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Summary

The vascular microenvironment is the scale at which microvascular transport, inter-
stitial tissue properties and cell metabolism interact. The vascular microenvironment
has been widely studied by means of quantitative approaches, including multi-
physics mathematical models as it is a central system for the pathophysiology of
many diseases, such as cancer. The microvascular architecture is a key factor for the
fluid balance and mass transfer in the vascular microenvironment, together with the
physical parameters characterizing the vascular wall and the interstitial tissue. The
scientific literature of this field has witnessed a long debate about which factor of
this multifaceted system is the most relevant. The purpose of this work is to com-
bine the interpretative power of an advanced multi-physics model of the vascular
microenvironment with state of the art, robust sensitivity analysis methods, in order
to determine what factors affect the most some quantity of interest, related in particu-
lar to cancer treatment. We are particularly interested in comparing the factors related
to the microvascular architecture with the ones affecting the physics of microvascu-
lar transport. Ultimately, this work will provide further insight of how the vascular
microenvironment affects cancer therapies, such as chemotherapy, radiotherapy or
immunotherapy.
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1 INTRODUCTION

Oxygen heterogeneity in solid tumors is recognized as a limiting factor for therapeutic efficacy1. Such heterogeneity arises from
the abnormal properties of the vascular microenvironment (from now on VME), but the precise mechanisms of compromised
oxygen transport are only partially understood.
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Multiscale and multiphysics models2,3 (i.e., computer models that examine cancer behavior across different spatial, temporal,
and/or functional biological scales) are uniquely positioned to capture the space- and time-dependent changes and the hetero-
geneities that occur in tumor properties, and to provide potentially clinically useful insights. In this context, the multiphysics
model adopted here, previously developed by the authors and co-workers4,5,6, is a simplified representation of the VME, retain-
ing two fundamental aspects: (i) the physical complexity of flow and oxygen transport; (ii) the complexity and variability of the
microvascular network geometry.
The vascular network architecture has a key role in the interaction between capillaries and the surrounding tissue, affecting the
delivery of particles and molecules1,7,8,9. Microvascular topology can differ for several reasons. For example, the dimension of
the extravascular volume gaps in the tissue may vary significantly in different microvascular network samples. From the stand-
point of the vascular architecture, a tumor microenvironment can be related to the presence of highly heterogeneous spatial
distribution of capillaries; in particular, the risk of hypoxia is increased in the low-vascularized regions. In physiological condi-
tions the network is characterized by a more regular and dense vascularization. Therefore our computational study encompasses
capillary structures with high topological variability.
The main purpose of this work is to compare these multi-factorial traits of the model. For rigorously quantifying the influence
of the model parameters on selected quantities of interest (QoIs), we set up a sensitivity analysis (SA) approach. Sensitivity
analysis10,11 provides qualitative and quantitative instruments to determine how input variations affect the model responses,
and thus rank the relative contribution of each parameter, either singly or in combination with the others. Sensitivities are
usually discovered by running the underlying model against different configurations and analyzing the statistical properties of
the associated input-output samples.
Sensitivity analysis and uncertainty quantification (UQ) are increasingly becoming required steps in the workflow for the reliable
application of complex biological models in bio-engineering design and clinics. As a few examples among many others, we
mention UQ studies for cardiovascular applications12,13, for brain perfusion models14,15 and tumor growth16,17.
In this work we perform SA studies on the aforementioned physical and morphological inputs of a multiphysics model describ-
ing the VME. In particular, we rely on two well known sensitivity measures, that are Sobol’ indices and Morris elementary
effects. The former are quantitative measures, which however are usually computationally expensive, whereas the latter provide
a qualitative ranking criterion relying only on a small number of model simulations. These methods are applied on the problem
at hand to assess the overall influence of the model parameters, as well as their non-linear effects and interaction with other
inputs. Furthermore, we compare these methods with each other, aiming to determine what is a more suitable choice as a SA
technique when the computational model costs are significant18.
We are particularly interested in the relation of the VME with tumor treatment, in which oxygen plays an essential role. For
this reason, the selected quantities of interest are mainly related to the oxygenation of the tissue. Both physical parameters and
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morphological ones may have an impact on tissue oxygenation and related cancer therapies. For example, high values of oxygen
consumption rate may result in a low oxygen concentration in the tissue; in turn, we expect that the network topology influences
the oxygen spatial distribution. Nonetheless, other model parameters may have little or even no impact on all the QoIs, and could
be fixed to a reference value without affecting the reliability of predictions. Quantifying these dependencies in a rigorous way
will facilitate interpreting the role of VME on cancer therapies19,8, such as chemotherapy, radiotherapy or immunotherapy.

2 A GEOMETRICAL MODEL OF THE MICROVASCULATURE AND A PHYSICAL

MODEL OF ITS FUNCTION

In this section we report the models describing the VME. We subdivide the relevant models for the VME in two categories:
(i) the model of the vascular geometry; (ii) the physical models of the vascular function. For the former model, starting from
the well accepted approach based on Voronoi diagrams, we propose a new parametrization that is specifically tuned for our
sensitivity analysis approach. On the other hand, we adopt the physical models previously addressed in the literature4,5,6 (also
by co-authors of this work and their collaborators), but we believe it is necessary to provide the reader with a basic knowledge
of such models in order to understand the results discussed later on.
The physics based models consist in mixed-dimensional 3D-1D model of the VME describing blood flow and oxygen trans-
fer from the microvasculature to the tissue, representing microvessels as one dimensional channels. As discussed in20,21 this
approximation significantly simplifies the problem at the computational level.

2.1 Geometrical model of the microvasculature

One of the main challenges to model microcirculation is to surrogate the capillary network organization. In particular, the goal
is to produce artificial structures reproducing the main topological and morphological properties of microvascular networks.
Vascular architectures can vary considerably, depending on the spatial scale of observation and on the organ. For the smallest
scale, the one of capillaries, Voronoi based models represent efficient methods to generate 3D synthetic micro-vascular networks,
as stated by Smith et al.22, due to the space-filling pattern that is generated and the constraint of three connections on each
junction node. In order to provide heterogeneity in vessels spatial distribution, a pruning strategy similar to the one of Grogan
et al.8 is carried out, entailing a more significant vascular variability and reproducing some topological features observed in the
tumor microenvironment. This approach could be further refined by means of criteria inspired to angiogenesis23,24. For example,
those vessels with extremely low wall shear stress might be removed from the vascular network model. This advanced strategy
is not adopted here but will be considered in the future.
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Hinging upon the aforementioned approaches, we introduce specific metrics to measure the variability of a capillary network
and to provide structures with peculiar characteristics. Vascular networks can be characterized according to different types
of metrics, some are based on counting algorithms, others derive from more complex analyses. We consider morphometrical
metrics (such as the distribution of vessel length, the number of vessels per volume and the total length of vessels per volume,
the interior and boundary vertex density). In particular we use two metrics for analyzing the vessels structure:

• S/V: the lateral surface (𝑆) of capillary vessel over the tissue volume (𝑉 );

• d𝑚𝑎𝑥: the maximum extravascular distance (EVD) from the tissue domain to the 1D network.

The second is a local indicator that measures the space-filling nature of capillary networks and it has been used to discriminate
between healthy and tumor networks25.

2.2 Microvascular flow and hematocrit transport

We model the fluid flow within the vasculature and the surrounding tissue through the 3D-1D problem ( ). In general, such
model consists of two main ingredients, the governing principles (essentially mass conservation) and the constitutive laws for
flow in the vasculature and in the interstitial space. Concerning the latter, the interstitium is modelled as a saturated porous media,
employing Darcy’s equation. We use Poiseuille equation suitably modified to account for nonlinear blood rheology for describing
the blood flow within the vasculature. The effect of the red blood cells at small vascular scales is a complex problem that requires
to complement the balance laws of fluid mechanics with several closure models26. We account for red blood cells through
the hematocrit model () that describes their influence on viscosity, by taking into account the Fahraeus-Lindqvist effect27,
and their nonuniform split when traveling through a bifurcation, namely phase separation, the plasma skimming or Zweifach-
Fung effect. For the latter effect many closure models are available27,28 and can be used in the forthcoming computations. For
modeling consistency among Fahraeus-Lindqvist and Zweifach-Fung effects, with use here the formulas of Pries and Secomb27.
Fluid filtration through the microvascular wall is described by the classical Starling equation, accounting for hydraulic and
osmotic pressures. Morever, the lymphatic drainage is included as a nonlinear function of the interstitial pressure4. The problem
is complemented by the mass conservation equations in the two domains (the tissue Ω and the vasculature Λ), and it reads as
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follow:
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K
𝜇𝑡
∇𝑝𝑡 = 0 in Ω, (𝐷𝑎𝑟𝑐𝑦′𝑠 𝑒𝑞.)

∇ ⋅ u𝑡 + 𝜙𝐿 − 𝜙𝑉 𝛿Λ = 0 in Ω, (𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑞.)

8𝜇𝑣𝑢𝑣 + 𝑅2𝜕𝑠𝑝𝑣 = 0 in Λ, (𝑃𝑜𝑖𝑠𝑒𝑢𝑖𝑙𝑙𝑒′𝑠 𝑒𝑞.)

𝜕𝑠(𝜋𝑅2𝑢𝑣) + 𝜙𝑉 = 0 in Λ, (𝑚𝑎𝑠𝑠 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑞.)

𝜙𝑉 = 2𝜋𝑅𝐿𝑝
(

(𝑝𝑣 − �̄�𝑡) − (𝜋𝑣 − 𝜋𝑡)
) in Λ, (𝑆𝑡𝑎𝑟𝑙𝑖𝑛𝑔′𝑠 𝑒𝑞.)

𝜋𝑅2𝑢𝑣𝜕𝑠𝐻 − 𝜙𝑉𝐻 = 0 in Λ, (ℎ𝑒𝑚𝑎𝑡𝑜𝑐𝑟𝑖𝑡 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑒𝑞.)

(1)

where subscripts 𝑡 and 𝑣 stand for the tissue and the vasculature respectively, precisely u𝑡, 𝑢𝑣 are the fluid velocities, 𝑝𝑡, 𝑝𝑣 are the
fluid pressures, 𝜇 is the viscosity, K is the porous media permeability, 𝑅 is the radius of the vessel, 𝜙𝑉 is the fluid extravasation,
𝜙𝐿 is the lymphatic drainage, 𝐻 is the discharge hematocrit, 𝐿𝑝 is the hydraulic conductivity of the microvascular wall and
𝜋𝑣 − 𝜋𝑡 is transmural the osmotic pressure jump. In the context of the 3D-1D formulation of blood flow, 𝛿Λ is the Dirac delta

function located on the centerline of the vascular channels, named Λ.
Equation (1)6 is not sufficient to uniquely determine the variation of hematocrit in the network. It must be combined with
suitable conditions for conservation of hematocrit at the junctions and at the boundary of the network. As (1)6 is a pure transport
equation, it is well known that we have to prescribe a constraint on hematocrit at each inflow point of the network branches. For
the internal junctions we exploit mass conservation of hematocrit. Let us consider a generic junction with multiple branches
joining at a single node. Given the orientation of the flow in each branch, we subdivide the branches into 𝐾𝑜𝑢𝑡 = card(𝑜𝑢𝑡

𝑗 )

outflow ones and 𝐾𝑖𝑛 = card(𝑖𝑛
𝑗 ) inflow branches. We prescribe as many constraints as the number of inflow branches, namely

𝐾𝑖𝑛. Mass conservation always provides one constraint that is,
∑

𝑖∈𝑜𝑢𝑡
𝑗

𝜋𝑅2
𝑖 𝑢𝑣,𝑖𝐻𝑖 =

∑

𝑖∈𝑖𝑛
𝑗

𝜋𝑅2
𝑖 𝑢𝑣,𝑖𝐻𝑖 .

The previous equation is not sufficient to close the problem in the case 𝐾𝑖𝑛 > 1. The simple case 𝐾𝑖𝑛 = 1 identifies anastomoses,
where one, two or multiple outflow branches merge into a single inflow one. In this case, since all the terms on the left hand
side are known, the hematocrit value on the right is uniquely determined. In case of bifurcations, namely 𝐾𝑖𝑛 = 2, the problem
can be solved using a flow split model. In particular, we adopt here the one proposed in27. Since we exclude the presence of
trifurcations or more complex configurations, this approach will be entirely sufficient to determine the distribution of hematocrit
in the network. Without loss of generality, let us consider the classic Y-shaped configuration, where one channel divides into
two branches. We denote by the subscript 𝑓 the quantities related to the parent channel and with 𝛼, 𝛽 the daughter branches.
Given the blood flow rates 𝑄∗ = 𝜋𝑅2

∗𝑣,∗ with ∗= 𝑓, 𝛼, 𝛽 and the outflow hematocrit 𝐻𝑓 , we aim to determine 𝐻𝛼 and 𝐻𝛽 , which
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provide hematocrit values at the inflow of the bifurcation branches. In practice we define,

𝐹𝑄𝐵𝛼 =
𝑄𝛼

𝑄𝑓
𝐹𝑄𝐸𝛼 =

𝑄𝛼𝐻𝛼

𝑄𝑓𝐻𝑓
,

and we calculate these fractions by means of the following model
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐹𝑄𝐸𝛼 = 0 𝑖𝑓 𝐹𝑄𝐵𝛼 ≤ 𝑋0

logit(𝐹𝑄𝐸𝛼) = 𝐴 + 𝐵logit(𝐹𝑄𝐵𝛼−𝑋0

1−2𝑋0
) 𝑖𝑓 𝑋0 < 𝐹𝑄𝐵𝛼 < 1 −𝑋0

𝐹𝑄𝐸𝛼 = 1 𝑖𝑓 𝐹𝑄𝐵𝛼 ≥ 1 −𝑋0

where 𝐴,𝐵 are fixed parameters determined in29, logit(𝑥) = ln[𝑥∕(1 − 𝑥)] and 𝑋0 is the fractional blood flow rate under which
any RBC will flow into the daughter branch 𝛼. Finally, the desired hematocrit levels are determined as

𝐻𝛼 = 𝐹𝑄𝐸𝛼𝐻𝑓𝑄𝑓∕𝑄𝛼 , 𝐻𝛽 = (1 − 𝐹𝑄𝐸𝛼)𝐻𝑓𝑄𝑓∕𝑄𝛽 .

We note that the microvascular flow model presented here is affected by a limitation about the description of Starling forces.
These forces affect the fluid exchange between the vascular network and the tissue, are determined by the osmotic pressure jump,
𝜋𝑣 − 𝜋𝑡 in equation (1)5, which are assumed to be fixed. Because of the interaction with the lymphatic drainage, 𝜙𝐿 in (1)2,
Starling forces may be locally perturbed from their equilibrium state. From the modeling standpoint, these effect must be, in
future, added to the model, for example as in Linninger et al.30,31. From the computational standpoint, this improvement entails
to complement the model with transport equations for large proteins, e.g. albumin, similar to the hematocrit model.
Further details regarding the modeling equations and the numerical solution of the problem can be found in4. The problem
is then complemented by defining values for the vascular pressure jump between the endpoints of the vascular network. This
determines the main orientation of the vascular flow and the separation of the vascular endpoints into inlets and outlets. The
value of hematocrit is then prescribed at the inlet points of the network. For tissue, mixed conditions representing resistance to
flow are enforced to account for the environment surrounding the domain of interest.

2.3 Oxygen transport

Oxygen is delivered to tissue, where is depleted by the cellular uptake. The transport equations for the two domains comprise
diffusion, consumption, and advection, leveraging data from the models ( ) and (). Besides the above-mentioned component,
we introduce three particular phenomena: (i) the oxygen binding to hemoglobin, (ii) the oxygen uptake dynamics, and (iii) the
oxygen exchanges through the microvascular walls.
For the first item, we recall that oxygen is present in the system as solved in plasma/interstitial fluid (𝐶𝑣 or 𝐶𝑡) or bound to
hemoglobin (𝐶𝐻𝑏𝑂2

). The total content of oxygen in the vasculature is the sum of the two. We assume the binding dynamics as
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an instantaneous process, described by the Hill’s equation:

𝐶𝐻𝑏𝑂2
(𝐶𝑣) = 𝑘1 𝐻 𝑆(𝐶𝑣) = 𝑘1 𝐻

𝐶𝛾
𝑣

𝐶𝛾
𝑣 + (𝛼𝑝𝑙 𝑝𝑠50)

𝛾
, (2)

where 𝑘1 is a constant value equal to 𝑁 𝑀𝐶𝐻𝐶 (being 𝑁 the Hüfner factor, which represents the oxygen binding capacity of
human hemoglobin and 𝑀𝐶𝐻𝐶 is the Mean Corpuscular Hematocrit Concentration), 𝛼𝑝𝑙 is the oxygen solubility in plasma,
𝑝𝑠50 is the oxygen partial pressure at hemoglobin half-saturation, and 𝛾 is the Hill exponent.
The second item addresses the cell uptake in the tissue by the well-known Michaelis-Menten equation32:

𝑅𝑡(𝐶𝑡) = 𝑉𝑚𝑎𝑥
𝐶𝑡

𝐶𝑡 + 𝛼𝑡 𝑝𝑚50

, (3)

where 𝑉𝑚𝑎𝑥 is the maximum oxygen consumption rate, 𝛼𝑡 is the oxygen solubility in the tissue, and 𝑝𝑚50
is the Michaelis-Menten

constant, i.e. the oxygen partial pressure at half consumption rate.
The third item regards oxygen exchanges with the tissue, governed by diffusion and advection through the microvascular wall,
modelled as a semi-permeable membrane33:

𝜙𝑂2
= 2𝜋𝑅 Υ𝑂2

(𝐶𝑣 − �̄�𝑡) +
(

𝐶𝑣 + �̄�𝑡

2

)

𝜙𝑉 , (4)

where Υ𝑂2
is the vascular wall permeability. We point out that for small molecules the diffusion across the endothelial layer

largely dominates over transport. For example using the parameters reported in Table 2 for oxygen, we see that the coefficient
2𝜋𝑅 Υ𝑂2

is four orders of magnitude larger than 𝜙𝑉 . The second term on the right hand side of (4) is useful in case the
semi-permeable model is used for the transfer of large molecules, such as proteins.
Comprehensively, the problem reads as follow:

 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇ ⋅
(

−𝐷𝑡∇𝐶𝑡 + 𝐮𝑡 𝐶𝑡
)

+ 𝑅𝑡(𝐶𝑡) = 𝜙𝑂2
𝛿Λ on Ω,

𝜋𝑅2 𝜕
𝜕𝑠

(

−𝐷𝑣
𝜕𝐶𝑣

𝜕𝑠
+ 𝑢𝑣

(

𝐶𝑣 + 𝐶𝐻𝑏𝑂2
(𝐶𝑣)

)

)

= −𝜙𝑂2
on Λ.

(5)

The model describes the oxygen transport through the microvasculature and its delivery to the tissue (𝜙𝑂2
), where it reaches

the cells and cell uptake occurs. The problem is complemented with boundary conditions defining oxygen concentrations. The
network inlets and outlets are determined according to the orientation of blood flow, in turn determined by the enforcement of
the vascular pressure jump between the endpoints of the network. At the network inlets Dirichlet type boundary conditions are
prescribed. At network outlets we set null axial derivative of the oxygen concentration (i.e. null diffusive flux). Finally, we apply
null concentration gradients at the artificial interfaces with the tissue. We note that these boundaries are anyway open to oxygen
convection by means of the transport field 𝐮𝑡.
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2.4 Quantities of interest

When dealing with models based on parametric PDEs, it is crucial to understand how variations or uncertainties in the inputs
affect selected outputs of interest. These are quantities associated with the solution of the problem that can be useful from the
application viewpoint. For the problem under consideration, the focus is on the oxygen transport model, described by (), that
provides the oxygen concentration 𝐶𝑡 ∶ Ω → ℝ+ as one of the state variables. Then, the spatial average �̄�𝑡, yielding a global
description of the tissue oxygenation, is evaluated as a QoI and computed as follows:

�̄�𝑡 =
1

‖Ω‖ ∫
Ω

𝐶𝑡(x).

Furthermore, the spatial variability of the oxygen concentration is considered as QoI, and is identified by the difference between
the maximum and the minimum concentration Δ𝐶𝑡:

Δ𝐶𝑡 = max
x∈Ω

𝐶𝑡(x) − min
x∈Ω

𝐶𝑡(x),

with the goal of quantifying possible local hypoxic effects in the tissue. The other state variable describing the oxygen transport
is the concentration of dissolved (free) oxygen in the vessels 𝐶𝑣 ∶ Λ → ℝ+, defined for each node in the 1D mesh of the vascular
network Λ. Proceeding analogously to the oxygen in the tissue, we define as QoIs the spatial average 𝐶𝑣:

𝐶𝑣 =
1

‖Λ‖ ∫
Λ

𝐶𝑣(x),

and the spatial variability of the oxygen concentration in vessels measured by

Δ𝐶𝑣 = max
x∈Λ

𝐶𝑣(x) − min
x∈Λ

𝐶𝑣(x).

2.5 Comparison of the model with real data

Validation (in a broad sense) is a fundamental step of the application of any theoretical model. Although a thorough validation
of the proposed model is not in the scope of this work, it is mandatory to provide evidence that the predicted quantities fall in a
physiological range. To this purpose we guide the reader through previous works where the results of the computational model
proposed here (combining the mathematical equations and the numerical solver) have been compared with real data. In34 the
authors and co-workers compare the outcome of model (1) (obtained using a tissue slab of 540 × 740 × 400𝜇𝑚 in which is
embedded a network of 28 branches of diameters ranging from 56.4 to 18.8 𝜇𝑚, similar but not equivalent to the one analyzed
here), with the data of microvascular flow for the category of arterioles provided in Table 135. Concerning oxygen transport,
from a general standpoint, our results in terms of tissue oxygen partial pressure also agree with values reported in the literature
for the brain tissue. In our tests the average oxygen partial pressure in the tissue is about 60 𝑚𝑚𝐻𝑔, with spatial variation of
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approximately 35 𝑚𝑚𝐻𝑔 (see Figure 12). These data are in agreement with values reported in the literature for the brain tissue36.
We also remark in the discussion that the range of variation of hematocrit (𝐻𝑖𝑛, see Table 2) ensures in any case a good blood
oxygenation. As a result our simulations fit well to a microvascular environment with good oxygenation.

3 SENSITIVITY ANALYSIS OF VASCULAR NETWORKS

In this section we provide an overview of the techniques used in this work to perform global SA, namely variance based methods
(see section 3.1) and screening methods (see section 3.2). These are two families of approaches for SA with different char-
acteristics. The former enjoys a more rigorous theoretical framework and the computed indicators convey more information
about the parameters, with the price of a large amount of samples required to form appropriate statistics. The latter has more
heuristic foundations and correspondingly provides weaker results, leading to a significantly lower computational cost. From
the methodological standpoint, the purpose of this work is to compare these strategies and establish what is the good tradeoff
between reliability of the SA results and computational cost to obtain them, in the particular case of multi-physics models of
the microvascular environment.

3.1 Variance-based methods: Sobol’s indices

Variance-based methods represent a powerful tool to quantify the relative importance of individual factors or groups, and
are derived from a suitable high-dimensional model representation37,38. The theoretical concepts introduced are mainly based
on11,39. Let us consider the probability space (𝚵,,ℙ) and the random variables

𝑋𝑖 ∶ 𝚵 → ℝ

𝜉 → 𝑥𝑖 = 𝑋𝑖(𝜉),

for 𝑖 = 1,… , 𝑘, where from the modeling perspective each random variable corresponds to one of the input parameters of the
oxygen transport model. We assume all the parameters to be independent and uniformly distributed, and normalized in the range
[0, 1], that is 𝑋𝑖 ∼  (0, 1), where  denotes a uniform probability distribution.
From a more abstract perspective, a generic model can thus be seen as a scalar-valued, nonlinear function of the random input
vector 𝐗 = (𝑋𝑖,… , 𝑋𝑘), i.e. 𝑌 = 𝑦(𝐗), where the model realization 𝑦(𝐱) corresponds to a selected output of interest associated
with the PDE solution computed for 𝐱 = (𝑥1,… , 𝑥𝑘) as input parameter.
A primary variance-based measure of sensitivity is given by the first Sobol’ index

𝑆𝑖 =
Var(𝔼[𝑌 |𝑋𝑖])

Var(𝑌 ) , 𝑖 = 1,… , 𝑘,
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which measures the effect of varying 𝑋𝑖 alone averaged over variations in all input parameters. The first Sobol’ index 𝑆𝑖 repre-
sents the main contribution of the input factor 𝑋𝑖 to the variance of the output: the higher is 𝑆𝑖, the greater is the influence of
𝑋𝑖 on the output 𝑌 . In fact, according to the law of total variance, we can write

𝔼[Var(𝑌 |𝑋𝑖)] = Var(𝑌 ) − Var(𝔼[𝑌 |𝑋𝑖]),

where the left-hand side corresponds to the model variance once a source of variation (i.e. 𝑋𝑖) has been fixed. Thus, the more
influential is 𝑋𝑖, the smaller is 𝔼[Var(𝑌 |𝑋𝑖)], hence the greater must be 𝑆𝑖. Note that ∑𝑖 𝑆𝑖 ≤ 1.
Nonetheless, for non-additive models it is not possible to separate the effects of its inputs on the output and one should look for
higher order interactions. Under few assumptions, the variance of the model output can be decomposed as

Var(𝑌 ) = ∑

𝑖
𝑉𝑖 +

∑

𝑖

∑

𝑗>𝑖
𝑉𝑖𝑗 +

∑

𝑖

∑

𝑗>𝑖

∑

𝑙>𝑗
𝑉𝑖𝑗𝑙 +⋯ + 𝑉123…𝑘,

where 𝑉𝑖𝑗 , 𝑉𝑖𝑗𝑙 are the contributions to the variance of the interactions between 𝑋𝑖, 𝑋𝑗 , 𝑋𝑖, 𝑋𝑗 , 𝑋𝑙 etc. up to the term 𝑉123…𝑘

considering the interactions between all variables,

𝑉𝑖 = Var(𝔼[𝑌 |𝑋𝑖]), 𝑉𝑖𝑗 = Var(𝔼[𝑌 |𝑋𝑖, 𝑋𝑗]) −𝑉𝑖−𝑉𝑗 , 𝑉𝑖𝑗𝑙 = Var(𝔼[𝑌 |𝑋𝑖, 𝑋𝑗 , 𝑋𝑙]) −𝑉𝑖−𝑉𝑗 −𝑉𝑙 −𝑉𝑖𝑗 −𝑉𝑖𝑙 −𝑉𝑗𝑙, etc…

showing how the variance of 𝑌 can be decomposed into terms related to each input and to the interactions between them. To avoid
the calculation of all the interaction terms, that would require the evaluation of 2𝑘 − 1 indices, thus becoming computationally
demanding (for example in what follows we will use 𝑘 = 7 ending up with 127 possible interaction terms), we can rely on the
total effect indices

𝑆𝑇𝑖 =
𝔼[Var(𝑌 |𝐗∼𝑖)]

Var(𝑌 ) =
Var(𝑌 ) − Var(𝔼[𝑌 |𝐗∼𝑖])

Var(𝑌 ) = 1 −
Var(𝔼[𝑌 |𝐗∼𝑖])

Var(𝑌 ) ,

for 𝑖 = 1,… , 𝑘. Here 𝐗∼𝑖 = (𝑋1,… , 𝑋𝑖−1, 𝑋𝑖+1,… , 𝑋𝑘) denotes the random vector of all input factors but 𝑋𝑖, and
𝔼[Var(𝑌 |𝐗∼𝑖)] corresponds to the (average) variance of 𝑌 left if each factor in 𝐗∼𝑖 could be fixed to its true value, so that the
smaller is 𝑆𝑇𝑖 , the less influential is 𝑋𝑖 and can be arbitrarily fixed within its range of uncertainty without appreciably affecting
the output of interest. Unlike 𝑆𝑖, it holds ∑

𝑖 𝑆𝑇𝑖 ≥ 1 since 𝑆𝑇𝑖1
and 𝑆𝑇𝑖2

, for 𝑖1 < 𝑖2, take both into account the interactions
between 𝑋𝑖1 and 𝑋𝑖2 .
In conclusion, the first Sobol’ index and the total effect indices are rigorous mathematical indicators that quantify the variance
of outputs under the assumption a given variability of inputs. As addressed in the next section, the computation of this indicators
entails a significant computational cost required by the approximation by means of quadrature formulas of multi-dimensional
integrals, appearing in the definition of expected value and variance, where each function evaluation correspond to a solution
of the physical model ( + + ) described before.
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For most models, the sensitivity indices cannot be calculated analytically and must be estimated by suitable techniques. One of
the most used and efficient procedure is the Saltelli method 10 (based on the approaches originally proposed in37), which avoids
the cumbersome computation of multidimensional integrals by brute-force.
Let 𝑁𝑆 ∈ ℕ be a prescribed integer, known as base sample. The Saltelli method consists of the following steps:

1. generate a 𝑁𝑆 × 2𝑘 matrix of random parameter realizations obtained, e.g., from a Sobol’ quasi-random sequence;

2. define two matrices of data 𝐀,𝐁 ∈ ℝ𝑁𝑆×𝑘 each containing half of the samples, i.e.

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥(𝑎,1)1 … 𝑥(𝑎,1)𝑘

⋮ ⋮

𝑥(𝑎,𝑁𝑆 )
1 … 𝑥(𝑎,𝑁𝑆 )

𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐁 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥(𝑏,1)1 … 𝑥(𝑏,1)𝑘

⋮ ⋮

𝑥(𝑏,𝑁𝑆 )
1 … 𝑥(𝑏,𝑁𝑆 )

𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝑥𝑖 is the realization of the 𝑖-th random variable 𝑋𝑖.

3. construct 𝑘 matrices 𝐂𝑖, 𝑖 = 1,… , 𝑘, formed by all columns of 𝐁 except the 𝑖-th column taken from 𝐀, i.e.

𝐂𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥(𝑏,1)1 … 𝑥(𝑏,1)𝑖−1 𝑥(𝑎,1)𝑖 𝑥(𝑏,1)𝑖+1 … 𝑥(𝑏,1)𝑘

⋮ ⋮ ⋮ ⋮ ⋮

𝑥(𝑏,𝑁𝑆 )
1 … 𝑥(𝑏,𝑁𝑆 )

𝑖−1 𝑥(𝑎,𝑁𝑆 )
𝑖 𝑥(𝑏,𝑁𝑆 )

𝑖+1 … 𝑥(𝑏,𝑁𝑆 )
𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

4. compute the output of the model for all the parameter vectors given by the rows of 𝐀,𝐁 and 𝐂𝑖, for 𝑖 = 1,… , 𝑘, thus
obtaining the 𝑁𝑆-dimensional vectors

𝐲𝐴 = 𝑦(𝐀), 𝐲𝐵 = 𝑦(𝐁), 𝐲𝐶𝑖
= 𝑦(𝐂𝑖).

5. for 𝑖 = 1,… , 𝑘, estimate the 𝑖-th first order sensitivity index as follows,

𝑆𝑖 =
𝐲𝐴 ⋅ 𝐲𝐶𝑖

− �̄�2𝐴
𝐲𝐴 ⋅ 𝐲𝐴 − �̄�2𝐴

,

where �̄�𝐴 = 1
𝑁𝑆

𝑁𝑆
∑

𝑖=1
𝑦(𝑖)𝐴 is the mean, with 𝐲𝐴 =

[

𝑦(1)𝐴 ,… , 𝑦(𝑁𝑆 )
𝐴

]𝑇 .

6. finally, for 𝑖 = 1,… , 𝑘, estimate the 𝑖-th total order index as follows,

𝑆𝑇𝑖 = 1 −
𝐲𝐵 ⋅ 𝐲𝐶𝑖

− �̄�2𝐴
𝐲𝐴 ⋅ 𝐲𝐴 − �̄�2𝐴

.

As a result, computing a full set of 𝑆𝑖’s and 𝑆𝑇𝑖’s indices for 𝑘 input factors requires 𝑁𝑆(𝑘 + 2) runs of the oxygen transfer
model ( + + ) to evaluate 𝐲𝐴, 𝐲𝐵 and 𝐲𝐶𝑖

, for 𝑖 = 1,… , 𝑘, instead of 𝑁2
𝑆 runs that would have been necessary in the brute-

force approach. Nonetheless, the accuracy of the estimates heavily depends on 𝑁𝑆 , which can vary from few hundreds to few
thousands, so that the main drawback of this method is still its computational cost.
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3.2 Screening methods: elementary effects

For computationally demanding models, a more efficient alternative to variance-based methods is given by screening methods,
such as the Elementary Effects, proposed by Morris in40. This method allows us to identify which input factors are (i) negli-
gible, (ii) linear and additive, or (iii) nonlinear or involved in interactions with other factors, using a relatively small number
model evaluations. By considering wide ranges of variations for the inputs and averaging over a number of local derivative
approximations, this method overcomes the main limitations of one-at-a-time designs and derivative-based methods.
Given a partition Ω𝓁 of the parameter domain [0, 1]𝑘 into 𝓁 ∈ ℕ steps, the elementary effect associated with the 𝑖-th input factor
and computed at 𝐱 ∈ Ω𝓁 , for 𝑖 = 1,… , 𝑘, is defined as

𝐸𝐸𝑖(𝐱) =
𝑦(𝐱 + 𝐞𝑖Δ) − 𝑦(𝐱)

Δ
,

where 𝐱 + 𝐞𝑖Δ ∈ Ω𝓁 , being 𝐞𝑖 the unit vector of all zeros but the 𝑖-th component, which is equal to one, and Δ ∈

{1∕(𝓁 − 1), 2∕(𝓁 − 1),… , (𝓁 − 2)∕(𝓁 − 1)} a user-defined grid step size in the parameter space, which is kept constant for all
parameters. Since 𝐸𝐸𝑖(𝐱), for 𝑖 = 1,… , 𝑘, quantifies a local behavior, as it depends on 𝐱, to obtain a more global sensitivity
measure one needs to estimate statistics of their distribution, i.e. 𝐹𝑖 ∼ 𝐸𝐸𝑖, constructed by randomly sampling different 𝐱 from
Ω𝓁 . Moreover, to avoid cancellation effects that can occur when 𝐹𝑖 contains both positive and negative elements, the mean of
the distribution of the absolute values of the elementary effects, i.e. 𝐺𝑖 ∼ |𝐸𝐸𝑖|, is also computed. Thus, for 𝑟 ∈ ℕ sample
points 𝐱(1),… , 𝐱(𝑟), we obtain the following sensitivity measures for 𝑋𝑖,

𝜇𝑖 =
1
𝑟

𝑟
∑

𝑗=1
𝐸𝐸𝑖(𝐱(𝑗))

𝜇∗
𝑖 = 1

𝑟

𝑟
∑

𝑗=1

|

|

|

𝐸𝐸𝑖(𝐱(𝑗))
|

|

|

𝜎𝑖 =
1

𝑟 − 1

𝑟
∑

𝑗=1

(

𝐸𝐸𝑖(𝐱(𝑗)) − 𝜇𝑖
)2

for 𝑖 = 1,… , 𝑘. Note that, in order to guarantee an equal probability sampling for each 𝐹𝑖 and 𝐺𝑖, 𝑖 = 1,… , 𝑘, it is convenient
to choose the step value Δ in the middle of the admissible interval, that is Δ = 𝓁∕2(𝓁 − 1), being 𝓁 an even number.
The mean 𝜇𝑖 (or 𝜇∗

𝑖 ) represent the magnitude of the 𝑖-th effect and can be used to quantify the individual influence of 𝑋𝑖 on
the output. We remark that 𝜇∗

𝑖 represents a valid substitute for the total index 𝑆𝑇𝑖 previously defined. We also observe that the
comparison between 𝜇𝑖 and 𝜇∗

𝑖 provides information on the signs of the effects of 𝑋𝑖 on the output. The variance 𝜎𝑖 measures
the spread of 𝐸𝐸𝑖 and thus estimates the effect of the 𝑖-th input due to nonlinearities and interactions with the other factors. In
particular, low values for 𝜎𝑖 can be interpreted as the fact that the effect of 𝑋𝑖 on the output is independent of 𝐱, i.e. of the values
taken by the other inputs, whereas a large variance is symptom of strong interactions between inputs or nonlinear effects.
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FIGURE 1 Typical parameter classification derived from visual inspection of the elementary effect statistics. The ratio 𝜎𝑖∕𝜇∗
𝑖provides information regarding linearity and monotonicity for the 𝑖-th input factor.

A qualitative classification of Morris indices can be done using the 𝜎 versus 𝜇∗ plane, see Figure 1. Here, the measure 𝜇∗
𝑖 provides

information about the importance of the 𝑖-th input parameter and the ratio 𝜎𝑖∕𝜇∗
𝑖 is an indicator of linear dependence. Using

these indicators we obtain a classification of the inputs41 from the scatterplot of the sensitivity indices 𝐸𝐸𝑖
40, for 𝑖 = 1,… , 𝑘.

More precisely, relying on statistical properties, three thresholds for 𝜎𝑖∕𝜇∗
𝑖 have been identified. A smaller value of the 𝜎𝑖∕𝜇∗

𝑖

distinguishes factors with a more linear and monotonic behaviour. In particular, the case 𝜎𝑖∕𝜇∗
𝑖 = 0 is associated to a true linear

response. Conversely, a large ratio detects inputs with nonlinear effects and interactions with the other parameters.

3.2.1 Computation of the sensitivity indices: Morris sampling

Since the computation of each elementary effect requires two sample points, a naive design would require 2𝑟𝑘 model evaluations
to construct 𝜇𝑖, 𝜇∗

𝑖 and 𝜎𝑖, for 𝑖 = 1,… , 𝑘. However, Morris40 has introduced a special sampling strategy that allows us to rely
on only 𝑟(𝑘 + 1) samples by employing 𝑟 trajectories of 𝑘 + 1 points, each differing from the neighbor in only one component,
thus providing 𝑘 elementary effects per trajectory.
Each trajectory can be seen as a (𝑘 + 1) × 𝑘 sampling matrix 𝐁∗ built such as, for every 𝑗 = 1,… , 𝑘, there are two rows that
differ only in the 𝑗-th entry. To construct 𝐁∗, the most straightforward strategy would be to choose a random starting sample
𝐱∗ ∈ Ω𝓁 , and define

𝐁∗ = 𝐉𝑘+1,1𝐱∗ + Δ𝐁,
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where 𝐉𝑚𝑛 is a 𝑚 × 𝑛 matrix whose elements are all equal to 1, for some 𝑚, 𝑛 ∈ ℕ, Δ is the step value and 𝐁 is a (𝑘 + 1) × 𝑘

strictly lower triangular matrix of ones. In this way, the orientation matrix 𝐁∗ has the form

𝐁∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥∗1 + Δ 𝑥∗2 … 𝑥∗𝑘

𝑥∗1 + Δ 𝑥∗2 + Δ … 𝑥∗𝑘

⋮ ⋮

𝑥∗1 + Δ 𝑥∗2 + Δ … 𝑥∗𝑘 + Δ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where 𝐱∗ = [𝑥∗1,… , 𝑥∗𝑘]
𝑇 . However, the elementary effects associated with this matrix would not be random. To overcome this

drawback a 𝑘-dimensional diagonal matrix 𝐃∗ of randomly chosen entries in {−1, 1} and a 𝑘 × 𝑘 permutation matrix 𝐏∗ are
introduced, so that the sampling matrix is finally defined as

𝐁∗ =
[

𝐉𝑘+1,1𝐱∗ +
Δ
2
((

2𝐁 − 𝐉𝑘+1,𝑘
)

𝐃∗ + 𝐉𝑘+1,𝑘
)

]

𝐏∗

=
[

𝐉𝑘+1,1𝐱∗ + Δ
(

𝐁𝐃∗ + 1
2
(

𝐉𝑘+1,𝑘 − 𝐉𝑘+1,𝑘𝐃∗)
)]

𝐏∗.

Here 𝐏∗ is used to permute the order of the directions in the trajectory, whilst 𝐃∗ takes into account the fact that 𝐵𝑖+1,𝑗 , that is
the value of the 𝑗-th entry of the (𝑖 + 1)-th point in 𝐁 changing with respect to the previous point, for some 𝑖 = 1,… , 𝑘 and
𝑗 = 1,… , 𝑘, can be either increased by Δ, i.e. 𝐵𝑖+1,𝑗 = 𝐵𝑖,𝑗 +Δ, or decreased, i.e. 𝐵𝑖+1,𝑗 = 𝐵𝑖,𝑗 −Δ (or, more specifically, 𝐵𝑖,𝑗 =

𝐵𝑖+1,𝑗 + Δ). Finally, one elementary effect per input can be computed by subtracting the model evaluation at two consecutive
rows, dived by Δ. For further details we refer to11.

3.2.2 Morris approach for group of parameters

When interested in ranking groups of inputs the Morris method can be suitably extended, based on the idea to move all factors
of the same group simultaneously. In fact, using the sensitivity measure 𝜇∗ alone allows us to take into account the case in which
two or more factors have been changed in opposite directions. With this aim, we define the absolute elementary effect computed
in 𝐱 as

|𝐸𝐸𝑖(𝐱)| =
|

|

|

|

𝑦(�̃�) − 𝑦(𝐱)
Δ

|

|

|

|

,

where �̃� denotes the point obtained from 𝐱 by increasing or decreasing each entry of the 𝑖-th group by Δ.
To compute the estimated mean the sampling strategy described in (3.2.1) has to be slightly modified. First of all, one needs to
define the 𝑘 × 𝑔 matrix 𝐆, being 𝑔 the number of different groups, whose element 𝐺𝑖𝑗 is equal to 1 if the 𝑖-th factor belongs to
the 𝑗-th group and 0 otherwise. Using a 𝑔-dimensional permutation matrix 𝐏∗, the matrix 𝐁∗ of trajectories has now dimension
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(𝑔 + 1) × 𝑘 and is defined as

𝐁∗ = 𝐽𝑔+1,1𝐱∗ +
Δ
2
[(

2𝐁(𝐆𝐏∗)𝑇 − 𝐉𝑔+1,𝑘
)

𝐃∗ + 𝐉𝑔+1,𝑘
]

= 𝐽𝑔+1,1𝐱∗ + Δ
[

𝐁(𝐆𝐏∗)𝑇𝐃∗ + 1
2
(

𝐉𝑔+1,𝑘 − 𝐉𝑔+1,𝑘𝐃∗)
]

.

Note that in this case, since the order of the directions in the trajectory has to be rearranged in a way that is coherent with the
group subdivision, only 𝐆 is multiplied by the permutation matrix 𝐏∗.

4 GENERATION OF IN-SILICO MICROVASCULAR NETWORKS

The generation of synthetic vascular networks that preserve the morphometric properties of real ones is a challenging task.
Some approaches among the most advanced36,42 separate the problem into two steps: first arterial and venous network trees are
defined and then suitable microvascular closure techniques are applied to seal the previously defined parts.
Here we pursue an objective different from the one of reproducing realistic anatomical models. To perform sensitivity analysis
we need to generate networks that exactly match some desired metrics. It is reasonable that in this context some additional
simplification can be accepted. To tackle the task of reproducing the patterns of microvasculature at the smallest scale, essentially
the one that is previously addressed by the microvascular closure, we chose one of the simplest and also widely used approaches
for microvascular network generation (or closure), based on Voronoi tassellation43,44. This method provides planar networks that
are subsequently perturbed in three-dimensions. Furthermore, the chosen approach only provides straight connections between
nodes (junction points) of the vascular graph. Curved small vessels or more importantly vessels with high tortuosity are not
encompassed in our vascular models.
We generated vascular networks with prescribed values of the chosen metrics, that are, the capillary surface over the tissue
volume 𝑆∕𝑉 and the maximal extravascular distance 𝑑𝑚𝑎𝑥. The generation of artificial networks with desired 𝑑𝑚𝑎𝑥 could be
achieved by means of an inefficient trial-error strategy. Nonetheless, a proper sampling of each indicator is not granted, since
the metrics cannot be sampled independently one from the other. To overcome these limitations we propose a novel indicator
of the vascular architecture that is independent from 𝑆∕𝑉 and is highly correlated to 𝑑𝑚𝑎𝑥. Therefore, SA can be performed by
sampling two independent metrics, one represented by 𝑆∕𝑉 and the other one strictly depending on 𝑑𝑚𝑎𝑥.

4.1 Generation of (quasi) 3D vascular networks satisfying independent metrics

To fulfill the task generating reasonable capillary networks for a sensitivity analysis study hinging upon constrained Voronoi-
mesh based diagrams we start from Grogan et al.8, where a similar objective has been previously addressed. In8 a Voronoi
tessellation of a 2D domain is generated starting from a uniform spatial distribution of point seeds. The resulting tessellation
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emulates a common physiological capillary network, characterized by vessels with uniform spatial distribution. This procedure
prevents degenerated links, only anastomoses or bifurcations are admissible. To perturb homogeneous distribution of vessels,
Grogan et al.8 use a pruning strategy where points are randomly selected from a normal distribution with mean centered at the
domain midpoint. Then the closest vessels to these points are progressively removed until a target density is reached.
We pursue here the purpose of generating vascular networks with non homogeneous spatial distribution of vessels that satisfy
prescribed constraints on the metrics 𝑆∕𝑉 and 𝑑𝑚𝑎𝑥. For this reason, we slightly modify the procedure presented by Grogan et
al. The main difference of our approach to Grogan et. al. is that we first generate a nonuniform distribution of seed points with
the desired properties to match the metrics, then we build the Voronoi tessellation on it, as illustrated in Figure 2.
The starting point is to define an initial set of seed points {𝑝𝑖}𝑆𝐸𝐸𝐷𝑆(+)

𝑖=1 (positive seeds) in the domain 𝑆 = [0, 1] × [0, 1], whose
coordinates are obtained from a uniform distribution of pseudo-random numbers, i.e. 𝑥𝑝𝑖 ,𝑦𝑝𝑖 ∼  (𝑆), for 𝑖 = 1, ..., 𝑆𝐸𝐸𝐷𝑆(+).
Then, to increase the disorder level we introduce a set of 𝑆𝐸𝐸𝐷𝑆(−) points 𝑞𝑖 (negative seeds), whose polar coordinates (𝑟𝑖, 𝜃𝑖),
with 𝑖 = 1, ..., 𝑆𝐸𝐸𝐷𝑆(−), are determined in a disk 𝐷𝑅(𝑞0) of radius 𝑅 = 0.45 and centre (𝑥𝑞0 , 𝑦𝑞0) = (0.5, 0.5) using the
following probability distributions (see Figure 2a): 𝜃𝑖 ∼  ([0, 2𝜋]) and 𝑟𝑖 ∼

𝑅
2𝜆
̂𝜆, where ̂𝜆(𝑘) is a discrete truncated Poisson

distribution with density function
̂𝜆(𝑘) =

𝜆𝑘𝑒−𝜆

𝛼𝜆𝑘!
𝜒[0,2𝜆].

For the application to vascular networks we fix 𝜆 = 16. Polar coordinates are then converted to cartesian ones and the associated
points subsequently undergo a translation by a vector of coordinates (𝑥𝑞0 , 𝑦𝑞0). For each of these points the nearest neighbour from
the group of positive seeds is found and removed. This process is repeated sequentially, discarding as many positive seeds as the
negative ones. Afterwards, the centre of the disk 𝑞0 is added to the remaining set of points, from which the constrained-Voronoi
mesh is constructed (Figure 2b).
The distribution of the negative seeds based on the Poisson distribution is motivated by the need of generating networks with
variable maximum extravascular distance and constant vascular density. The negative seeds distributed in this way weaken the
vasculature density in a circular region at the center of the domain. By controlling the radius and the intensity of negative seeds
in this region, it is possible to control the maximum extravascular distance and the vascular density independently.
The result of this procedure is a Voronoi tessellation with higher vascularization at the boundaries of 𝑆, consisting of a vascular
void in the middle area (Figure 2c). Given a fixed set of positive seeds, the extravascular gap distance increases along with the
ratio between the number of negative and positive seeds.
As a next step, a suitable perturbation of the Voronoi tessellation in the out-of-plane direction provides a 3D structure. We assume
that the network is immersed in a 3D slab with a fixed height ℎ = 0.15, in dimensionless coordinates (150𝜇𝑚). Therefore, an
additional constraint is enforced to the 𝑧-coordinates of each Voronoi-mesh point: 𝑧𝑖 ∈ [0, ℎ],∀𝑖 = 1, ..., 𝑁 , with N representing
the number of nodes. The considered process consists of three phases:
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a) b) c)

FIGURE 2 a) Distribution of positive and negative seeds in the 2D domain 𝑆; b) distribution of positive seeds after removing
sequentially the closest one to each negative seeds, with respect to the Euclidean distance; c) Constrained Voronoi-mesh built
from the remaining positive seeds.

1. For each mesh node, a 𝑧-coordinate is prescribed through a uniform probability distribution in the support [0.05ℎ, 0.95ℎ],
in order to fulfill the spatial constraint in the vertical direction.

2. Each perturbed internal junction node is then shifted again vertically by a distance determined from a uniform distribution
with support in [−1.3ℎ, 1.3ℎ].

3. The overflowing branches are cut off at the slab boundaries, in order to enforce the boundedness by the domain depth on
each mesh point.

FIGURE 3 Example of the progression form uniformly distributed vascular networks to more disordered vascular networks,
with an increasing maximum extravascular distance (𝑑𝑚𝑎𝑥), from left to right.

By applying the described pipeline, we construct an in-silico microvascular network with desired vascular density and controlled
level of pruning. An example of a 3D regular Voronoi network and an irregular one, derived from the proposed algorithm, are
displayed in Figure 3.
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In particular, fixing the ratio %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
, we finally obtain a synthetic indicator that controls accurately the dimension of the

largest vascular void and, consequently, can surrogate the maximum extravascular distance for a sensitivity analysis. To support
this claim, we have performed a correlation analysis between %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
and 𝑑𝑚𝑎𝑥. We generated a large number of artificial

networks, which is associated to a different value of %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
. Then, we evaluated the 𝑑𝑚𝑎𝑥 for each network to estimate the

Pearson correlation coefficient (𝑃𝐶𝐶) between the two indicators. The scatterplot reported in Figure 4 and the value 𝑃𝐶𝐶 =

0.9731 ≈ 1 show high positive linear correlation between 𝑑𝑚𝑎𝑥 and the ratio of negative and positive seeds. This entails that it is
possible to perform SA using %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
independently from 𝑆∕𝑉 , with a proper sampling of the geometrical input parameters.

FIGURE 4 Scatterplot between %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
and 𝑑𝑚𝑎𝑥, showing high positive linear correlation between the two markers, as also

stated by the value 𝑃𝐶𝐶 = 0.9731.

4.2 Criteria for admissible vascular networks applicable to the model

In terms of spatial distribution, the network generation algorithm allows to determine networks with a desired variability. To
model irregular and disordered networks, large vascular voids are produced in the middle area of the domain of interest. The
volume gap diameter can be up to ∼ 500𝜇𝑚 if at most the 75% of positive seeds is removed.
The vascular generation algorithm requires to be complemented by imposing additional constraints on specific features of the
vascular network. In particular, it is crucial to prescribe suitable vessels radii that have a relevant impact on the fluid and
hematocrit mass balance at the junctions. We also impose a control over the number of inlets and outlets for each network.
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Prescription of vessels radii

Vessel radii are assigned in a physiological range of 2 − 6𝜇𝑚45, with average radius of the capillary vessels equal to 4𝜇𝑚. To
avoid vascular configurations that may become hardly solvable, we limit the variability to the range 2.5 − 5.5𝜇𝑚.
In the first step of the pipeline for the prescription of vascular radii, the inflow and outflow nodes are assigned to the vascular
graph, influencing the average blood flow direction in the 3D-1D multiscale model. Precisely, we assume that the boundary
endpoints with 𝑥 = 0, 𝑦 = 0 or 𝑧 = 0 represent the set of the vascular inlets 𝜕Λ𝐼𝑁 , where higher values of the vascular pressure
are set, while the remaining boundary vertices are the vascular endpoints 𝜕Λ𝑂𝑈𝑇 , where lower values of the vascular pressure
are prescribed. The inlet branches radii are set to the mean value, equal to 4𝜇𝑚.
Subsequently, the graph nodes are visited, starting from the inlets and moving in the direction of the flow. We assign the radii for
the inspected branches depending on the network connectivity. In particular, if a parent vessel bifurcates, the daughter branches
radii are a fraction determined from a uniform distribution in the range 95%− 99% of the inlet branch radius. Otherwise, if two
parent vessels connect, the outgoing vessel radius is selected from the uniform distribution in the range 101% − 105% of the
largest inlet vessel radius.
If a computed radius exceeds the aforementioned interval limits, the respective minimum or maximum of the admissible range
is enforced, avoiding vascular networks with too large or too narrow channels.

Inlets and outlets of the vascular network

A relevant factor that can significantly influence the computational model under consideration is the number of vascular inlets
𝜕Λ𝐼𝑁 and outlets 𝜕Λ𝑂𝑈𝑇 . Indeed, fixing the geometry vascularization and the dimension of the largest vascular gap, the network
generation algorithm could provide structures with high clustering of vessels in the inflow regions, leading to an increased
oxygenation in the peripheral area. Analogously, a richer set of outflow regions facilitates a decrease of oxygen concentration
for both the capillaries and the tissue. Since the aim of this work is to assess the effect of the network structure itself on the
oxygen transfer process, we modify the vascular network generation algorithm by imposing a control over the sets 𝜕Λ𝐼𝑁 and
𝜕Λ𝑂𝑈𝑇 , depending on the vascularization and the dimension of the largest void area. In particular, defined 𝑁𝑖𝑛𝑙𝑒𝑡𝑠 = dim(𝜕Λ𝐼𝑁 )

and 𝑁𝑜𝑢𝑡𝑙𝑒𝑡𝑠 = dim(𝜕Λ𝑂𝑈𝑇 ), we have performed two linear regressions for the responses 𝑁𝑖𝑛𝑙𝑒𝑡𝑠 and 𝑁𝑜𝑢𝑡𝑙𝑒𝑡𝑠, assuming 𝑆∕𝑉

and %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
as predictors, based on 150 supervised vascular networks where the parameters 𝑁𝑖𝑛𝑙𝑒𝑡𝑠 and 𝑁𝑜𝑢𝑡𝑙𝑒𝑡𝑠 fell in the

admissible range. The results of this regression are reported in Figure 5 and in the corresponding formulas. Provided the linear
regression models, for a given desired sample of 𝑆∕𝑉 and of %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
, we estimate the expected values of 𝑁𝑖𝑛𝑙𝑒𝑡𝑠 and 𝑁𝑜𝑢𝑡𝑙𝑒𝑡𝑠,

generate a new vascular network, and accept it or reject according to the correspondence of the effective number of inlets and
outlets with the predicted value, ±20 additional inlets/outlets.
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𝑁𝑖𝑛𝑙𝑒𝑡𝑠 ≃ −7.4678 + 0.01301𝑆∕𝑉 + 0.10953%𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
𝑁𝑜𝑢𝑡𝑙𝑒𝑡𝑠 ≃ −4.7519 + 0.012703%𝑆∕𝑉 + 0.19337%𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)

FIGURE 5 Linear regression models fitting the number of inflow (Left) and outflow vessel nodes (Right) with respect to the
vascularization (𝑆∕𝑉 ) and the dimension of the largest void area

(

%𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)

)

.

5 NUMERICAL RESULTS

After a brief discussion of the model setup, in this section we present the results of the sensitivity analysis performed using the
methodologies of Sections 3.1 and 3.2. Once the most influential inputs on the quantities of interest have been determined, we
briefly show their effect on the oxygen distribution in the VME.

5.1 Numerical simulations setup

We employ the finite element method to discretize the microvascular model ( + + ), and use a fixed point method to lin-
earize the equations containing nonlinear factors. We initialize the microvascular environment with the parameters presented in
Table 2. Full details related to model derivation, discretization, solution and validation are reported in6. The model is applied to
describe a 3D domain Ω, represented by a slab of edge 1𝑚𝑚 and thickness 0.15𝑚𝑚 and discretized through a structured mesh
of tetrahedrons. The uniform grid consists of 7200 tetrahedrons, for a total of 1764 number of nodes. This setup is supported by
a mesh dependence study. More precisely, we have evaluated the relative error between the spatial average of the oxygen con-
centration in the tissue for the current mesh and the numerical solution �̄�𝑡

∗ computed after mesh refinement. A similar analysis
has been done for the total spatial variation Δ𝐶𝑡 with respect to Δ𝐶∗

𝑡 . We report in Table 1 the values obtained considering a
vascular network with vascular density given by 𝑆∕𝑉 = 6000 and %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
= 37.5%. The difference between the coarser and

the finer mesh is almost negligible in terms of the QoI �̄�𝑡, and reasonably low in terms of Δ𝐶𝑡. Conversely, the computational
time required to perform a simulation triples when considering the finer mesh, instead of the coarser one. In order to further
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highlight the negligible differences in accuracy between the meshes, Figure 6 displays the distribution of 𝐶𝑡 along a line 𝜙 run-
ning along the diagonal of the tissue slice (associated to 𝑧 = 0). The interstitial oxygen concentration is plotted for each 3D mesh
refinement with respect to a normalized coordinate 𝑠 that runs along the line. The profiles turn out to be almost overlapping.
Therefore, since there is not a significant increase in accuracy, we decided to rely on the coarser 3D mesh for our study, which
has a cell width comparable to one used in previous studies (Δ𝑥 of 50𝜇𝑚8 and 40𝜇𝑚46). Regarding the spatial discretization
of the 1D domain Λ associated to the vascular network, we fix the number of subintervals for each branch to 𝑁𝑠𝑢𝑏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 = 5

equispaced segments. Indeed, the considered geometries are highly vascularized, entailing a large number of elements for the
1D mesh increasing 𝑁𝑠𝑢𝑏𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠. The discrete problem is assembled and solved by an in-house code47 developed using the Get-
Fem++ library48. The numerical tests were performed on clustered computational resources, consisting of a processor AMD
EPYC 7301 16-Core Processor with 2 sockets and 16 cores.

Tetrahedra Total nodes CPU time [𝑚𝑖𝑛] �̄�𝑡 [𝑚𝐿𝑂2
∕𝑚𝐿𝐵]

�̄�𝑡−�̄�𝑡
∗

�̄�𝑡
∗ [%] Δ𝐶𝑡 [𝑚𝐿𝑂2

∕𝑚𝐿𝐵]
Δ𝐶𝑡−Δ𝐶∗

𝑡

Δ𝐶∗
𝑡

[%]

7200 1764 20 2.360 × 10−3 0.64 7.633 × 10−4 4.44
27000 5766 34 2.350 × 10−3 0.21 7.734 × 10−4 3.18
57600 11767 58 2.345 × 10−3 – 7.988 × 10−4 –

TABLE 1 Mesh dependence study for the interstitial domain Ω, evaluating the QoIs �̄�𝑡 and Δ𝐶𝑡. The percentage variation is
computed with respect to the finest grid.

FIGURE 6 Distribution of interstial oxygen concentration 𝐶𝑡(x) (Right) along a diagonal line 𝜙 on the tissue slice associated to
𝑧 = 0, varying the refinement of the 3D mesh. The plot on the right is determined with respect to the normalized distance from
the origin of the line.
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TABLE 2 Input parameters used for the numerical tests and ranges of variation of the physical and geometrical input factors for
the SA

SYMBOL PARAMETER UNIT VALUE REF.#1 RANGE OF VARIATION
𝐷 characteristic length 𝑚 1 × 10−3 – –
𝑅 average radius 𝑚 4 × 10−6 47 –
𝐾 tissue hydraulic conductivity 𝑚2 1 × 10−18 49,47 –
𝜇𝑡 interstitial fluid viscosity 𝑐𝑃 1.2 50 –
𝜇𝑣 blood viscosity 𝑐𝑃 3.0 29 –
𝐿𝑝 wall hydraulic conductivity 𝑚2 s kg−1 1 × 10−12 47 –
𝛿𝜋 oncotic pressure gradient 𝑚𝑚𝐻𝑔 25 47 –
𝜎 reflection coefficient − 0.95 51 –
Υ𝑂2

𝑂2 wall permeability 𝑚∕𝑠 – – 3.5 × 10−5 − 3.0 × 10−4

𝐷𝑣 vascular diffusion coefficient 𝑚2∕𝑠 2.18 × 10−9 52 –
𝑁 ×𝑀𝐶𝐻𝐶 max. hemoglobin-bound 𝑂2 𝑚𝐿𝑂2

∕𝑚𝐿𝑅𝐵𝐶 0.46 53 –
𝛾 Hill constant – 2.64 54,52 –
𝑝𝑠50 𝑂2 at half-saturation 𝑚𝑚𝐻𝑔 27 54,55 –
𝛼 𝑂2 solubility coefficient (𝑚𝐿𝑂2

∕𝑚𝐿)∕𝑚𝑚𝐻𝑔 3.89 × 10−5 53 –
𝐷𝑡 tissue diffusion coefficient 𝑚2∕𝑠 2.41 × 10−9 52 –
𝑉𝑚𝑎𝑥 𝑂2 consumption rate 𝑚𝐿𝑂2

∕𝑐𝑚3∕𝑠 – – 4.0 × 10−5 − 2.4 × 10−4

𝑝𝑚50
Oxygen partial pressure at half consumption rate 𝑚𝑚𝐻𝑔 – – 0.5 − 1

𝐻𝑖𝑛 Discharge hematocrit at inlets – – – 0.3 − 0.5

𝐶 Characteristic 𝑂2 concentration 𝑚𝐿𝑂2
∕𝑚𝐿𝐵 3 × 10−3 – –

𝐶𝑣,𝑖𝑛 Inlet vessel 𝑂2 concentration at inlets 𝑚𝐿𝑂2
∕𝑚𝐿𝐵 – – 2.25 × 10−3 − 3.75 × 10−3

%𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
Percentage of negative seeds over positive Voronoi seeds [%] – – 0 − 75

𝑆∕𝑉 Vessel lateral surface (S) over tissue volume (V) [𝑚−1] – – 5 ⋅ 103 − 7 ⋅ 103

5.2 Sensitivity analysis setup

For the SA studies, we consider 𝑘 = 7 input parameters, 5 of which are physics-related and 2 linked to the metrics of the
vascular architecture. The input ranges of variation are reported in Table 2, spanning from physiological to pathological values.
In these ranges, we assume uniform probability distributions for each parameter. For what concerns the vascular networks, once
provided the values of synthetic indicators 𝑆∕𝑉 and %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
, each artificial network is generated through a iterative process

in which the number of seeds varies within a fixed range, in order to obtain a network whose vascular density is such that the
difference from the given target 𝑆∕𝑉 is under a fixed uncertainty threshold (1𝑚−1, corresponding to the 0.02% with respect to
the reference value of 𝑆∕𝑉 6000𝑚−1).



VITULLO, CICCI ET AL 23

For the computation of the elementary effects, we point out that they exploit normalized QoIs derived from the oxygen transfer
model. Once each snapshot of the solution of () has been computed using dimensional physical quantities, we rescale the
computed oxygen maps on the characteristic value of oxygen concentration 𝐶 , specified in Table 2, in order to retrieve the model
realizations 𝑌 = 𝑦(X), so that the sensitivity indices provide a relative measure on the impact of the input factor on the QoIs.
In particular, the nonlinear function of the input sample vector X encloses a normalization with respect to 𝐶 before performing
the evaluation of each QoI.
The sensitivity indices have been computed in MATLAB. The source code for the computation of Morris elementary effects is
based on the MATLAB toolbox SAFE56, further extended to handle groups of parameters, whereas that for Sobol’ main and total
indices in based on the Dakota toolbox57, originally written in C++.
First of all, we perform a convergence analysis using Morris method to retrieve an optimal number of trajectories 𝑟∗, in the sense
that the mean 𝜇∗

𝑖 and the standard deviation 𝜎𝑖 of the 𝑖-th elementary effect, for all 𝑖 = 1,… , 𝑘, are unaffected when considering
a higher number 𝑟 > 𝑟∗ of trajectories.
The results reported in Figure 7 emphasize a different overall behavior of the indices 𝜇∗

𝑖 and 𝜎𝑖 when calculated for the physical
parameters or the geometrical inputs: while for the former a plateau is reached just with a small number of trajectories, regarding
the geometrical inputs, a slower convergence of both 𝜇∗

𝑖 and 𝜎𝑖 is observed. This is reflected, in particular, by higher values of
the standard deviation 𝜎𝑖. Overall, the fluctuations of 𝜇∗

𝑖 and 𝜎𝑖 detected for small values of 𝑟 are mitigated by increasing the
number of trajectories. Nonetheless, the overall ranking of the inputs is preserved. Hence, from now on, we assume 𝑟∗ = 60 to
be a sufficient number of trajectories to compute accurate Morris indices.

5.3 Sensitivity analysis varying all parameters independently

The analysis of the elementary effects of all the parameters computed using the Morris sampling (without making any distinction
between the geometric parameters and the physical ones) is reported in Figure 8 for the QoIs related to the tissue and the vascular
oxygen concentrations. The plots show the influence of each parameter in terms of the mean 𝜇∗ and the standard deviation 𝜎 of
the elementary effects following the template described in Figure 1.
According to these results, which will be discussed in detail later on, we highlight some general trends. In all the considered
scenarios the elementary effects associated with 𝐻𝑖𝑛 and 𝑃𝑚50 have low 𝜇∗ and low standard deviation 𝜎, thus implying that the
associated inputs have negligible effects on the chosen outputs. For this reason, we deflate the parameter space from 𝑘 = 7 to
𝑘 = 5 variables, in all the forthcoming analyses. Conversely, we observe that the geometrical parameters %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
and 𝑆∕𝑉

are not negligible for all the QoIs.
In Table 3 we plot the inputs ranked with respect to the mean 𝜇∗

𝑖 , for 𝑖 = 1,… , 𝑘, of the elementary effects. For all QoIs,
we subdivide the range of 𝜇∗

𝑖 , with 𝑖 = 1,… , 𝑘, into four equally spaced sub-intervals (improperly named quartiles) and rank
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FIGURE 7 Statistics of the elementary effects, precisely the mean 𝜇∗ (Left) and the standard deviation 𝜎 (Right), are reported
for all the QoIs, i.e., �̄�𝑡 (Top-Left) and 𝐶𝑣 (Top-Right), Δ𝐶𝑡 (Bottom-Left) and Δ𝐶𝑣 (Bottom-Right).

each input variable according to the quartile where it falls. We notice some differences with respect to the ranking between
QoIs based on the mean value (�̄�𝑡, �̄�𝑣) and the total variation (Δ𝐶𝑡,Δ𝐶𝑣). The physical parameters have a greater influence on
the mean QoIs, while the geometrical inputs have a greater impact on the total variation of vascular and tissue oxygenation.
Furthermore, exploiting the classification of the inputs through the ratio 𝜎∕𝜇∗ presented in Figure 1, we notice higher linearity
and monotonicity for the physical parameters rather than for the geometrical ones.
Using the deflated parameter space we perform a Sobol’ analysis, fixing in this case the sample size equal to 𝑁 = 150 in order
to obtain reliable results and imposing 𝐻𝑖𝑛 = 0.456 and 𝑃𝑚50 = 1𝑚𝑚𝐻𝑔 6 without affecting the output variance. The results
of Sobol’s analysis are shown in Figure 9. We show one plot for each of the QoIs, where we report the calculated main effect
and total effect related to each input variable. The main trends already highlighted by the analysis of elementary effects are
confirmed. The physical parameters mostly influence the mean-QoIs, whereas the geometrical ones affect the total variations.
Moreover, for the input variables affecting the vascular geometry, we remark a significant difference between the total and the
main effects, suggesting that the total influence of these variables is more effective when combined with the variation of other
parameters.
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FIGURE 8 Statistics of the elementary effects associated to the interstitial oxygen concentration �̄�𝑡 (Top-Left) and Δ𝐶𝑡 (Top-
Right) and to the vascular oxygen concentration 𝐶𝑣 (Bottom-Left) and Δ𝐶𝑣 (Bottom-Right).

Finally, the elementary effects and the Sobol’s analysis are directly compared in Table 3. There, we compare the ranking of the
input variables computed by the two methods and we also report the computational cost of the two approaches, measured by
the number of input-output evaluations required to perform the analysis. We note that each evaluation involves the numerical
solution of the models ( + + ) described in (1) and (5). Table 3 illustrates one of the main methodological results of this
work. It shows that, for the problem at hand, the elementary effects and the Sobol’s analysis provide information about the
sensitivity of the model that is qualitatively similar. However, as expected, the former method requires a computational cost that
is about four times lower than the latter (3.9 reduction). More precisely, the elementary effect method uses 𝑟∗(𝑀 + 1) = 360

model evaluations, while Sobol’s required 𝑁(𝑀 + 2) = 1050 simulations.
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FIGURE 9 Sobol’ indices associated to the interstitial oxygen concentration �̄�𝑡 (Top-Left) and Δ𝐶𝑡 (Top-Right), and to the
vascular oxygen concentration 𝐶𝑣 (Bottom-Left) and Δ𝐶𝑣 (Bottom-Right).

5.4 Sensitivity analysis varying physical and geometric parameters by groups

Finally, the Morris approach for groups of factors is employed to rank, as a whole, physical parameters and geometric ones. This
new analysis relies on a number of simulations of the oxygen transfer model comparable to the previous case, that is 𝑟 = 120

trajectories associated to 𝑔 = 2 groups, hence entailing a total number of input realisations equal to 𝑟(𝑔 + 1) = 360 simulations.
From the results reported in Figure 10 we observe that physical inputs have a larger impact on all the considered QoIs with
respect to the geometrical ones, although the influence of the latter is not negligible. The interpretation of these results hinges
on two observations: on one hand the number of physical parameters is more than twice that of the geometrical ones, and on the
other hand, at least one among 𝑉𝑚𝑎𝑥 and 𝐶𝑣,𝑖𝑛 is a highly influential factor on the selected output of interest. Another interesting
fact is that the geometric inputs are more relevant for the total variation of the oxygen concentration.
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Elementary effects method Sobol’ indices
I/O 360 1050

QoI: �̄�𝑡
[𝑄3, 𝑚𝑎𝑥] 𝐶𝑣,𝑖𝑛 𝐶𝑣,𝑖𝑛
[𝑄2, 𝑄3] – 𝑉𝑚𝑎𝑥
[𝑄1, 𝑄2] 𝑉𝑚𝑎𝑥 –
[𝑚𝑖𝑛, 𝑄1] Υ𝑂2

, 𝑆∕𝑉 ,%𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
Υ𝑂2

,%𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
, 𝑆∕𝑉

QoI: 𝐶𝑣
[𝑄3, 𝑚𝑎𝑥] 𝐶𝑣,𝑖𝑛 𝐶𝑣,𝑖𝑛
[𝑄2, 𝑄3] – –
[𝑄1, 𝑄2] – –
[𝑚𝑖𝑛, 𝑄1] 𝑆∕𝑉 ,%𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
, 𝑉𝑚𝑎𝑥,Υ𝑂2

𝑆∕𝑉 ,%𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
, 𝑉𝑚𝑎𝑥,Υ𝑂2

QoI: Δ𝐶𝑡

[𝑄3, 𝑚𝑎𝑥] 𝑉𝑚𝑎𝑥,%
𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
𝑉𝑚𝑎𝑥

[𝑄2, 𝑄3] 𝑆∕𝑉 %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)

[𝑄1, 𝑄2] – 𝑆∕𝑉
[𝑚𝑖𝑛, 𝑄1] 𝐶𝑣,𝑖𝑛,Υ𝑂2

𝐶𝑣,𝑖𝑛,Υ𝑂2QoI: Δ𝐶𝑣

[𝑄3, 𝑚𝑎𝑥] %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
, 𝑆∕𝑉 %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
, 𝑆∕𝑉

[𝑄2, 𝑄3] 𝑉𝑚𝑎𝑥 𝑉𝑚𝑎𝑥
[𝑄1, 𝑄2] 𝐶𝑣,𝑖𝑛 –
[𝑚𝑖𝑛, 𝑄1] Υ𝑂2

𝐶𝑣,𝑖𝑛,Υ𝑂2

TABLE 3 Ranking of the input factors with respect to Morris and Sobol’ indices with a comparison of their computational cost
in terms of input/output model evaluations.

5.5 Impact of the parameters on the tissue oxygenation

With the previous results we have established a ranking between the input parameters through a rigorous SA, detecting the most
influential input factors with respect to specific QoIs of the oxygen transport model. These results, however, do not directly
inform us about how variations of the parameters perturb the actual oxygen maps locally. We provide a visualization of the
general interplay between significant parameters and oxygen maps in Figure 11, where we visualize the relation between a QoI,
namely Δ𝐶𝑡, the most relevant inputs according to Figure 8 and the variations of the oxygen maps. Precisely, along the rows of
Figure 11 we vary the vascular metrics, and along the columns we vary the oxygen consumption 𝑉𝑚𝑎𝑥. Variations are designed
to mimic the transition from baseline normal conditions of the VME towards a plausible tumor scenario, where the oxygen
consumption is reduced and the vasculature becomes less dense and more irregular. In each cell we report the value of Δ𝐶𝑡

and, at the bottom of the table, we calculate the ratio of the QoI of each cell with respect to the baseline value, denoted by
𝐴1,1 = 𝐴′

1,1 = 1.145 10−3, referring to the table reported in Figure 11, where the fist four boxes are named as matrix 𝐴 and the
last four correspond to the matrix 𝐴′.
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FIGURE 10 Statistics of the elementary effects for the groups of physical and geometrical parameters, associated to the inter-
stitial oxygen concentration �̄�𝑡 and Δ𝐶𝑡, and to the vascular oxygen concentration 𝐶𝑣 and Δ𝐶𝑣.

According to these results, we point out some important facts that will be thoroughly discussed later on. Figure 11 shows
that, while the influence of 𝑉𝑚𝑎𝑥 on Δ𝐶𝑡 is mostly linear, the response of the same QoI to the variations of vascular metrics
is significant but it does not depend linearly on the inputs. This effect is clearly highlighted by the QoI ratios reported at the
bottom of the table and also confirmed by the plots of Figure 12. Moreover, it appears that the two vascular metrics influence
the oxygen distribution very differently. 𝑆∕𝑉 affects the oxygenation more uniformly, while %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
has a more localized

effect. Interestingly, we see that the cells with indices 𝐴1,1 and 𝐴2,2 of the first half of the table are characterized by a similar
Δ𝐶𝑡 (QoI), but the oxygen distribution is very different due to the combined variation of 𝑉𝑚𝑎𝑥 and %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
. In conclusion,

this result illustrates the complex relation between the vascular network topology and the oxygen maps.

6 DISCUSSION

This work provides relevant results on two different levels, the methodology and the modeling of the VME. For the former,
we propose reliable and efficient SA approaches for parametrized problems with microscructure. For the latter, we quantify the
relevance of physical and geometric factors on the oxygenation of the VME.
For the methodological results, we show that, in our case, the computation of the sensitivity indices using Morris approach
provides a reliable estimate of the relative ranking of all parameters. When compared to more reliable variance based approaches,
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FIGURE 11 Δ𝐶𝑡 estimates obtained varying each of the metrics and the physical parameter 𝑉𝑚𝑎𝑥 with respect to a fixed factor
scale; the contours highlight the variation of the output with respect to the reference configuration provided imposing 𝑉𝑚𝑎𝑥 =
1.8 ⋅ 10−4 𝑚𝐿𝑂2

∕𝑚𝐿𝐵 and considering a vascular network associated with %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
= 18.75% and 𝑆∕𝑉 = 6600. The fist four

boxes of this table are named as matrix 𝐴 and the last four are named as matrix 𝐴′. Correspondingly, at the bottom 𝐴𝑖𝑗∕𝐴11
denotes the ratio between the values of the table, using the usual matrix notation.

of which we consider here the well known Sobol’s indices method, the former does not underestimates the sensitivity of any input:
in fact, according to Table 3, it only slightly overestimate the sensitivity of some of the input factors. Nonetheless, the Morris
method provides a significant advantage in terms of the computational cost. We believe that this conclusion is general, at least
in the framework of the multi-physics models of the VME, such as the one proposed here and denoted before by ( + + ).
On the basis of these considerations, we have shown that the Morris method can be used to perform sensitivity analysis of many
QoIs related to the tissue microenvironment, for example in the context of radiotherapy6, chemotherapy,58, immunotherapy59,
or even hyperthermic treatment of tumors60,61.
From the modeling standpoint, the previous SA5 on the microvascular fluid balance combined with the results presented here,
confirms the importance of interactions between parameters. This further motivates our efforts to move in the direction of
multiphysics models of the microvascular environment. Simplified approaches mainly based on oxygen diffusion may not capture
the importance of these interactions. This observation becomes even more relevant for those applications where the modeling
complexity increases, such as the analysis of local drug delivery to the VME58.
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FIGURE 12 (Top row) Boxplot of �̄�𝑡 with respect to 𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
(left) and the vascular density 𝑆∕𝑉 (𝑅𝑖𝑔ℎ𝑡). (Bottom row)

Boxplot of Δ𝐶𝑡 with respect to 𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
(left) and the vascular density 𝑆∕𝑉 (𝑅𝑖𝑔ℎ𝑡).

From the standpoint of applications, the main result of this study consists in showing that the mean value of the interstitial and
vascular oxygen concentration is mostly affected by the physical parameters of the model. We also provide a clear ranking of
the most influential parameters, reported in Table 3. This conclusion is also clearly confirmed by the application of the Morris
method by groups, where we quantify the effect of two groups of inputs, the physical parameters and the geometric parameters.
Figure 10 shows that the influence of the physical parameter cluster dominates in all the QoIs on that of the geometric parameters.
This analysis confirms the trend already reported by the SA of individual inputs. For �̄�𝑡 and �̄�𝑣 the superiority of the physical
parameters with respect to the geometric ones is evident. However, this result must be interpreted keeping in mind that the
dimension of the two clusters that are compared is not well balanced, consisting of 5 items in the group of physical parameters
and only 2 items in the group of geometric parameters.
Figures 8 and 11 show that the influence of the physical parameters on the QoIs is mostly linear, while the relation between
the geometric inputs and the oxygenation outputs is nonlinear, overall not easily predictable. Figure 11, in particular, shows
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that the parameters %𝑆𝐸𝐸𝐷𝑆(−)

𝑆𝐸𝐸𝐷𝑆(+)
and 𝑆∕𝑉 strongly affect the spatial distribution of the oxygen delivered to the miscrovascular

environment.
This study also suggests that the variations of hematocrit have generally a negligible influence on the oxygenation of the tissue,
and this statement is in fact true for all the QoIs considered. This result can be explained observing that the range of variation of
hematocrit (𝐻𝑖𝑛, see Table 2) ensures in any case a good blood oxygenation. Abrupt variations of dissolved oxygen concentration
are prevented and damped by the abundant oxyhemoglobin available. We also observe that the model is stationary, as a result
transient and local variations of hematocrit are not accounted for.
A possible limitation of these results consists in not including the vascular radius in the input parameters of the SA. We recall
that the model used here accounts for variable vascular radii, according to the algorithm presented in Section 4.2. However,
the variable radius distribution was the same for all the simulations. This study could be extended by introducing a suitable
parametrization of the vascular radius distribution, by one or more parameters that could then become inputs of the sensitivity
analysis. Nevertheless, we envision some possible drawbacks of this generalization. Primarily, adding the radius to the set of the
geometric parameters would make it significantly more difficult to sample independently the vascular density, the vascular voids
and the radius as these three quantities are naturally interacting. As a result, there is the risk that adding the vascular radius and
its distribution to this analysis would play as a confounding factor. Moreover, this extension may also increase the computational
cost of the whole workflow, requiring eventually the introduction of reduced order models to guarantee its feasibility.
The results of this SA have also an impact in parameter identification, by providing guidelines on what parameters can be reliably
determined on the basis of some observations. In this context, we point out that the combination of �̄�𝑡 and �̄�𝑣 is related to the
oxygen measurements coming from imaging data, primarily functional MRI. Then, our study suggests that imaging data and
the corresponding average oxygen level at the voxel scale are primarily related to the physical state of the microenvironment,
and only mildly affected by the microvascular architecture.

7 CONCLUSIONS AND PERSPECTIVES

The main result of this work is the quantification of the relative role between geometric and physical factors affecting the VME.
First, we have assessed independently all the input factors of a multi-physics model, ranking them with respect to different quan-
tities of interest generally related to tissue oxygenation. This analysis showed that the interactions among factors are important
and that the system response to geometrical inputs is typically nonlinear. Second, we have quantified the relative sensitivity of
two groups of input parameters, the ones affecting the transport and diffusion phenomena at the basis of oxygen transfer, and
the ones affecting the microvascular architecture. As groups, these two main categories of input factors play significant roles,



32 VITULLO, CICCI ET AL

although for oxygenation the physical parameters dominate over the geometrical ones. However, we have the feeling that the
scenario may be substantially different for quantities of interest related to other phenomena such as drug release.
In conclusion, we observe that modeling the VME for cancer therapies is reaching new perspectives, see for example16,17, where
the direct / forward modeling approach is part of a outer loop involving sensitivity analysis, uncertainty quantification, optimiza-
tion or inverse modeling. This study is our first step in this direction, using the multi-physics model involving microvascular
flow ( ), hematocrit transport () and oxygen transfer (). In the near future we foresee an expansion of it leveraging on
the interaction of in-vivo data, in-vitro experiments, and advanced numerical techniques, such as reduced order modeling, effi-
cient sampling methods and/or multi-fidelity approaches that complement the high performance methods applied here for the
discretization of the governing equations at the basis of the multi-physics model of the VME.
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