the interface DoFs of two domains with a common boundary (implemented

3

112 550 2,690

316

1,000

cores

sp
ee
d
u
p
[1
]

compute interface maps

linear trend

(a) (b)

Figure 3: (a) Strong scalability of the function compute_interface_maps, that establishes a mapping between the interface DoFs
of two domains with a common boundary. This test couples a surface and a volume problem, with 1 049 601 and 135 398 529
DoFs, respectively, and 1 049 601 interface DoFs. (b) Example of coupling a surface and a volume problem through their common
interface, as implemented by the new example InterfaceCoupling2D3D. We first solve a Laplace-Beltrami problem on a portion
of the domain’s boundary (top), and then solve a Laplace problem in the whole domain (bottom), with Dirichlet conditions
taken from the surface problem. Atrial model taken from [28].

by the function compute_interface_maps) shows ideal parallel scalability up to approximately 800 interface
DoFs per process.

4. 1D, 2D and mixed-dimensional problems

With this release, we improve lifex’s support for 1D and 2D problems, and mixed-dimensional problems
in general. The user can now specify the spatial dimension through the CMake LIFEX_DIM parameter (which
defaults to 3). Many classes of general purpose are now templated over the physical and spatial dimensions,
following the same convention as deal.II. These include MeshHandler, MeshInfo, OutputHandlerBase and
its derivatives, Laplace and GeodesicDistance.

Most notably, with this improvement we extend the applicability of lifex utilities to problems defined
on surfaces (as seen in the new LaplaceBeltramiExample). Additionally, the InterfaceHandler-related
utilities now allow to couple problems of mixed dimensions, such as a problem defined on a surface with
another defined on a volume for which that surface is part of the boundary. This feature is demonstrated
by the new example InterfaceCoupling2D3D (Figure 3b).

5. Checkpointing and restart

High-performance computing (HPC) enviroments typically limit the maximum duration of a job to wall-
times that are shorter than the duration of large-scale simulations. It is therefore crucial for a library such
as lifex to allow splitting computations over multiple jobs, overcoming these limitations.

To this end, lifex allows to write the simulation state to a file (a process also referred to as checkpoint-
ing, or serialization), from which, at a later time, the simulation itself can be restarted. In this release,
we significantly reworked this process, improving its robustness and reliability, enhancing its support for
multiphysics simulations, and significantly simplifying its user interface.

All this is implemented through a new helper class named RestartHandler. The class can collect data
from different problems, allowing to store multiple fields or scalar values in a single .h5 file [35]. We remark

4

that the previous release would create multiple files for each model, which could lead to confusion and clutter,
and would not allow to include scalars in the serialized files, so that they would need to be saved and restored
separately.

Conversely, the RestartHandler class offers a clean interface to store and retrieve all the data needed
for restart. The class acts by keeping a list of references to data that needs to be serialized or deserialized.
Such data can be easily registered through the methods RestartHandler::attach_scalar and Restart-
Handler::attach_vector, for scalar types and parallel vectors (or block vectors), respectively. A helper
RestartHandler::attach_bdf_handler facilitates serialization and restart for time-dependent problems re-
lying on the BDFHandler class [1]. Serialization is done by calling the RestartHandler::serialize method,
while restart is performed through the RestartHandler::restart method. Simulation and restart for mul-
tiple models can be easily centralized by having each model write to the same instance of RestartHandler.

All lifex tutorials have been extended to exemplify the use of the RestartHandler class. Most notably,
tutorial 6 demonstrates its use in the context of a multiphysics simulation in which the different sub-models
are managed by separate classes.

From the user’s perspective, checkpointing and restart are configured in two dedicated subsections of the
parameter file:

subsection Serialization
set Enable = true
set Serialization basename = restart
set Serialize every n timesteps = 1000

end

subsection Restart
set Enable = true
set Restart basename = out_dir/restart
set Restart timestep index = 1000

end

We stress that, differently from previous release, the user need not specify the initial time or initial timestep
number of the restarting simulation, as these will be retrieved from the serialized data. Overall, this makes
the process of restarting much simpler and less error-prone.

6. Input/output enhancements

On top of the previously discussed RestartHandler, we introduced new classes to centralize IO tasks
that are common between multiple applications of lifex. This has a twofold purpose: on the one hand, it
enforces a standardized interface for those tasks, ensuring in particular that all applications share the same
parameter file structure. On the other hand, this centralization greatly facilitates any future extension.

6.1. Output of problem solutions to file
Data output has been centralized to the new class OutputHandler, wrapping deal.II’s data writer class

dealii::DataOut. With respect to previous release, we exposed output in .pvtu/.vtu format (on top of
the already available .xdmf/.h5 format). Indeed, we have observed that parallel output to .h5 files may
occasionally lead to deadlocks due to issues with parallel filesystems. The .pvtu/vtu format, where each
process writes its data in an independent file, offers an effective workaround in those situations. We point out
that .pvtu/vtu output usually occupies more disk space than .xdmf/.h5 output, due to the latter allowing
to filter out duplicate internal vertices.

6.2. Reading data from VTK files
Many applications are based on reading functional data to be used as parameters for numerical models

implemented in lifex [15, 30, 31]. A new class VTKImporter facilitates reading and remapping data from
the well-established VTK file formats (.vtk, .vtp and .vtu), and optionally serializing the imported data
to a binary file for later reuse. The class supports all the types of VTK functions offered by VTKFunction
and VTKPreprocess [1] (linear projections, closest-point projections and signed distance evaluation), but
additionally takes care of standardizing the parameter file sections that configure these operations.

5

6.3. Fixed memory occupation peak when reading meshes
Until previous release, when reading tetrahedral meshes from file, all parallel processes would read the

mesh in its entirety, and discard the portions attributed to other processes only after partitioning. This
would lead to a very high peak memory occupation, often higher than the available memory, thus fre-
quently resulting in the simulation being killed during initialization. We introduce a new parameter Reading
group size to the MeshHandler class, which allows to reduce the number of processes that read the entire
mesh (based on create_description_from_triangulation_in_groups from deal.II’s Triangulation-
Description::Utilities namespace). This has proven crucial in supporting very large-scale simulations.

7. Additional improvements

In addition to multiple bufgixes and performance improvements, the new release includes the following
changes:

• lifex is now updated to use deal.II version 9.5.1;

• a new helper class Laplace provides a simple interface for solving Laplace and Laplace-Beltrami prob-
lems (that is, −∆u = 0 in a certain domain Ω). The class is meant to be used for algorithms that
require solving the Laplace equation as an intermediate step, such as the ones discussed in [3];

• users can specify a custom set of default parameters to each instance of PreconditionerHandler.
This is particularly useful since the optimal preconditioner configuration may vary between different
problems: such a configuration can be built into the source code for each problem, without requiring
the user to manually adjust the parameter file;

• a new class GeodesicDistance allows to compute an edge-based approximation of the geodesic distance
and of the shortest path between points within a domain, exposed through the new app shortest_path.

8. Conclusions

The lifex library offers a comprehensive set of tools to facilitate the development of multiphysics finite
element simulations. The 2.0 release described in this paper extends the library’s functionality, by improving
its multiphysics coupling capabilities and its support for simulations of different dimensionalities. Further-
more, it improves the efficiency and parallel scalability of fundamental tasks such as parallel point location
and communication between interface-coupled problems. Finally, the new release provides an improved
and standardized interface for several tasks related to input and output. All these changes significantly
enhance the capabilities of lifex and its applicability to large-scale problems, and consolidate its position
as a valuable framework for simulating multiphysics systems.

Acknowledgements

lifex was developed under the scientific supervision of Profs. Luca Dede’ (Politecnico di Milano, Milano,
Italy) and Alfio Quarteroni (Politecnico di Milano, Milano, Italy). The author wishes to thank all the lifex
users and developers for their software contributions, testing and feedback, and especially Pasquale Claudio
Africa (SISSA, Trieste, Italy) for his years as lifex maintainer and his invaluable support. The lifex logo
was designed by Silvia Pozzi (Artiness).

The present research is part of the activities of “Dipartimento di Eccellenza 2023–2027”, MUR, Italy,
Dipartimento di Matematica, Politecnico di Milano. The author has received support from the project
PRIN2022, MUR, Italy, 2023–2025, 202232A8AN “Computational modeling of the heart: from efficient
numerical solvers to cardiac digital twins”. The author acknowledges his membership to INdAM GNCS -
Gruppo Nazionale per il Calcolo Scientifico (National Group for Scientific Computing, Italy), and INdAM
GNCS project CUP E53C23001670001. The author acknowledges ISCRA for awarding this project access to
the LEONARDO supercomputer, owned by the EuroHPC Joint Undertaking, hosted by CINECA (Italy).

6

References

[1] P. C. Africa. lifex: A flexible, high performance library for the numerical solution of complex finite
element problems. SoftwareX, 20:101252, 2022.

[2] P. C. Africa, I. Fumagalli, M. Bucelli, A. Zingaro, M. Fedele, L. Dede’, and A. Quarteroni. lifex-cfd:
An open-source computational fluid dynamics solver for cardiovascular applications. Computer Physics
Communications, 296:109039, 2024.

[3] P. C. Africa, R. Piersanti, M. Fedele, L. Dede’, and A. Quarteroni. lifex-fiber: an open tool for myofibers
generation in cardiac computational models. BMC Bioinformatics, 24(1):143, 2023.

[4] P. C. Africa, R. Piersanti, F. Regazzoni, M. Bucelli, M. Salvador, M. Fedele, S. Pagani, L. Dede’, and
A. Quarteroni. lifex-ep: a robust and efficient software for cardiac electrophysiology simulations. BMC
Bioinformatics, 24(1):389, 2023.

[5] D. Arndt, W. Bangerth, M. Bergbauer, M. Feder, M. Fehling, J. Heinz, et al. The deal.II library,
version 9.5. Journal of Numerical Mathematics, 31(3):231–246, 2023.

[6] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, et al. The deal.II finite
element library: Design, features, and insights. Computers & Mathematics with Applications, 81:407–
422, 2021.

[7] N. Barnafi, F. Regazzoni, and D. Riccobelli. Reconstructing relaxed configurations in elastic bodies:
Mathematical formulations and numerical methods for cardiac modeling. Computer Methods in Applied
Mechanics and Engineering, 423:116845, 2024.

[8] L. Bennati, V. Giambruno, F. Renzi, V. Di Nicola, C. Maffeis, G. Puppini, G. B. Luciani, and C. Vergara.
Turbulent blood dynamics in the left heart in the presence of mitral regurgitation: a computational
study based on multi-series cine-MRI. Biomechanics and Modeling in Mechanobiology, 22(6):1829–1846,
2023.

[9] L. Bennati, G. Puppini, V. Giambruno, G. B. Luciani, and C. Vergara. Image-based computational fluid
dynamics to compare two repair techniques for mitral valve prolapse. Annals of Biomedical Engineering,
2024.

[10] Boost. Boost C++ Libraries. http://www.boost.org/, 2024. Last accessed November 13, 2024.

[11] M. Bucelli, L. Dede’, A. Quarteroni, and C. Vergara. Partitioned and monolithic algorithms for the
numerical solution of cardiac fluid-structure interaction. Communications in Computational Physics,
32(5):1217–1256, 2023.

[12] M. Bucelli, F. Regazzoni, L. Dede’, and A. Quarteroni. Preserving the positivity of the deformation
gradient determinant in intergrid interpolation by combining RBFs and SVD: Application to cardiac
electromechanics. Computer Methods in Applied Mechanics and Engineering, 417:116292, 2023.

[13] M. Bucelli, F. Regazzoni, L. Dede’, and A. Quarteroni. Robust radial basis function interpolation based
on geodesic distance for the numerical coupling of multiphysics problems. SIAM Journal on Scientific
Computing (in press), 2024.

[14] M. Bucelli, A. Zingaro, P. C. Africa, I. Fumagalli, L. Dede’, and A. Quarteroni. A mathematical model
that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left
heart. International Journal for Numerical Methods in Biomedical Engineering, 39(3):e3678, 2023.

[15] E. Capuano, F. Regazzoni, M. Maines, S. Fornara, V. Locatelli, D. Catanzariti, S. Stella, F. Nobile,
M. Del Greco, and C. Vergara. Personalized computational electro-mechanics simulations to optimize
cardiac resynchronization therapy. Biomechanics and Modeling in Mechanobiology, 2024.

7

http://www.boost.org/

[16] E. Centofanti and S. Scacchi. A comparison of algebraic multigrid bidomain solvers on hybrid CPU–GPU
architectures. Computer Methods in Applied Mechanics and Engineering, 423:116875, 2024.

[17] L. Cicci, S. Fresca, A. Manzoni, and A. Quarteroni. Efficient approximation of cardiac mechanics through
reduced-order modeling with deep learning-based operator approximation. International Journal for
Numerical Methods in Biomedical Engineering, 40(1):e3783, 2024.

[18] A. Corda, S. Pagani, and C. Vergara. Influence of acute myocardial ischemia on arrhythmogenesis: a
computational study. medRxiv, pages 2024–11, 2024.

[19] E. Criseo, I. Fumagalli, A. Quarteroni, S. M. Marianeschi, and C. Vergara. Computational haemo-
dynamics for pulmonary valve replacement by means of a reduced fluid-structure interaction model.
International Journal for Numerical Methods in Biomedical Engineering, 40(9):e3846, 2024.

[20] A. Crispino, L. Bennati, and C. Vergara. Cardiac hemodynamics computational modeling including
chordae tendineae, papillaries, and valves dynamics. bioRxiv preprint, 2024.

[21] L. Crugnola and C. Vergara. Inexact block lu preconditioners for incompressible fluids with flow rate
conditions. arXiv preprint arXiv:2411.03929, 2024.

[22] L. Crugnola, C. Vergara, L. Fusini, I. Fumagalli, G. Luraghi, A. Redaelli, and G. Pontone. Computa-
tional hemodynamic indices to identify transcatheter aortic valve implantation degeneration. Computer
Methods and Programs in Biomedicine, 2024.

[23] G. R. de Souza, M. J. Grote, S. Pezzuto, and R. Krause. Explicit stabilized multirate methods for the
monodomain model in cardiac electrophysiology. arXiv preprint arXiv:2401.01745, 2024.

[24] S. Deparis, D. Forti, and A. Quarteroni. A rescaled localized radial basis function interpolation on
non-cartesian and nonconforming grids. SIAM Journal on Scientific Computing, 36(6):A2745–A2762,
2014.

[25] F. Duca, D. Bissacco, L. Crugnola, C. Faitini, M. Domanin, F. Migliavacca, S. Trimarchi, and C. Vergara.
Computational analysis to assess hemodynamic forces in descending thoracic aortic aneurysms. bioRxiv,
pages 2024–11, 2024.

[26] M. Falanga, C. Cortesi, A. Chiaravalloti, A. Dal Monte, C. Tomasi, and C. Corsi. A digital twin
approach for stroke risk assessment in atrial fibrillation patients. Heliyon, 10(20), 2024.

[27] M. Fedele, R. Piersanti, F. Regazzoni, M. Salvador, P. C. Africa, M. Bucelli, A. Zingaro, L. Dede’, and
A. Quarteroni. A comprehensive and biophysically detailed computational model of the whole human
heart electromechanics. Computer Methods in Applied Mechanics and Engineering, 410:115983, 2023.

[28] A. Ferrer, R. Sebastián, D. Sánchez-Quintana, J. F. Rodriguez, E. J. Godoy, L. Martinez, and J. Saiz.
Detailed anatomical and electrophysiological models of human atria and torso for the simulation of
atrial activation. PloS one, 10(11):e0141573, 2015.

[29] Y. Manolopoulos, A. N. Papadopoulos, and Y. Theodoridis. R-Trees: Theory and Applications. Springer
Science & Business Media, 2006.

[30] G. Montino Pelagi, A. Baggiano, F. Regazzoni, L. Fusini, M. Alì, G. Pontone, et al. Personalized
pressure conditions and calibration for a predictive computational model of coronary and myocardial
blood flow. Annals of Biomedical Engineering, 52(5):1297–1312, 2024.

[31] G. Montino Pelagi, F. Regazzoni, J. M. Huyghe, A. Baggiano, M. Alì, S. Bertoluzza, G. Valbusa,
G. Pontone, and C. Vergara. Modeling cardiac microcirculation for the simulation of coronary flow and
3D myocardial perfusion. Biomechanics and Modeling in Mechanobiology, pages 1–26, 2024.

8

[32] R. Piersanti, R. Bradley, S. Y. Alid, A. Quarteroni, L. Dede, and N. A. Trayanova. Defining myocardial
fiber bundle architecture in atrial digital twins. arXiv preprint arXiv:2410.11601, 2024.

[33] F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dedè, and A. Quarteroni. A cardiac electrome-
chanical model coupled with a lumped-parameter model for closed-loop blood circulation. Journal of
Computational Physics, 457:111083, 2022.

[34] F. Renzi, G. Puppini, G. B. Luciani, and C. Vergara. Investigating the right heart hemodynamics in
the Tetralogy of Fallot: a computational study. bioRxiv preprint, 2024.

[35] The HDF Group. Hierarchical Data Format, version 5.

[36] E. Zappon, A. Manzoni, and A. Quarteroni. A non-conforming-in-space numerical framework for realistic
cardiac electrophysiological outputs. Journal of Computational Physics, 502:112815, 2024.

[37] E. Zappon, M. Salvador, R. Piersanti, L. Regazzoni, Francesco Dede’, and A. Quarteroni. An integrated
heart–torso electromechanical model for the simulation of electrophysiological outputs accounting for
myocardial deformation. Computer Methods in Applied Mechanics and Engineering, 427:117077, 2024.

[38] A. Zingaro, Z. Ahmad, E. Kholmovski, K. Sakata, L. Dede’, A. K. Morris, A. Quarteroni, and N. A.
Trayanova. A comprehensive stroke risk assessment by combining atrial computational fluid dynamics
simulations and functional patient data. Scientific Reports, 14(1):9515, 2024.

[39] A. Zingaro, M. Bucelli, R. Piersanti, F. Regazzoni, L. Dede’, and A. Quarteroni. An electromechanics-
driven fluid dynamics model for the simulation of the whole human heart. Journal of Computational
Physics, 504:112885, 2024.

[40] A. Zingaro, C. Vergara, L. Dede’, F. Regazzoni, and A. Quarteroni. A comprehensive mathematical
model for cardiac perfusion. Scientific Reports, 13(1):14220, 2023.

9

MOX Technical Reports, last issues

Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

101/2024 Bonetti, S.; Corti, M.

Unified discontinuous Galerkin analysis of a thermo/poro-viscoelasticity model

100/2024 Farenga, N.; Fresca, S.; Brivio, S.; Manzoni, A.

On latent dynamics learning in nonlinear reduced order modeling

99/2024 Ragni, A.; Masci, C.; Paganoni, A. M.

Analysis of Higher Education Dropouts Dynamics through Multilevel Functional Decomposition

of Recurrent Events in Counting Processes

98/2024 Castiglione, C.; Arnone, E.; Bernardi, M.; Farcomeni, A.; Sangalli, L.M.

PDE-regularised spatial quantile regression

97/2024 Ferro, N.; Mezzadri, F.; Carbonaro, D.; Galligani, E.; Gallo, D.; Morbiducci, U.; Chiastra, C.;

Perotto, S.

Designing novel vascular stents with enhanced mechanical behavior through topology

optimization of existing devices

95/2024 Zacchei, F.; Rizzini, F.; Gattere, G.; Frangi, A.; Manzoni, A.

Neural networks based surrogate modeling for efficient uncertainty quantification and

calibration of MEMS accelerometers

93/2024 Conti, P.; Kneifl, J.; Manzoni, A.; Frangi, A.; Fehr, J.; Brunton, S.L.; Kutz, J.N.

VENI, VINDy, VICI - a variational reduced-order modeling framework with uncertainty

quantification

96/2024 Brivio, S.; Fresca, S.; Manzoni, A.

PTPI-DL-ROMs: Pre-trained physics-informed deep learning-based reduced order models for

nonlinear parametrized PDEs

94/2024 Franco, N.R.; Fresca, S.; Tombari, F.; Manzoni, A.

Deep Learning-based surrogate models for parametrized PDEs: handling geometric variability

through graph neural networks

91/2024 Ciaramella, G.; Kartmann, M.; Mueller, G.

Solving Semi-Linear Elliptic Optimal Control Problems with L1-Cost via Regularization and

RAS-Preconditioned Newton Methods

	qmox102-copertina
	mox-20241129181749
	Introduction
	Radial basis function interpolation for multiphysics coupling
	Point locators
	1D, 2D and mixed-dimensional problems
	Checkpointing and restart
	Input/output enhancements
	Output of problem solutions to file
	Reading data from VTK files
	Fixed memory occupation peak when reading meshes

	Additional improvements
	Conclusions

	qmox102-terza_di_copertina

