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Summary. We address the problem of finite-sample null hypothesis significance testing
on the mean element of a random variable that takes value in a generic separable Hilbert
space. For this purpose, we propose a (re)definition of Hotelling’s T 2 statistic that natu-
rally expands to any separable Hilbert space that we further embed within a permutation
inferential approach. In detail, we present a unified framework for making inference on the
mean element of Hilbert populations based on Hotelling’s T 2 statistic, using a permutation-
based testing procedure of which we prove finite-sample exactness and consistency; we
showcase the explicit form of Hotelling’s T 2 statistic in the case of some famous spaces
used in functional data analysis (i.e., Sobolev and Bayes spaces); we propose simulations
and a case study that demonstrate the importance of the space into which one decides
to embed the data; we provide an implementation of the proposed tools in the R package
fdahotelling.

Keywords: Hilbert spaces; functional data; high-dimensional data; permutation test;
non-parametric inference, Hotelling’s T 2.

1. Introduction

The statistical analysis of data embedded in infinite-dimensional spaces is an active
research area in modern statistics. For example, the outstanding advances that measur-
ing instruments undergo constantly enable the collection and storage of high-resolution
data. This kind of data can often be represented as continuous functions (e.g. in time
or space) that can be embedded in infinite-dimensional functional spaces. This is the
basis of functional data analysis (FDA) (Ramsay and Silverman, 2002, 2005; Ferraty
and Vieu, 2006; Hsing and Eubank, 2015). However, FDA is just one example of sta-
tistical analysis of complex data. Other remarkable examples include the statistical
analysis of densities (e.g., Menafoglio et al., 2014; van den Boogaart et al., 2014) or
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function derivatives (e.g., Poyton et al., 2006; Sangalli et al., 2009; Dalla Rosa et al.,
2014). These applications stimulated the recent statistical literature to think of a gen-
eral Hilbert framework that would cover the whole new variety of complex data (see e.g.,
Ramsay and Dalzell, 1991; Horváth and Kokoszka, 2012; Bongiorno et al., 2014; Goia
and Vieu, 2016; Menafoglio and Petris, 2016; Menafoglio and Secchi, 2016). Moving
in this direction, there is an urgent need for novel statistical methodologies that can
accommodate the analysis of such data.

In this work, we tackle the problem of inference on the mean element of a random
variable defined in an infinite-dimensional separable Hilbert space, with extension to
inference on the difference between the means of two random variables defined in such
a space. In classic multivariate statistical analysis, the traditional strategy for making
inference on the mean pertains to resorting to Hotelling’s T 2 statistic. As long as
the sample size is larger than the dimension of the space into which data belong, this
statistic is fundamentally the Mahalanobis distance between the sample mean and the
true mean. To the best of our knowledge, in the literature, this statistic is not defined
for random variables taking values into infinite-dimensional spaces. In such a case, no
matter how many samples from the random variable one can collect, information will
always be insufficient to fully characterize an underlying generative model of the data.
There has been a growing literature on this matter especially in the field of FDA. In
particular, both parametric (Fan and Lin, 1998; Spitzner et al., 2003; Cuevas et al.,
2004; Shen and Faraway, 2004; Schott, 2007; Horváth and Kokoszka, 2012) and non-
parametric (Hall and Tajvidi, 2002; Hall and Van Keilegom, 2007; Cardot et al., 2007;
Cox and Lee, 2008; Cuesta-Albertos and Febrero-Bande, 2010; Corain et al., 2014; Pini
and Vantini, 2016, 2017; Pini et al., 2017) inferential procedures have been proposed
with a focus on the statistical analysis of functional data embedded in the L2(T ) space
of square-integrable functions on the compact set T ⊆ R. These works can be divided
into two macro-methodologies. The first approach pertains to projecting the data onto a
low-dimensional subspace using a truncated basis expansion and evaluating Hotelling’s
T 2 statistic in such a subspace (e.g., Spitzner et al., 2003; Cuesta-Albertos and Febrero-
Bande, 2010; Horváth and Kokoszka, 2012; Pini and Vantini, 2016), as if we were dealing
with a classical multivariate statistical analysis problem. The second approach pertains
to analyzing the data in its original space but trading Hotelling’s T 2 statistic for other
statistics based on the L2 norm (e.g., Hall and Tajvidi, 2002; Hall and Van Keilegom,
2007).

In this work, we propose to follow and further develop the second line of research in
which inference is carried out in the original space of the data because we believe that
information thrown away by projecting the data on subspaces of lower dimension could
actually be relevant for the ongoing inference. In particular, our goal is to demonstrate
that Hotelling’s T 2 statistic is actually well defined in any separable Hilbert spaces
and that it can be used for inference on the mean element in separable Hilbert spaces
of infinite dimension. Traditional Hotelling’s T 2 statistic in Rp has already been ex-
tended to the case when the dimension p exceeds the sample size (Srivastava, 2007).
From a parametric standpoint, under the assumption of normality, it follows a Fisher
distribution when p < n and a χ2 distribution p-asymptotically (Secchi et al., 2013).
Hence, inference can be carried out quite easily. However, cases of normal data are ac-
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tually scarce and assessment of normality is still an open question in high-dimensional
and infinite-dimensional spaces. Fortunately, even though Hotelling’s T 2 statistic has
mainly be used for parametric inference under the assumption of normality, we would
like to emphasize that it is not limited to parametric inference. One could perform in-
ference on the mean in a non-parametric fashion – such as in bootstrap or permutation
testing – using Hotelling’s T 2 statistic as well. In this work, we rely in particular on the
latter.

This manuscript is outlined as follows. Section 2 starts with the traditional definition
of Hotelling’s T 2 statistic and introduces a novel alternative but equivalent definition
from which it is straightforward to grasp why Hotelling’s T 2 statistic can in fact be
defined on any separable Hilbert spaces. Section 3 develops this idea by defining random
variables in Hilbert spaces and the related concepts of mean and covariance operator.
The section ends with the general definition that we propose for Hotelling’s T 2 statistic,
valid in any separable Hilbert space. Section 4 showcases three classes of separable
Hilbert spaces. The first example is Rp, used in multivariate and high-dimensional data
analysis, while the other two examples feature spaces widely used in functional data
analysis (i.e., Sobolev and Bayes spaces). In detail, we define Hotelling’s T 2 statistic
as the maximization of a ratio involving linear operators. Section 7 presents the two
statistical tests that we propose in separable Hilbert spaces using Hotelling’s T 2 statistic:
a one-population test on the mean element of a population and a two-population test on
the difference between the mean elements of two populations. Finite-sample exactness
and consistency of the proposed tests are proven independently from data distribution.
Sections 8 and 9 propose simulations and a case study respectively that demonstrate
(i) the practicality and efficiency of the proposed procedure based on Hotelling’s T 2

statistic and (ii) the importance of the space into which one decides to embed the data.
Section 10 finally summarizes the main results achieved in this manuscript and discusses
some important aspects.

2. Hotelling’s T 2 revisited

Let X1, . . . ,Xn be n i.i.d. Rp-valued random variables with mean m and covariance
matrix Σ. Traditional multivariate statistical theory teaches that when the number n
of statistical units is strictly greater than the dimension p of the data (i.e. n > p), it is
possible to make inference on the mean m using the well-known Hotelling’s T 2 statistic
usually defined in the following way:

T 2 := n (mn −m)
>

Σ−1
n (mn −m) , (1)

where mn and Σn are the sample mean vector and sample covariance matrix respectively:

mn :=
1

n

n∑
i=1

Xi and Σn :=
1

n− 1

n∑
i=1

(Xi −mn)(Xi −mn)>. (2)

Multivariate Hotelling’s T 2 statistic is closely connected to the univariate Student’s
t statistic. In effect, for any direction a ∈ Rp \ {0}, the following Student’s t statistic



4 A. Pini et al.

can be computed:

ta =
√
n

a> (mn −m)√
a>Σna

,

and an alternative definition of Hotelling’s T 2 statistic can be formulated as follows:

T 2 := max
a∈Rp\{0}

t2a = n max
a∈Rp\{0}

[
a> (mn −m)

]2
a>Σna

. (3)

Since n > p, the sample covariance matrix Σn is a.s. of full rank p. Therefore, the
column space of Σn entirely spans Rp, i.e. Im(Σn) = Rp. Hence, independently from
the sample size n, Hotelling’s T 2 statistic can be defined in its most general form as
follows:

Definition 2.1. Let X1, . . . ,Xn be n i.i.d. Rp-valued random variables with mean
m and covariance matrix Σ. Hotelling’s T 2 statistic is defined as:

T 2 := n max
a∈Im(Σn)\{0}

〈a, Dna〉Rp
〈a,Σna〉Rp

, (4)

where Dn = (mn −m) (mn −m)
>

, Σn is the sample covariance matrix and 〈·, ·〉Rp is
the natural inner product on Rp.

Definition 2.1 boils down to the traditional definition of Hotelling’s T 2 statistic given
by eq. (1) when n > p. Moreover, this definition is very convenient since it provides a
straightforward extension of Hotelling’s T 2 statistic to the p ≥ n and high-dimensional
cases because the maximization problem that defines Hotelling’s T 2 according to eq. (4)
is still well posed. In particular, for multivariate p ≥ n settings, it has been shown in
Secchi et al. (2013) that:

T 2 = n (mn −m)
>

Σ+
n (mn −m) ,

where Σ+
n is the Moore-Penrose inverse of the sample covariance matrix Σn.

Likewise, it is possible to exploit eq. (4) for defining Hotelling’s T 2 statistic on any
separable Hilbert space. This will be the object of the next section.

3. Hotelling’s T 2 statistic in separable Hilbert spaces

Let H be a separable Hilbert space. Recall that a Hilbert space is a complete vector
space endowed with an inner product. Hence, let us start by introducing notations for
the operations of addition, scalar multiplication and inner product in H:

• The addition of two elements f, g ∈ H is denoted f ⊕ g;

• The scalar multiplication of an element f ∈ H by a scalar λ ∈ R is denoted by
λ� f ;

• The subtraction of two elements f, g ∈ H is completely defined by the operations
of addition and scalar multiplication. However, since it will be widely used in this
manuscript, we introduce the notation 	 := ⊕(−1)� for denoting the subtraction
in H;
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• The inner product between two elements f, g ∈ H is denoted 〈·, ·〉H.

The goal of this section is to extend Definition 2.1 of Hotelling’s T 2 statistic from
Rp to the general case of separable Hilbert spaces. For this purpose, we shall define the
concept of random element and its mean and covariance in Hilbert spaces.

Definition 3.1. An H-valued random variable on a probability space (Ω,F ,P)
is a mapping χ : Ω→ H such that 〈χ, f〉H is measurable for all f ∈ H.

From now on, let χ be an H-valued random variable on (Ω,F ,P). The concept
of mean for χ relies upon a notion of integration on the probability space for objects
belonging to separable Hilbert spaces. In this manuscript, following Hsing and Eubank
(2015), we adopt the Bochner integral which can be viewed as the natural extension
of the traditional Lebesgue integration used in multivariate statistical analysis. For
simplicity and clarity, we hereby formulate a simple definition of Bochner integral for
H-valued random variables. Its general definition requires further specific assumptions
on the structure of the Hilbert space which are always valid in the case of separable
Hilbert spaces and whose specifications are out of the scope of this work. The interested
reader can refer to Hsing and Eubank (2015) for the complete general definition of
Bochner integrals.

Definition 3.2. Let χ be an H-valued random variable on the probability space
(Ω,F ,P). The Bochner integral of χ with respect to the probability measure P is
the unique element EH[χ] of H such that

〈EH[χ], f〉H = ER [〈χ, f〉H] , for all f ∈ H,

with ER being the expectation operator for R-valued random variables.

Before proceeding to the definition of mean and variance for H-valued random vari-
ables, it is useful to introduce a proper notation and characterization for the product of
two elements of a separable Hilbert space.

Definition 3.3. Let f and g be two elements of a separable Hilbert space H. The
tensor product operator (f ⊗ g)H : H→ H is defined as:

(f ⊗ g)H : H → H
h 7→ 〈f, h〉H � g

Definitions 3.1 to 3.3 provide the basic fundamental elements for giving a proper
definition of mean and covariance of an H-valued random variable.

Definition 3.4. Assume that ER
[
‖χ‖2H

]
< +∞. Then, the mean m of χ is the

element of H given by the Bochner integral of χ:

m := EH(χ),

and the covariance operator of χ is the element of BHS(H) given by the Bochner
integral of (χ	m)⊗H (χ	m):

K := EBHS(H) [(χ	m)⊗H (χ	m)] ,

where BHS(H) denotes the space of Hilbert-Schmidt operators on H.
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Now that we formally defined the mean m and covariance operator K of an H-valued
random variable χ, we shall address the problem of estimating them given a random
sample drawn from the distribution of χ. By analogy to the traditional estimators used
in multivariate statistical analysis and recalled in eq. (2), using standard argumentation
we can construct unbiased estimators of the mean and covariance operators as follows:

Definition 3.5. Let χ1, . . . , χn be a sample of n i.i.d. H-valued random variables on
(Ω,F ,P) such that E

[
‖χi‖2H

]
< +∞ for all i = 1, . . . , n. Let the mean m and covariance

operator K of the χi’s be given by Definition 3.4. We define:

• the sample mean mn as:

mn :=
1

n
�

n⊕
i=1

χi,

• the sample covariance operator Kn as:

Kn :=
1

n− 1
�

n⊕
i=1

(χi 	mn)⊗H (χi 	mn).

The quantities mn and Kn are respectively an H-valued random variable and a BHS(H)-
valued random variable. They are both unbiased for their respective population counter-
parts.

Finally, recall that our aim is to apply eq. (4) to define Hotelling’s T 2 statistic in
Hilbert spaces. While mn and Kn naturally play the roles of mn and Σn in eq. (4)
respectively, we shall define a novel operator that captures the squared error loss of the
sample mean mn in estimating the true mean m for replacing Dn in eq. (4).

Definition 3.6. Using assumptions and notations in Definition 3.5, we define the
sample mean squared-error loss operator Dn as:

Dn := (mn 	m)⊗H (mn 	m).

The sample mean squared-error loss operator is a BHS(H)-valued random variable.

We now have introduced all the key ingredients to extend Definition 2.1 to the general
case of separable Hilbert spaces.

Definition 3.7. Let χ1, . . . , χn be n i.i.d. H-valued random variables with mean m
and covariance operator K. We naturally define Hotelling’s T 2 statistic as:

T 2 := n max
f∈Im(Kn)\{0}

〈f,Dnf〉H
〈f,Knf〉H

, (5)

or equivalently as:
T 2 := n〈mn 	m,K+

n (mn 	m)〉H, (6)

where Kn is the sample covariance operator given in Definition 3.5 and K+
n is the Moore-

Penrose generalized inverse operator of the sample covariance operator Kn, and Dn is
the sample mean squared-error loss operator given by Definition 3.6.
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Both definitions – given by eqs. (5) and (6) – have intrinsic values. Indeed, the former
highlights the meaning of the statistic as the largest squared univariate Mahalanobis
distance between univariate projections of the sample mean and true mean onto the
random space Im(Kn) = span{χi	mn}i=1,...,n. The latter definition instead is far more
explicit and provides a direct link with its Euclidean ancestor. In details, Lemma B.1,
reported in Appendix B, proves the equivalence of the two definitions and guarantees

that the maximum of n 〈f,Dnf〉H〈f,Knf〉H (i.e., the value T 2) always exists and is finite, and it is

reached at random directions proportional to f = K+
n (mn 	m). The proof is based on

Cauchy-Schwarz inequality in the Hilbert space H and on the fact that, given a sample
χ1, . . . , χn of n i.i.d. H-valued random variables with finite total variance, the sample
covariance operator Kn is a positive semi-definite self-adjoint Hilbert-Schmidt operator.
Moreover, it is easy to prove that if the maximization in eq. (5) was not constrained to

the random subspace Im(Kn) \ {0}, one would trivially have T 2 a.s
= +∞ independently

from the random sample. Finally, while in multivariate statistical analysis the closed-
form expression of T 2 given by eq. (6) is straightforward to compute, statistical analysis
in generic Hilbert spaces of infinite dimension always instead requires approximations
which makes eq. (6) much less useful from a practical point of view. In Section 5, we
rather propose a solution for numerically approximating T 2 that relies upon a sequence
of finite-dimensional statistics and we rely instead on eq. (5) to prove its almost sure
convergence to T 2.

Remark 3.8 (Extension to semi-Hilbert spaces). Hotelling’s T 2 statistic can
also be defined in semi-Hilbert spaces, i.e., Hilbert spaces for which the inner product is
only positive semi-definite. In this case, the inner product only defines a semi-distance
for which the identity of indiscernibles does not hold. One can then focus on the quotient
set induced on the space by the related semi-distance, which defines a Hilbert space in
the usual sense where Definition 3.7 holds.

The coming section will be dedicated to examples of widely used separable Hilbert
spaces for the statistical analysis of multivariate and functional data with a focus on how
Hotelling’s T 2 statistic can be easily defined in these particular spaces using Definition
3.7.

4. Hotelling’s T 2 statistic for high-dimensional and functional data

In this section, we aim at introducing Hotelling’s T 2 statistic in some of the most
widely used separable Hilbert spaces in the context of high-dimensional and functional
data analysis. Tables 1 to 3 summarize the key ingredients required for the proper
definition of Hotelling’s T 2 statistic for three classes of separable Hilbert spaces, along
with their actual analytic expressions using only the operations of addition and scalar
multiplication in R. The key ingredients can be divided into two categories:

• the operations of addition, scalar multiplication and inner product that confer the
Hilbert structure to the each specific space H that we explicit using two generic
elements f, g ∈ H;
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• the sample mean, sample covariance operator and sample mean squared-error loss
operator that we explicit using a sample of n i.i.d. H-valued random variables
χ1, . . . , χn.

4.1. Hotelling’s T 2 statistic in Rp

The first class of separable Hilbert spaces that we feature is the trivial case in which H =
Rp summarized in Table 1. This is the natural space in which we traditionally embed our
data for performing multivariate (including low- and high-dimensional) data analysis.
As it can be seen from Table 1, our general Definition 3.7 of Hotelling’s T 2 statistic
in separable Hilbert spaces boils down to the traditional expression of Hotelling’s T 2

in Rp with p < n. Moreover, we can see that Hotelling’s T 2 statistic in itself does
not depend upon the ordering between p and n. In effect, what changes in a situation
where p ≥ n with respect to p < n is that we do not have a sufficiently large amount
of data to fully characterize the underlying generative model for our data. As a result,
Hotelling’s T 2 statistic becomes blind to any mean differences that lie in the kernel of
the sample covariance matrix Σn. We refer the interested reader to Secchi et al. (2013)
for an in-depth discussion on the matter.

4.2. Hotelling’s T 2 statistic in Hk(T )

The second class of separable Hilbert spaces featured in this section are the Sobolev
spaces Hk(T ) that are massively used in functional data analysis for modelling curves
(Ramsay and Silverman, 2005; Horváth and Kokoszka, 2012). In the case of one-
dimensional functions defined over one-dimensional domains, these spaces are made
of (classes of equivalence of) k-differentiable functions on a compact set T ⊆ R with
square-integrable derivatives up to the order k. Table 2 shows how the key ingredi-
ents for the definition of Hotelling’s T 2 statistic can be easily expressed in terms of
the addition and scalar multiplication in R by introducing the notation f (j) for the
j-th derivative of f . The extension to the case of multivariate functions defined on a
multivariate domain is trivial and readily deducible from the basic case.

The most widely used separable Hilbert space for functional data analysis is the
Sobolev space H0(T ) of (classes of equivalence of) square-integrable functions on T ,
which is traditionally indicated as L2(T ). Given the popularity of this space in FDA,
some statistics already emerged in the literature (mainly two) for making inference on
the mean function of a population of curves or on the difference between the mean
functions of two populations of curves, when curves are seen as L2(T )-valued random
variables. We hereby briefly state their definitions and we will critically compare them
to Hotelling’s T 2 statistic in the simulations reported in Section 8 and in the case study
developed in Section 9. They have both been introduced by Hall and Tajvidi (2002) as:

• the L2 distance:

T 2
I =

∫
T

(mn(t)−m(t))
2

dt, (7)
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Table 1. The space Rp. Hotelling’s T 2 statistic in the Hilbert space
(Rp,⊕,�, 〈·, ·〉Rp) of real vectors of dimension p.

Component Analytic expression

f ⊕ g (f1 + g1, . . . , fp + gp)
>

λ� f (λf1, . . . , λfp)
>

〈f, g〉H
p∑
`=1

f`g`

mn

(
1

n

n∑
i=1

χi1, . . . ,
1

n

n∑
i=1

χip

)>

Knf



1

n− 1

n∑
i=1

(
p∑
`=1

(χi` −mn`)f`

)
(χi1 −mn1)

...

1

n− 1

n∑
i=1

(
p∑
`=1

(χi` −mn`)f`

)
(χip −mnp)



Dnf



(
p∑
`=1

(mn` −m`)f`

)
(mn1 −m1)

...(
p∑
`=1

(mn` −m`)f`

)
(mnp −mp)


T 2 n max

f∈Im(Kn)\{0}

[
∑p
`=1(mn` −m`)f`]

2

1
n−1

∑n
i=1 [

∑p
`=1(χi` −mn`)f`]

2
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Table 2. The space Hk(T ). Hotelling’s T 2 statistic in the Hilbert space
(
Hk(T ),⊕,�, 〈·, ·〉Hk

)
of k-differentiable functions on T with square-integrable derivatives up to the order k, also
known as Sobolev space.

Component Analytic expression

f ⊕ g T → R
t 7→ f(t) + g(t)

λ� f T → R
t 7→ λf(t)

〈f, g〉H
k∑
j=0

∫
T

f (j)(t)g(j)(t)dt

mn

T → R

t 7→ 1

n

n∑
i=1

χi(t)

Knf

T → R

t 7→ 1

n− 1

n∑
i=1

 k∑
j=0

∫
T

(χ
(j)
i (s)−m(j)

n (s))f (j)(s)ds

 (χi(t)−mn(t))

Dnf

T → R

t 7→

 k∑
j=0

∫
T

[
m(j)
n (s)−m(j)(s)

]
f (j)(s)ds

 [mn(t)−m(t)]

T 2 n max
f∈Im(Kn)\{0}

[∑k
j=0

∫
T
f (j)(t)

(
m

(j)
n (t)−m(j)(t)

)
dt
]2

1
n−1

∑n
i=1

[∑k
j=0

∫
T
f (j)(t)

(
χ

(j)
i (t)−m(j)

n (t)
)

dt
]2
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• the standardized L2 distance:

T 2
Dσ =

∫
T

(mn(t)−m(t))
2

σ2
n(t)

dt, (8)

where σ2
n : T → R is the pointwise sample variance function naturally defined by:

(n− 1)σ2
n(t) =

∑n
i=1(χi(t)−m(t))2.

Observe that the statistic T 2
I does not account for either the pointwise variance of

the data or its auto-covariance structure. In effect, it gives equal weight to compact
sets of equal measure in T . The statistic T 2

Dσ
can instead be seen as a weighted version

of the statistic T 2
I , in which the pointwise estimate σ2

n(t) of the variance of the data is
used for standardization but the auto-correlation structure is still discarded.

4.3. Hotelling’s T 2 statistic in B2(T )
The third class of separable Hilbert spaces that we include in this section are the Bayes
spaces Bk(T ) of (classes of equivalence of) absolutely continuous positive functional
compositions on a compact set T ⊆ R with k-th power integrable logarithm (Egozcue
et al., 2006). In particular, we focus on the space B2(T ) and we use the element
integrating to 1 as the representative of a class of equivalence. In this setting, B2(T ) can
be seen as the natural space to embed data points that are densities (Hron et al., 2016).
It has been shown by Egozcue et al. (2006) that B2(T ) endowed with the operations
of addition, scalar multiplication and inner product defined in Table 3 is a separable
Hilbert space. As a result, it is isomorphic to L2(T ) and van den Boogaart et al.
(2014) have provided an isometric isomorphism between B2(T ) and L2(T ) called the
centered log-ratio transform and denoted clr in Table 3. We thus naturally define the
sample mean, sample covariance operator and sample mean squared-error loss operator
in B2(T ) as the inverse clr transform of the sample mean, sample covariance operator
and sample mean squared-error loss operator in L2(T ) of the clr-transformed version of
the sample of densities, respectively. The definition of Hotelling’s T 2 statistic in B2(T )
then becomes straightforward using Definition 3.7 and we can therefore make inference
on the mean density of a population of densities or on the difference between the mean
densities of two populations of densities. The analytic formulas are summarised in Table
3.

5. Computation of Hotelling’s T 2 statistic

Definition 3.7 is useful in guaranteeing the existence of Hotelling’s T 2 statistic in sep-
arable Hilbert spaces and we have just illustrated its applicability to specific Hilbert
spaces widely used in real-life situations. However, it does not provide the means to
compute such a statistic in the practice. In the current section, we address this problem
by providing a Theorem that introduces a sequence of finite-dimensional T 2 statistics
that converges almost surely to Hotelling’s T 2 statistic.

Since H is a separable Hilbert space, there exists a sequence of non-empty subspaces
{Vp}p≥1 such that Vp ⊂ H, dim(Vp) = p and

lim
p→∞

inf
wp∈Vp

‖h	 wp‖H = 0, ∀h ∈ H. (9)
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Table 3. The space B2(T ). Hotelling’s T 2 statistic in the Hilbert space
(
B2(T ),⊕,�, 〈·, ·〉B2

)
of

densities on T with square-integrable logarithm, also known as Bayes linear space.
Component Analytic expression

f ⊕ g
T → R

t 7→ f(t)g(t)∫
T
f(s)g(s)ds

λ� f
T → R

t 7→ f(t)λ∫
T
f(s)λds

〈f, g〉H
∫
T

clr(f)(t)clr(g)(t)dt

mn

T → R

t 7→ clr−1

[
1

n

n∑
i=1

clr(χi)(t)

]

Knf
T → R

t 7→ clr−1

(
1

n− 1

n∑
i=1

(∫
T

[clr(χi)(s)− clr(mn)(s)] clr(f)(s)ds

)
[clr(χi)(t)− clr(mn)(t)]

)

Dnf
T → R

t 7→ clr−1

((∫
T

[clr(mn)(s)− clr(m)(s)] clr(f)(s)ds

)
[clr(mn)(t)− clr(m)(t)]

)

T 2 n max
f∈Im(Kn)\{0}

[∫
T

clr(f)(t)
(

clr(mn)(t)− clr(m)(t)
)

dt
]2

1
n−1

∑n
i=1

[∫
T

clr(f)(t)
(

clr(χi)(t)− clr(mn)(t)
)

dt
]2

The last property essentially means that, as the dimensionality p of the space Vp goes to
infinity, the space Vp tends to cover H entirely. Given the existence of such a sequence
of subspaces, it is then possible to define a sequence of statistics {T 2

p }p≥1 as follows:

T 2
p := n max

f∈Im(Kn)∩Vp\{0}

〈f,Dnf〉H
〈f,Knf〉H

. (10)

The sequence of statistics given by eq. (10) has two key properties that are summa-
rized in the following:

Theorem 5.1. Let H be a separable Hilbert space and {Vp}p≥1 a sequence of sub-
spaces such that Vp ⊂ H, dim(Vp) = p and limp→∞ infwp∈Vp ‖h 	 wp‖H = 0, for all
h ∈ H. Let also χ1, . . . , χn be a sample of n i.i.d. H-valued random variables with mean
element m and covariance operator K such that ER[‖χi‖2H] <∞. Then, the sequence of
statistics {T 2

p }p≥1 defined in eq. (10) has the following two key properties:

(a) If (e1, . . . , ep) is a basis set of Vp, let W be the symmetric invertible p × p matrix
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such that Wjk := 〈ej , ek〉H. Let also:

χi := W−1 (〈χi, e1〉H, . . . , 〈χi, ep〉H)
>
,

mn := W−1 (〈mn, e1〉H, . . . , 〈mn, ep〉H)
>
,

m := W−1 (〈m, e1〉H, . . . , 〈m, ep〉H)
>
,

Σn :=
1

n− 1

n∑
i=1

(χi −mn)(χi −mn)>.

Then, T 2
p = n(mn − µ)>W 1/2(W 1/2ΣnW

1/2)+W 1/2(mn − µ).

(b) T 2
p

a.s.−−−→
p→∞

T 2, where T 2 is Hotelling’s T 2 statistic defined on the original sample

χ1, . . . , χn of i.i.d. H-valued random variables.

The proof can be found in Appendix B. In essence, Theorem 5.1 provides a mean to
numerically approximate Hotelling’s T 2 statistic in a separable Hilbert space H using a
sequence of T 2-like statistics in Rp. In detail, convergence is achieved for any sequence
of subspaces Vp ⊂ H satisfying eq. (9), independently from their nested (e.g., wavelets
with increasing frequencies) or non-nested nature (e.g., B-splines with increasing knots).

6. Properties of Hotelling’s T 2 statistic in separable Hilbert spaces

Hotelling’s T 2 statistic in separable Hilbert spaces has a number of desirable properties
that makes it particularly appealing for inferential purposes:

T 2 is a semi-distance between m and mn. It is important to keep in mind that,
although Definition 3.7 of Hotelling’s T 2 statistic boils down to the traditional
Hotelling’s T 2 statistic as introduced in any textbook on multivariate statistical
analysis, the two statistics fundamentally differs in their mathematical implica-
tions. The multivariate p < n Hotelling’s T 2 statistic is defined as the maximum
of the squared t statistics formed from all possible one-dimensional projections of
the multivariate data. However, Hotelling’s T 2 statistic in an infinite-dimensional
separable Hilbert space H is defined as the maximum over the space Im (Kn) \ {0}
which is an (n − 1)-dimensional random subspace of H. As a result, the corre-
sponding T 2 statistic can be viewed as a distance between m and mn only in that
random space, but it actually is only a semi-distance in H, for which the identity
of indiscernibles does not hold.

T 2 is invariant under similarity transformations. Hotelling’s T 2 statistic in Def-
inition 3.7 is invariant under similarity transformations of the data, i.e., under
affine transformations χ 7→ a � (Oχ) ⊕ f , where a ∈ R+, f ∈ H and O is an
orthogonal linear limited operator on H, i.e., O satisfies 〈Of,Og〉H = 〈f, g〉H for
any f, g ∈ H. Lehmann and Romano (2006) have shown that this type of in-
variance is the largest family of invariance transformations that one can achieve
in the multivariate framework p ≥ n. In this sense, Hotelling’s T 2 statistic is
invariant-optimal.
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Under H-Gaussianity the distribution of n 〈f,Dnf〉H〈f,Knf〉H is known. It is well known that

Rp-Gaussianity, more traditionally termed multivariate Gaussianity, is defined as
follows: the Rp-valued random variable χ follows a multivariate Gaussian distri-
bution if and only if, for all f ∈ Rp, the R-valued random variable 〈χ, f〉Rp follows
a univariate Gaussian distribution. Likewise, it is possible to extend the definition
of Gaussian distribution to H-valued random variables: an H-valued random vari-
able χ follows a Gaussian distribution if and only if, for all f ∈ H, the R-valued
random variable 〈χ, f〉H follows a univariate Gaussian distribution. Under such
an assumption and using the generalization of Cochran’s Theorem to separable
Hilbert spaces (see Lemma A.1 and Proposition A.2 in Appendix A), it can be
shown that, for any fixed f ∈ H:

n
〈f,Dnf〉H
〈f,Knf〉H

∼ F (1, n− 1) , (11)

where n 〈g,Dng〉H〈g,Kng〉H coincides with the square of Student’s t statistic computed from

the projections 〈χ1, f〉H, . . . , 〈χn, f〉H.

Equation (11) provides, for a fixed f ∈ H, the distribution of the ratio involved
in the definition of Hotelling’s T 2 statistic. However the distribution of its maximum
over all elements f ∈ Im (Kn) \ {0} (i.e., T 2) is not easy to elicit without introducing
very strong assumptions on the covariance operator K. In addition, it has already been
acknowledged that multivariate normality is very difficult to assess because one should
technically check the univariate normality of an infinite number of real-valued random
variables. The problem persists and becomes even less tractable in infinite-dimensional
separable Hilbert spaces.

For all these reasons, in the coming section, we give our take on the problem of
inference on the mean element of a population or on the difference between the mean el-
ements of two populations from a non-parametric perspective. In particular, we propose
permutation-based inferential tools that rely on minimal and intuitive distributional as-
sumptions of the data.

7. Permutation tests in separable Hilbert spaces based on Hotelling’s T 2

Object-oriented non-parametric statistical inference has been addressed in the literature
using either the permutation framework or the bootstrap theory (e.g., Cuevas et al.,
2006; Ferraty et al., 2010). The latter does not make any assumptions on the distribution
of the data but is only asymptotically valid, i.e., when the sample size n goes to infinity.
Conversely, at the expense of minimal assumptions on the distribution of the data, the
permutation-based approach can generate exact statistical tests even for small sample
size n (e.g., Pesarin and Salmaso, 2010). Moving towards this latter direction, we hereby
propose a permutation-based statistical testing procedure using Hotelling’s T 2 statistic
for making inference on the mean element in any separable Hilbert space.

In detail, in this section, we propose two derived inferential tools for the mean element
of an H-valued random variable (Section 7.1) and the difference between the mean
elements of two H-valued random variables (Section 7.2), respectively. Precisely, we will
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report the distributional assumptions, formulate the null and the alternative hypotheses,
introduce the test statistic (derived from Hotelling’s T 2), show how to compute the p-
value, and describe the theoretical properties of the test.

7.1. One-Population Test
Distributional Assumptions. Let χ1, . . . , χn be a sample of n i.i.d. H-valued random

variables with mean m ∈ H and covariance operator K ∈ BHS(H) such that χi =
m + εi. We then assume that the distribution of the χi’s is symmetric around
m (i.e., that the distribution of εi is the same as the one of −1 � εi) and that
ER
[
‖εi‖2H

]
< +∞, for all i ∈ {1, . . . , n}.

Null & Alternative Hypotheses. The proposed procedure aims at testing the null
hypothesis H0 : m = m0 against the alternative hypothesis H1 : m 6= m0, with
m0 ∈ H.

Test Statistic. Similarly to the traditional multivariate case, Hotelling’s T 2
0 test statis-

tic can be defined as:

T 2
0 = n max

f∈Im(Kn)\{0}

〈f,Dn0f〉H
〈f,Knf〉H

, (12)

where mn is the sample mean, Kn is the sample covariance operator and Dn0 is
the sample mean squared-error loss operator in which the true unknown mean m
is replaced by m0: Dn0 := (mn 	m0) ⊗H (mn 	m0). In eq. (12) the maximum
is achieved for f = K+

n (mn 	m0) which, in the case of H-Gaussian data or large
sample size, corresponds to the direction in H where the strongest evidence in favor
of H1 is observed.

P-value computation. Since we assume that the distribution of the χi’s is symmetric,
its center of symmetry under H0 is m0. Thus equally likely samples under H0 are
trivially obtained by reflecting one or more of the original realizations of H-valued
random variables with respect to m0, i.e., replacing χi with χ∗i as follows:

χi 7→ χ∗i = m0 ⊕ (−1)ci � (χi 	m0), ci ∈ {0, 1}. (13)

The number of possible reflections (and of equally likely samples under H0) is thus
equal to 2n, independently from the nature of H. Pursuing the permutation-based
approach (e.g., Pesarin and Salmaso, 2010), inference is carried out within the
equivalence class of all samples which are equally likely to the original sample under
H0. This conditioning makes the random sample distribution under H0 within
the equivalence class (i.e., random sample permutational distribution) a discrete
uniform over the 2n elements of the equivalence class. Thus, the permutational p-
value can be simply computed as the proportion of samples (among the 2n possible
ones) associated to a value of the test statistic (12) that exceeds the value associated
to the original sample. Formally, it reads:

pvalue =
1

2n

2n∑
b=1

I
[
T 2

0 (χ∗1b , χ
∗
2b
, . . . , χ∗nb) ≥ T

2
0 (χ1, χ2, . . . , χn)

]
, (14)
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with b indexing the 2n samples obtained from (13).

Exactness & Consistency of the Test. The test above is exact. In detail, due to
the discrete distribution of p-value, exactness reads:

PH0
[pvalue ≤ α]

{
= α ∀α ∈ A
< α ∀α ∈ (0, 1]\A,

where A = {1/2n, 2/2n, . . . , 2n/2n} is the set of all attainable exact levels.

Moreover, the test is also consistent, which reads:

lim
n→∞

PH1
[pvalue ≤ α] = 1, ∀α ∈ (0, 1].

For the proof, see Theorem C.1 of Appendix C.

7.2. Two-Population Test
Distributional Assumptions. Let {χi1}i=1,...,n1

and {χi2}i=1,...,n2
be two indepen-

dent samples of respectively n1 and n2 i.i.d. H-valued random variables with re-
spective means m1 ∈ H and m2 ∈ H and common covariance operator K ∈ BHS(H),
such that χij = mj + εij . We assume that ER[‖εij‖2H] < +∞, for all i ∈ {1, nj},
j ∈ {1, 2}.

Null & Alternative Hypotheses. The proposed two-population statistical test aims
at testing the null hypothesis of H0 : m1 = m2 against the alternative H1 : m1 6=
m2.

Test Statistic. Hotelling’s T 2 statistic can be defined as:

T 2
0 =

(
1

n1
+

1

n2

)−1

max
f∈Im(Knpooled)\{0}

〈f,Dn0
f〉H

〈f,Knpooled
f〉H

, (15)

where mn1 and mn2 are the sample means, Dn0 is the sample mean squared-error
loss operator under the null hypothesis, i.e., Dn0 = (mn1

	mn2
)⊗H (mn1

	mn2
),

and Knpooled
is the pooled sample covariance operator defined as:

Knpooled
:H→ H

f 7→ n1 − 1

n1 + n2 − 2
� (Kn1

f)⊕ n2 − 1

n1 + n2 − 2
� (Kn2

f)

where Kn1
and Kn2

are the sample covariance operators of the two samples. In
eq. (15) the maximum is achieved for f = K+

npooled
(mn1 	mn2) which, in the case

of H-Gaussian data or large sample sizes, corresponds to the direction in H where
the strongest evidence in favor of H1 is observed.

P-value computation. Since the two samples have the same covariance operator, un-
der the null hypothesis they have the same distribution and are independent. They



Hotelling’s T 2 in Separable Hilbert Spaces 17

are therefore exchangeable. Thus equally likely samples under H0 are obtained by
all possible rearrangement of the values χij across the units:

(χ11, ..., χn11, χ12, ..., χn22) 7→ (χ∗11, ..., χ
∗
n11, χ

∗
12, ..., χ

∗
n22). (16)

The number of possible rearrangements (or permutations) leading to a different
allocation in the two groups is then

(
n1+n2

n1

)
. Analogously to what is done in the

one-sample case, the permutational p-value can be then computed as the proportion
of samples (among the

(
n1+n2

n1

)
possible ones) associated to a value of the test

statistic (15) that exceeds the value associated to the original sample. Formally, it
reads:

pvalue =
1(

n1+n2

n1

) (n1+n2
n1

)∑
b=1

I
[
T 2

0 (χ∗1b , χ
∗
1b
, ..., χ∗nb) ≥ T

2
0 (χ1, χ2, ..., χn)

]
(17)

with b indexing the
(
n1+n2

n1

)
samples obtained from (16).

Exactness & Consistency of the Test. The test above is exact. In detail, due to
the discrete distribution of p-value, exactness reads:

PH0
[pvalue ≤ α]

{
= α ∀α ∈ A
< α ∀α ∈ (0, 1]\A

where A = {1/
(
n1+n2

n1

)
, 2/
(
n1+n2

n1

)
, . . . ,

(
n1+n2

n1

)
/
(
n1+n2

n1

)
} is the set of all attainable

exact levels. Moreover, the test is also consistent, which reads:

lim
n1,n2→∞

PH1
[pvalue ≤ α] = 1, ∀α ∈ (0, 1].

For the proof, see Theorem C.2 of Appendix C.

8. Simulation study

The simulation study aims at comparing the performances of the tests proposed in
Section 7 with permutation tests based on other state-of-the-art test statistics. The
simulation is carried out in the space L2(T ), which is undoubtedly the most used Hilbert
space in the field of functional data analysis. In detail, the goal is to assess the finite-
sample statistical power associated to Hotelling’s T 2 statistic w.r.t. the ones associated
to existing statistics in L2(T ) that either fully ignore the variances and covariances in
the data as does T 2

I (eq. 7) or only account for the pointwise variance but ignore auto-
correlation structure as does T 2

Dσ
(eq. 8). This is accomplished by generating simulated

data in L2(T ) under different scenarios fro the mean functions and/or the covariance
operator. In detail, we hereby propose a comparison based on the statistical power of
the two-population permutation tests induced by each statistic, estimated by means
of Monte Carlo simulations where the same random data sets and the same random
permutations (Pesarin and Salmaso, 2010) are used for all comparisons.



18 A. Pini et al.

8.1. Data generation process
We aim at estimating the statistical power of the two-population test. We simulate
M = 10, 000 pairs of independent random samples of size n1 = n2 = 20, drawn from
two Gaussian distributions on L2([0, 1]) with equal covariance operator K. We pur-
posely explore different scenarios of mean and covariance. The integrals involved in the
computation of the three test statistics are obtained by using the rectangle quadrature
rule based on a uniform grid of 100 points. In each scenario, we consider increasing
magnitudes of the difference between the two mean functions, by varying the maximum
mean difference ∆ = maxt∈[0,1] |µ1(t)− µ2(t)| and evaluate the rate of rejection as a
function of ∆. For each randomly generated data set, we used B = 1, 000 permutations
for evaluating the p-values. In details, the proposed scenarios read:
Mean Difference Scenarios. The mean function µ1 of the first functional data set

was fixed to 0 everywhere on the interval [0, 1] while the mean function µ2 of the
second functional data set was designed to accommodate two scenarios of mean
differences of increasing complexity:
Scenario 1. Constant mean difference over the whole domain:

µ2(t) = ∆ ∀t ∈ [0, 1],

Scenario 2. Sign-changing constant difference with continuously differentiable
transition:

µ2(t) = ∆
[
I[0, 25 ](t) + cos(2πt− 2π)I[ 2

5 ,
3
5 ](t)− I[ 3

5 ,1]
(t)
]
∀t ∈ [0, 1];

Covariance Operator Scenarios. Similarly, the covariance operator was designed to
simulate differentiable trajectories in the stationary and non-stationary scenarios:
Scenario A. For stationary data, we used:

(Kg) (t) =

∫ 1

0

e−2(s−t)2g(s)ds ∀t ∈ [0, 1],

Scenario B. For non-stationary data, we used:

(Kg) (t) =

∫ 1

0

e−2(s−t)2(s+ 0.5)(t+ 0.5)g(s)ds ∀t ∈ [0, 1].

This design of experiment led to the definition of a total of 4 mean-covariance scenarios
(i.e., 1.A, 1.B, 2.A, 2.B).

8.2. Results: comparison of the statistical power
Figure 1 reports the results of the simulation study. The rows exhibit the two mean
scenarios while columns distinguish the two covariance scenarios. Panels in the first
row provide a visual representation of the two covariance structures in which we plot
an example of randomly generated data set for the first group (µ1 = 0). Panels in the
first column instead depict the mean functions of the two populations for ∆ = 1. The
remaining panels show the estimated rate of rejection of the three tests based on T 2

I

(black), T 2
Dσ

(red), and T 2 (green) as a function of ∆. The left-most point in each graph
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corresponds to ∆ = 0 and thus is to be interpreted as the estimated level of the test (the
nominal level was set to 5%). The remaining points are to be interpreted as estimated
statistical powers.

A first consideration is that the performances of the significance test based on T 2
Dσ

are always close to or in-between the ones achieved by the tests based on T 2
I and T 2.

This result is coherent with the theory, since the L2 distance (which T 2
I is based on)

completely disregards the covariance structure, the standardized L2 distance (which
T 2
Dσ

is based on) incorporates only information on the sample variance function while

the functional Mahalanobis semi-distance (which T 2 is based on) fully incorporates the
information from the sample covariance structure. A second consideration is that in the
four scenarios the test based on T 2

Dσ
outperforms the one based on T 2

I . Indeed, in the

stationary case, the statistical power of the test based on T 2
I and on T 2

Dσ
are basically

identical while, in the non-stationary case, the test based on T 2
Dσ

achieves a statistical

power larger than the test based on T 2
I . This suggests that, at least in the case of

Gaussian data, using information provided by the sample variance function improves
the test performances. This is consistent with the optimality of the Student’s t test
statistic in the one-dimensional Gaussian case.

The comparison between the tests based on T 2 and T 2
Dσ

is more complex and insight-
ful. Power performances depend indeed on both the mean and the covariance functions.
In all scenarios but 1.A, the test based on T 2 is more powerful than the one based on T 2

Dσ

(and on T 2
I as well). This fact proves that – as in the standard multivariate Euclidean

case – also in the case of more complex Hilbert spaces (e.g., L2(T )), it is not possible
to prove that for Gaussian data the test based on Hotelling’s T 2 is the uniformly most
powerful one. Scenario A.1 depicts indeed a paradigmatic example in which the test
based on the ergodic means of functional data (i.e., which is as a matter of fact the test
based on T 2

I ) is more powerful than the one based on Hotelling’s T 2.

9. Case study: statistical analysis of aneurysms

This section presents a case study in which the elements of the separable Hilbert space
are smooth functions. The scope is two-fold: (i) show the possible use of Hotelling’s T 2 in
a non-trivial real application (making also a comparison with other possible choices of the
test statistic); (ii) show the importance of properly selecting the Hilbert space into which
data are embedded in the light of the specific research question under investigation.
In particular, we hereby perform the analysis of the Aneurisk data set described in
Passerini et al. (2012). The long-term objective of the Aneurisk project (Sangalli et al.,
2009, 2014) is to find predictors of the formation of a cerebral aneurysm. This boils
down to eliciting biomarkers that perform aneurysmal risk assessment for the individual
subject.

The Aneurisk dataset collected to answer these questions includes 65 subjects hospi-
talized at Ospedale Niguarda Ca’ Granda Milano from September 2002 to October 2005
for suspicion of the presence of aneurysm along the internal carotid artery (ICA). The
ICA is a major artery that handles blood supply to the brain. The upper part of the
ICA (u-ICA) seats within the skull and provides blood to the Circle of Willis while the
lower part (l-ICA) stands outside the skull and takes blood from the Common Carotid
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Fig. 1. Estimated Rates of Rejection. Estimated statistical powers as a function of the maxi-
mum difference ∆ between the means. Left-most point shows the estimated level of each test.
Compared tests are based on T 2

I (black), T 2
Dσ

(red) and T 2 (green). Mean scenarios by row;
covariance scenarios by column.
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Artery. Among the subjects, nearly half of them had an aneurysm either in the Circle
of Willis or in the u-ICA while the other half had either no aneurysm or an aneurysm in
the l-ICA. This distinction in the localization of the aneurysm allows us to label subjects
into two categories:

• the High-Risk group: when the aneurysm seats within the skull, its rupture would
often be fatal leading to permanent or lethal brain tissue damage;

• the Low-Risk group: when there is no aneurysm or if the aneurysm seats outside
the skull, its possible rupture is not directly affecting brain tissues.

In addition to associating each patient to one of these two groups, for a subset of 50
subjects, the dataset also contains a number of geometrical and hemodynamical features
of the last 5 cm of the ICA that are believed to be relevant in predicting the localization
of aneurysms and thus in predicting the group status (high-risk vs low-risk) of a patient
(Passerini et al., 2012). In this case study, we focus on the local maximal inscribed
sphere radius as a function of the arc-length along the ICA centerline. This feature was
modelled in the literature as functional data. Details about the preprocessing (including
smoothing and registration) can be found in Sangalli et al. (2009) and Passerini et al.
(2012). Data pertaining to the 50 subjects used for performing our analysis are available
as part of the fdahotelling package.

The clinical objective in this case study is to determine whether the ICA radius is a
good biomarker for assessing aneurysmal localization. This goal is however not precise
enough for designing an appropriate statistical test that could be helpful. In effect,
assume that the ICA radius somehow discriminates high-risk from low-risk patients. It
might be because high-risk subjects have a larger radius in the last 5 cm of the ICA
w.r.t. low-risk subjects that leads to an increased stress on the Circle of Willis and
on the u-ICA, subsequently facilitating the formation of the aneurysm there (Clinical
Question 1). However, it might instead be that not enough spatial variation in radius
along the last 5 cm of the ICA, i.e. not enough wiggliness, prevents the blood flow
from being slowed down at the entrance of the Circle of Willis (Clinical Question
2). Statistically, Clinical Question 1 can be tested by analyzing the radius functions
themselves, which boils down to immersing the sample of radius curves into the Hilbert
space L2(T ) endowed with its usual inner product. Differently, Clinical Question 2
requires to work on radius derivatives instead, which boils down to immersing the sample

of radius curves into the semi Hilbert space H̃1(T ) of real-valued functions with squared
integrable first derivatives endowed with the inner product

∫
T
f ′(t)g′(t)dt (see Remark

3.8). In this application, the compact set T is an interval of R mapping the last 5 cm of
the ICA. Figure 2 exhibits the sample of radius curves (left) and their first derivatives
(right).

We applied the permutation test for two populations presented in Section 7.2 in
the separable Hilbert space L2(T ) for answering Clinical Question 1 and in the sepa-

rable semi-Hilbert space H̃1(T ) for answering Clinical Question 2 using Hotelling’s T 2

statistic from eq. (15). We also performed the same permutation test using the L2

and standardized L2 distances T 2
I and T 2

Dσ
introduced in Hall and Tajvidi (2002) and

recalled in eqs. (7) and (8), respectively (adapted for two populations). Furthermore,
we applied eqs. (7) and (8) to the sample of radius derivatives, which effectively defines
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Fig. 2. The Aneurisk dataset. The sample of radius curves (left) and their first derivatives
(right). Green (resp. red) curves correspond to the low-risk (resp. high-risk) group. Mean
curves are displayed with a bold line.

the statistics T 2
I and T 2

Dσ
in the Hilbert space H̃1(T ) and allows us to compare them to

Hotelling’s T 2 statistic in that space as well. In summary, we performed a total of six
permutation tests (three different test statistics, two different Hilbert spaces). For each
of them, we report the p-value of the test as defined in eq. (17), estimated by means
of a conditional Monte-Carlo algorithm (Pesarin and Salmaso, 2010) using B = 1, 000
random permutations. The same permutations were used for all tests in order to provide
a fair comparison between test statistics and Hilbert spaces.

We summarise the output of the six tests (which are exact, see Section C) by means
of their p-values in Table 4. The first observation that we can make is that the same in-
ferential approach (e.g., a permutation test based on T 2) can be used to answer different
research questions by simply changing the Hilbert space into which immersing the data.
For example, focusing on Hotelling’s T 2 statistic, the radius of the last 5 cm of the ICA
is not found to be significantly different between high-risk and low-risk patients when

the analysis is carried out in L2(T ) but it is when the analysis is carried out in H̃1(T ).
This has critical clinical implications in terms of interpretation. Indeed, it suggests that
the radius itself is not a good biomarker for discriminating high- from low-risk patients
but its derivative is, which means that the data better supports Clinical Question 2
w.r.t. Clinical Question 1. This is a message of paramount importance for any statisti-
cian who deals with complex data for which a unique natural Hilbert space into which
immersing the data can hardly be identified. In effect, this simple example shows that
the choice of the space in which data is embedded plays a key role in the statistical
analysis and thus it deserves a very careful attention and should not be neglected.

A second observation from the results in Table 4 is that, for both L2(T ) and H̃1(T ),
the p-values of tests based on T 2

I are larger than the ones based on T 2
Dσ

. This fact is
in line with what we observed in the simulation study, i.e., that the permutation test
that relies on the standardized distance between the means is equally or more powerful
than the one relying on the non-standardized one. As confirmed also by simulations,
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Table 4. Statistical tests for the difference between high-
risk and low-risk groups. For each clinical question, data is
embedded into a specific Hilbert space for properly answering
that question and the p-value of the two-population permuta-
tion test for the difference between the mean functions of the
high- and low-risk groups is reported, using three different test
statistics: the simple distance between the means in the corre-
sponding Hilbert space, the same distance standardized using
the pointwise variance in that space and our proposed Hotel-
ling’s T 2 statistic.

Clinical Question Hilbert Space Statistic

T 2
I T 2

Dσ
T 2

1 L2(T ) 0.034 0.025 0.902

2 H̃1(T ) 0.115 0.019 0.012

the comparison with Hotelling’s T 2 statistic is not that irrevocable. The comparison of
the p-values associated to T 2

I and T 2 is paradigmatic in this sense. Indeed, from Table
4, we observe that the permutation tests with Hotelling’s T 2 statistic detect significant
differences in the mean radius derivatives but does not reject the null hypothesis of equal
mean radius curves themselves. The contrary is instead observed for the permutation
tests with T 2

I statistic. These opposite conclusions are consistent with simulations that
show that neither of the two tests is uniformly most powerful, and that the test statistic
T 2
I seems to be more powerful in detecting simple violations of H0 (e.g., a simple vertical

shift of the two populations) while Hotelling’s T 2 is more powerful when “more complex”
violation of H0 take place.

10. Conclusions

In this manuscript, we provide a (re)definition of Hotelling’s T 2 statistic that shows
that, contrary to common belief, it can actually be defined in any separable Hilbert
spaces of any dimension. We believe that this definition (Definition 3.7) could replace
the traditional but misleading form – eq. (1) – of Hotelling’s T 2 statistic, only valid
in Rp for p < n. We showcase, as illustrative specifications, three particular classes
of Hilbert spaces widely used in practice: (i) Rp in which all problems of multivariate
statistical analysis are typically carried out, (ii) Sobolev spaces where most problems
pertaining to Functional Data are settled and (iii) Bayes spaces, which are convenient
to handle statistical analysis of continuous probability density functions. We provide a
key theorem (Theorem 5.1) for the practical computation of Hotelling’s T 2 statistic in
any separable Hilbert space. Finally, we design a null hypothesis significance test for the
mean element of an H-valued random variable (for the difference of mean elements of two
H-valued random variables) embedding Hotelling’s T 2 statistic within a permutation
testing framework. We provide proofs of exactness and consistency of the proposed
inferential procedures in any separable Hilbert space.

We report a simulation study to compare - within the permutation testing procedure
- the statistical power of the test based on Hotelling’s T 2 with the one of other state-
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of-the-art test statistics proposed for performing inference on the mean of functional
data defined in the L2(T ) space. Results suggest that, in the presence of a non-trivial
difference between the means, an inference based on Hotelling’s T 2 statistic provides
larger statistical power.

We subsequently conduct a case study on the Aneurisk data set – containing functions
describing the geometry of arteries – to answer the question of whether the radius of an
artery matters for predicting the location of a possible aneurysm. The aims of this case
study were two-fold: (i) to compare the inference produced by the use of Hotelling’s T 2

statistic within the permutation testing procedure with the inference produced by the
use of other statistics previously proposed in the literature and (ii) to assess the impact
of the Hilbert space chosen to embed the data into. Results of the comparison between
the different statistics are in line with what we already observed in the simulation study.
More importantly perhaps, for a given test statistic, results can be so different when
data is embedded in different spaces as to provide opposite conclusions w.r.t. rejection
of the corresponding null hypothesis, which puts the choice of the space into which data
is analyzed as a key component of the statistical analysis itself.

All the analyses were performed using our R package fdahotelling that implements
permutation test and power calculation functions in L2(T ) for a number of statistics
including Hotelling’s T 2. In details, seven test statistics are implemented in the package
provided as supplementary material and the user can also implement its own test statistic
and plug it into the test function.

An interesting and challenging future development of this work pertains to the ex-
tension of Hotelling’s T 2 statistic to the larger family of metric spaces, following the
direction of some lively and very recent areas of statistical research, such as object-
oriented data analysis and shape analysis (see for instance Marron and Alonso 2014 and
the discussion therein). This extension would require a purely metrical definition of T 2

that neither relies on the notion of inner product nor on the one of vector space.
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A. Cochran’s Theorem in separable Hilbert spaces

Lemma A.1. Let χ1, . . . , χn be a sample of n i.i.d. H-valued random variables with
mean m and covariance operator K s.t. E

[
‖χi‖2H

]
< +∞. Let Kn and Dn be the

sample covariance and sample mean squared-error loss operators respectively and Vn :=⊕n
i=1(χi 	m)⊗H (χi 	m). The following variance decomposition holds:

(n− 1)�Kn + n�Dn = Vn,

or, equivalently, ∀f ∈ H:

(n− 1)〈f,Knf〉H + n〈f,Dnf〉H = 〈f,Vnf〉H.

Proof. Note that, by their definition, the 3 operators Kn, Dn, and Vn have respec-
tively n− 1, 1 and n degrees of freedom. Moreover, ∀f ∈ H:

(n− 1)〈f,Knf〉H = 〈f,
n⊕
i=1

〈χi 	mn, f〉H � (χi 	mn)〉H

=

n∑
i=1

〈χi 	mn, f〉2H;

〈f,Dnf〉H = 〈f, 〈mn 	m, f〉H � (mn 	m)〉H
= 〈mn 	m, f〉2H.
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Finally:

〈f,Vnf〉H = 〈f,
n⊕
i=1

〈χi 	m, f〉H � (χi 	m)〉H

=
n∑
i=1

〈χi 	m, f〉2H

=
n∑
i=1

〈χi 	mn ⊕mn 	m, f〉2H

=
n∑
i=1

(
〈χi 	mn, f〉2H + 2〈χi 	mn, f〉H〈mn 	m, f〉H + 〈mn 	m, f〉2H

)
= (n− 1)〈f,Knf〉H + 2〈mn 	m, f〉H〈

n⊕
i=1

(χi 	mn), f〉H + n〈f,Dnf〉H

= (n− 1)〈f,Knf〉H + n〈f,Dnf〉H.

Proposition A.2. Let χ1, ..., χn be a sample of n i.i.d. H-valued Gaussian random
variables with mean m and covariance operator K s.t. E

[
‖χi‖2H

]
< +∞ and Im(K) = H.

The Gaussianity in H is intended as the Gaussianity in R of all the possible projections
of the H-valued random variable, i.e. ∀f ∈ H, 〈χ, f〉H is a real-valued Gaussian random
variable. Then, we have:

n
〈f,Dnf〉H
〈f,Knf〉H

∼ F (1, n− 1) ∀f ∈ H.

Proof. Let f ∈ H and Vn :=
⊕n

i=1(χi 	m)⊗H (χi 	m). We can write:

〈f,Vnf〉H =

n∑
i=1

〈χi 	m, f〉2H.

Since χi is an H-valued Gaussian random variable with mean m and covariance operator
K, then the random variables

〈χi 	m, f〉2H, i = 1, . . . , n

are i.i.d. real-valued Gaussian random variables with zero mean and variance 〈f,Kf〉H.
Hence we have

〈f,Vnf〉H ∼ 〈f,Kf〉Hχ2(n).

Similar arguments also lead to

n〈f,Dnf〉H ∼ 〈f,Kf〉Hχ2(1).

Using the decomposition of Lemma A.1, we can thus apply Cochran’s theorem in R
(Johnson and Wichern, 2007) to get:
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(a) (n− 1)〈f,Knf〉H ∼ 〈f,Kf〉Hχ2(n− 1),

(b) n〈f,Dnf〉H and (n− 1)〈f,Knf〉H are independent.

Point 1 implies in particular that P [〈f,Knf〉H > 0] = 1. Hence, the ratio in the Propo-
sition is well-defined. Its distribution is the ratio of two independent χ2 distributions,
i.e., a Fisher distribution.

B. Finite approximation of Hotelling’s T 2

Lemma B.1 (Extended Maximization Lemma.). Let h ∈ H be an element of the
Hilbert space H and K ∈ BHS(H) be a positive semi-definite self-adjoint Hilbert-Schmidt
operator on H. Then:

max
x∈Im(K)\{0}

〈x, h〉2H
〈x,Kx〉H

= 〈h,K+h〉H,

where K+ is the Moore-Penrose generalized inverse of the operator K. In addition, the
maximum is reached for the direction x? = K+h.

Proof. Denote by r ≤ ∞ the rank of the operator K. Let {λi, ei}i=1,...,r be the r
pairs of positive eigenvalues and corresponding eigen-elements of K. Let us introduce
the operators K1/2 and K−1/2 such that, for all x ∈ H:

K1/2x :=
r⊕
i=1

λ
1/2
i �H [(ei ⊗H ei)x] =

r⊕
i=1

[
λ

1/2
i 〈ei, x〉H

]
�H ei

K−1/2x :=

r⊕
i=1

λ
−1/2
i �H (ei ⊗H ei)x =

r⊕
i=1

[
λ
−1/2
i 〈ei, x〉H

]
�H ei.

Observe that, for all x ∈ H, we have:

Kx = K1/2
(
K1/2x

)
, K+x = K−1/2

(
K−1/2x

)
,

K1/2
(
K−1/2x

)
= x	

∞⊕
i=r+1

(ei ⊗ ei)x, K+
(
K
(
K+x

))
= K+x,

where {ei}i>r are the eigen-elements of K that span its kernel. Hence, for any x ∈ H:

〈x, h〉H =
〈
x,K1/2

(
K−1/2h

)
⊕

∞⊕
i=r+1

(ei ⊗ ei)h
〉
H

=
〈
x,K1/2

(
K−1/2h

)〉
H

+

∞∑
i=r+1

〈
x, (ei ⊗ ei)h

〉
H

= 〈K1/2x,K−1/2h〉H +

∞∑
i=r+1

〈ei, x〉H〈ei, h〉H.
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Now, if x ∈ Im(K) \ {0}, this expression reduces to 〈x, h〉H = 〈K1/2x,K−1/2h〉H, which,
thanks to Cauchy-Schwarz inequality, yields 〈x, h〉2H ≤ 〈x,Kx〉H〈h,K+h〉H. We thus
proved the following inequality:

〈x, h〉2H
〈x,Kx〉H

≤ 〈h,K+h〉H ∀x ∈ Im(K) \ {0}.

Hence, the ratio on the left handside of the above inequality is upper-bounded for
x ∈ Im(K) \ {0} and the bound is reached for x? ∝ K+h.

Proof (Theorem 5.1). For sake of clarity, recall that Hotelling’s T 2 is defined as:

T 2 := n max
f∈Im(Kn)\{0}

〈f,Dnf〉H
〈f,Knf〉H

.

Let {Vp}p≥1 be a sequence of subspaces of H, with dim(Vp) = p, that spans H when p
goes to infinity, i.e., such that:

lim
p→∞

inf
wp∈Vp

‖h	 wp‖H = 0, ∀h ∈ H. (18)

Let now define the sequence of statistics {T 2
p }p≥1 such that:

T 2
p := n max

f∈Im(Kn)∩Vp\{0}

〈f,Dnf〉H
〈f,Knf〉H

.

The goal of this proof is two-fold: (i) to show that the sequence of T 2
p statistics

converges almost surely to T 2 and (ii) that, for a fixed p ≥ 1, the statistic T 2
p can

be written in the usual matrix form and thus can be straightforwardly computed in
practice.

Part I: Convergence of T 2
p to T 2. Let us start by defining the functional J as fol-

lows:
J : Im(Kn) \ {0} → R+

f 7→ 〈f,Dnf〉H
〈f,Knf〉H

.

Let g ∈ Im(Kn) \ {0} be an element that maximizes J , i.e., such that J(g) = T 2.
Thanks to eq. (18), it is possible to find a sequence {fp}p≥1, such that fp ∈ Vp for
any p ≥ 1 and

lim
p→∞

‖g 	 fp‖H = 0. (19)

Now, since Vp ⊂ H, there exist gp ∈ Im(Kn)∩Vp \ {0} and kp ∈ Ker(Kn)∩Vp such
that fp = gp ⊕ kp. We can thus write:

‖g 	 gp‖2H = 〈g 	 gp, g 	 gp〉H = 〈g 	 fp, g 	 gp〉H + 〈kp, g 	 gp〉H
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Since both g and gp belong to Im(Kn) \ {0} while kp ∈ Ker(Kn), we have that
〈kp, g 	 gp〉H = 0, which leaves us with:

‖g 	 gp‖2H = 〈g 	 fp, g 	 gp〉H ≤ ‖g 	 fp‖H‖g 	 gp‖H (Cauchy − Schwarz).

Hence, provided that g 6= gp (which can be assumed without loss of generality,
otherwise the proof is trivial), we obtain:

‖g 	 gp‖H ≤ ‖g 	 fp‖H,

which, combined with eq. (19), guarantees that:

lim
p→∞

‖g 	 gp‖H = 0.

Now, let W 2
p := J(gp). Invoking the continuity of J over Im(Kn) \ {0} leads to:

lim
p→∞

W 2
p = T 2.

Finally, by definition of T 2
p and T 2 as maxima of J over increasing spaces, we have:

W 2
p ≤ T 2

p ≤ T 2,

which guarantees that limp→∞ T
2
p = T 2.

Part II: Matrix form of T 2
p . Observe first that H can be viewed as the direct sum

of Vp and its orthogonal space V ⊥p . This means that any element f ∈ H can be

written as f = vp⊕ zp, where vp ∈ Vp, zp ∈ V ⊥p and 〈vp, zp〉H = 0. In particular, it
is possible to find a set of basis elements {ek}k≥1 for H such that ek ∈ Vp for k ≤ p
and ek ∈ V ⊥p for k > p. Then, we can write the decomposition of the different

elements involved in the definition of T 2
p as follows:

f =

p⊕
k=1

fk � ek, χi =

∞⊕
k=1

χik � ek,

mn =
∞⊕
k=1

mnk � ek, m =
∞⊕
k=1

mk � ek,

where the decomposition of f is truncated to the first p basis elements since f ∈ Vp.
Let us now first rewrite the inner product 〈f,Dnf〉H:

〈f,Dnf〉H = 〈mn −m, f〉2H =
〈 ∞⊕
k=1

(mnk −mk)� ek,
p⊕
`=1

f` � e`
〉2

H

=

(
p∑
k=1

p∑
`=1

(mnk −mk)f`〈ek, e`〉H

)2

,

where the last equality holds since 〈ek, el〉H = 0 if (ek, e`) ∈ Vp×V ⊥p or if (ek, e`) ∈
V ⊥p ×Vp. Now, define the p×p real-valued symmetric invertible matrix W such that
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Wk` := 〈ek, e`〉H. Furthermore, let f := (f1, . . . , fp)
>,mn := (mn1, . . . ,mnp)

> and
m := (m1, . . . ,mp)

>. We obtain:

〈f,Dnf〉H =
[
(mn −m)>Wf

]2
.

Similar algebraic calculations lead to:

〈f,Knf〉H = f>WΣnWf ,

where

Σn =
1

n− 1

n∑
i=1

(χi −mn)(χi −mn)> with χi := (χi1, . . . , χip)
>.

Thus, the statistic T 2
p can be written as follows:

T 2
p = n max

f∈Im(WΣnW )\{0}

[
(mn −m)>W 1/2W 1/2f

]2
f>W 1/2W 1/2ΣnW 1/2W 1/2f

.

If we now operate the change of variables g = W 1/2f , we get:

T 2
p = n max

g∈Im(W 1/2ΣnW 1/2)\{0}

[
(mn −m)>W 1/2g

]2
g>
(
W 1/2ΣnW 1/2

)
g
.

Lemma B.1 applied to the operator W 1/2ΣnW
1/2 – which is a positive semi-definite

self-adjoint operator – yields:

T 2
p = n(mn −m)>W 1/2

(
W 1/2ΣnW

1/2
)+

W 1/2(mn −m),

which ends the proof.

C. Exactness and consistency of permutation tests

Theorem C.1. Consider one sample χi = m ⊕ εi, i = 1, . . . , n embedded in a sep-
arable Hilbert space H, where m ∈ H is a fixed element and εi ∈ H are i.i.d. random
elements with zero mean and covariance operator K satisfying ER[‖εi‖2H] < +∞, for all
i ∈ {1, n}. Assume that the distribution of εi is symmetric ∀i ∈ {1, . . . , n}.
The permutation test of hypotheses H0 : m = m0 against H1 : m 6= m0 based on statistic
(12) and permutations (13) is exact. Namely, let A = {1/2n, 2/2n, . . . , 2n/2n} be the
set of all attainable levels, and let pvalue be the p-value of the test. Then:

PH0
[pvalue ≤ α]

{
= α ∀α ∈ A
< α ∀α ∈ [0, 1]\A.

The same test is consistent, i.e., ∀α ∈ (0, 1]:

lim
n→∞

PH1
[pvalue ≤ α] = 1.
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Proof. The permutation test is based on transformations χi 7→ χ∗i = m0⊕ (−1)ci�
(χi 	m0), with i = 1, ..., n, and ci ∈ {0, 1}. Under the assumption of a symmetric dis-
tribution of χi, i = 1, ..., n, and under H0 : m = m0, transformations (χ∗1(t), . . . , χ∗n(t))
of the data set (χ1(t), . . . , χn(t)) are likelihood-invariant. This means that under H0 the
conditional distribution of the test statistic is a discrete uniform. The p-value defined
in equation (14) by means of the counting measure gives the probability - under H0 -
that the test statistic is greater or equal to its value on the observed data. Hence, the
permutation test is exact (see Prop. 2, 3.1.1 of Pesarin and Salmaso, 2010).
For proving consistency, consider a sequence of subspaces {Vp}p≥1 such that Vp ⊂ H,
dim(Vp) = p, and limp→∞ infwp∈Vp ‖h 	 wp‖H = 0 for all h ∈ H. Let (e1, . . . , ep)
be a basis set of Vp and let W be the symmetric invertible p × p matrix such that
Wjk = 〈ej , ek〉H. Let T 2

0p, p > 0 denote the finite-dimensional approximation of T 2
0 :

T 2
0p = n(mn −m0)>W 1/2(W 1/2ΣnW

1/2)+W 1/2(mn −m0),

where, with the same notation of Theorem 5.1:

χi := W−1 (〈χi, e1〉H, . . . , 〈χi, ep〉H)
>
,

mn := W−1 (〈mn, e1〉H, . . . , 〈mn, ep〉H)
>
,

m := W−1 (〈m, e1〉H, . . . , 〈m, ep〉H)
>
,

m0 := W−1 (〈m0, e1〉H, . . . , 〈m0, ep〉H)
>
,

Σn :=
1

n− 1

n∑
i=1

(χi −mn)(χi −mn)>.

From Theorem 5.1 we have T 2
0p

a.s.−−−→
p→∞

T 2
0 . For ease of notation, define

Σ+
nW = W 1/2(W 1/2ΣnW

1/2)+W 1/2.

For every finite p, we have:

T 2
0p = n(mn −m+m−m0)>Σ+

nW (mn −m+m−m0)

= n(mn −m)>Σ+
nW (mn −m)

+ n
(
2(mn −m)>Σ+

nW (m−m0) + (m−m0)>Σ+
nW (m−m0)

)
.

Since the sequence of subspaces Vp tends to cover the whole H, there exists p̃ > 0 s.t.
Im(Kn) ∩ Vp\{0} 6= ∅. Taking the limit of the last expression for n → ∞, we have,
∀p ≥ p̃:

T 2
0p

P−−−−→
n→∞

∞

since under H1, m−m0 6= 0, mn
a.s.−−−−→
n→∞

m, and for all n > p, Σ+
nW is positive definite.

Hence, ∀p ≥ p̃ the test based on T 2
0p is consistent. For proving consistency of the test

based on T 2
0 , observe that ∀n we have T 2

0 ≥ T 2
0p. Hence limn→∞ T

2
0 ≥ limn→∞ T

2
0p. This

also imply that the test based on T 2
0 is consistent:

T 2
0p

P−−−−→
n→∞

∞.
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Theorem C.2. Consider two independent samples χij = mj ⊕ εij, j = 1, 2, i =
1, . . . , nj embedded in a separable Hilbert space H, where mj ∈ H are fixed elements and
εij ∈ H are i.i.d. random elements with zero mean and covariance operator K satisfying
ER[‖εij‖2H] < +∞, for all i ∈ {1, nj}.
The permutation test of hypotheses H0 : m1 = m2 against H1 : m1 6= m2 based on
statistic (15) and permutations (16) is exact.
Namely, let A = {1/

(
n1+n2

n1

)
, 2/
(
n1+n2

n1

)
, . . . ,

(
n1+n2

n1

)
/
(
n1+n2

n1

)
} be the set of all attainable

levels, and let pvalue be the p-value of the test. Then:

PH0
[pvalue ≤ α]

{
= α ∀α ∈ A
< α ∀α ∈ [0, 1]\A.

The same test is consistent, i.e., ∀α ∈ (0, 1]:

lim
n1,n2→∞

PH1
[pvalue ≤ α] = 1.

Proof. The permutation test is based on all permutations of the data over the sam-
ple units. Under H0 : m1 = m2, we have that data of the two samples are independent
and identically distributed. The permutations are then likelihood-invariant. This means
that under H0 the conditional distribution of the test statistic is a discrete uniform. The
p-value defined in equation (17) by means of the counting measure gives the probability
- under H0 - that the test statistic is greater or equal to its value on the observed data.
Hence, the permutation test is exact (see Prop. 2, 3.1.1 of Pesarin and Salmaso, 2010).
For proving consistency, consider a sequence of subspaces {Vp}p≥1 such that Vp ⊂ H,
dim(Vp) = p, and limp→∞ infwp∈Vp ‖h 	 wp‖H = 0 for all h ∈ H. Let (e1, . . . , ep)
be a basis set of Vp and let W be the symmetric invertible p × p matrix such that
Wjk = 〈ej , ek〉H. Let T 2

0p, p > 0 denote the finite-dimensional approximation of T 2
0 :

T 2
0p =

(
1

n1
+

1

n2

)−1

(mn1
−mn2

)>W 1/2(W 1/2Σnpooled
W 1/2)+W 1/2(mn1

−mn2
),

where, with the same notation of Theorem 5.1:

χi := W−1 (〈χi, e1〉H, . . . , 〈χi, ep〉H)
>
,

mn1 := W−1 (〈mn1 , e1〉H, . . . , 〈mn1 , ep〉H)
>
,

mn2
:= W−1 (〈mn2

, e1〉H, . . . , 〈mn2
, ep〉H)

>
,

m1 := W−1 (〈m1, e1〉H, . . . , 〈m1, ep〉H)
>
,

m2 := W−1 (〈m2, e1〉H, . . . , 〈m2, ep〉H)
>
,

Σn1
:=

1

n1 − 1

n1∑
i=1

(χi −mn1
)(χi −mn1

)>

Σn2
:=

1

n2 − 1

n2∑
i=1

(χi −mn2
)(χi −mn2

)>

Σnpooled
:=

(n1 − 1)Σn1
+ (n2 − 1)Σn2

n1 + n2 − 2
.
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From Theorem 5.1 we have T 2
0p

a.s.−−−→
p→∞

T 2
0 . Let δ := m1 −m2 and δ = m1 −m2 For

ease of notation, define Σ+
npooledW

= W 1/2(W 1/2Σnpooled
W 1/2)+W 1/2. For every finite p,

we have:

T 2
0p =

(
1

n1
+

1

n2

)−1

(mn1
−mn2

+ δ − δ)>Σ+
npooledW

(mn1
−mn2

+ δ − δ)

=

(
1

n1
+

1

n2

)−1

δ>Σ+
npooledW

δ

+

(
1

n1
+

1

n2

)−1

2(mn1
−mn2

− δ)>Σ+
npooledW

δ

+

(
1

n1
+

1

n2

)−1

(mn1
−mn2

− δ)>Σ+
npooledW

(mn1
−mn2

− δ).

Since the sequence of subspaces Vp tends to cover the whole H, there exists p̃ > 0 s.t.
Im(Knpooled

) ∩ Vp\{0} 6= ∅. Taking the limit of the last expression for n1, n2 → ∞, we
have, ∀p ≥ p̃:

T 2
0p

P−−−−−−→
n1,n2→∞

∞

since under H1, δ 6= 0, mn1
− mn2

a.s.−−−−−−→
n1,n2→∞

δ, and for all n1, n2 > p, Σ+
npooledW

is positive definite. Hence, ∀p ≥ p̃ the test based on T 2
0p is consistent. For proving

consistency of the test based on T 2
0 , observe that ∀n1, n2 we have T 2

0 ≥ T 2
0p. Hence

limn1,n2→∞ T
2
0 ≥ limn1,n2→∞ T

2
0p. This also imply that the test based on T 2

0 is consis-
tent:

T 2
0p

P−−−−−−→
n1,n2→∞

∞.
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