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Abstract

We derive and analyze high order discontinuous Galerkin methods for second-
order elliptic problems on implicitely defined surfaces in R

3. This is done by care-
fully adapting the unified discontinuous Galerkin framework of [3] on a triangulated
surface approximating the smooth surface. We prove optimal error estimates in both
a (mesh dependent) energy and L2 norms.

1 Introduction

Partial differential equations (PDEs) on manifolds have become an active area of
research in recent years due to the fact that, in many applications, mathematical
models have to be formulated not on a flat Euclidean domain but on a curved sur-
face. For example, they arise naturally in fluid dynamics (e.g., surface active agents
on the interface between two fluids, [23]) and material science (e.g., diffusion of
species along grain boundaries, [12]) but have also emerged in other areas as im-
age processing and cell biology (e.g., cell motility involving processes on the cell
membrane, [27] or phase separation on biomembranes, [21]).

Finite element methods (FEMs) for elliptic problems and their error analysis
have been successfully applied to problems on surfaces via the intrinsic approach in
[17]. This approach has subsequently been extended to parabolic problems [19] as
well as evolving surfaces [18]. The literature on the application of FEM to various
surface PDEs is now quite extensive, a review of which can be found in [20]. High
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order error estimates, which require high order surface approximations, have been
derived in [15] for the Laplace-Beltrami operator. However, there are a number of
situations where conforming FEMs may not be the appropriate numerical method,
for instance, problems which lead to steep gradients or even discontinuities in the
solution. Such issues can arise for problems posed on surfaces, as in [29] where the
authors analyse a model for bacteria/cell aggregation. Without an appropriate sta-
bilisation mechanism artificially added to the surface FEMs scheme, the solution can
exhibit a spurious oscillatory behaviour which, in the context of the above problem,
leads to negative densities of on-surface living cells.

Given the ease with which one can perform hp-adaptivity using high order dis-
continuous Galerkin (DG) methods and its in-built stabilisation mechanisms for
dealing with advection dominated problems and solution blow-ups, it is natural to
extend the DG framework for PDEs posed on surfaces. DG methods have first been
extended to surfaces in [14], where an interior penalty (IP) method for a linear
second-order elliptic problem was introduced and optimal a priori error estimates
in the L2 and energy norms for piecewise linear ansatz functions and surface ap-
proximations were derived. A posteriori error estimates have then been derived for
this surface IP method in [13]. A continuous/discontinuous Galerkin method for a
fourth order elliptic PDE on surfaces is considered in [25]; [24], [26] and [22] have
also derived a priori error bounds for finite volume methods on (evolving) surfaces
via the intrinsic approach.

In this paper, we consider a second-order elliptic equation on a compact smooth
connected and oriented surface Γ ⊂ R

3 and, following the unified framework of [3]
based on the so called flux formulation and the high order surface approximation
approach considered in [15], derive the high order DG formulation on a piecewise
polynomial approximation Γk

h of Γ, where k ≥ 1 is the polynomial order of the ap-
proximation. The derivation requires a suitable integration by parts formula which
holds on discrete surfaces; this differs from the conventional one used in the pla-
nar case. Then, by choosing the numerical fluxes appropriately, we derive “surface”
counter-parts of the various planar DG bilinear forms discussed in [3].

We then perform a unified a priori error analysis of the surface DG methods
and derive estimates in the L2 and energy norms by relating Γk

h to Γ via the surface
lifting operator introduced in [17]. The estimates are a generalisation of the a priori
error estimates derived in [14] for the surface interior penalty (IP) method, which
restricted the analysis to the linear case. The geometric error terms arising when
approximating the surface involve those present for the surface FEM method given
in [15] as well as additional terms arising from the DG methods. The latter are
shown to scale with the same order as the former and hence we obtain optimal
convergence rates as long as the surface approximation order and the DG space
order coincide.

The paper is organised in the following way. Section 2 presents the model prob-
lem which we investigate, following the approach taken in [17]. In Section 3 we
present a unified framework for high order DG methods on surfaces and derive the
bilinear forms corresponding to each of the classical DG methods outlined in [3]. In
Section 4 we describe the technical estimates needed to prove the convergence of
the surface DG methods, which is then reported in Section 5.
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2 Model problem

The notation in this section closely follows that used in [17]. Let Γ be a compact
smooth connected and oriented surface in R

3, with ∂Γ = ∅, for simplicity, and let
d(·) denote the signed distance function to Γ which we assume to be well-defined
in a sufficiently thin open tube U around Γ. The orientation of Γ is set by taking the
normal ν of Γ to be in the direction of increasing d(·), i.e.,

ν(ξ) = ∇d(ξ), ξ ∈ Γ.

We denote by π(·) the projection onto Γ, i.e., π : U → Γ is given by

π(x) = x − d(x)ν(x) where ν(x) = ν(π(x)). (1)

In the following, we assume that there is a one-to-one relation between points x ∈ U
and points ξ = π(x) ∈ Γ. In particular, (1) is invertible in U. We denote by

P(ξ) = I − ν(ξ)⊗ ν(ξ), ξ ∈ Γ,

the projection onto the tangent space Tξ Γ on Γ at a point ξ ∈ Γ, where ⊗ denotes
the usual tensor product.

Remark 2.1. It is easy to see that

∇π = P − dH, (2)

where H = ∇2d [17, Lemma 3].

For any function η defined in an open subset of U containing Γ we define its
tangential gradient on Γ by

∇Γη = ∇η − (∇η · ν) ν = P∇η,

and the Laplace-Beltrami operator by

∆Γη = ∇Γ · (∇Γη).

For an integer m ≥ 0, we define the surface Sobolev space Hm(Γ) = {u ∈
L2(Γ) : Dαu ∈ L2(Γ) ∀|α| ≤ m}. For s = 0 we write L2(Γ) instead of H0(Γ). We
endow the Sobolev space with the standard seminorm and norm

|u|Hm(Γ) =


 ∑

|α|=m

‖Dαu‖2
L2(Γ)




1/2

, ‖u‖Hm(Γ) =

(
m∑

k=0

|u|2
Hk(Γ)

)1/2

,

respectively, cf [30]. Throughout the paper, we write x . y to signify x < Cy, where
C is a generic positive constant whose value, possibly different at any occurrence,
does not depend on the meshsize. Moreover, we use x ∼ y to state the equivalence
between x and y, i.e., C1y ≤ x ≤ C2y, for C1, C2 independent of the meshsize.

Let f ∈ L2(Γ) be a given function, we consider the following model problem:
Find u ∈ H1(Γ) such that

∫

Γ
∇Γu · ∇Γv + uv dA =

∫

Γ
f v dA ∀v ∈ H1(Γ). (3)

Throughout the paper, we assume that u ∈ Hs(Γ), s ≥ 2. Existence and uniqueness
of such a solution is shown in [4].
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3 High order DG approximation

We now follow the high order surface approximation framework introduced in [15].
We begin by approximating the smooth surface Γ by a polyhedral surface Γh ⊂ U

composed of planar triangles {K̃h} whose vertices lie on Γ, and denote by T̃h the

associated regular, conforming triangulation of Γh, i.e., Γh =
⋃

K̃h∈T̃h
K̃h.

We next describe a family Γk
h of polynomial approximations to Γ of degree k ≥ 1

(with the convention that Γ1
h = Γh). For a given element K̃h ∈ T̃h, let {φk

i }1≤i≤nk
be

the Lagrange basis functions of degree k defined on K̃h corresponding to a set nodal
points x1, ..., xnk

, which make up a unisolvent set of points with the constraint that

vertices of K̃h are included in this set. For x ∈ K̃h, we define the discrete projection
πk : Γh → U as

πk(x) =

nk∑

j=1

π(xj)φ
k
j (x).

By constructing πk elementwise we obtain a continuous piecewise polynomial map
on Γh. We then define the corresponding discrete surface Γk

h = {πk(x) : x ∈ Γh}

and the corresponding regular, conforming triangulation T̂h = {πk(K̃h)}K̃h∈T̃h
. We

denote by Êh the set of all (codimension one) intersections êh of elements in T̂h, i.e.,

êh = K̂+
h ∩ K̂−

h , for some elements K̂±
h ∈ T̂h. For any êh ∈ Êh, the conormal n+

h to a

point x ∈ êh is the unique unit vector that belongs to TxK̂+
h and that satisfies

n+
h (x) · (x − y) ≥ 0 ∀y ∈ K̂+

h ∩ Bǫ(x),

where Bǫ(x) is the ball centered in x with (small enough) radius ǫ > 0. Analogously,

one can define the conormal n−
h on êh by exchanging K̂+

h with K̂−
h . Notice that with

the above definition n+
h 6= −n−

h , in general (see Figure 1). Finally, we denote by νh

the outward unit normal to Γk
h and define for each K̂h ∈ T̂h the discrete projection

Ph onto the tangential space of Γk
h by

Ph(x) = I − νh(x)⊗ νh(x), x ∈ K̂h,

so that, for vh defined on Γk
h ,

∇Γk
h

vh = Ph∇vh.

Let K ⊂ R
2 be the (flat) reference element and let F

K̂h
: K → K̂h ⊂ R

3 for K̂h ∈ T̂h.

We define the DG space associated to Γk
h by

Ŝhk = {χ̂ ∈ L2(Γk
h ) : χ̂|

K̂h
= χ ◦ F−1

K̂h
for some χ ∈ P

k(K) ∀K̂h ∈ T̂h}.

For vh ∈ Ŝhk we adopt the convention that v±h is the trace of vh on êh = K̂+
h ∩ K̂−

h

taken within the interior of K̂±
h , respectively. In addition, we define the vector-

valued function space

Σ̂hk = {τ̂ ∈ [L2(Γk
h )]

3 : τ̂|
K̂h

= ∇F−T
K̂h

(
τ ◦ F−1

K̂h

)
for some τ ∈ [Pk(K)]2 ∀K̂h ∈ T̂h}.
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Figure 1: Example of two elements in T̂h and their respective conormals on the common

edge êh.

Here, ∇F−1
K̂h

refers to the (left) pseudo-inverse of ∇F
K̂h

, i.e.,

∇F−1
K̂h

=
(
∇FT

K̂h
∇F

K̂h

)−1
∇FT

K̂h
.

Note that Ph∇F−T
K̂h

= ∇F−T
K̂h

, i.e., τ̂ ∈ Σ̂hk ⇒ τ̂ ∈ TxΓk
h almost everywhere. This

result straightforwardly implies that η ∈ Ŝhk ⇒ ∇Γk
h

η ∈ Σ̂hk.

3.1 Primal formulation

Rewriting (3) as a first order system of equations and following the lines of [3], we

wish to find (uh, σh) ∈ Ŝhk × Σ̂hk such that

∫

K̂h

σh · τh dAhk = −

∫

K̂h

uh∇Γk
h
· τh dAhk +

∫

∂K̂h

û τh · n
K̂h

dshk,

∫

K̂h

σh · ∇Γk
h

vh + uhvh dAhk =

∫

K̂h

fhvh dAhk +

∫

∂K̂h

σ̂ · n
K̂h

vh dshk,

for all τh ∈ Σ̂hk, vh ∈ Ŝhk and where the discrete right-hand side fh ∈ L2(Γk
h ) will be

related to f in Section 4.1. Here û = û(uh) and σ̂ = σ̂(uh, σh(uh)) are the so called
numerical fluxes which determine the inter-element behaviour of the solution and
will be prescribed later on.

In order to deal with these terms, we need to introduce the following trace op-
erators:

q ∈ L2(Γ) : {q} =
1

2
(q+ + q−), [q] = q+ − q− on êh ∈ Ê k

h ,

φ ∈ [L2(Γ)]3 : {φ; nh} =
1

2
(φ+ · n+

h − φ− · n−
h ), [φ; nh] = φ+ · n+

h + φ− · n−
h on êh ∈ Ê k

h .

We now state and prove a useful formula which holds for functions in

H1(T̂h) = {v|
K̂h

∈ H1(K̂h) : ∀K̂h ∈ T̂h}.
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Lemma 3.1. Let φ ∈ [H1(T̂h)]
3 and ψ ∈ H1(T̂h). Then we have

∑

K̂h∈T̂h

∫

∂K̂h

ψφ · n
K̂h

dshk =
∑

êh∈Êh

∫

êh

[φ; nh]{ψ}+ {φ; nh}[ψ] dshk.

Proof. The result follows straightforwardly by noting that

∑

K̂h∈T̂h

∫

∂K̂h

ψφ · n
K̂h

dshk =
∑

êh∈Êh

∫

êh

[ψφ; nh] dshk

=
∑

êh∈Êh

∫

êh

[φ; nh]{ψ}+ {φ; nh}[ψ] dshk.

Remark 3.1. The formula in Lemma 3.1 is a generalisation to surfaces of the classical

(planar) formula given in (2.1) of [2].

Applying the above lemma, summing over all elements and proceeding in a sim-
ilar fashion to [3], we obtain

∑

K̂h∈T̂h

∫

K̂h

σh · τh dAhk =
∑

K̂h∈T̂h

∫

K̂h

∇Γk
h

uh · τh dAhk

+
∑

êh∈Êh

∫

êh

[û − uh]{τh; nh}+ {û − uh}[τh; nh] dshk, (4)

∑

K̂h∈T̂h

∫

K̂h

σh · ∇Γk
h

vh + uhvh dAhk =
∑

K̂h∈T̂h

∫

K̂h

fhvh dAhk

+
∑

êh∈Êh

∫

êh

(
{σ̂; nh}[vh] + [σ̂; nh]{vh}

)
dshk,

(5)

for every τh ∈ Σ̂hk and vh ∈ Ŝhk.

We now introduce the DG lifting operators rêh
: L2(Êh) → Σ̂hk and lêh

: L2(Êh) →

Σ̂hk which satisfy

∫

Γk
h

rêh
(φ) · τh dAhk = −

∫

êh

φ{τh; nh} dshk ∀τh ∈ Σ̂hk,

∫

Γk
h

lêh
(q) · τh dAhk = −

∫

êh

q[τh; nh] dshk ∀τh ∈ Σ̂hk,

and rh : L2(Êh) → Σ̂hk and lh : L2(Êh) → Σ̂hk, given by

rh(φ) =
∑

êh∈Êh

rêh
(φ), lh(φ) =

∑

êh∈Êh

lêh
(φ).
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Using these operators, we can write σh solely in terms of uh. Indeed, on each

element K̂h ∈ T̂h we obtain from (4) that

σh = σh(uh) = ∇Γk
h

uh − rh([û(uh)− uh])− lh({û(uh)− uh}). (6)

Note that (6) does in fact imply that σh ∈ Σ̂hk as ∇Γk
h

uh ∈ Σ̂hk and rh, lh ∈ Σ̂hk by

construction. Taking τh = ∇Γk
h

vh in (4), substituting the resulting expression into

(5) and using (6), we obtain the primal formulation: find (uh, σh) ∈ Ŝhk × Σ̂hk such
that

Ak
h(uh, vh) =

∑

K̂h∈T̂h

∫

K̂h

fhvh dAhk ∀vh ∈ Ŝhk, (7)

where

Ak
h(uh, vh) =

∑

K̂h∈T̂h

∫

K̂h

∇Γk
h

uh · ∇Γk
h

vh + uhvh dAhk

+
∑

êh∈Êh

∫

êh

([û − uh]{∇Γk
h

vh; nh} − {σ̂; nh}[vh]) dshk

+
∑

êh∈Êh

∫

êh

({û − uh}[∇Γk
h

vh; nh]− [σ̂; nh]{vh}) dshk. (8)

3.2 Examples of surface DG methods

For the following methods we introduce the penalization coefficients ηêh
and βêh

defined as
ηêh

= α, βêh
= αk2h−1

êh
, (9)

where α > 0 is a parameter at our disposal.

3.2.1 Surface Bassi-Rebay method

To derive the surface Bassi-Rebay method, based on [5], we choose

û+ = {uh}, û− = {uh},

σ̂+ = {σh; nh}n+
h , σ̂− = −{σh; nh}n−

h .

From (6) we obtain σh = ∇Γk
h

uh + rh([uh]) and
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∑

êh∈Êh

∫

êh

{σ̂; nh}[vh] dshk

=
∑

êh∈Ê
k
h

∫

êh

{σh; nh}[vh] dshk

=
∑

êh∈Êh

∫

êh

{∇Γk
h

uh; nh}[vh] dshk +
∑

êh∈Êh

∫

êh

{rh([uh]); nh}[vh] dshk

=
∑

êh∈Êh

∫

êh

{∇Γk
h

uh; nh}[vh] dshk −
∑

K̂h∈T̂h

∫

K̂h

rh([uh]) · rh([vh]) dAhk.

Therefore

Ak
h(uh, vh) =

∑

K̂h∈T̂h

∫

K̂h

(
∇Γk

h
uh · ∇Γk

h
vh + uhvh + rh([uh]) · rh([vh])

)
dAhk

−
∑

êh∈Êh

∫

êh

(
{∇Γk

h
uh; nh}[vh] + {∇Γk

h
vh; nh}[uh]

)
dshk. (10)

3.2.2 Surface Brezzi et al. method

For the surface Brezzi et al. method, based on [8], we choose

û+ = {uh}, û− = {uh},

σ̂+ = {σh + ηêh
rêh

([uh]); nh}n+
h , σ̂− = −{σh + ηêh

rêh
([uh]); nh}n−

h ,

where ηêh
≥ 0 is a parameter at our disposal.

The method is similar to the Bassi-Rebay one with an additional term. Indeed,

∑

êh∈Êh

∫

êh

{σ̂; nh}[vh] dshk

=
∑

êh∈Ê
k
h

∫

êh

{σh + ηêh
rêh

([uh]); nh}[vh] dshk

=
∑

êh∈Êh

∫

êh

{∇Γk
h

uh; nh}[vh] dshk +
∑

êh∈Êh

∫

êh

{rh([uh]) + ηêh
rêh

([uh]); nh}[vh] dshk

=
∑

êh∈Êh

∫

êh

{∇Γk
h

uh; nh}[vh] dshk −
∑

K̂h∈T̂h

∫

K̂h

rh([uh]) · rh([vh]) dAhk

−
∑

K̂h∈T̂h

∫

K̂h

ηêh
rêh

([uh]) · rêh
([vh]) dAhk.
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Then

Ak
h(uh, vh) = +

∑

K̂h∈T̂h

∫

K̂h

∇Γk
h

uh · ∇Γk
h

vh + uhvh dAhk

−
∑

êh∈Êh

∫

êh

{∇Γk
h

uh; nh}[vh] + {∇Γk
h

vh; nh}[uh] dshk

+
∑

K̂h∈T̂h

∫

K̂h

rh([uh]) · rh([vh]) + ηêh
rêh

([uh]) · rêh
([vh]) dAhk. (11)

3.2.3 Surface IP method

To derive the surface IP method, based on [16, 2], we choose the numerical fluxes
û and σ̂ as follows:

û+ = {uh}, û− = {uh},

σ̂+ =

(
{∇Γk

h
uh; nh} − βêh

[uh]

)
n+

h , σ̂− = −

(
{∇Γk

h
uh; nh} − βêh

[uh]

)
n−

h .

Substituting them into (8), we obtain

Ak
h(uh, vh) =

∑

K̂h∈T̂h

∫

K̂h

∇Γh
uh · ∇Γk

h
vh + uhvh dAhk +

∑

êh∈Êh

∫

êh

βêh
[uh][vh] dshk

−
∑

êh∈Êh

∫

êh

(
[uh]{∇Γk

h
vh; nh}+ [vh]{∇Γk

h
uh; nh}

)
dshk (12)

which is exactly the surface IP method considered in [14].

3.2.4 Surface NIPG method

For the surface NIPG method, based on [28] (or equivalently the Baumann-Oden
method in [7] with βêh

= 0), we choose

û+ = {uh}+ [uh], û− = {uh} − [uh],

σ̂+ =

(
{∇Γk

h
uh; nh} − βêh

[uh]

)
n+

h , σ̂− = −

(
{∇Γk

h
uh; nh} − βêh

[uh]

)
n−

h .

We see that {û − uh} = 0, [û − uh] = [uh] and [σ̂; nh] = 0. We may derive the
surface NIPG bilinear form in a similar way as for the surface IP method.

3.2.5 Surface IIPG method

For the surface IIPG method, based on [11], we choose the numerical fluxes û and
σ̂ as follows:

û+ = u+
h , û− = u−

h ,

σ̂+ =

(
{∇Γk

h
uh; nh} − βêh

[uh]

)
n+

h , σ̂− = −

(
{∇Γk

h
uh; nh} − βêh

[uh]

)
n−

h .
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We see that {û − uh} = 0, [û − uh] = 0 and [σ̂; nh] = 0. Here again, we may derive
the surface IIPG bilinear form in like manner as for the surface IP method.

3.2.6 Surface Bassi et al. method

For the surface Bassi et al. method, based on [6], we choose

û+ = {uh}, û− = {uh},

σ̂+ =

(
{∇Γk

h
uh + ηêh

rêh
([uh]); nh}

)
n+

h , σ̂− = −

(
{∇Γk

h
uh + ηêh

rêh
([uh]); nh}

)
n−

h .

The resulting bilinear surface form can be easily obtained using the contributes of
the surface IP and surface Brezzi et al. bilinear forms.

3.2.7 Surface LDG method

Finally for the surface LDG method, based on [10], the numerical fluxes are chosen
as follows:

û+ = {uh} − β · n+
h [uh], û− = {uh} − β · n+

h [uh],

σ̂+ =

(
{σh; nh} − βêh

[uh] + β · n+
h [σh; nh]

)
n+

h ,

σ̂− = −

(
{σh; nh} − βêh

[uh] + β · n+
h [σh; nh]

)
n−

h ,

where β ∈ [L∞(Γk
h )]

3 is a (possibly null) constant on each edge êh ∈ Êh. We see that

{û − uh} = −β · n+
h [uh] and [û − uh] = −[uh]. So, from (6), we obtain:

σ̂+ =

(
{∇Γk

h
uh; nh}+ {rh([uh]); nh}+ {lh(β · n+

h [uh]); nh} − βêh
[uh]

+ β · n+
h

(
[∇Γk

h
uh; nh] + [rh([uh]); nh] + [lh(β · n+

h )[uh]); nh]
))

n+
h ,

and in a similar way σ̂−. Then

∑

êh∈Ê
k
h

∫

êh

{σ̂; nh}[vh] dshk

=
∑

êh∈Ê
k
h

∫

êh

(
{∇Γk

h
uh; nh}[vh] + [∇Γk

h
uh; nh]β · n+

h [vh]− βêh
[uh][vh]

)
dshk

−
∑

K̂h∈T̂
k

h

∫

K̂h

(
rh([uh]) + lh

(
β · n+

h [uh]
))

·
(

rh([vh]) + lh
(
β · n+

h [vh]
))

dAhk,
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and the surface LDG form can be written as

Ak
h(uh, vh)

=
∑

K̂h∈T̂h

∫

K̂h

∇Γk
h

uh · ∇Γk
h

vh + uhvh dAhk

−
∑

êh∈Êh

∫

êh

[uh]{∇Γk
h

vh; nh} − {∇Γk
h

uh; nh}[vh] dshk

+
∑

êh∈Êh

∫

êh

(
− [∇Γk

h
uh; nh]β · n+

h [vh]− β · n+
h [uh][∇Γk

h
vh; nh] + βêh

[uh][vh]

)
dshk

+
∑

K̂h∈T̂h

∫

K̂h

(
rh([uh]) + lh

(
β · n+

h [uh]
))

·
(

rh([vh]) + lh
(
β · n+

h [vh]
))

dAhk.

(13)

Remark 3.2. In the flat case, for which we have n+
h = −n−

h , all of the surface DG

methods yield the corresponding ones found in [3].

Remark 3.3. Notice that for all of our choices of the numerical fluxes û and σ̂, we have

that [û] = 0 and [σ̂; nh] = 0. In addition, they are consistent with the corresponding

fluxes in the flat case given in [3] with the exception of those of the surface LDG method.

In the latter case, the equivalence does not hold because all the surface trace operators

are scalars and they cannot be combined in the same way as the corresponding LDG

fluxes in the flat case.

4 Technical tools

In this section we introduce the necessary tools and geometric relations needed to
work on discrete domains and prove boundedness and stability of the bilinear forms,
following the framework introduced in [17].

4.1 Surface lifting

For any function w defined on Γk
h we define the surface lift onto Γ by

wℓ(ξ) = w(x(ξ)), ξ ∈ Γ,

where, thanks to the invertibility of (1), x(ξ) is defined as the unique solution of

x(ξ) = π(x) + d(x)ν(ξ).

In particular, for every K̂h ∈ T̂h there is a unique curved triangle K̂ℓ
h = π(K̂h) ⊂ Γ.

We may then define the regular, conforming triangulation T̂ ℓ
h of Γ given by

Γ =
⋃

K̂ℓ
h
∈T̂ ℓ

h

K̂ℓ
h.
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The triangulation T̂ ℓ
h of Γ is thus induced by the triangulation T̂h of Γk

h via the

surface lift operator. Similarly, we denote by êℓh = π(êh) ∈ Ê ℓ
h the unique curved

edge associated to êh. The function space for surface lifted functions is chosen to be
given by

Ŝℓ
hk = {χ ∈ L2(Γ) : χ = χ̂ℓ for some χ̂ ∈ Ŝhk}.

We define the discrete right-hand side fh such that f ℓh = f . We also denote by

w̃−l ∈ Ŝhk the inverse surface lift of some function w̃ ∈ Ŝl
hk satisfying (w̃−l)l = w̃.

One can show that for vh defined on Γk
h , we have

∇Γk
h

vh = Ph(I − dH)P∇Γvl
h.

Furthermore, let δh be the local area deformation when transforming K̂h to K̂ℓ
h, i.e.,

δh dAhk = dA,

and let δêh
be the local edge deformation when transforming êh to êℓh, i.e.,

δêh
dshk = ds.

Finally, let

Rh =
1

δh
P(I − dH)Ph(I − dH)P.

Then one can show that
∫

Γk
h

∇Γk
h

uh · ∇Γk
h

vh + uhvh dAh =

∫

Γ
Rh∇Γul

h · ∇Γvl
h + δ−1

h ul
hvl

h dA. (14)

4.2 Geometric estimates

We next prove some geometric error estimates relating Γ to Γk
h .

Lemma 4.1. Let Γ be a compact smooth connected and oriented surface in R
3 and let

Γk
h be its Lagrange interpolant of degree k. Furthermore, we denote by n+/− the unit

(surface) conormals to respectively êl+/−
h . Then, for sufficiently small h, we have

‖d‖L∞(Γk
h
) . hk+1, (15a)

‖1 − δh‖L∞(Γk
h
) . hk+1, (15b)

‖ν − νh‖L∞(Γk
h
) . hk, (15c)

‖P − Rh‖L∞(Γk
h
) . hk+1, (15d)

‖1 − δêh
‖

L∞(Êh)
. hk+1, (15e)

sup
K̂∈T̂h

‖P − Rêh
‖

L∞(∂K̂h)
. hk+1, (15f)

‖n+/− − Pn+/−
h ‖

L∞(Êh)
. hk+1, (15g)

where Rêh
= 1

δ̂eh

P(I − dH)Ph(I − dH).

For the sake of readability, we postpone the proof of Lemma 4.1 to Appendix A.
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4.3 Boundedness and stability

We define the space of piecewise polynomial functions on Γh as

S̃hk = {χ̃ ∈ L2(Γh) : χ̃|
K̃h

∈ P
k(K̃h) ∀K̃h ∈ T̃h}.

We recall the following useful result from [15]:

Lemma 4.2. Let v ∈ H j(K̂h), j ≥ 0, and let ṽ(x̃) = v(πk(x̃)) ∀x̃ ∈ K̃h. Then, for h
small enough, it holds

‖vℓ‖
L2(K̂ℓ

h
) ∼‖v‖

L2(K̂h)
∼ ‖ṽ‖

L2(K̃h)
, (16a)

‖∇Γvℓ‖
L2(K̂ℓ

h
) ∼‖∇Γk

h
v‖

L2(K̂h)
∼ ‖∇Γh

ṽ‖
L2(K̃h)

, (16b)

‖D
j

Γk
h

v‖
L2(K̂h)

.
∑

1≤m≤j

‖Dm
Γ vℓ‖

L2(K̂ℓ
h
), (16c)

‖D
j
Γh

ṽ‖
L2(K̃h)

.
∑

1≤m≤j

‖Dm
Γk

h

v‖
L2(K̂h)

. (16d)

We will also need the following inverse inequality, adapted from [9, Thm 3.2.6].

Lemma 4.3. Let l, m be two integers such that 0 ≤ l ≤ m. Then,

|vh|Hm(K̃h)
. hl−m

K̃h
|vh|Hl(K̃h)

∀vh ∈ S̃k
h.

Finally, we prove the following trace inequality:

Lemma 4.4. For sufficiently small h, it holds

‖∇Γk
h

ŵh‖
2
L2(∂K̂h)

. h−1‖∇Γk
h

ŵh‖
2
L2(K̂h)

∀ŵh ∈ Ŝhk.

Proof. Defining δẽh
= ds/ dsh and δẽh→êh

= dshk/ dsh, using (15e) and a Taylor
expansion argument, we obtain

|1 − δẽh→êh
| =

∣∣∣∣∣1 −
δẽh

δêh

∣∣∣∣∣ =
∣∣∣∣1 −

1 + O(h2)

1 + O(hk+1)

∣∣∣∣ . h2.

Now let w̃h ∈ S̃hk be such that πk(w̃h) = ŵh. From (2.21) in [15] we have

∇Γk
h

ŵh . ∇Γh
w̃h, (17)

provided h is sufficiently small. Applying the trace theorem for polynomial functions
on Γh as given in Lemma 3.4 in [14], and the inverse inequality in Lemma 4.3 (with
l = 1 and m = 2), we get

∫

∂K̃h

|∇Γh
w̃h|

2 dsh .
1

h
‖∇Γh

w̃h‖
2
L2(K̃h)

.

Surface lifting the left-hand side to Γk
h , making use of (17) and using (16b) for the

right-hand side we have
∫

∂K̂h

|∇Γk
h

ŵh|
2δ−1

ẽh→êh
dshk .

1

h
‖∇Γk

h
ŵh‖

2
L2(K̂h)

.
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We thus obtain, using (15e),

(1 − Ch2)‖∇Γk
h

ŵh‖
2
L2(∂K̂h)

.
1

h
‖∇Γk

h
ŵh‖

2
L2(K̂h)

,

which yields the desired result for h small enough.
In order to perform a unified analysis of the surface DG methods presented in

Section 3.2, we introduce the stablization function

Sh(uh, vh) =





∑

êh∈Êh

βêh

∫

êh

[uh][vh] dshk, (18a)

∑

êh∈Êh

ηêh

∫

Γk
h

rêh
([uh]) · rêh

([vh]) dAhk, (18b)

for uh, vh ∈ Ŝhk, cf. also Table 1.

Method Stabilization function Sh(·, ·)
IP [16]

NIPG [28]

IIPG [11]

LDG [10]

(18a)

Brezzi et al. [8]

Bassi et al. [6]
(18b)

Table 1: Stabilization function of the DG methods considered in our unified analysis.

The next result, together with the Lax-Milgram Lemma, guarantees that there

exists a unique solution uh ∈ Ŝhk of (8) that satisfies the stability estimate

‖uh‖DG . ‖ fh‖L2(Γk
h
), (19)

where the DG norm ‖ · ‖DG is given by

‖uh‖
2
DG = ‖uh‖

2
1,h + |uh|

2
∗,h ∀uh ∈ Ŝhk, (20)

with
‖uh‖

2
1,h =

∑

K̂h∈T̂h

‖uh‖
2
H1(K̂h)

, |uh|
2
∗,h = Sh(uh, uh),

where Sh(·, ·) depends on the method under investigation and is defined as in (18a)-
(18b).

We will now consider boundedness and stability of the bilinear forms Ak
h(·, ·)

corresponding to the surface DG methods given in Table 1. We first state some
estimates required for the analysis of the surface LDG method.

Lemma 4.5. For any vh ∈ Ŝhk, it holds,

α‖rêh
(vh)‖

2
L2(Γk

h
)
. βêh

‖[vh]‖
2
L2(êh)

,
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α‖lêh
(vh)‖

2
L2(Γk

h
)
. βêh

‖[vh]‖
2
L2(êh)

,

on each êh ∈ Êh.

Proof. The proof is the same as [1, Lemma 2.3] provided proper definition of the
DG lift operators.

Lemma 4.6. The bilinear forms Ak
h(·, ·) corresponding to the surface DG methods

given in Table 1 are continuous and coercive in the DG norm (20), i.e.,

Ak
h(uh, vh) . ‖uh‖DG‖vh‖DG, Ak

h(uh, uh) & ‖uh‖
2
DG,

for every uh, vh ∈ Ŝhk.

For the surface IP, Bassi et al. and IIPG methods, coercivity holds provided the

penalty parameter α appearing in the definition of βêh
or ηêh

in (9) is chosen sufficiently

large.

Proof. For all the methods stabilized with Sh(·, ·) defined as in (18a), Lemma 4.4
implies that

∑

êh∈Êh

‖[uh]‖L2(êh)
‖{∇Γk

h
vh; nh}‖L2(êh)

.
∑

K̂h∈T̂h

|uh|∗,h‖∇Γk
h

vh‖L2(K̂h)

.|uh|∗,h‖vh‖1,h,

(21)

where the hidden constant also depends on the polynomial approximation degree
and the penalty parameter βêh

. Otherwise, if Sh(·, ·) is given as in (18b), we observe

that for uh, vh ∈ Ŝhk we have

∑

êh∈Êh

∫

êh

[uh]{∇Γk
h

vh; nh} dshk =
∑

K̂h∈T̂h

∫

K̂h

rh([uh]) · ∇Γk
h

vh dAhk

and
‖rh(φ)‖

2
L2(Γk

h
)
= ‖

∑

êh∈Êh

rêh
(φ)‖2

L2(Γk
h
)
.
∑

êh∈Êh

‖rêh
(φ)‖2

L2(Γk
h
)
. (22)

Hence, applying the Cauchy-Schwarz inequality, we obtain

∑

K̂h∈T̂h

‖rh([uh])‖L2(K̂h)
‖∇Γk

h
vh‖L2(K̂h)

.
∑

K̂h∈T̂h

|uh|∗,h‖∇Γk
h

vh‖L2(K̂h)

.|uh|∗,h‖vh‖1,h,

(23)

where the hidden constant also depends on the polynomial approximation degree
and the penalty parameter ηêh

. For the surface LDG method, using Lemma 4.5 and

the L∞(Γk
h ) bound on β, we obtain

∣∣∣∣
∫

êh

|[∇Γk
h

uh; nh]β · n+
h [vh] dshk

∣∣∣∣ . ‖β‖L∞(Γk
h
)‖∇Γk

h
uh‖L2(K̂h)

|vh|∗,h,

∣∣∣∣
∫

K̂h

rh([uh]) · lh(β · n+
h [uh]) dshk

∣∣∣∣ . ‖β‖L∞(Γk
h
)|uh|∗,h|vh|∗,h,
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and, in a similar way, the remaining quantities. Continuity then follows from the
Cauchy-Schwarz inequality and the above estimates.
We next show coercivity of the DG bilinear forms. For the surface NIPG method, sta-
bility follows straightforwardly from the Cauchy-Schwarz inequality. For the surface
LDG method, we have

Ak
h(uh, uh) ≥‖uh‖

2
1,h − 2

∑

êh∈Ê
k
h

∫

êh

∣∣∣[uh]{∇Γk
h

uh; nh}
∣∣∣ dshk

− 2‖β‖L∞(Γk
h
)

∑

êh∈Ê
k
h

∫

êh

∣∣∣[uh][∇Γk
h

uh; nh]
∣∣∣ dshk + |uh|

2
∗,h.

For the other methods involving Sh(·, ·) defined as in (18a), using Cauchy-Schwarz
inequality, we obtain

Ak
h(uh, uh) ≥‖uh‖

2
1,h − 2

∑

êh∈Ê
k
h

∫

êh

∣∣∣[uh]{∇Γk
h

uh; nh}
∣∣∣ dshk + |uh|

2
∗,h,

otherwise, if Sh(·, ·) is given as in (18b), we have

Ak
h(uh, uh) ≥‖uh‖

2
1,h − 2

∑

K̂h∈T̂
k

h

∫

K̂h

∣∣∣rh([uh]) · ∇Γk
h

uh

∣∣∣ dAhk + |uh|
2
∗,h.

The result follows by making use of the corresponding boundedness estimates, using
Young’s inequality and choosing the penalty parameter sufficiently large.

We now define the DG norm for functions in Ŝℓ
hk as follows:

‖uℓ
h‖

2
DG = ‖uℓ

h‖
2
1,h + |uℓ

h|
2
∗,h ∀uℓ

h ∈ Ŝℓ
hk, (24)

with
‖uℓ

h‖
2
1,h =

∑

K̂ℓ
h
∈T̂ ℓ

h

‖uℓ
h‖

2
H1(K̂ℓ

h
)
,

and
|uℓ

h|
2
∗,h = Sℓ

h(u
ℓ
h, uℓ

h),

where Sℓ
h(·, ·) is defined according in (18a)-(18b) but on Γ, i.e.,

Sℓ
h(u

ℓ
h, vℓh) =





∑

êh∈Êh

βêh

∫

êℓ
h

δ−1
êh

[uℓ
h][v

ℓ
h] dshk, (25a)

∑

êh∈Êh

ηêh

∫

Γ
δ−1

h

(
rêh

([uh])
)ℓ

·
(
rêh

([vh])
)ℓ

dAhk, (25b)

for uℓ
h, vℓh ∈ Ŝℓ

hk.

Lemma 4.7. Let uh ∈ Ŝhk satisfy (19). Then uℓ
h ∈ Ŝℓ

hk satisfies

‖uℓ
h‖DG . ‖ f ‖L2(Γ), (26)

for h small enough.
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Proof. We first show that for any function vh ∈ Ŝhk, for sufficiently small h,

‖vℓh‖DG . ‖vh‖DG. (27)

The ‖ · ‖2
1,h component of the DG norm is dealt with in exactly the same way as in

[15]. For the | · |2∗,h component of the DG norm we have

∫

êh

[vh]
2 dshk =

∫

êℓ
h

δ−1
êh

[vℓh]
2 ds and

∫

Γk
h

|rh([vh])|
2 dAhk =

∫

Γ
δ−1

h |rh([vh])
ℓ|2 dA,

which straightforwardly yields (27). Making use of the discrete stability estimate
(19) and noting that, by Lemma 4.5, ‖ fh‖L2(Γk

h
) . ‖ f ℓh‖L2(Γ) = ‖ f ‖L2(Γ), we get the

desired result.
For each of the surface DG bilinear forms given in Table 1, we define a corre-

sponding bilinear form on Γ induced by the surface lifted triangulation T̂ ℓ
h which is

well defined for functions w, v ∈ H2(Γ) + Ŝℓ
hk. For the surface IP bilinear form (12),

we define

A(w, v) =
∑

K̂ℓ
h
∈T̂ ℓ

h

∫

K̂ℓ
h

∇Γw · ∇Γv + wv dA −
∑

êℓ
h
∈Ê ℓ

h

∫

êℓ
h

[w]{∇Γv; n}+ [v]{∇Γw; n} ds

+
∑

êℓ
h
∈Ê ℓ

h

∫

êℓ
h

δ−1
êh

βêh
[w][v] ds, (28)

where n+ and n− are respectively the unit surface conormals to K̂ℓ+
h and K̂ℓ−

h on

êℓh ∈ Ê ℓ
h . For the Brezzi et al. bilinear form (11), we define

A(w, v) =
∑

K̂ℓ
h
∈T̂ ℓ

h

∫

K̂ℓ
h

∇Γw · ∇Γv + wv dA

+
∑

K̂ℓ
h
∈T̂ ℓ

h

∫

K̂ℓ
h

δ−1
h ηêh

rêh
([w−ℓ])ℓ · rêh

([v−ℓ])ℓ + δ−1
h

(
rh([w

−ℓ])
)ℓ

·
(
rh([v

−ℓ])
)ℓ

dA

−
∑

êℓ
h
∈Ê ℓ

h

∫

êℓ
h

[w]{∇Γv; n}+ [v]{∇Γw; n} − δ−1
êh

βêh
[w][v] ds. (29)

For the surface LDG bilinear form (13), we define

A(w, v) =
∑

K̂ℓ
h
∈T̂ ℓ

h

∫

K̂ℓ
h

∇Γw · ∇Γv + wv dA −
∑

êℓ
h
∈Ê ℓ

h

∫

êℓ
h

[w]{∇Γv; n} − {∇Γw; n}[v] ds

+
∑

êℓ
h
∈Ê ℓ

h

∫

êℓ
h

(
− δ−1

êh
[∇Γw; n]β · nℓ+

h [v]− δ−1
êh

β · nℓ+
h [w][∇Γv; n] + δ−1

êh
βêh

[w][v]

)
ds

+
∑

K̂ℓ
h
∈T̂ ℓ

h

∫

K̂ℓ
h

(
rh([w

−ℓ]) + lh
(
β · nℓ+

h [w−ℓ]
))ℓ

·
(

rh([v
−ℓ]) + lh

(
β · nℓ+

h [v−ℓ]
))ℓ

dA.

(30)
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The corresponding bilinear forms for the other surface DG methods can be de-
rived in a similar manner. Since we assume that the weak solution u of (3) belongs
to H2(Γ) they all satisfy

A(u, v) =
∑

K̂ℓ
h
∈Th

∫

K̂ℓ
h

f v dA, ∀v ∈ H2(Γ) + Ŝℓ
hk. (31)

We now extend a technical estimate, which is crucial for boundedness of A(·, ·),
presented in [14].

Lemma 4.8. Let w ∈ H2(Γ) + Ŝℓ
hk. Then, for sufficiently small h,

‖∇Γw‖2
L2(∂K̂ℓ

h
)
.

1

h
‖∇Γw‖2

L2(K̂ℓ
h
)
+ h‖w‖2

H2(K̂ℓ
h
)
. (32)

Proof. We define ŵ ∈ Ŝhk + H2(Γk
h ) and w̃ ∈ S̃hk + H2(Γh) such that ŵℓ = w and

w̃ = ŵ ◦ πk. Applying the trace theorem on K̃h ∈ T̃h we get

∫

∂K̃h

|∇Γh
w̃|2 dsh .

1

h

∫

K̃h

|∇Γh
w̃|2 dAh + h

∫

K̃h

|∇2
Γh

w̃|2 dAh.

Surface lifting the left-hand side on Γk
h as in Lemma 4.4 and using (16b) and (16d)

we obtain

(1 − Ch2)

∫

∂K̂h

|∇Γk
h

ŵ|2 dshk .
1

h
‖∇Γk

h
ŵ‖2

L2(K̂h)
+ h‖ŵ‖2

H2(K̂h)
.

In the same way, surface lifting the left-hand side on Γ and using (16b)-(16c) we
have

(1 − Ch2)

∫

∂K̂ℓ
h

∇Γw · Rêh
∇Γwds .

1

h
‖∇Γw‖2

L2(K̂ℓ
h
)
+ h‖w‖2

H2(K̂ℓ
h
)
.

Using (15f), we thus obtain

(1 − Chk+1)(1 − Ch2)‖∇Γw‖2
L2(∂K̂ℓ

h
)
.

1

h
‖∇Γw‖2

L2(K̂ℓ
h
)
+ h‖w‖2

H2(K̂ℓ
h
)
,

which yields the desired inequality for h small enough.
For the stability of A(·, ·) we have to state and prove an additional technical

inequality for discrete functions.

Lemma 4.9. Let wℓ
h ∈ Ŝℓ

hk. Then, for sufficiently small h,

‖∇Γwℓ
h‖

2
L2(∂K̂ℓ

h
)
.

1

h
‖∇Γwℓ

h‖
2
L2(K̂ℓ

h
)
.

The proof of Lemma 4.9 is omitted as it is similar to that of Lemma 4.8. Following
the same ideas as for the proof of Lemma 4.6, along with Lemma 4.8 and Lemma
4.9, we obtain the analogous boundedness/stability results for the bilinear form
A(·, ·).
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Lemma 4.10. It holds the boundedness estimate

A(w, vℓh) .
(
‖w‖DG + h2‖w‖H2(Γ)

)
‖vℓh‖DG (33)

for all w ∈ H2(Γ) + Ŝℓ
hk, vℓh ∈ Ŝℓ

hk, and it holds

‖wℓ
h‖

2
DG . A(wℓ

h, wℓ
h) (34)

for all wℓ
h ∈ Ŝℓ

hk and if, for surface IP, Bassi et al. and NIPG methods, the penalty

parameter α appearing in the definition of βêh
or ηêh

in (9) is chosen sufficiently large.

5 Convergence

We next state the convergence estimates.

Theorem 5.1. Let u ∈ Hk+1(Γ) and uh ∈ Ŝhk denote the solutions to (3) and (7),

respectively. Let η = 0 for IIPG, NIPG formulations and let η = 1 otherwise. Then,

‖u − uℓ
h‖L2(Γ) + hη‖u − uℓ

h‖DG . hk+η(‖ f ‖L2(Γ) + ‖u‖Hk+1(Γ)),

provided the mesh size h is small enough and the penalty parameter α is large enough.

The proof will follow an argument similar to the one outlined in [3]. Using the
stability result (34), we have

‖φℓ
h − uℓ

h‖
2
DG . A(φℓ

h − uℓ
h, φℓ

h − uℓ
h) = A(u − uℓ

h, φℓ
h − uℓ

h) +A(φℓ
h − u, φℓ

h − uℓ
h),
(35)

where φℓ
h ∈ Ŝℓ

hk. Since we do not directly have Galerkin orthogonality the first
term on the right-hand side of (35) is not zero, and the second term will require an
interpolation estimate. The latter is dealt with in the following way: following [15],

for w ∈ H2(Γk
h ), we define the interpolant Îk

h : C0(Γk
h ) → Ŝhk by

Îk
hw
(
πk(x̃)

)
= Ĩk

hw̃(x̃),

where Ĩh : C0(Γh) → S̃k
h is the standard Lagrange interpolant of degree k and

w̃ ∈ H2(Γ) is defined such that w
(
πk(x̃)

)
= w̃(x̃). We also define the interpolant

Ik
h : C0(Γ) → Ŝhk by

Ik
hwℓ

(
π(x)

)
= Îk

hw(x̃).

The second term in (35) can thus be estimated using the following result:

Lemma 5.2. Assume that w ∈ Hm(Γ) where 2 ≤ m ≤ k + 1. Then for i = 0, 1

|w − Ik
hw|

Hi(K̂ℓ
h
) . hm−i‖w‖

Hm(K̂ℓ
h
).

Proof. See [15, Prop. 2.7].
For the first term on the right-hand side of (35), we require the following result:
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Lemma 5.3. Let u ∈ Hs(Γ) and uh ∈ Ŝhk denote the solutions to (3) and (7), respec-

tively. We define the functional Eh on Ŝℓ
hk by

Eh(v
ℓ
h) = A(u − uℓ

h, vℓh).

Then, for all surface DG methods apart from LDG, Eh can be written as

Eh(v
ℓ
h) =

∑

K̂ℓ
h
∈T̂ ℓ

h

∫

K̂ℓ
h

(Rh − P)∇Γuℓ
h · ∇Γvℓh +

(
δ−1

h − 1
)

uℓ
hvℓh +

(
1 − δ−1

h

)
f vℓh dA

+
∑

êℓ
h
∈Ê ℓ

h

∫

êℓ
h

[uℓ
h]
(
{∇Γvℓh; n} − {δ−1

êh
Ph(I − dH)P∇Γvℓh; nℓ

h}
)

ds

+
∑

êℓ
h
∈Ê ℓ

h

∫

êℓ
h

[vℓh]
(
{∇Γuℓ

h; n} − {δ−1
êh

Ph(I − dH)P∇Γuℓ
h; nℓ

h}
)

ds (36)

where Rh is given as in Lemma 4.1. The functional corresponding to the surface LDG

method can be written as

Eh(v
ℓ
h) =(36) +

∑

êℓ
h
∈Ê ℓ

h

∫

êℓ
h

δ−1
êh

β · nℓ+
h [vℓh]

(
[∇Γuℓ

h; n]− [Ph(I − dH)P∇Γuℓ
h; nℓ

h]
)

ds

+
∑

êℓ
h
∈Ê ℓ

h

∫

êℓ
h

δ−1
êh

β · nℓ+
h [uℓ

h]
(
[∇Γvℓh; n]− [Ph(I − dH)P∇Γvℓh; nℓ

h]
)

ds. (37)

Furthermore,

|Eh(v
ℓ
h)| . hk+1‖ f ‖L2(Γ)‖vℓh‖DG. (38)

Proof. The proof is similar to that of Lemma 4.2 in [14] which considered a piece-
wise linear approximation of the surface. The expression for the error functional Eh

is obtained by first noting that the solution u of (3) satisfies (31) and then consid-
ering the difference between (31) and (7). This is done by first surface lifting the
terms of (8) onto Γ in a similar fashion to (14). The estimate (38) is then obtained
by making use of the geometric estimates in Lemma 4.1 and the trace estimate given
in Lemma 4.9.

Remark 5.1. Note that the error functional Eh in Lemma 5.3 includes all of the terms

present in the high order surface FEM setting (see [15]) as well as additional terms

arising from the surface DG methods.

Proof. [Proof of Theorem 5.1] Choosing the continuous interpolant φℓ
h = Ik

hu, using
the boundedness result (33), the interpolation estimate in Lemma 5.2 and the error
functional estimate (38), (35) can be bounded by

‖Ik
hu − uℓ

h‖
2
DG . Eh(Ik

hu − uℓ
h) +A(Ik

hu − u, Ik
hu − uℓ

h)

. Eh(Ik
hu − uℓ

h) + ‖Ik
hu − u‖H1(Γ)‖Ik

hu − uℓ
h‖DG

. hk+1‖ f ‖L2(Γ)‖Ik
hu − uℓ

h‖DG + hk‖u‖Hk+1(Γ)‖Ik
hu − uℓ

h‖DG,

which implies
‖Ik

hu − uℓ
h‖DG . hk(‖ f ‖L2(Γ) + ‖u‖Hk+1(Γ)).
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Using again Lemma 5.2 we obtain

‖u − uℓ
h‖DG ≤ ‖u − Ik

hu‖DG + ‖Ik
hu − uℓ

h‖DG

. hk‖u‖Hk+1(Γ) + hk(‖ f ‖L2(Γ) + ‖u‖Hk+1(Γ)) . hk(‖ f ‖L2(Γ) + ‖u‖Hk+1(Γ)).

This concludes the first part of the proof. In the case of η = 1, to derive the L2

estimate we first observe that the solution z ∈ H2(Γ) to the dual problem

−∆Γz + z = u − uℓ
h (39)

satisfies
‖z‖H2(Γ) . ‖u − uℓ

h‖L2(Γ). (40)

Then, we have

‖u − uℓ
h‖

2
L2(Γ) = (u − uℓ

h, u − uℓ
h)Γ = A(u − uℓ

h, z) = A(u − uℓ
h, z − Ik

hz) + Eh(Ik
hz).

(41)
Using (38), a triangle inequality and the interpolation estimate in Lemma 5.2, we
obtain

|Eh(Ik
hz)| . hk+1‖ f ‖L2(Γ)‖Ik

hz‖H1(Γ) . hk+1‖ f ‖L2(Γ)‖z‖H2(Γ).

Hence, using (40),

|Eh(Ik
hz)| . hk+1‖ f ‖L2(Γ)‖u − uℓ

h‖L2(Γ)

Making use of the continuity of Ik
hz − z, Lemma 4.8 and Lemma 5.2 and the stability

estimate (40), we have that

A(u − uℓ
h, z − Ik

hz) . ‖u − uℓ
h‖DG(‖z − Ik

hz‖H1(Γ) + h2‖z‖H2(Γ))

. h‖u − uℓ
h‖DG‖u − uℓ

h‖L2(Γ).

Combining the last two inequalities in (41) yields

‖u − uℓ
h‖

2
L2(Γ) .

(
h‖u − uℓ

h‖DG + hk+1‖ f ‖L2(Γ)

)
‖u − uℓ

h‖L2(Γ),

which gives us the desired L2 estimate and concludes the proof. In the case of η = 0,
we can obtain an sub-optimal bound using a similar procedure of [3].
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Appendix A

This section is devoted to prove Lemma 4.1.
Proof. [Proof of Lemma 4.1] Proofs of (15a)-(15d) can be found in [15, Prop. 2.3
and Prop. 4.1]. The proof of (15f) will follow exactly the same lines as (15d)
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e K K̃h K̂h K̂
ℓ

h

Le L
K̃h

πk π

Figure 2: Mappings used in the proof of Lemma 4.1.

once we have proven (15e). Let e, K be the reference segment [0,1] and the (flat)

reference element, respectively, and let K̃h, K̂h and K̂ℓ
h be elements in Γh, Γk

h and Γ,

respectively, such that πk(K̃h) = K̂h and π(K̂h) = K̂ℓ
h. Let also Le be the inclusion

operator that maps e into an edge of K and let L
K̃h
(K) = K̃h. A tangent on an edge

êh ⊂ K̂h in Γk
h is given by τh = ∇(πk ◦ L

K̃h
◦ Le). Analogously, a tangent on the

surface lifted edge êℓh ⊂ K̂ℓ
h in Γ is given by τ = ∇πτh. We denote by τh and τ

respectively the unit tangents of êh and êℓh, and let λ = ‖τh‖l2 . We will now prove
estimate (15e). Let dx be the Lebesque measure on the reference interval e. We then
have

dshk = λ dx,

ds =
√
‖(∇πτh)T · ∇πτh‖l2 dx = λ

√
‖(∇πτh)T · ∇πτh‖l2 dx = ‖∇πτh‖l2︸ ︷︷ ︸

δ̂eh

dshk.

Having characterised δêh
, we wish to show that

1 − Chk+1 ≤ ‖∇πτh‖l2 ≤ 1 + Chk+1.

Making use of (2) and (15a), we have

‖∇πτh‖l2 ≤ ‖∇π‖l2‖τh‖l2 ≤ ‖P − dH‖l2 ≤ 1 + Chk+1. (42)

Next, to provide a lower bound for ‖∇πτh‖l2 , we consider

τ − τh = (∇π − Ph)τh = λ(∇π − Ph)τh.

Recalling the definition of the projection matrices P and Ph, we have that

‖τ − τh‖l2 ≤ λ‖(P − Ph)− dH‖l2‖τh‖l2 ≤ λChk.

Using the reverse triangle inequality, we obtain

λ‖∇πτh‖l2 = ‖τ‖l2 ≥ ‖τh‖l2 − ‖τ − τh‖l2 ≥ λ(1 − Chk) (43)

and, dividing by λ and using (42), we obtain the sub-optimal estimate

1 − Chk ≤ ‖∇πτh‖l2 ≤ 1 + Chk+1. (44)

The lower bound 44 can be improved in an iterative way as follows. We consider

λ‖∇πτh‖l2 = ‖τ‖l2 ≥ ‖Pτh‖l2 − ‖Pτh − τ‖l2 . (45)
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Then, using again the reverse triangular inequality, we have

‖Pτh‖l2 = λ‖Pτh‖l2 ≥ λ(‖τ‖l2 − ‖τ − Pτh‖l2) = λ(1 − ‖τ − Pτh‖l2). (46)

Since τ, n, ν form an orthonormal basis of R
3 and recalling that P maps vectors into

the tangential space of Γ (hence have null normal component), we get

λ(1 − ‖τ − Pτh‖l2) = λ(1 − ‖1 − (τ, Pτh)τ − (n, Pτh)n‖l2)

≥ λ(1 − ‖(1 − (τ, τh))‖l2 − ‖(n, τh)‖l2)

≥ λ(1 − ‖τ − τh‖
2
l2 − ‖(n, τh)‖l2). (47)

Now

τh − τ = (Ph −
∇π

‖∇πτh‖l2
)τh,

so using (44) and a Taylor expansion argument, it is easy to see that

‖τ êh
− τ êℓ

h
‖l2 . hk. (48)

To deal with the last term of (47) we note that

(n, τh) = (τ × ν, τh) = (ν, τh × τ) = (ν, τh ×
∇πτh

‖∇πτh‖l2
).

Then, using the sub-optimal lower bound (44) and a Taylor expansion argument,
we get

(ν, τh ×
∇πτh

‖∇πτh‖l2
) =

1

‖∇πτh‖l2
(ν, τh ×∇πτh) . (ν, τh ×∇πτh).

Using the definition of P and (2), we have that

∇πτh = (P − dH)τh = τh − (ν · τh)ν − dHτh. (49)

Now, using (49), we can write

(ν, τh ×∇πτh) =

(
ν, τh × (τh − (τh · ν)ν − dHτh)

)
= −(ν, τh × dHτh).

Hence,
‖(n, τh)‖l2 . ‖d‖L∞‖(ν, τh × Hτh)‖l2 . hk+1. (50)

Combining (50) and (48) with (47) we obtain that

‖Pτh‖l2 ≥ λ(1 − ‖(1 − (τ, Pτh))τ − (n, Pτh)n‖l2) ≥ λ(1 − Chk+1). (51)

For the second term in the right-hand side of (45), notice that

‖τ − Pτh‖l2 = ‖∇πτh − Pτh‖l2 = ‖dHτh‖l2 ≤ λChk+1. (52)

We are now ready to improve the lower bound in 44. By making use of (52) and
(51) in (45), we get

‖∇πτh‖l2 ≥ 1 − Chk+1 (53)
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which proves (15e).
To prove (15g), we need to preliminary prove the following auxiliary inequali-

ties:
|(τ, nh)| . hk+1, (54)

|1 − (n, nh)| . h2k. (55)

We start showing (54). Using the property of the cross product, we get

(τ, nh) = (τ, νh × τh) = (νh, τh × τ) = (νh, τh ×∇πτh). (56)

Replacing (49) in (56), we obtain

(τ, nh) = [ν · (τh − τ)](τh, ν × νh)− (νh, τh × dHτh).

Taking the absolute value and using (15a), (15c) and (48), we find

|(τ, nh)| . h2k+1 + Chk+1 . hk+1.

In order to prove (55), we start showing that the following holds

|(ν, nh)| . hk. (57)

Indeed, using again the properties of the cross and scalar products, we obtain:

|(ν, nh)| = |(ν, νh × τh)| = |(νh, τh × ν)| = |(νh, τh × (ν − νh))| . hk.

Since the vector nh is of unit length, there exist a(x), b(x), c(x) ∈ R satisfying
a2 + b2 + c2 = 1 such that

nh = aτ + bn + cν,

where a = (τ, nh), b = (n, nh) and c = (ν, nh). Hence, using (54), (57) and a Taylor
expansion argument, we get

b = ±
√

1 − a2 − c2 = ±
√

1 + O(h2k) = ±1 + O(h2k).

The inequality (55) follows by assuming that the mesh size h of T̂h is chosen small
enough so that b = 1 + O(h2k). Finally, writing Pnh = (τ, Pnh)τ + (n, Pnh)n, we
obtain (15g), i.e.,

‖n − Pnh‖L∞(êh)
= ‖n − (τ, Pnh)τ + (n, Pnh)n‖L∞(êh)

≤ |1 − (n, Pnh)|+ |(τ, Pnh)|

= |1 − (n, nh)|+ |(τ, nh)| = O(hk+1).
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Errata

This is a revised version. Changes have been made in:

• Page 19 lines 10-11:

”Then,

‖u − uℓ
h‖L2(Γ) + h‖u − uℓ

h‖DG . hk+1(‖ f ‖L2(Γ) + ‖u‖Hk+1(Γ)), ”

should be ” Let η = 0 for IIPG, NIPG formulations and let η = 1 otherwise.
Then,

‖u − uℓ
h‖L2(Γ) + hη‖u − uℓ

h‖DG . hk+η(‖ f ‖L2(Γ) + ‖u‖Hk+1(Γ)), ”

• Page 21 line 4:

”To derive the L2 estimate...” should be ”In the case of η = 1, to derive the L2

estimate...”

• Page 21 line 22:

add before the end of the proof: ”In the case of η = 0, we can obtain an
sub-optimal bound using a similar procedure of [3].”
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