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Abstract

Simulating fluid flows in different virtual scenarios is of key importance in engineering applications.
However, high-fidelity, full-order models relying, e.g., on the finite element method, are unaffordable whenever
fluid flows must be simulated in almost real-time. Reduced order models (ROMs) relying, e.g., on proper
orthogonal decomposition (POD) provide reliable approximations to parameter-dependent fluid dynamics
problems in rapid times. However, they might require expensive hyper-reduction strategies for handling
parameterized nonlinear terms, and enriched reduced spaces (or Petrov-Galerkin projections) if a mixed
velocity-pressure formulation is considered, possibly hampering the evaluation of reliable solutions in real-
time. Dealing with fluid-structure interactions entails even higher difficulties. The proposed deep learning
(DL)-based ROMs overcome all these limitations by learning in a non-intrusive way both the nonlinear
trial manifold and the reduced dynamics. To do so, they rely on deep neural networks, after performing a
former dimensionality reduction through POD enhancing their training times substantially. The resulting
POD-DL-ROMs are shown to provide accurate results in almost real-time for the flow around a cylinder
benchmark, the fluid-structure interaction between an elastic beam attached to a fixed, rigid block and a
laminar incompressible flow, and the blood flow in a cerebral aneurysm.

1 Introduction

Computational fluid dynamics nowadays provide rigorous and reliable tools for the numerical approximation of
fluid flows equations, exploited in several fields, from life sciences to aeronautical engineering. High-fidelity
techniques such as, e.g., finite elements, finite volumes as well as spectral methods have been extensively
applied in the past decades to the simulation of challenging problems in fluid dynamics, providing quantitative
indication about the physical behavior of the system, in view of its better understanding, control, and forecasting.
Solving these problems entails the numerical approximation of unsteady Navier-Stokes (NS) equations in three-
dimensional domains, possibly accounting for fluid-structure interaction (FSI) effects, requiring fine computational
meshes in case one aims at simulating complex flow patterns, and ultimately yielding large-scale nonlinear systems
of equations to be solved.

Simulating fluid flows in complex configurations through high-fidelity, full-order models (FOMs) is computa-
tionally infeasible if one aims at solving the problem multiple times, for different virtual scenarios, or in a very
small amount of time – at the limit, in real-time. This is the case, for instance, of blood flow simulations, for
which outputs of clinical interest shall be evaluated for different flow conditions, and in different geometrical
configurations [1]. In this respect, if quantitative outputs are meant to support clinicians’ decisions, each new
numerical simulation should be carried out very rapidly on deployed platforms, rather than exploiting huge
parallel hardware architectures, and thus requiring limited data storage and memory capacity.

In the case virtual scenarios can be described in terms of – e.g., physical and/or geometrical – input
parameters, reduced order models (ROMs) built, e.g., through the reduced basis (RB) method [2], can be
exploited to reduce the computational complexity and costs entailed by the repeated solution of parametrized
fluid flow problems, enabling dramatic reduction of the dimension of the discrete problems, arising from numerical
approximation, from millions to hundreds, or thousands at most, of variables. Several works have addressed the
construction of rapid and reliable ROMs for Navier-Stokes equations, mainly exploiting either proper orthogonal
decomposition (POD) [3, 4, 5, 6, 7, 8] or greedy algorithms [9, 10, 11, 12] for the construction of reduced order
spaces.
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However, despite the general principles behind projection-based reduction techniques – such as, e.g., the use of
a (Petrov-)Galerkin projection onto a low-dimensional subspace, and the use of a set of FOM snapshots, computed
for different input parameter values, at different times, to train the ROM – that provide a rigorous framework
to set up ROMs for fluid dynamics equations, some distinguishing properties of Navier-Stokes equations for
incompressible flow simulations ultimately make their effective realization quite involved [13]. Among them, we
mention the need of (i) treating efficiently nonlinearities and parameter dependencies [14], (ii) approximating
both velocity and pressure [15], (iii) ensuring the ROM stability (with respect to both the violation of the inf-sup
condition and dominating convection) [16, 17], and (iv) keeping error propagation in time under control. The
presence of FSI, coupling the fluid model with a model describing the structural displacement of the non-rigid
domain where the fluid flows, makes the problem even more involved. Several strategies have been proposed to
address these issues: for instance, hyper-reduction techniques have been devised in a purely algebraic way to
treat the nonaffine and nonlinear convective terms appearing in the NS equations [8]; a suitable enrichment of the
velocity space can be considered to ensure the inf-sup stability of the ROM [18, 7], as well as alternative, more
effective, stabilization techniques for the ROM [19]; mesh-moving techniques have been exploited to efficiently
parametrize domain shapes to address geometric variability in fluid flow simulations [8], and either monolithic
or segregated strategies have been considered as first attempts to handle fluid-structure interactions in the RB
method for parametrized fluid flows [20, 21].

On the other hand, machine learning techniques – in particular, artificial neural networks (NNs) – in
computational fluid dynamics have witnessed a dramatic blooming in the past ten years [22, 23]. Deep neural
networks (DNNs) have been exploited to address several issues; a nonexhaustive list includes, for instance:

1. the extraction of relevant flow features, such as recirculation regions or boundary layers through convolutional
neural networks (CNNs) [24];

2. the construction of inexpensive, non-intrusive approximations for output quantities of interest for fluid
flows [25], or to velocity and pressure field, obtained through Reynolds-averaged Navier-Stokes (RANS)
equations [26, 27, 28];

3. data-driven turbulence models in RANS equations through a physics-informed machine learning approach
[29], or data-driven eddy viscosity closure models in Large Eddy Simulations (LES) [30];

4. the setting of closure models to stabilize a POD-Galerkin ROM [31] by using, e.g., recurrent neural networks
(RNNs) to predict the impact of the unresolved scales on the resolved scales [32], or correction models to
adapt a ROM to describe scenarios quite far from the ones seen during the training stage [33];

5. the reconstruction of a high-resolution flow field from limited flow information [34], as well as the assimilation
of flow measurements and computational flow dynamics models derived from first physical principles. This
task can be cast in the framework of the so-called physics-informed neural networks [35, 36], where NNs
are trained to solve supervised learning tasks while respecting the fluid dynamics equations, or tackled by
means of Bayesian neural networks [37];

6. the nonintrusive estimation of POD coefficients through, e.g., feedforward NNs [38, 39, 40] or probabilistic
NNs [41].

In this paper we apply the POD-DL-ROM technique we recently proposed [42] to fluid flow problems,
in order to build non-intrusive and extremely efficient ROMs for parameter-dependent unsteady problems in
computational fluid dynamics by exploiting (i) deep neural networks as main building block, (ii) a set of FOM
snapshots, and (iii) dimensionality reduction of FOM snapshots through (randomized) POD. Even though a
preliminary example of its application to a benchmark in fluid dynamics has already been considered in [42] to
assess the capability of POD-DL-ROMs to handle vector nonlinear problems such as the unsteady Navier-Stokes
equations, in order to compute the fluid velocity field only, in this paper we deepen our analysis by considering:
(a) the computation of both velocity and pressure fields in the case of unsteady Navier-Stokes equations, (b) the
extension to a FSI problem, and (c) the application to a real-life application of interest, namely the simulation
of blood flows through a cerebral aneurysm.

Compared to other works appeared recently in the literature, our focus is on parameter-dependent fluid
dynamics problems, either involving complex three-dimensional geometries, or FSI effects, and on the use of
deep learning (DL)-based ROMs for the sake of real-time simulation of fluid flows, thus relying on nonlinear
reduction techniques. Motivated by similar goals, non-intrusive ROMs for fluid dynamics equations have been
proposed, e.g., in [43, 44, 45], where POD has been considered to generate low-dimensional (linear) subspaces,
also in the case of FSI problems, and POD coefficients at each time-step are either computed through a radial
basis function multi-dimensional interpolation, or extrapolated from the POD coefficients at earlier time-steps.
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Applications of DL algorithms in conjunction with POD have already been proposed for the sake of long-term
predictions in time, however without addressing parameter-dependent problems. For instance, a long-short term
memory (LSTM) network was used to learn the underlying physical dynamics in [46], generating a non-intrusive
ROM through the solution snapshots acquired over time. Deep feedforward neural networks (DFNNs) have
been used for a similar task in [47] and compared with the sparse identification of nonlinear dynamics (SINDy)
algorithm [48]. This latter defines a sparse representation through a linear combination of selected functions,
and has been used for data-driven forecasting in fluid dynamics [49]. RNNs have been considered in [50, 51] to
evolve low-dimensional states of unsteady flows, exploiting either POD or a convolutional recurrent autoencoder
to extract low-dimensional features from snapshots. DL algorithms have also been used to describe the reduced
trial manifold where the approximation is sought, then relying on a minimum residual formulation to derive the
ROM – hence, still requiring the assembling and the solution of a ROM as in traditional POD-Galerkin ROMs
– in [52].

The structure of the paper is as follows. In section 2 we sketch the basic features of projection-based ROMs
for fluid flows, and recall the main ingredients of the POD-DL-ROM technique. In Section 3 we show some
numerical results obtained for the flow around a cylinder benchmark, the fluid-structure interaction between
an elastic beam attached to a fixed, rigid block and a laminar incompressible flow, and the blood flow in a
cerebral aneurysm. Finally, a brief discussion of our results and few comments about future research directions
are reported in Section 4.

2 Methods

In this section we briefly recall the main ingredients of the POD-enhanced DL-based ROMs (briefly, POD-DL-
ROMs) that we adapt, in the following, to handle problems in computational fluid dynamics. In particular,
we aim at simulating parameter-dependent unsteady fluid flows, relying on a velocity-pressure formulation, in
domains that have either (i) rigid walls or (ii) elastic deformable walls.

In the case of rigid walls, for any input parameter vector µ ∈ P ⊂ Rnµ , we aim at solving the nonlinear
unsteady Navier-Stokes equations in a given, fixed domain ΩF ⊂ Rd, d = 2, 3 (see Section 3.1)

PF (vh, ph; t,µ) = 0 in ΩF × (0, T ), (1)

in the time interval (0, T ), provided that suitable initial (at time t = 0) and boundary conditions (on ∂ΩF , for
each t ∈ (0, T )) are assigned. Here t ∈ (0, T ) is the time variable, vh = vh(t;µ) the velocity field, ph = ph(t;µ)
the pressure field; these two latter quantities are usually obtained through a FOM built, e.g., through the finite
element method. Here h > 0 denotes a discretization parameter, usually related to the mesh size.

In the case of elastic walls, the fluid domain is unknown and its deformation introduces a further geometric
nonlinearity; the structure displacement dSh = dSh(t;µ) might also be nonlinear, and must match the one of the
fluid domain dGh = dGh (t;µ) at the fluid-structure (FS) interface Σ(t). Here we employ the so-called Arbitrary
Lagrangian Eulerian (ALE) approach, in which an extra problem for the fluid domain displacement (usually
a harmonic extension of the FS interface datum) is solved, thus providing an updated fluid domain, while the
fluid problem is reformulated on a frame of reference that moves with the fluid domain. Thus, for any input
parameter vector µ ∈ P, we consider a fluid-structure interaction (FSI) model, which consists of a two-fields
problem, coupling the incompressible Navier-Stokes equations written in the ALE form with the (non)linear
elastodynamics equation modeling the solid deformation [53]. In particular, we aim at solving the unsteady
Navier-Stokes equations in a varying domain ΩF (t) ⊂ Rd, the elastodynamics equations in the structural domain
ΩS ⊂ Rd, and a geometric problem in the fixed fluid domain ΩF ⊂ Rd (see Section 3.2),

PF (vh, ph; t,µ) = 0 in ΩF (t)× (0, T ),

PS(dSh ; t,µ) = 0 in ΩS × (0, T ),

PG(dGh ;µ) = 0 in ΩF × (0, T ),

coupling conditions on Σ(t)× (0, T ),

(2)

for a time interval (0, T ), provided that suitable initial (at time t = 0) and boundary conditions (on ∂ΩF (t)\Σ(t)
for the fluid subproblem, on ∂ΩS \ Σ for the structural subproblem, on ∂ΩF for the geometric subproblem, for
each t ∈ (0, T )), are assigned.
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2.1 Projection-based ROMs: main features

The spatial discretization of problem (1) or (2) through finite elements yields a nonlinear dynamical system of
dimension Nh to be solved for each input parameter value; then, a fully discretized problem is obtained relying,
e.g., on either semi-implicit or implicit methods introducing a partition of the interval [0, T ] in Nt subintervals
of equal size ∆t = T/Nt, such that tk = k∆t. This results in a sequence of either linear or nonlinear algebraic
systems to be solved at each time step tk, k = 1, . . . , Nt – which we refer to as the high-fidelity FOM. Note that
the dimension Nh accounts for the degrees of freedom of either the fluid problem (involving velocity and pressure)
or the FSI problem (also including the structural and the geometrical subproblem). Building a projection-based
ROM through, e.g., the RB method, then requires to perform this calculation for ns selected parameter values
µ1, . . . ,µns , and to perform POD on the solution snapshots (obtained for each µj , j = 1, . . . , ns, and for each
time step tk, k = 1, . . . , Nt). Focusing for the sake of simplicity on the fluid problem (1), the RB approximation
of velocity and pressure fields at time tk is expressed as a linear combination of the RB basis functions,

vh(tk;µ) ≈ VvvN (tk;µ), ph(tk;µ) ≈ VppN (tk;µ)

where Vv ∈ RNh×Nv and Vp ∈ RNh×Np denote the matrices whose columns form the basis for the velocity
and the pressure RB spaces, respectively, and are selected as the first left singular vectors of the (velocity and
pressure) snapshots matrices. Note that in this case the RB approximation is sought in a linear trial manifold.
A similar approximation also holds for the additional variables appearing in the FSI problem (2). The reduced
dynamics is then obtained by solving a low-dimensional dynamical system, obtained by performing a Galerkin
projecting of the FOM onto the spaces spanned by the RB spaces; alternatively, a Petrov-Galerkin projection
could also be used.

Projection-based ROMs for parametrized PDEs thus rely on a suitable offline-online computational splitting:
computationally expensive tasks required to build the low-dimensional subspaces, and to assemble the ROM
arrays, are performed once for all in the so-called offline (or ROM training) stage. This latter allows us
to compute – ideally – in an extremely efficient way the ROM approximation for any new parameter value,
during the so-called online (or ROM testing) stage. This splitting, however, might be compromised if (i) the
dimension of the linear trial subspace becomes very large (compared to the intrinsic dimension of the solution
manifold being approximated), such as in the case of problems featuring coherent structures that propagate over
time like transport, wave, or convection-dominated phenomena, or (ii) hyper-reduction techniques, required to
approximate µ-dependent nonlinear terms, require linear subspaces whose dimension is also very large. Even
more importantly, two additional issues make the construction of ROMs quite critical in the case of fluid dynamics
problems; indeed,

1. a Galerkin projection onto the RB space built through the POD procedure above does not ensure the
stability of the resulting ROM (in the sense of the fulfillment of an inf-sup condition at the reduced level).
Several strategies can be employed to overcome this issue such as, e.g., (a) the augmentation of the velocity
space by means of a set of enriching basis functions computed through the so-called pressure supremizing
operator, which depends on the divergence term; (b) the use of a Petrov-Galerkin (e.g., least squares, (LS))
RB method, or (c) the use of a stabilized FOM (like, e.g., a P1-P1 Streamline Upwind Petrov-Galerkin
(SUPG) finite element method); (d) an independent treatment of the pressure, to be reconstructed from
the velocity by solving a Poisson equation, in the case divergence-free velocity basis functions are used –
an assumption that might be hard to fulfill.

2. the need of dealing with both a mixed formulation and a coupled FSI problem requires the construction of
a reduced space for each variable, no matter if one is interested in the evaluation of output quantities of
interest only involving a single variable. For instance, even if one is interested in the evaluation of the fluid
velocity in the FSI case, a projection-based ROM must account for all the variables appearing as unknowns
in the coupled FSI problem. The same consideration also holds in the case of a fluid problem, where the
pressure must be treated as unknown of the ROM problem even if one is not interested in its evaluation.

2.2 POD-enhanced DL-ROMs (POD-DL-ROMs)

POD-DL-ROMs are nonintrusive ROMs, which aim at approximating the map (t,µ) → uh(t,µ), for any field
variable of interest uh(t,µ), by describing both the trial manifold and the reduced dynamics through deep neural
networks. These latter are trained on a set of FOM snapshots

Su = [uh(t1;µ1) | . . . | uh(tNt ;µ1) | . . . | . . .uh(t1;µNtrain) | . . . | uh(tNt ;µNtrain)], (3)

computed for different parameter values µ1, . . . ,µNtrain ∈ P, suitably sampled over the parameter space, at
different time instants {t1, . . . , tNt} ⊂ [0, T ]. Avoiding the projection stage, POD-DL-ROMs can be cheaply
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evaluated once trained, only involving those variables one is interested in. In case multiple variables are involved
(e.g., both velocity and pressure), the procedure below can be performed simultaneously on each of them.

To reduce the dimensionality of the snapshots and avoid to feed training data of very large dimension Nh,
we first apply POD – realized through randomized SVD (rSVD) – to the snapshot set Su; then, a DL-ROM
is built to approximate the map between (t,µ) and the POD generalized coordinates. Using rSVD, we build
N -dimensional subspace Col(VN ) spanned by the N ≤ Nh columns of VN ∈ RNh×N , the matrix of the first N
singular vectors of the snapshot matrix Su. Here N denotes the dimension of the linear manifold, which can be
taken (much) larger than the one of the reduced linear trial manifold used in a POD-Galerkin ROM.

Hence, the POD-DL-ROM approximation of the FOM solution uh(t;µ) is

ũh(t;µ,θDF ,θD) = VN ũN (t;µ,θDF ,θD) ≈ uh(t;µ),

that is, it is sought in a linear trial manifold of (potentially large) dimension N ,

S̃Nh = {VN ũN (t;µ,θDF ,θD) |ũN (t;µ,θDF ,θD) ∈ RN , t ∈ [0, T ) ,µ ∈ P} ⊂ RNh , (4)

by applying the DL-ROM strategy [54] to approximate VT
Nuh(t;µ) – rather than directly uh(t;µ). The DL-ROM

approximation ũN (t;µ,θDF ,θD) ≈ VT
Nuh(t;µ) takes the form

ũN (t;µ,θDF ,θD) = fDN (φDFn (t;µ,θDF );θD), (5)

and is sought in a reduced nonlinear trial manifold S̃nN of very small dimension n � N ; usually, n ≈ nµ + 1 –
here time is considered as an additional parameter. As for DL-ROMs (see, e.g., [54]), both the reduced dynamics
and the reduced nonlinear manifold (or trial manifold) where the ROM solution is sought must be learnt. In
particular:

• Reduced dynamics learning. To describe the system dynamics on the nonlinear trial manifold S̃nN , the
intrinsic coordinates of the approximation ũN are defined as

un(t;µ) = φDFn (t;µ,θDF ),

where φn(·; ·,θDF ) : [0, T )×Rnµ+1 → Rn is a DFNN, consisting of the repeated composition of a nonlinear
activation function, applied to a linear transformation of the input, multiple times. Here θDF denotes the
DFNN parameters vector, collecting the weights and biases of each of its layers;

• Nonlinear trial manifold learning. To model the reduced nonlinear trial manifold S̃nN , we employ the
decoder function of a convolutional autoencoder (CAE), that is,

S̃nN = {ũN (t;µ) =fDN (φDFn (t;µ,θDF );θD) |
un(t;µ,θDF ) ∈ Rn, t ∈ [0, T ) , µ ∈ P ⊂ Rnµ} ⊂ RN ,

(6)

where fDN (·;θD) : Rn → RN denotes the decoder function of a CAE obtained as the composition of several
layers (some of which are convolutional), depending upon a vector θD collecting all the corresponding
weights and biases.

Finally, the encoder function fEn (·;θE) : RN → Rn – depending upon a vector θE of parameters – of the CAE can
be used to map the intrinsic coordinates VT

Nuh(t,µ) associated to (t,µ) onto a low-dimensional representation

ũn(t;µ,θE) = fEn (VT
Nuh(t;µ);θE).

Hence, training a POD-DL-ROM requires to solve the optimization problem

min
θ
J (θ) = min

θ

1

NtrainNt

Ntrain∑
i=1

Nt∑
k=1

L(tk,µi;θ), (7)

where the per-example loss function L(tk,µi;θ) is given by the sum of two terms,

L(tk,µi;θ) =
ωh
2
Lrec(tk,µi;θ) +

1− ωh
2
Lint(tk,µi;θ); (8)

the former is the reconstruction error between the FOM and the POD-DL-ROM solutions,

Lrec(tk,µi;θ) = ‖VT
Nuh(tk;µi)− ũN (tk;µi,θDF ,θD)‖2;
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Figure 1: POD-DL-ROM architecture. Starting from the FOM solution uh(t;µ), the intrinsic coordinates
VT
Nuh(t;µ) are computed by means of rSVD; their approximation ũN (t;µ) is provided by the neural network as

output, so that the reconstructed solution ũh(t;µ) is recovered through the rPOD basis matrix. In particular,
the intrinsic coordinates VT

Nuh(t;µ) are provided as input to block (A) which outputs ũn(t;µ). The same
parameter instance associated to the FOM, i.e. (t;µ), enters block (B) which provides as output un(t;µ), and
the error between the low-dimensional vectors is accumulated. The minimal coordinates un(t;µ) are given as
input to block (C) returning the approximated intrinsic coordinates ũN (t;µ). Then, the reconstruction error is
computed.

the latter is the misfit between the intrinsic coordinates and the output of the encoder,

Lint(tk,µi;θ) = ‖ũn(tk;µi,θE)− un(tk;µi,θDF )‖2.

Finally, ωh ∈ [0, 1] is a prescribed weighting parameter. The architecture of the POD-DL-ROM neural network
is shown in Figure 1.

Computing the POD-DL-ROM approximation ũh(t;µtest) of uh(t;µtest), for any t ∈ (0, T ) and µtest ∈ P,
corresponds to the testing stage of the DFNN and of the decoder function of the CAE, and does not require the
evaluation of the encoder function. Finally, the POD-DL-ROM approximation of the FOM solution is recovered
as

ũh(t;µ,θDF ,θD) = VũN (t;µ,θDF ,θD).

In the formerly proposed DL-ROM methodology [54, 55], we employed a convolutional AE due to the fact
that, thanks to the shared parameters and local connectivity properties [56], convolutional layers are better
suited than dense layers to handle high-dimensional spatially correlated data. Regarding instead the description
of the reduced dynamics, we introduced a DFNN since no particular data structure must be exploited in the
learning task, which is indeed simpler than the nonlinear trial manifold learning.

Let us remark that the former construction of a POD-DL-ROM can be extended to the case of p > 1 (either
scalar or vector) field variables of interest, in a straightforward way. In this case, provided a snapshots set Si, and
a corresponding basis VN,i ∈ RNh,i×N , i = 1, . . . , p, for each of the variables uh,1, . . . , uh,p, the POD-DL-ROM
approximation of the field variable uh,i(t;µ) ∈ RNh,i is given by

ũh,i(t;µ,θDF ,θD) = VN,iũN,i(t;µ,θDF ,θD) ≈ uh,i(t;µ),

where a DFNN and a CAE are trained by considering simultaneously all the p field variables. Due to its data-
driven nature, each variable can be approximated in an independent way – in other words, there are no physical
constraints appearing in the loss function, thus making the p approximated field variables uncoupled, despite
they might be originally coupled. For instance, p = 2 field variables are considered if we aim at approximating
both the velocity and the pressure fields in the case of fluid flows.

Another noteworthy aspect deals with the way snapshots are handled when considering convolutional layers
in the NNs, in presence of either vector and/or coupled problems. Exploiting the analogy with red-green-black
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images in image processing, each snapshot computed for a variable of interest is reshaped in a square matrix
of dimension (

√
N,
√
N), where N = 2(2m) with m ∈ N (if N 6= 2(2m) the input is zero-padded), and stacked

together forming a tensor with k ≤ 3 channels. The latter tensor is then provided as input to the POD-DL-ROM
neural network architectures when dealing with vector and/or coupled problems; as a result, the output of the
network, for each sample (t,µ), takes a form similar to (5), collecting the approximation of all the field variables,

ũN (t;µ,θDF ,θD) = [ũN,1(t;µ,θDF ,θD) | . . . | ũN,p(t;µ,θDF ,θD)] ∈ RN×p.

In case of vector field variables, such as the fluid velocity or the structure displacement, different variable
components are usually grouped together and treated in the same channel1. We remark that considering
vector and/or coupled problems does not entail main changes in the architecture of the POD-DL-ROM, as
well as in the total number of parameters of the neural network. Indeed, only the first layer of the encoder
function and the last one of the decoder function are responsible for the handling of the different channels of the
input/output. This implies that training the neural network by providing data with k channels is remarkably
less computationally expensive than training several independent POD-DL-ROMs, each of them responsible for
a single component/field variable of the solution.

3 Results

In this section, we show several numerical results obtained with the POD-DL-ROM technique. In particular,
we focus on the solution of three problems: (i) the unsteady Navier-Stokes equations for a two-dimensional flow
around a cylinder, (ii) a FSI problem for a two-dimensional flow past an elastic beam attached to a fixed, rigid
block and (iii) the unsteady Navier-Stokes equations for the blood flow in a cerebral aneurysm. To evaluate the
performance of POD-DL-ROM, we rely on the loss function (8) and on:

• the error indicator εrel ∈ R given by

εrel = εrel(uh, ũh) =
1

Ntest

Ntest∑
i=1


√∑Nt

k=1 ||ukh(µtest,i)− ũkh(µtest,i)||2√∑Nt
k=1 ||ukh(µtest,i)||2

 ; (9)

• the relative error εk ∈ R
∑d
i=1Nh,i , for k = 1, . . . , Nt, defined as

εk = εk(uh, ũh) =
|ukh(µtest)− ũkh(µtest)|√

1
Nt

∑Nt
k=1 ||ukh(µtest)||2

. (10)

Note that (9) is a scalar indicator, while (10) provides a spatially-distributed error field.
The configuration of the POD DL-ROM neural network used in our test cases is the one given below. We

choose a 12-layer DFNN equipped with 50 neurons per hidden layer and n neurons in the output layer, where n
represents the dimension of the (nonlinear) reduced trial manifold. The architectures of the encoder and decoder
functions are instead reported in Tables 1 and 2. No activation function is applied at the last convolutional layer
of the decoder neural network, as usually done in AEs.

To solve the optimization problem (7)-(8), we use the ADAM algorithm [57], which is a stochastic gradient
descent method computing an adaptive approximation of the first and second momentum of the gradients of
the loss function. In particular, it computes exponentially weighted moving averages of the gradients and of
the squared gradients. We set the starting learning rate to η = 10−4, and perform cross-validation in order to
tune the hyperparameters of the POD-DL-ROM, by splitting the data in training and validation sets with a
proportion 8:2. Moreover, we implement an early-stopping regularization technique to reduce overfitting [56],
stopping the training if the loss does not decrease over a certain amount of epochs. As nonlinear activation
function, we employ the ELU function [58]. The parameters, weights and biases, are initialized through the He
uniform initialization [59]. The rPOD dimension N is selected, in all test cases, in order to fulfill the condition
εrel(uh,VNVT

Nuh) ≈ 10−3. The interested reader can refer to [42] for a detailed version of the algorithms used
for the training/testing phases. These latter have been carried out on either a GTX 1070 8GB or a Tesla V100
32GB GPU, by means of the Tensorlow DL framework [60], for the cases described in the following subsections.
The Matlab library redbKIT [2, 61] has been employed to carry out all the FOM simulations.

1In the case of p field variables, each one with at most d components, many of them can be grouped together and assigned to
the same channel. In case of p ≤ 3 scalar field variables, or when dealing with vector field variables involving at most 3 components
(such as in the case of the velocity and the pressure field in dimension d = 2, or in the case of the velocity field in dimension d ≤ 3),
different components can be assigned to different channels.
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Table 1: Attributes of convolutional and dense layers in the encoder fEn .

layer input output kernel #of filters stride padding
dimension dimension size

1 [N, N, d] [N, N, 8] [5, 5] 8 1 SAME

2 [N, N, 8] [N/2, N/2, 16] [5, 5] 16 2 SAME

3 [N/2, N/2, 16] [N/4, N4, 32] [5, 5] 32 2 SAME

4 [N/4, N/4, 32] [N/8, N/8, 64] [5, 5] 64 2 SAME

5 N 64

6 64 n

Table 2: Attributes of dense and transposed convolutional layers in the decoder fDN .

layer input output kernel #of filters stride padding
dimension dimension size

1 n 256

2 256 Nh

3 [N/8, N/8, 64] [N/4, N/4, 64] [5, 5] 64 2 SAME

4 [N/4, N/4, 64] [N/2, N/2, 32] [5, 5] 32 2 SAME

5 [N/2, N/2, 32] [N, N, 16] [5, 5] 16 2 SAME

6 [N, N, 16] [N, N, d] [5, 5] d 1 SAME

3.1 Test case 1: flow around a cylinder

In this first test case we deal with the unsteady Navier-Stokes equations for incompressible flows in primitive
variables (fluid velocity v and pressure p). We consider the flow around a cylinder test case, a well-known
benchmark problem for the evaluation of numerical algorithms for incompressible Navier-Stokes equations in the
laminar case [62]. The problem reads as follows:

ρ
∂v

∂t
+ ρv · ∇v −∇ · σ(v, p) = 0 (x, t) ∈ ΩF × (0, T ),

∇ · v = 0 (x, t) ∈ ΩF × (0, T ),

v = 0 (x, t) ∈ ΓD1
× (0, T ),

v = h (x, t) ∈ ΓD2
× (0, T ),

σ(v, p)n = 0 (x, t) ∈ ΓN × (0, T ),

v(0) = 0 x ∈ ΩF , t = 0.

(11)

The domain consists in a two-dimensional pipe with a circular obstacle, i.e. ΩF = (0, 2.2)×(0, 0.41)\B̄0.05(0.2, 0.2)
– here Br(xc) denotes a ball of radius r > 0 centered at xc, see Figure 2 for a sketch of the geometry. The
boundary is given by ∂ΩF = ΓD1

∪ ΓD2
∪ ΓN , where ΓD1

= {x1 ∈ [0, 2.2], x2 = 0} ∪ {x1 ∈ [0, 2.2], x2 =
0.41} ∪ ∂B0.05((0.2, 0.2)), ΓD2

= {x1 = 0, x2 ∈ [0, 0.41]}, and ΓN = {x1 = 2.2, x2 ∈ [0, 0.41]}, while n denotes
the (outward directed) normal unit vector to ∂ΩF . We denote by ρ the fluid density, and by σ the stress tensor,

σ(v, p) = −pI + 2νε(v); (12)

here ν denotes the dynamic viscosity of the fluid, while ε(v) is the strain tensor,

ε(v) =
1

2

(
∇v +∇vT

)
.

Here we take ρ = 1 kg/m3 as fluid density, and assign no-slip boundary conditions on Γ1, a parabolic inflow
profile

h(x, t;µ) =

(
4U(t, µ)x2(0.41− x2)

0.412
, 0

)
, where U(t;µ) = µ sin(πt/8), (13)

on the inlet ΓD2 , and zero-stress Neumann conditions on the outlet ΓN . We consider as parameter (nµ = 1)
µ ∈ P = [1, 2] m/s, which reflects on the Reynolds number varying in the range [66, 133]. Equations (11) have
been discretized in space by means of linear-quadratic (P2 − P1), inf-sup stable, finite elements, and in time
through a backward differentiation formula (BDF) of order 2 with semi-implicit treatment of the convective
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Figure 2: Test case 1 : geometrical configuration, domain and boundaries [m].

term (see, e.g., [63]) over the time interval (0, T ), with T = 8 s, and a time-step ∆t = 2× 10−3 s. This strategy
allows us to mitigate the computational cost associated to the use of a fully implicit BDF scheme, by linearizing
the nonlinear convective terms; this latter task is realized by extrapolating the convective velocity through an
extrapolation formula of the same order of the BDF introduced.

We already analyzed this test case in [42], where we were interested in approximating only the velocity field.
Here we aim at assessing the performance of POD-DL-ROM neural network in approximating both the velocity
and the pressure fields. In particular, we provide to the network data under the form of a tensor with 3 channels
– that is, we set the dimension equal to k = 3. The FOM dimension is equal to Nh = [32446, 32446, 8239] (for
the two velocity components and the pressure, respectively) and we select N = 256 as dimension of the POD
basis for each component of the solution. We choose n = 5 as dimension of the nonlinear trial manifold S̃n.
We uniformly sample Nt = 400 time instances and consider Ntrain = 21 and Ntest = 20 training- and testing-
parameter instances uniformly distributed over P. The total number of parameters (i.e., weights and biases) of
the neural network is equal to 295337.

In Figure 3 and Figure 4 we compare the FOM and POD-DL-ROM pressure and velocity fields, these
latter obtained with n = 5, together with the relative error εk in Figure 5, for the testing-parameter instance
µtest = 1.975 m/s (Re = 131) at t = 1.062 s and t = 4.842 s. We highlight the ability of the POD-DL-ROM
approximation to accurately capture the variability of the solution: indeed, in the case t = 1.062 s (Figure 3)
we do not assist to any vortex shedding; this latter is instead present in the case t = 4.842 s (Figure 4), and is
correctly reproduced.

Figure 3: Test case 1: FOM and POD-DL-ROM solutions for the testing-parameter instance µtest = 1.975 m/s
at t = 1.062 s, with N = 256 and n = 5. Left: velocity field magnitude; right: pressure field.

To assess the ability of the POD-DL-ROM to provide accurate evaluations of output quantities of interest,
we evaluate the drag and lift coefficients, related to the drag and lift forces around the circular obstacle; these
are defined, in our case, as

FD =

∫
∂Br

(
ν
∂u2

∂η
η2 − pη1

)
dσ, and FL =

∫
∂Br

(
ν
∂u1

∂η
η1 − pη2

)
dσ (14)

where η = (η1, η2)T denotes the (outward directed) normal unit vector to ∂Ω. From (14), the dimensionless drag
and lift coefficient can be obtained as

CD =
2

U2
meanL

FD, and CL =
2

U2
meanL

FL,

where Umean is the parabolic input profile mean velocity.
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Figure 4: Test case 1: FOM and POD-DL-ROM solutions for the testing-parameter instance µtest = 1.975 m/s
at t = 4.842 s, with N = 256 and n = 5. Left: velocity field magnitude; right: pressure field.

Figure 5: Test case 1: Relative errors εk for the testing-parameter instance µtest = 1.975 m/s, with N = 256
and n = 5. Relative errors at t = 1.062 s (left) and t = 4.842 s (right) for velocity (left) and pressure (right).

The drag and lift coefficients coefficients computed over time by the FOM and the POD-DL-ROM, for the
testing-parameter instances µtest = 1.975 m/s, are reported in Figure 6. The POD-DL-ROM technique is also
able to accurately capture the evolution of CD and CL, related to the prescribed µ-dependent input profile in
(13), in both cases. Indeed, we remark that the oscillatory behavior observed over time, due to vortex shedding,
is fully reconstructed by the POD-DL-ROM and is consistent with the results obtained at low Re numbers
reported in literature (see, e.g., [64]).

Furthermore, the testing computational time, i.e. the time needed to compute Nt time instances for an
unseen testing-parameter instance, of the POD-DL-ROM on a GTX 1070 8GB GPU is given by 0.2 seconds,
thus implying a speed-up equal to 1.25× 105 with respect to the time needed for the solution of the FOM2.

We also highlight that the application of POD-DL-ROMs to fluid problems showing a dominant transport
behavior, such as reacting fluid flows, would require only slight modifications. For instance, a larger rPOD
dimension, a more careful selection of the training-parameter instances, and an increase of the number of
parameters of the neural network, might be required, thus yielding longer training computational times, however
without impacting dramatically on the overall accuracy and efficiency of the methodology. In this respect,
preliminary results obtained with POD-DL-ROMs in the case of a dominant transport problem can be found,
e.g., in [42].

2For test case 1, the FOM simulations have been performed on 20 cores of 1.7 TB node (192 Intel R© Xeon Platinum R© 8160
2.1GHz cores) of the HPC cluster available at MOX, Politecnico di Milano
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Figure 6: Test case 1: FOM and POD-DL-ROM drag (left) and lift (right) coefficients for the testing-parameter
instance µtest = 1.975.

3.2 Test case 2: fluid-structure interaction

We now focus on the case of a two-dimensional flow past an elastic beam attached to a fixed, rigid block [65, 66, 67]
(see Figure 7 for a sketch of the geometry). The FSI model that we consider consists of a two-fields problem,
where the incompressible Navier-Stokes equations written in the Arbitrary Lagrangian Eulerian (ALE) form for
the fluid are coupled with the nonlinear elastodynamics equation modeling the solid deformation [53]. Because
of the ALE approach we employ, a third non-physical geometry (or mesh motion) problem is introduced, which
accounts for the fluid domain deformation and in turn defines the so-called ALE map.

Figure 7: Test case 2: geometrical configuration and domains.

Let ΩF and ΩS be the domains occupied by the fluid and the solid, respectively, in their reference configuration.
We denote by Σ = ∂ΩF ∩ ∂ΩS the fluid-structure interface on the reference configuration. At any time t, the
domain occupied by the fluid ΩF (t) can be retrieved from ΩF by the ALE mapping

At : ΩF → ΩF (t), X 7→ At(X) = X + dG(X),

where dG(X) represents the displacement of the fluid domain. The coupled FSI problem thus consists in the
following set of equations:

• Navier-Stokes in ALE form governing the fluid problem:ρF
∂vF

∂t

∣∣∣
X

+ (vF −wG) · ∇vF −∇σF (vF , pF ) = 0 in ΩF (t),

∇ · vF = 0 in ΩF (t);
(15)

• nonlinear elastodynamics equation governing the solid dynamics:

ρS
∂dS

∂t2
−∇ ·P(dS) = 0 in ΩS ; (16)
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• coupling at the FS interface Σ: vF =
∂dS

∂t
,

σF (vF , pF )nF + σS(dS)nS = 0;
(17)

• linear elasticity equations modeling the mesh motion problem:{
−∇ · σG(dG) = 0 in ΩF ,

dG = dS on Σ,
(18)

where σF (vF , pF ) = −pF I+ 2µF ε(vF ) is the fluid Cauchy stress tensor, σS(dS) = J−1PFT is the solid Cauchy

stress tensor, F = I +∇dS is the deformation tensor, and wG = ∂dG

∂t

∣∣∣
X

is the fluid mesh velocity. See, e.g., [53]

for further details.
Both fluid and solid equations are complemented by appropriate initial and boundary conditions. In particular,

the lateral boundaries are assigned zero normal velocity and zero tangential stress. Zero-traction boundary
condition is applied at the outflow. The flow is driven by a uniform inflow velocity of 51.3 cm/s. Zero-initial
conditions are assigned both for the fluid and the solid equations. The fluid density and viscosity are 1.18×10−3

g/cm3 and 1.82× 10−4 g/(cm · s) respectively, resulting in a Reynolds number of 100 based on the edge length
of the block. The beam is modeled as a solid made of the St. Venant-Kirchhoff material and the density of the
beam is 0.1 g/cm3.

The field equations are discretized in space and time using:

• matching spatial discretizations between fluid and structure at the interface;

• for the fluid subproblem, SUPG stabilized linear finite elements ((P1 − P1) and a BDF of order 2 in time;

• for the structural subproblem, the same finite element space as for the fluid velocity and the Newmark
scheme in time;

• for the fluid displacement, the same finite element space as for the fluid velocity.

The resulting nonlinear problem is solved through a monolithic geometry-convective explicit (GCE) scheme,
obtained by linearizing the fluid convective term (with a BDF extrapolation) and treating the geometry problem
explicitly [68, 69]. Here nµ = 2 parameters are considered, the Young modulus µ1 and the Poisson ratio
µ2, varying in the parameter space P = 106 · [2.3, 2.7] g/(cm · s2) × [0.3, 0.4]. We build a FOM considering
Nh = [16452, 8226, 1974] DOFs for the velocity, the pressure and the displacement fields, respectively, and a time
step ∆t = 1.65× 10−3 over (0, T ) with T = 3 s.

Regarding the construction of the proposed POD-DL-ROM, for the training of the neural networks, we
uniformly sample Nt = 606 time instances and Ntrain = 5 × 3 = 15 training-parameter instances, uniformly
distributed in each parametric direction. At testing phase, Ntest = 4×2 = 8 testing-parameter instances, different
from the training ones, have been considered. The maximum number of epochs is set equal to Nepochs = 20000,
the batch size is Nb = 40 and, regarding the early-stopping criterion, we stop the training if the loss function
does not decrease within 500 epochs.

We are interested in reconstructing the velocity and the displacement fields, so we set the number of channels
to k = 2 and we recall the ability of the POD-DL-ROM neural network to handle different FOM dimensions Nh,i,
for i = 1, . . . , p, that is only the POD dimension must be equal among the different fields considered. Moreover,
we set N = 256 as dimension of the POD basis, and n = 5 as dimension of the reduced nonlinear trial manifold.

The training and testing phases of the POD-DL-ROM neural network have been performed on a Tesla V100
32GB GPU. The total number of parameters of the POD-DL-ROM neural network is equal to 294185.

In Figure 8 we report the FOM and the POD-DL-ROM velocity magnitudes, the latter with N = 256
and n = 5, for two testing-parameter instances – µtest = [2.3 × 106 g/(cm · s2), 0.325] and µtest = [2.7 ×
106 g/(cm · s2), 0.375] – at t = 2.3084 s and t = 2.64 s. In particular, we can observe that vortices, which
are being shed from the square block, are impinging on the bar, eventually forcing it to have an oscillating
motion, during which it undergoes large deformations. We point out that the dependence of the displacement
field on the parameters reflects on the velocity field by producing a strong variability over the parameter space,
which is accurately captured by the POD-DL-ROM solutions. Indeed, at the same time instants, depending
on the value of the parameters µ the solution exhibits remarkably different patterns. The FOM and POD-DL-
ROM displacement magnitudes, for the testing-parameter instances µtest = [2.3 × 106 g/(cm · s2), 0.325] and
µtest = [2.7× 106 g/(cm · s2), 0.375] at t = 2.3084 s and t = 2.64 s over the domain, are shown in Figure 9.
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Figure 8: Test case 2: FOM (left) and POD-DL-ROM (right) fluid velocity magnitudes for the testing-parameter
instances µtest = [2.3× 106 g/(cm · s2), 0.325] (rows 1-2) and µtest = [2.7× 106 g/(cm · s2), 0.375] (rows 3-4), at
t = 2.3084 s (top) and t = 2.64 s (bottom).

We point out that the disagreement between the FOM and POD-DL-ROM displacement magnitudes is
larger for the the testing-parameter instance µtest = [2.3 × 106 g/(cm · s2), 0.325] at t = 2.64 s with respect
to the other cases reported in Figure 9. This is related to the fact that the POD-DL-ROM neural network is
biased towards larger values of displacement over the parameter space and generates higher errors when the bar
displacement is very small. The comparison between the FOM and POD-DL-ROM displacement magnitudes,

13



Figure 9: Test case 2: FOM and POD-DL-ROM structure displacement magnitudes for the testing-parameter
instances µtest = [2.3 × 106 g/(cm · s2), 0.325] at t = 2.3084 s and t = 2.64 s (first and second row) and
µtest = [2.7× 106 g/(cm · s2), 0.375] at t = 2.3084 s and t = 2.64 s (third and fourth row).

for the testing-parameter instance µtest = [2.7 × 106 g/(cm · s2), 0.375] at x∗ = (5.50, 6.07) cm over time, is
reported in Figure 10, from which it is clearly visible that the POD-DL-ROM is also able to capture the main
features of the oscillating elastic beam dynamics.

The full accordance between the (first) components of the intrinsic coordinates vector VT
Nuh(t;µtest) and

their POD-DL-ROM approximation ũN (tk;µtest,θDF ,θD), both for the velocity and the displacement fields,
for the testing parameter instance µtest = [2.7× 106 g/(cm · s2), 0.375], is shown is Figure 11. We remark that,
as expected, the first components are the ones retaining most of the energy of the system, thus being the ones
showing higher magnitude.

Finally, in Table 3 we report the POD-DL-ROM GPU total (training and validation) time, the testing time,
i.e. the time needed to compute Nt time instances for a testing-parameter instance, and the time required to
compute one time instance at testing time. Indeed, we recall that the DL-ROM solution can be queried at a
given time without requiring any solution of a dynamical system to recover the former time instances. We also
show the speed-up gained by POD-DL-ROM with respect to the computational time needed to solve the FOM3.

3For test case 2, the FOM simulations have been carried out on a MacBook Pro Intel Core i7 6-core with 16 GB RAM CPU.
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Figure 10: Test case 2: FOM and POD-DL-ROM displacement at x∗ = (5.50, 6.07) cm for the testing-parameter
instance µtest = [2.7× 106 g/(cm · s2), 0.375].

Figure 11: Test case 2: comparison between the intrinsic coordinates VT
Nuh components and the POD-DL-ROM

approximation ũN for the velocity (left) and the displacement (right) fields for the testing-parameter instance
µtest = [2.7× 106 g/(cm · s2), 0.375].

Table 3: Test case 2: POD-DL-ROM GPU computational times.

total time [h] testing time [s] 1-sample testing time [s] speed-up
7 4× 10−2 5× 10−3 1.77× 105 (1.41× 106)

3.3 Test case 3: blood flow in a cerebral aneurysm

In this last test case we consider the fast simulation of blood flows in a cerebral (or intracranial) aneurysm,
that is, a localized dilation or ballooning of a blood vessel in the brain, often occurring in the circle of Willis,
the vessel network at the base of the brain. Blood velocity and pressure, wall shear stress (WSS), blood flow
impingement and particle residence time all play a key role in the growth and rupture of cerebral aneurysms – see
e.g. [70, 71, 72] – which might ultimately yield potentially severe brain damage. For these reasons, computational
haemodynamics inside aneurysm models can provide output quantities of interest useful for planning their surgical
treatment.

We consider the artery aneurysm shown in Figure 12 (left), whose geometry has been supplied by the Aneurisk
project [73, 74, 75]. We consider blood as a Newtonian fluid, with constant viscosity, and a rigid arterial wall,
so that blood flow dynamics can be described by the following Navier-Stokes equations:
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ρ
∂v

∂t
+ ρv · ∇v −∇ · σ(v, p) = 0 (x, t) ∈ ΩF × (0, T ),

∇ · v = 0 (x, t) ∈ ΩF × (0, T ),

v = 0 (x, t) ∈ Γw × (0, T ),

v = kvinQ(t) (x, t) ∈ ΓD × (0, T ),

σ(v, p)n = 0 (x, t) ∈ ΓN × (0, T ),

v(0) = 0 x ∈ Ω, t = 0,

(19)

where the stress tensor is defined as in (12). On the arterial wall Γw a no-slip condition on the fluid velocity is
imposed, flow resistance at the outlet boundaries ΓN is neglected, while a parabolic profile vin is specified at the
lumen inlet, where the parametrization of the inlet flow rate profile Q(t;µ) has been obtained by interpolating
with radial basis functions a base profile Q(t) taken from [76], and then treating some of the interpolated values
as parameters (see Figure 12, right), see [77] for further details.

Figure 12: Test case 3. Left: aneurysm geometry. Right: inlet flow rate Q(t;µ) during the heart cycle for
different parameter values; the black dashed curve corresponds to the base profile Q(t).

In particular, we consider nµ = 2 parameters µ ∈ P ⊂ R2 such that the flow rate at t = 0.16 s and t = 0.38 s
admits variations up to 15% of the reference value. A comparison between some flow rate profiles corresponding
to different parameter values is shown in Figure 12, right. The scaling factor k in (19) is such that∫

ΓD

kvin · ndσ = 1.

Blood dynamic viscosity ν = 0.035 P and density are set to ρ = 1 g/cm3, respectively.
Concerning the FOM discretization, we employ a SUPG-BDF semi-implicit time scheme of order 2 with linear

finite elements for both velocity and pressure variables. We employ a time-step ∆t = 10−3 over the interval (0, T )
with T = 0.85 s. We simulate the blood flow starting from an initial condition obtained by solving the steady
Stokes problem. We are interested in reconstructing the blood velocity field, so we set the FOM dimensions to
Nh = [41985, 41985, 41985], and k = 3. The POD dimension is equal to N = 64, for each component of the
solution, and the dimension of the reduced nonlinear trial manifold is chosen to be equal to n = 5, very close
to the intrinsic dimension of the problem nµ + 1 = 3. We consider Nt = 850 time instances, Ntrain = 6, and
Ntest = 3 training- and testing-parameter instances, sampled over P by means of the latin hypercube sampling
strategy. The total number of parameters (i.e., weights and biases) of the neural network is equal to 269417.

In Figure 13 we compare the FOM and POD-DL-ROM velocity field magnitudes, the latter obtained with
N = 64 and n = 5, for the testing-parameter instance µtest = (5.9102, 3.1179) at the systolic peak t = 0.18 s,
along with the relative error εk reported in Figure 14. By looking at the pattern and the magnitude of the vector
velocity field in Figure 13, it is evident that the abnormal bulge and the inlet are the portions of the domain
where the blood flow velocity is smaller, and we remark the ability of the POD-DL-ROM technique in capturing
such dynamics in an extremely detailed manner.
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Figure 13: Test case 3: FOM (top) and POD-DL-ROM (bottom) velocity fields for the testing-parameter instance
µtest = (5.9102, 3.1179) at the systolic peak t = 0.18 s.

In Figure 15 we report the streamlines of the blood velocity field, obtained with the FOM and the POD-
DL-ROM, for the testing-parameter instance µtest = (5.9102, 3.1179) at t = 0.5 s. In Figure 16 we report
instead a detailed view of the pattern of the fluid velocity field obtained for the testing-parameter instance
µtest = (5.9102, 3.1179) at t = 0.18 s, highlighting the recirculation of the flow in the bulge and the blood stasis
in this region.

Finally, the testing computational time, i.e. the time needed to compute Nt time instances for an unseen
testing-parameter instance, of the POD-DL-ROM on a Tesla V100 32GB GPU is given by 0.28 seconds, thus
implying a speed-up equal to 3.98× 105 with respect to the time needed for the solution of the FOM4, and the
possibility to obtain a fully detailed simulation of a complex blood flow in real-time. We point out that a similar
test case is analyzed in [77], dealing with blood flows through a cerebral aneurysm, however employing a classical
POD-Galerkin ROM. In that specific case, even by looking for a lower accuracy compared to our results, and
relying on a similar amount of snapshots data, the speed-up introduced is only about 102, due to the relatively
large dimension of the ROM caused by the linear superimposition of (global) basis functions.

4For test case 3, the FOM simulations have been carried out on 20 cores of 1.7 TB node (192 Intel R© Xeon Platinum R© 8160
2.1GHz cores) of the HPC cluster available at MOX, Politecnico di Milano.
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Figure 14: Test case 3: Relative error in the velocity magnitude for the testing-parameter instance µtest =
(5.9102, 3.1179) at the systolic peak t = 0.18 s.

Figure 15: Test case 3: FOM (left) and POD-DL-ROM (right) velocity magnitude streamlines for the testing-
parameter instance µtest = (5.9102, 3.1179) at the sistolic peak t = 0.5 s.

4 Discussion

In this work, we have taken advantage of a recently proposed technique [42] to build non-intrusive low-dimensional
ROMs by exploiting DL algorithms to handle fluid dynamics problems. This strategy allows us to overcome some
drawbacks of classical projection-based ROM techniques arising when they are applied to incompressible flow
simulations.
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Figure 16: Test case 3: FOM (left) and POD-DL-ROM (right) velocity field magnitude for the testing-parameter
instance µtest = (5.9102, 3.1179) at t = 0.18 s.

In particular, POD-DL-ROMs overcome the need of:

• treating efficiently nonlinearities and (nonaffine) parameter dependencies, thus avoiding expensive and
intrusive hyper-reduction techniques;

• approximating both velocity and pressure fields, in those cases where one might be interested only in the
visualization of a single field;

• imposing physical constraints that couple different submodels, as in the case of fluid-structure interaction
(the different field variables are indeed treated as independent by the neural network);

• ensuring the ROM stability by enriching the reduced basis spaces;

• solving a dynamical system at the reduced level to model the fluid dynamics, however keeping the error
propagation in time under control.

We assessed the performance of the POD DL-ROM technique on three test cases, dealing with the flow
around a cylinder benchmark, the fluid-structure interaction between an elastic beam attached to a fixed, rigid
block and a laminar incompressible flow, and the blood flow in a cerebral aneurysm, by showing its ability in
providing accurate and efficient (even on moderately large-scale problems) ROMs, which multi-query and real-
time applications may ultimately rely on. In particular, the prior dimensionality reduction performed through
POD on the snapshot matrices also enhances the overall efficiency of the technique during the offline training
stage.

Despite their construction is mainly data-driven, being informed by the physics only through the snapshots,
POD-DL-ROMs provide results that are consistent with the underlying physical model. Indeed, the residual of
the POD-Galerkin ROM evaluated on the POD-DL-ROM solution, computed during the training phase, decreases
over the epochs even if this term is not included in the loss function. A possible pitfall of the methodology is
represented by the amount/quality of training data: if too few (or low-quality) snapshots are considered, further
operations like (i) increasing the number of parameters of the network, or (ii) training the network for a larger
number of epochs, or (iii) generating more data by means of data augmentation techniques, can be required.
Finally, a relevant issue is related with the generalization properties of the network outside the parameter range
and/or the time interval where snapshots have been sampled. At the moment, ensuring good approximation
properties when handling long-time scenarios, even in presence of almost periodic regimes, without more specific
network architectures, is an open issue our efforts are focusing on – however, this represents a general aspect
related with several machine/deep learning algorithms.

Therefore, we can conclude that POD-DL-ROMs provide a non-intrusive and general-purpose tool enabling
us to perform real-time numerical simulations of fluid flows. Since they return a (FOM-like detailed) computation
of the field variables, rather than approximating selected output quantities of interest as in the case of traditional
emulators or surrogate models, POD-DL-ROMs are a viable tool for detailed flow analysis, without any requirement
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in terms of computational resources during the online testing stage. Last, but not least, we highlight that, in
contrast to FOM simulations, both the training and testing phases of the POD-DL-ROM neural networks can
be carried out on a fairly inexpensive GPU – such as those ones that nowadays can be found in a mid-tier
personal computer, bolstering the case that this approach could ultimately be exploited without the need of
high-performance computing resources.
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[69] M. Gee, U. Küttler, W. Wall, Truly monolithic algebraic multigrid for fluid–structure interaction, Int. J.
Numer. Methods Engng. 85 (8) (2011) 987–1016.

[70] Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, J. Isaksen, A fully-coupled
fluid-structure interaction simulation of cerebral aneurysms, Comput. Mech. 46 (1) (2010) 3–16.

[71] J. Cebral, F. Mut, D. Sforza, R. Löhner, E. Scrivano, P. Lylyk, C. Putman, Clinical application of image-
based CFD for cerebral aneurysms, Int. J. Numer. Methods Biomed. Engng. 27 (7) (2011) 977–992.

[72] A. Valencia, H. Morales, R. Rivera, E. Bravo, M. Galvez, Blood flow dynamics in patient-specific cerebral
aneurysm models: the relationship between wall shear stress and aneurysm area index, Med. Eng. Phys.
30 (3) (2008) 329–340.

[73] AneuriskWeb. the aneurisk dataset repository. emory university & orobix srl, 2012–2013, http://ecm2.

mathcs.emory.edu/aneuriskweb.

[74] Aneurisk project. mox, mathematics department, politecnico di milano, https://statistics.mox.polimi.
it/aneurisk/.

[75] M. Piccinelli, A. Veneziani, D. Steinman, A. Remuzzi, L. Antiga, A framework for geometric analysis of
vascular structures: application to cerebral aneurysms, IEEE Trans. Med. Imag. 28 (8) (2009) 1141–1155.

[76] P. J. Blanco, S. M. Watanabe, M. A. R. F. Passos, P. A. Lemos, R. A. Feijóo, An anatomically detailed
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