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RODS COILING ABOUT A RIGID CONSTRAINT: HELICES AND

PERVERSIONS

D. RICCOBELLI1, ?, G. NOSELLI1, AND A. DESIMONE1, 2

Abstract. Mechanical instabilities can be exploited to design innovative structures, able to
change their shape in the presence of external stimuli. In this work, we derive a mathematical

model of an elastic beam subjected to an axial force and constrained to smoothly slide along a

rigid support, where the distance between the rod midline and the constraint is fixed and finite.
Using both theoretical and computational techniques, we characterize the bifurcations of such

a mechanical system, in which the axial force and the natural curvature of the beam are used

as control parameters. We show that, in the presence of a straight support, the rod can deform
into shapes exhibiting helices and perversions, namely transition zones connecting together two

helices with opposite chirality. The mathematical predictions of the proposed model are also

compared with some experiments, showing a good quantitative agreement. In particular, we
find that the buckled configurations may exhibit multiple perversions and we propose a possible

explanation for this phenomenon based on the energy landscape of the mechanical system.

1. Introduction

Bifurcation theory plays a crucial role in both theoretical and applied mechanics. One of the
simplest examples is the buckling of a slender beam subject to an axial load: as the load reaches
a critical value, the straight configuration loses stability and two other solutions appear. The
bifurcation threshold is given by

(1) Fcr =
Bπ2

kL2

where B is the lowest bending stiffness of the rod, L its length and k a numerical factor depending
on the boundary conditions, also called column effective length factor. This formula, first obtained
by L. Euler in 1757, is of fundamental importance in applied engineering in order to predict the
collapse of slender structures.

Historically, the buckling of solid bodies has been considered exclusively in view of its connection
with the failure of slender structures under compression, hence as something to avoid. Recently, a
new paradigm has emerged [35] such that the buckling of elastic structures is now exploited as a
possible mechanism to control the shape of elastic solids, triggering instabilities on demand through
the application of external stimuli. In this context, the control of shape through buckling has
important applications in robotics [41, 44, 38] and in the design of innovative materials [31, 5, 16, 8].

Among the different morphologies that a filamentary structure can assume, helices are possibly
the simplest and most interesting. In fact, many biological structures exhibit helical shapes, such
as the DNA molecules [42, 6, 39], climbing plants and tendrils [18], bacteria flagella [9, 37], and
human hairs [4, 29]. Furthermore, helical structures display peculiar mechanical properties [10]
which are exploited in advanced engineering applications such as the design of artificial muscles
[20], metamaterials [32, 36] and deployable structures [34, 33, 24, 25].
It is not rare to observe filamentary structures exhibiting helices of opposite chirality connected
by a transition zone called perversion [19]. Some examples of objects that frequently exhibit
perversions are telephone chords and plant tendrils. Mathematically, a perversion in an isolated rod
can be described as a heteroclinic solution of the equilibrium equations, connecting two fixed points
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corresponding to the asymptotic helices [28]. In recent years, a significant effort has been devoted
to understand the mathematics and mechanics of perversions, even though some peculiarities of
these structures are still unclear, such as the appearance of multiple perversions (see for instance
[15, 26, 40]).

In this paper, we investigate the bifurcations of a simple mechanical structure composed of a
beam that can smoothly slide along a rigid support. Differently from other studies [11, 12], we
consider the case in which the rod midline is at a finite distance from the support. This peculiar
geometry is suggested by recent studies of assemblies of interlocked strips, able to slide along their
common edge, inspired by unicellular protists (Euglenids, see [2, 32, 36]). Since a full analysis of
these structures is not available at present, we consider here a simplified case in which the edge
of a flexible rod slides along a rigid constraint. While the proposed model contributes to the
understanding of structural systems inspired by the euglenoid pellicle, it also provides innovative
solutions for the design of tunable compliant mechanisms or propulsive, helical appendages in
robotic applications.

The work is organized as follows: in section 2 we construct the mathematical model as based
on the Cosserat theory of rods. In section 3, we specialize the model to the case of a rectilinear
support, and find that the equilibrium equations admit non trivial explicit solutions. In section 4,
we use perturbation techniques to study the stability of the straight configuration and characterize
the behavior of the bifurcation near the stability threshold. In section 5, we perform a numerical
approximation of the fully nonlinear equations to study the post-buckling evolution of the equi-
librium configuration. We also present some experimental results to validate the predictions of
the mathematical model. Finally, we summarize in section 6 the main results together with some
concluding remarks.

2. Rods hooked to a smooth rigid constraint

In this section, we characterize the kinematics of an elastic rod hooked to a rigid curve. In
particular, the distance of each point of the rod midline from the support is fixed but the beam
can slide without friction along the curve.

2.1. Kinematics. We model the beam as a special Cosserat rod [1] embedded in the three dimen-
sional Euclidean space E3. Let

r0(s) = sE3, d0
i = Ei, i = 1, 2, 3,

be the reference configuration of the rod, where (E1, E2, E3) is the canonical vector basis in the
reference frame and d0

i are the directors of the beam. We denote by

r, di : [0, L]→ R3, i = 1, 2, 3,

the actual configuration of the rod, such that r is the function representing its midline and di
are the three orthonormal directors. We assume that the beam is unshearable and inextensible,
leading to the constraint

(2) r′ = d3,

where a prime denotes the derivative with respect to s. Since |d3| = 1, from (2) we have that s is
the arclength also of the deformed midline r. The unshearability of the rod is guaranteed by the
fact that r′ and d3 share the same direction.

The constraint between the rod and the support, described by the curve w : R→ R3, is realized
through a series of rigid connectors. For the sake of simplicity, we assume that the connectors are
continuously distributed along the beam. They are directed from the rod midline according to the
vector field c(s) and can freely slide along the constraint w, identifying a curve r̃(s) = r(s) +c(s).
We now enforce a compatibility constraint, analogous to the one exploited in [32, 36]: this is such
that the image of [0, L] through r̃ must be contained in the image of w, more explicitly

(3) w(s̃) = r(s) + c(s),

for some s̃ = f(s), where s̃ is the arclength of the curve w. Since the connectors cannot self
intersect, we enforce that f is at least continuous and invertible. In the following, we assume that
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Figure 1. (Left) Representation of the rod and of its support, together with the
directors and the Serret-Frenet basis. (Right) Representation of the angle ω; we
remark that n, b and d1 are all contained in the same plane showed in the picture.

the norm of c is constant with respect to s and that c is aligned with the director d1, namely,
c(s) = cd1(s). Then, the compatibility equation (3) modifies into

(4) w(f(s)) = r(s) + cd1(s),

see Figure 1 (left). Assuming a sufficient regularity for all the functions, we can differentiate (4)
to obtain

(5)
dw

ds̃
(f(s))f ′(s) = d3(s) + cd′1(s).

Equation (5) can be used to obtain some restrictions on the directors. First, we introduce the
strain u [1], defined as the vector function satisfying the following relation:

(6) d′i(s) = u(s)× di(s).

Using this definition and computing the scalar product of (5) with d1, we get

(7) f ′(s)
dw

ds̃
(f(s)) · d1(s) = 0,

so that d1 must belong to the plane orthogonal to dw/ds̃. A vector basis for such a plane is
provided by the orthonormal vectors n(s̃) and b(s̃), the normal and binormal unit vectors of the
Serret–Frenet basis of the curve w(s̃), defined as

(8) t =
dw

ds̃
, n =

∣∣∣∣dtds̃
∣∣∣∣−1 dtds̃ , b = t× n,

whose derivatives satisfy the Serret-Frenet formulae

(9)
dt

ds̃
= κn,

dn

ds̃
= −κt + τb,

db

ds̃
= −τn,

where κ and τ are the curvature and the torsion of w, respectively, and may depend on s̃.
Since d1(s) is perpendicular to t(s̃), see (7), there exist a function ω : [0, L]→ R such that

(10) d1(s) = cosω(s)n(s̃) + sinω(s)b(s̃),

where we recall that s̃ = f(s) and ω(s) is the angle between d1(s) and n(s̃), see Figure 1 (right).
Furthermore, the vector d3(s) can be expressed in terms of ω and f using the Serret-Frenet formulae
(8) together with relation (5), obtaining

(11) d3 =
dw

ds̃
f ′ − cd′1 = (1 + cκ cos(ω)) f ′t + c sin(ω) (ω′ + τf ′)n− c cos(ω) (ω′ + τf ′) b.

Enforcing the inextensibility constraint (2), we can use (11) to get a differential equation for f

(12) |d3|2 = f ′2
(
c2τ2 + (cκ cos(ω) + 1)2

)
+ 2c2τf ′ω′ + c2ω′2 = 1.

Finally, d2 can be expressed as a function of ω by computing the vector product of d3 and d1,
obtaining

(13) d2(s) = c (τf ′ + ω′) t− f ′ sin(ω)(cκ cos(ω) + 1)n + f ′ cos(ω)(cκ cos(ω) + 1)b.
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Summing up, we have used the compatibility constraint (3) to relate the directors of the rod
with the Serret-Frenet frame. In particular, we have defined the angle ω as the angle identified by
the vectors n and d1. Finally, we have expressed all the directors as functions of the kinematic
variable ω (see (10), (11) and (13)). In the following, we will use these results to derive the strain
energy as a functional depending only on ω.

2.2. Strain measures and constitutive assumptions. We can express the strain vector u as
a function of ω by using (6) and the kinematics developed in the previous section. More explicitly,
from (5), we obtain

d′1 = −u2d3 + u3d2 = c−1(f ′t− d3),

so that, computation of the dot product of the equation above with the directors d2 and d3, yields

(14) u2 = c−1 (1− f ′t · d3) =
1− f ′2(cκ cos(ω) + 1)

c
, u3 = c−1f ′t · d2 = f ′ (τf ′ + ω′) .

We can use again (6) to express u1 as a function of ω. Since u1 = −d′3 · d2, we obtain:

(15)

u1 = c2κ3f ′3 sin(ω) cos2(ω) + κ

(
f ′ sin(ω)

(
3c2τf ′ω′ + f ′2

(
c2τ2 + 1

)
+ 2c2ω′2

)
+

+ c2 cos(ω)

(
−f ′′ω′ + f ′3

dτ

ds̃
+ f ′ω′′

))
+ cκ2f ′3 sin(2ω)+

+ c

(
−cf ′2 cos(ω)

dκ

ds̃
(τf ′ + ω′)− f ′′ω′ + f ′3

dτ

ds̃
+ f ′ω′′

)
.

Having fully characterized the kinematics of the sliding rod in terms of ω, we proceed by intro-
ducing some constitutive assumption. We assume that the rod is hyperelastic and, in particular,
we use the Kirchhoff’s strain energy functional [3]

(16) W =

∫ L

0

W (ω, ω′, ω′′) ds =
1

2

∫ L

0

B1(u1 − u?1)2 +B2(u2 − u?2)2 + T (u3 − u?3)2 ds,

where B1 and B2 are the bending stiffnesses with respect to the directions d1 and d2, respectively,
and T is the torsional stiffness. The quantities −u?1, −u?2 and −u?3 represent the flexural and
torsional strains of the reference configuration relative to the stress free configuration. We will
refer to u?j as the natural or intrinsic curvatures and twist of the beam.

3. Rod subject to an axial load and connected to a straight constraint

We specialize the model developed in the previous section by considering a rectilinear support,
such that w(s̃) = s̃e3, where (e1, e2, e3) is the canonical vector basis in the actual configuration.
In this case, the normal and the binormal vector to w are not uniquely defined. We set n = e1, so
that b = e2 and both κ and τ vanish. In such a case, the differential equation (12) is much simpler
and reduces to

(17) f ′(s) = ±
√

1− c2ω′(s)2.

We observe that the invertibility of f implies that the function must be strictly monotone and
from (17) we have

−1

c
≤ ω′ ≤ 1

c
.

We assume that the rod cannot slide along w in s = 0. We enforce this constraint by setting
f(0) = 0 as initial condition for the differential equation (17). Without loss of generality, we assume
that f ′(s) ≥ 0 as due to the symmetries of the problem. Using (17), we rewrite the components of
the strain vector, given by (14)-(15), into the following form

(18) u1 =
cω′′√

1− c2ω′2
, u2 = cω′2, u3 = ω′

√
1− c2ω′2.
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We use (18) to write the strain energy density of the rod (16) as a function of ω and its derivatives:

(19) W =
1

2

[
B1

(
cω′′√

1− c2ω′2
− u?1

)2

+B2

(
cω′2 − u?2

)2
+ T

(
ω′
√

1− c2ω′2 − u?3
)2 ]

.

We assume that the beam is loaded at r(L) by a force F = Fe3. Exploiting the expression
(11), we compute the actual height of the deformed rod

r(L) · e3 =

∫ L

0

d3 · e3 ds =

∫ L

0

√
1− c2ω′2 ds,

so that the work done by the external forces reads

P[ω] =

∫ L

0

P (ω′) ds = F

∫ L

0

√
1− c2ω′2 ds− L.

We remark that the rigid support provides a frictionless constraint to the rod, thus the work of
the reaction forces exerted on the beam is zero. The absence of friction between the rod and the
support is of course an idealization and the study of the effect of friction is beyond the scope of
this article.

We are now in the position to define the total energy functional Ψ as

(20) Ψ[ω] =W[ω]− P[ω],

whose first variation reads

(21)

δΨ(ω)[δω] =

∫ L

0

[
d2

ds2
∂W

∂ω′′
− d

ds

∂W

∂ω′
+

d

ds

∂P

∂ω′

]
δω ds+

+

[(
∂W

∂ω′
− ∂P

∂ω′
− d

ds

∂W

∂ω′′

)
δω

]s=L
s=0

+

[
∂W

∂ω′′
δω′
]s=L
s=0

.

We obtain the balance equation of the mechanical system, together with the natural boundary
conditions, by requiring that the energy functional Ψ be stationary. In particular, the first term
of (21) provides the Euler-Lagrange equation of the mechanical system, while the other two terms
give the natural boundary conditions. More explicitly, the Euler-Lagrange equation reads

(22)
f ′2ω′′

(
4B1c

4ω′′′ω′ +
(
c2ω′2 − 1

)2 (
6c2(T −B2)ω′2 + 2B2cu

?
2 − T

))
+

+B1c
2ω′′′′f ′4 +B1c

4ω′′3
(
3c2ω′2 + 1

)
+ c2f ′3ω′′

(
Tu?3ω

′ (2c2ω′2 − 3
)
− F

)
= 0,

where f ′ is given by (17), while the boundary terms are obtained as

(23)



∂W

∂ω′
− ∂P

∂ω′
− d

ds

∂W

∂ω′′
=− B1c

4ω′ω′′2

f ′4
− B1c

2ω′′′

f ′2
+ cω′

(
c(2B2 − T )ω′2 − 2B2u

?
2

)
+

+
c2ω′ (F + Tu?3ω

′)

f ′
− Tu?3f ′ + Tf ′2ω′,

∂W

∂ω′′
=
B1c (cω′′ − u?1f ′)

f ′2
.

In the following, we discuss the behavior of the system subject to different boundary conditions.

3.1. Boundary conditions. We distinguish two cases:

• Case A – free ends. We assume that the rod is free to rotate about the support at both
ends. We remark that both the Euler-Lagrange equation (22) and the natural boundary
conditions (23) depend on ω only through its derivatives. This is due to the fact that
the rod can rigidly rotate about the support without storing mechanical energy. To rule
out these rigid motions, we set ω(0) = 0. The problem is complemented by the natural
boundary conditions

(24)


(
∂W

∂ω′
− ∂P

∂ω′
− d

ds

∂W

∂ω′′

)∣∣∣∣
s=L

= 0,

∂W

∂ω′′

∣∣∣∣
s=0, L

= 0,
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which arise from the first variation of the energy, see (21)-(23).
• Case B – pinned ends. We assume that ω(0) = ω(L) = 0, while we leave the first

derivative of ω unconstrained. In analogy with the Euler’s buckling problem, we refer to
these boundary conditions as the pinned end case. As for the natural boundary conditions,
from (21) we get:

(25)
∂W

∂ω′′

∣∣∣∣
s=0, L

= 0.

The analysis of Case A is reported in detail in the following sections, and can be easily adapted to
Case B. For the sake of brevity, we will report the results of the stability analysis for the pinned end
case in a separate section, omitting the explicit calculations and highlighting the few differences
resulting from the different choice of boundary conditions.

3.2. Non-dimensionalization of the equilibrium equations. Before proceeding with the anal-
ysis of the model, we non-dimensionalize the system with respect to c, namely the distance of the
rod midline from the support, and the bending stiffness B2. The dimensionless counterpart of the
physical quantities introduced so far are

(26)

ŝ =
s

c
L̂ =

L

c
β =

B1

B2
σ =

T

B2
û?j = u?jc, F̂ =

c2F

B2

Ψ̂ =
cΨ

B2
Ŵ =

cW
B2

P̂ =
cP
B2

Ŵ =
c2W

B2
P̂ =

c2P

B2

In the following, we will consider rods having a rectangular cross-section. In particular, denoting
by h the width of the rod along d1 and by t the thickness along d2, for h > t it is a classical result
that

B1 =
Eht3

12
, B2 =

Eh3t

12
, T =

Gχht3

3
,

where E and G are the Young’s and shear moduli, respectively, and χ is a numerical factor
depending on the aspect ratio h/t, tending to 1 as h/t tends to infinity. From the equation above,
we get

(27) β =
t2

h2
, σ =

t2

h2
4Gχ

E
=
t2

h2
2χ

1 + ν
,

where ν is the Poisson’s ratio. We remark that for h/t� 1 it is reasonable to assume χ = 1.
From now on, we will use only the dimensionless counterpart of the physical quantities, unless

explicitly specified. For convenience, we drop the circumflex of the non-dimensional quantities
defined in (26). In the next section, we discuss some analytical solutions of the Euler-Lagrange
equation.

3.3. Analytical solutions. We set ω(0) = 0 together with the natural boundary conditions (24).
As a result, the reference, straight configuration given by ω = 0 is a solution whenever

u?1 = u?3 = 0.

We observe that this is not the only equilibrium configuration of the system. In fact, also

ω(s) = αs

satisfies the Euler-Lagrange equation (22). This solution corresponds to a helical configuration of
the rod. The second natural boundary condition (23) is automatically satisfied whenever u?1 = 0,
while the first one provides a relation between between α, F , u?2, and u?3:

(28) αF = 2
√

1− α2α3σ −
√

1− α2ασ − 2
√

1− α2α3 + 2
√

1− α2αu?2 − 2α2σu?3 + σu?3.

We observe that, if u?3 is zero in (28), then the equation is satisfied for all F and u?2 for α = 0,
which corresponds again to the reference configuration. Instead, from α 6= 0 we obtain from (28)

(29) F =
√

1− α2
(
2α2σ − 2α2 − σ + 2u?2

)
.
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Figure 2. Plot of the equilibrium force F for helical configurations when u?3 = 0
and σ = 0.1 (left), σ = 1 (center) and σ = 1.5 (right). The purple plane α = 0
corresponds to the reference configuration, which is in equilibrium for all values of
F and u?2. The red curves represent the bifurcation diagram obtained for F = 0,
where u?2 plays the role of the control parameter. We remark that, if σ = 1 and
u?2 = 0.5, all the helical configuration are in mechanical equilibrium for F = 0
(center).
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Figure 3. Applied force F versus the overall strain (L− l)/L for σ = 0.1 (left),
σ = 1 (center), σ = 1.5 (right). In the plots, we show several curves for u?2
ranging from −1 to 1 by steps of 0.2. The arrows denote the direction in which
u?2 increases.

We show in figure 2 the three-dimensional plots of the equilibrium force F as a function of α and
u?2 for σ = 0.1, 1, 1.5. In particular, using (29), we can compute the critical force at which the
straight configuration buckles into a helical shape. In the limit α→ 0, we get

(30) F = −σ + 2u?2.

It is interesting to observe that, contrary to Euler’s formula (1), the buckling load (and in general
the force necessary to generate a helix with a given α) is independent of the rod length, even though
the structure undergoes a global buckling. We argue that this is because the strain variables are
constant along the beam. In figure 3, we show the applied force as a function of the overall strain
of the rod in the helical configuration, defined as

L− l
L

where l = r(L) · e3 = f(L) = L
√

1− α2.

Another interesting feature of the buckling load becomes apparent if we rewrite (30) in dimensional
variables. Using (26) we get

(31) F = − T
c2

+
2B2u

?
2

c
,

which is identical to the buckling load reported in [32], equation (29). In that work, the authors
considered a cylindrical assembly of interlocked rods, able to deform into helical configurations.
In their formula the connector distance c is replaced by the reference radius of the cylinder. As
we will discuss later, we argue that this similarity arises since, in the linearized setting, the radius
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Figure 4. Plots of α versus u?2 for σ = 1/10, 1/4, 1/3, 1/2, 2/3, 1 (red
line), 3/2, 2. The arrow denote the direction in which σ increases.

of the assembly studied in [32] does not change. Despite these similarities, we remark that the
nonlinear equations for the two systems are not the same so that the post-buckling evolution is
different.

Finally, the base reference configuration undergoes a bifurcation for a critical value of u?2 even
in the absence of an external load, as one can notice from (30). In such a case, the critical natural
curvature is given by

(32) u?2 =
σ

2
.

In particular, (29) admits an explicit expression for α in the absence of external forces

α = ±
√
σ − 2u?2√
2
√
σ − 1

.

We plot the resulting bifurcation diagrams in figures 2-4. We observe that the bifurcation is a
supercritical or subcritical pitchfork depending on the sign of σ−1. In the particular case in which
σ = 1, all the helices are equilibrium solutions for u?2 = 1/2 (see figure 2 center and figure 4).

Remark. Summing up, if the rod does not have any natural twist (i.e. u?3 = 0) or natural
curvature about d1 (i.e. u?1 = 0) but an arbitrary u?2, then the straight reference configuration is in
mechanical equilibrium. When the applied force is that given by (29) a bifurcation of the equilibrium
occurs, such that, in the post-buckling regime, the beam wraps about the support assuming a helical
shape. In the absence of an external axial force, a bifurcation occurs if the natural curvature u?2 is
sufficiently high, according to relation (32).

In the next section, we perform a stability analysis, looking for other bifurcation points of the
mechanical system.

4. Stability analysis of the straight configuration

In this section, we further investigate the stability of the straight, reference configuration using
perturbation methods. First, we perform a linear stability analysis. Second, we classify the bi-
furcation points through a weakly nonlinear expansion, characterizing the initial evolution of the
bifurcated solution in a neighborhood of the stability threshold. Before proceeding with the linear
analysis, let us introduce the following inner product between scalar functions, which is a rescaled
version of the standard L2 scalar product:

(33) 〈f, g〉 =
2

L

∫ L

0

fg ds.

We consider two situations in which buckling is either triggered by the natural curvature u?2 or
by the axial force F . We denote by λ the control parameter, namely either u?2 or −F .
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4.1. Linear analysis. Let ωb(s) be the bifurcated solution originating from the base solution
ω0(s) = 0 at λ = λ0, so that

lim
λ→λ0

ωb(s; λ) = 0.

We define the bifurcation mode ω1 as

(34) ω1 = lim
λ→λ0

ωb
‖ωb‖

,

where ‖ · ‖ is the norm induced by the scalar product (33), so that ‖ω1‖ = 1. The bifurcated
solution can be expressed in the following form

ωb(s; λ) = ξω1(s) + v(s; λ),

where ξ is defined as ξ = 〈ωb, ω1〉, implying that

(35) 〈ω1, v〉 = 0,

and that v = o(ξ) as λ → λ0. Expanding (22) up to the first order in ξ, the linearized equation
reads

(36) βω′′′′1 (s)− (F + σ − 2u?2)ω′′1 (s) = 0,

while the linearized form of the boundary terms (23) are given by

(37)


∂W

∂ω′
− ∂P

∂ω′
− d

ds

∂W

∂ω′′
= −σu?3 + ξ ((F + σ − 2u?2)ω′1(s)− βω′′′1 (s)) + o(ξ),

∂W

∂ω′′
= −βu?1 + βξω′′1 (s) + o(ξ).

The general solution of the linear equation (36) is given by

ω1 = c1 + c2s+ c3 sin

(
s
√

2u?2 − F − σ√
β

)
+ c4 cos

(
s
√

2u?2 − F − σ√
β

)
,

if 2u?2 − F 6= σ, otherwise it is given by

ω1 = c1 + c2s+ c3s
2 + c4s

3.

As before, we first treat extensively the free ends case. We set both u?1 and u?3 equal to zero, so
that the straight reference configuration is in mechanical equilibrium. If 2u∗2 − F = σ, the second
equation of (24) together with (37) provides

c3 = c4 = 0.

Since ω(0) = 0, c1 = 0 and, since from (34) ‖ω1‖ = 1, c2 = 1. In particular, we have obtained the
helical configuration analyzed in the previous section.

If instead 2u∗2 −F 6= σ, using the first equation of (37) and neglecting the remainder in (24) we
get c2 = 0. Analogously, from the second equation of (24) we get c4 = 0 and

(38) 2u?2 − F =
π2βn2

L2
+ σ, n ∈ N \ {0},

so that

(39) ω1(s) = sin
(nπs
L

)
, n ∈ N \ {0},

where c1 vanishes since ω(0) = 0 and c3 has been set equal to 1 so that ‖ω1‖ = 1. We observe that
ω′1 assumes both positive and negative values in (0, L), indicating that the rod coils about the
support with opposite handedness, depending on the sign of ω′1. Following [19], we call perversion
a point where ω′ changes sign (i.e. the chirality of the rod changes).

We define the critical mode as the one corresponding to the lowest value of 2u?2 − F . For the
sinusoidal mode (39), exhibiting n perversions, the value of 2u?2 − F (38) at which a bifurcation
occurs is always higher than the one of the helical mode, see (30). As done in section 3.3, if we
rewrite the buckling load (38) in dimensional variables, we get

(40) F = − T
c2

+
2B2u

?
2

c
− B1n

2π2

L2
.

Once again, this buckling load is identical to the one reported in [36], section 5.1.1, for an axisym-
metric assembly of interlocking and slidable beams. As mentioned for helices, this analogy follows
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from the fact that the distance of the rods from the symmetry axis does not change for small
displacements, see (26) in [36]. Thus, the linearized kinematics of the two mechanical systems is
very similar, where in particular the reference radius of the assembly plays the role of the connector
distance c.

Interestingly, in the limit case of an infinite rod, the buckling load (38) is independent of n and
coincides with the one obtained for the helices, see (30). This might provide an explanation for the
experimental observation of multiple perversions in similar mechanical systems [28, 15, 26], and
we discuss this aspect into more detail in section 5.3

The linear analysis proposed in this section allows us to predict the bifurcations of the mechanical
system, without providing any information on the amplitude of the buckling mode. In the following,
we perform a weakly nonlinear stability analysis [22, 7] to classify the bifurcation points and
characterize the post-critical configurations in a neighborhood of the bifurcation points.

4.2. Weakly nonlinear analysis of the bifurcated branches exhibiting perversions. In
this section, we focus our attention on the buckling modes exhibiting perversions, since we have
already characterized the fully nonlinear behavior of the helical configurations in section 3.3. In
particular, we follow the approach proposed by Budiansky in [7].

We study the free ends case. Let u?1 = u?3 = 0, so that the reference configuration is in mechanical
equilibrium. Since ωb is a solution of the problem (22)-(25), we get

(41) δΨ(ωb; λ)[δω] = 0,

where we have explicitly highlighted the dependence of the energy on the control parameter λ. We
assume the following power series expansions

(42)

{
v = ξ2ω2 + ξ3ω3 + o(ξ3),

λ = λ0 + ξλ1 + ξ2λ2 + o(ξ2).

We remark that, since ω1 is a solution of the linearized problem (36), we have (see (4.7) in [7])

(43) δ2Ψc[ω1, δω] = 0,

for any admissible δω, where the subscript c indicates that the second variation δ2Ψ is computed
in (ω0 = 0, λ0), i.e.

δ2Ψc[ω1, δω] := δ2Ψ(0; λ0)[ω1, δω].

Using the ansatz (42) and the following compact notation

δnΨ̇c :=
d

dλ
δnΨ(0, λ)

∣∣∣∣
λ=λ0

we can compute the expansion of (41), obtaining [7]

(44)

δΨ(ωb; λ)[δω] =

(
δ2Ψc[ω2, δω] + λ1δ

2Ψ̇c[ω1, δω] +
1

2
δ3Ψc[ω1, ω1, δω]

)
ξ2+

+

(
δ2Ψc[ω3, δω] + λ1δ

2Ψ̇c[ω2, δω] + λ2δ
2Ψ̇c[ω1, δω] +

1

2
λ21δ

2Ψ̈c[ω1, δω]+

+ δ3Ψc[ω1, ω2, δω] +
1

2
λ1δ

3Ψ̇c[ω1, ω1, δω] +
1

6
δ4Ψc[ω1, ω1, ω1, δω]

)
ξ3 + o(ξ3) = 0,

where all the coefficients of the powers of ξ must vanish to guarantee that the energy on the
bifurcated branch be stationary.

4.2.1. Weakly nonlinear analysis in the absence of an axial force. In this section, we assume that
F = 0 and we use u?2 as control parameter of the bifurcation, i.e. λ = u?2. From (38), we have

λ0 =
π2βn2

2L2
+
σ

2
.

Setting the second order term of (44) equal to zero and δω = ω1, we get

(45) λ1 = −1

2

δ3Ψc[ω1, ω1, ω1]

δ2Ψ̇c[ω1, ω1]
= 0.
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Figure 5. Phase diagram showing the transition from a supercritical to a sub-
critical pitchfork bifurcation for β = 0.01, 1, 10 and u?1 = u?3 = 0 (left, center and
right respectively) where the control parameter λ = u?2 and F = 0. The lines cor-
responds to the wavenumber n = 1, . . . , 8, where the arrows denote the direction
in which n increases.

This result follows from the fact that for the energy functional (16) δ3Ψc[v1, v2, v3] = 0 for any
v1, v2, v3 and

δ2Ψc[ω2, ω1] = δ2Ψc[ω1, ω2] = 0.

We can now compute λ2: setting equal to zero the coefficient multiplying ξ3 in (44) and δω = ω1,
we get

(46) λ2 = −
1
6δ

4Ψc[ω1, ω1, ω1, ω1] + δ3Ψc[ω1, ω1, ω2]

δ2Ψ̇c[ω1, ω1]
.

As observed before, we have that δ3Ψc[ω1, ω1, ω2] = 0. From the expression of the energy given
by (19) and from (39), we obtain

(47) λ2 =
1

4

(
π4βn4

L4
− 3π2n2(σ − 1)

L2

)
.

It is now possible to characterize the bifurcation near the marginal stability threshold: neglecting
the higher order terms in (42) and since λ1 vanishes, we get

ξ = ±
√
u?2 − λ0
λ2

.

Since λ1 = 0 and λ2 6= 0, we are in the presence of a pitchfork bifurcation, a supercritical or
subcritical one depending on whether λ2 is positive or negative, respectively (see figure 5).

4.2.2. Weakly nonlinear analysis in the presence of an axial load. In this section, we perform
again the weakly nonlinear analysis using as control parameter of the problem λ = −F . Since
the procedure is analogous to that of the previous section, we report the main results omitting
the algebraic computations. The critical load at which the straight configuration bifurcates into a
shape with n perversions is given by (38), so that

λ0 =
π2βn2

L2
+ σ − 2u?2,

where the mode ω1 is given by (39). Following the same steps as in section 4.2.1, we get that
λ1 = 0, see (45).

Finally, to compute λ2, we use again the formula (46), obtaining

(48) λ2 =
1

8

(
π4βn4

L4
+

3π2n2(−5σ + 2u?2 + 4)

L2

)
.
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Figure 6. Phase diagram showing the transition from supercritical to a subcrit-
ical pitchfork bifurcation for β = 0.01, 1, 10 (left, center and right respectively)
and u?1 = u?2 = u?3 = 0, where the control parameter is λ = −F . The lines cor-
responds to the wavenumber n = 1, . . . , 8, where the arrows denote the direction
in which n increases.

From these formulae, neglecting the higher order terms, we can express the amplitude ξ of the
buckled configuration as

(49) ξ = ±
√
−F − λ0

λ2
.

From (49), we can observe that the instability corresponds to a pitchfork bifurcation, since the
amplitude grows as the square root of the distance from the marginal stability threshold, and it is
supercritical or subcritical if the sign of λ2 is positive or negative, respectively (see figure 6).

4.3. Differences in the pinned ends case. If we consider the pinned ends case, the theoretical
analysis performed in the previous sections can be easily adapted to these boundary conditions. All
the helical configurations are ruled out by the homogeneous boundary conditions ω(0) = ω(L) = 0.
By enforcing the natural boundary conditions (25), ω = 0 is still a solution of the problem when
u?1 = 0. The main difference with respect to case A is that now the reference state is always an
equilibrium configuration irrespective of u?3. This fact does not affect the linearized problem, as
shown by (36), and the critical buckling mode corresponds to the wavenumber n = 1 in (39). Some
caution is needed while carrying out the weakly nonlinear analysis: since u?3 can be non-zero, we
get

δ3Ψc[v1, v2, v3] = 3

∫ L

0

σu?3v
′
1(s)v′2(s)v′3(s) ds.

As δ3Ψc[ω1, ω1, ω1] = 0, then λ1 = 0 for both the control parameters u?2 and F (see see (45)).
However, to compute λ2 in the expansion (42), we need to calculate the second order term ω2.
Setting the second order term of (44) equal to zero for a general perturbation δω, we get the
following boundary value problemβω′′′′2 (s) +

π2βn2ω′′2 (s)

L2
+

3π3n3σu?3 sin
(
2πns
L

)
2L3

= 0,

ω2(0) = ω2(L) = ω′′2 (0) = ω′′2 (L) = 0.

A solution of this problem, satisfying the orthogonality condition (35), is given by

(50) ω2(s) = −Lσu
?
3

8πβn
sin

(
2πns

L

)
.

Summing up, using (46), it is possible to show that, if λ = u?2, then

λ2 =
1

16

(
4π4βn4

L4
− 12π2n2(σ − 1)

L2
− 3σ2u?3

2

β

)
;
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Figure 7. (Top) Bifurcation diagrams obtained by using u?2 (left) and F (right) as
control parameters for a rod having a rectangular cross-section (h/t = 10, L = 40)
in the free end case. The dashed lines in the bifurcation diagrams represent the
analytical helical configuration and the weakly nonlinear analysis predictions (red
and orange lines respectively). The circles and squares represent the numerical and
experimental results, respectively, corresponding to the snapshots shown in the
bottom part. (Bottom) Comparison of numerical (left) and experimental (right)
post-buckling evolution of the critical mode when the bifurcation is triggered by
the natural curvature u?2. The numerical and experimental configurations in the
bottom panels are obtained for increasing values of u∗2, ranging from 0.005 for A1

to 0.2 for A5. The Poisson’s ratio has been set equal to 0.35, while χ = 1 in (27)

while if the control parameter is the axial force F , then

λ2 =
1

8

(
π4βn4

L4
+

3π2n2(−5σ + 2u?2 + 4)

L2
− 3σ2u?3

2

β

)
.

In the following, we complement the theoretical analysis performed in the previous sections with
numerical simulations together with a comparison with some experiments.

5. Numerical simulations and experimental results

In this section, we present the results of numerical simulations based on a finite element ap-
proximation of the nonlinear problem. The numerical outcomes are compared with the theoretical
predictions of the previous sections as well as with some experimental realizations of the mechan-
ical system explored in this paper. The technical details on the numerical algorithm and of the
experimental setup are reported in the electronic supplementary material, while the numerical code
is available in a GitHub repository whose link is reported in the Data Accessibility statement.

5.1. Case A: Free ends. We first present the results in the case of free ends. In figure 7, we show
the outcomes for a rod having a rectangular cross-section whose aspect ratio is h/t = 10 and L = 40.
We have performed two simulations. In the first one we have used u?2 as control parameter, setting
u?1 = u?3 = F = 0. In the latter, the control parameter was −F and all the natural curvatures and
twist were set equal to zero. In the top panels we plot the bifurcation diagrams, where sup |ω| is
used as a measure of the amplitude of the buckled solution. The numerical results perfectly match
with the analytical solution of the helical configuration, represented by the red dashed line, see
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Figure 8. (Top) Bifurcation diagrams obtained by using u?2 (left) and F (right) as
control parameters for a rod having a rectangular cross-section (h/t = 10, L = 40)
in the pinned ends case. The dashed lines in the bifurcation diagrams represent
the weakly nonlinear analysis predictions (orange lines). The circles and squares
represent the numerical and experimental results, respectively, corresponding to
the snapshots shown in the bottom part. (Bottom) Comparison of numerical
(left) and experimental (right) post-buckling evolution of the critical mode when
the bifurcation is triggered by the natural curvature u?2. The numerical and ex-
perimental configurations in the bottom panels are obtained for increasing values
of u∗2, ranging from 0.005 for B1 to 0.2 for B5. In the experiments, the bound-
ary conditions ω(0) = ω(L) = 0 are enforced by means of 3D printed supports
preventing the rotation of the rod extremities (indicated with red arrows in the
experimental realization of B5). The Poisson’s ratio has been set equal to 0.35,
while χ = 1 in (27)

(29), validating the numerical code. In the neighborhood of the marginal stability thresholds, there
is a good agreement between the numerical simulations and the results of the weakly nonlinear
analysis.

Frequently, rods with a high cross-sectional aspect ratio are modeled using a ribbon model, based
on the Wunderlich’s functional [43, 14]. Indeed, as h� t, this model shows a better agreement with
experimental results compared with the Kirchhoff’s rod model exploited in this paper [23]. These
discrepancies can be related to the aspect ratio of the cross-section [30], as well as to the kind of
deformation the rods are subject to [45]. However, as shown figure 7, we find a good quantitative
agreement between experimental results (reported on the top left plot as the red squares) and
the model predictions based on the Kirchhoff’s energy functional (16). This provides evidence
of the validity of our constitutive choice for the considered range of the parameters. This is in
agreement with the results of [30], where the authors show the validity of the Kirchhoff’s model
when h/t = O(10). In figure 7 (bottom panels) we also report the post-buckling configurations
predicted by the numerical simulations side by side with the pictures taken during the experiments.

5.2. Case B: Pinned ends. The outcomes of the numerical simulations are shown in figure 8.
Not surprisingly, the bifurcation diagrams shown in figure 8 are identical to those shown in figure 7,
except for the branch corresponding to helical configurations. In fact, these solutions are ruled
out by the boundary conditions ω(0) = ω(L) = 0. This implies that the critical mode is the one
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Figure 9. Detail of the transition zone (perversion) exhibited by a rod having
L = 40, u∗2 = 0.1, and h/t = 20, 10, 5 (top, center, bottom). We observe that as
h/t grows, the perversion is more localized.

Figure 10. Different equilibrium configuration obtained for an experimental rod
with L = 100, h/t = 10, u∗2 = 0.1, exhibiting 1 (top), 2, 3, 4 (bottom) perversions.

corresponding to a configuration exhibiting a single perversion: in the post-buckling regime, the
shape of the rod evolves towards two helices having opposite chirality, connected by a transition
zone. As for Case A, we obtain a good quantitative agreement with the experimental results,
see figure 8 (reported on the top left plot as the red squares). We also report the post-buckling
configurations predicted by the numerical simulations side by side with the pictures taken during
the experiments (figure 8, bottom panels).

Interestingly, the length of the transition zone appears to be correlated with the cross section
of the rod. As shown in figure 9, thinner rods exhibit a localization of the perversion. The good
agreement between numerical computations and experiments proves that the Kirchhoff’s functional
(16) is an appropriate constitutive choice for the considered range of the parameters, just as for
the previous case.

5.3. Competition between helix and modes exhibiting a single or multiple perversions.
The results of the previous sections show that the critical buckling modes are characterized by
either helical shapes or morphologies exhibiting a single perversion, depending on the boundary
conditions applied to the rod. However, during our experiments, we have observed a more complex
multi-stable behavior: helices and single or multiple perversions can be experimentally observed
by manually deforming the rod into such shapes, that seem to be stable (see figure 10).

These results are analogous to what is observed in other similar systems. In fact, many elastic
structures can exhibit helices and perversions as a result of buckling: examples include the case of an
isolated rod with intrinsic curvature kept in tension by the action of an external force [28, 15], birod
systems (assemblies of two rods clamped together by rigid connectors) [25], and elastic bilayers
with pre-strain (where the layers are stretched before being glued together) [17, 21, 27, 26, 13, 8].

Despite the extensive literature on perversions, it is still unclear why shapes with multiple
perversions are experimentally observable, even though they do not correspond to the critical
modes as predicted by a linear stability analysis. In [26], Lestringant and Audoly propose an
explanation for the emergence of multiple perversions in an elastic bilayer. According to their
study, the selection of the critical wavelength is dictated by the aspect ratio of the bilayer and
the applied pre-strain. In their analysis, the deformability of the cross-section is of fundamental
importance to achieve this conclusion. However, for the case of a single slender rod, the assumption
of a non-deformable cross-section seems reasonable.

An alternative explanation for the appearance of multiple perversions may be related to the
energy landscape of these mechanical systems. As we have shown in section 4.1, all the bifurcation
points are very close for large L, see (30)-(38). Since the marginal stability thresholds are very
similar, we argue that the share of elastic energy of the perversion is negligible with respect to the
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Figure 11. Ratio between the energy of the buckled rod ψnum computed numer-
ically and the theoretical energy of the straight unbuckled beam as a function of
u?2 (left) and force-displacement curves (right) for a rectangular cross section with
h/t = 10, L = 40, χ = 1 and ν = 0.35. The curves corresponds to the helical and
the modes exhibiting n perversions (with n = 1, 2, 3).

total energy of the system. The results of our numerical simulations support this hypothesis: in
figure 11 (left), we plot the ratio between the energy of the buckled and of the straight configuration
as a function of the control parameter u?2. In particular, the curves are related to different bifurcated
branches, corresponding to a helical configuration or shapes exhibiting n perversions. Remarkably,
all the curves are very close one to another. A similar result is obtained when an axial force F is
applied: the force-displacement equilibrium curves for all the buckled configurations are very close
one to another, see figure 11 (right), and hence also the respective elastic energies. This implies that
the energy landscape of the system for fixed values of the control parameters is nearly flat, so that
the non critical buckling modes may be energetically favorable in the presence of imperfections.
This seems in agreement with the conjecture in [40], where the authors state that the experimental
observation of multiple perversions is caused by small perturbations and imperfections. We believe
that, in our experiments, the friction between the wire and the connectors is responsible for the
multi-stable behavior of the rods.

6. Concluding remarks

In this work, we have constructed and analyzed a model of an elastic beam free to slide along
a rigid constraint and subjected to an external axial force. The assumption of large displacements
coupled with the possibility of the rod to slide and rotate about a rigid curve w gives rise to a
highly nonlinear system, exhibiting multiple equilibrium configurations depending on the natural
curvatures and twist of the beam. Compared with the problem of a single rod deforming in space
[28], the introduction of the rigid constraint generates additional difficulties but, remarkably, allows
us to write the total energy of the system as a functional depending on a single unknown, namely
the angle ω between the normal to the curve w and the director d1.

The presence of a straight support significantly increases the critical load of the beam as com-
pared with the classical Euler’s buckling problem: in fact, for helical configurations, the buckling
load (31) does not depend on the rod length and has a finite value also in the limit case L→ +∞,
contrarily with Euler’s formula (1). In the pinned ends case, the helical mode is suppressed and
thus perversions appear, according to the bifurcation thresholds (40), which are given by the buck-
ling load for helices plus a term proportional to L−2. Interestingly, in the limit of an infinite beam,
all the bifurcation points collapse and the buckling load for the helices and for the configurations
exhibiting perversions coincide.

Our analysis allows us to unfold and explore the nonlinear behavior of this system. The nearly
flat energy landscape appears to be the main cause of the experimentally observed multi-stability
of the beams: the energy necessary to generate a perversion is negligible with respect to the total
energy of the rod whenever L� c. We argue that these features of the energy functional might be
shared also by similar systems, such as a single rod with intrinsic curvature subjected to a tensile
force [28], and be the cause of the observation of multiple perversions in both artificial and natural
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structures, such as plant tendrils [28, 17]. These results may lead to applications in the design of
shape morphing [21, 27, 38] and deployable structures [34, 24, 32]. In particular, the possibility
of controlling the force-displacement curves for helices by controlling the natural curvature u?2, as
shown in figure 3, can be exploited for the design of compliant devices with tunable stiffness.

Future efforts will be devoted to the study of this system accounting for the friction between the
constraint and the beam. This aspect is relevant for applications and is left as a possible future
investigation. Moreover, we will enrich the analysis of the proposed model by considering the case
in which w is not a rigid curve but a rod by itself. This last case has important implications in
the modeling of more complicated assemblies of rods inspired by the motility of micro-organisms
[2, 32, 36].

Data Accessibility. The source code used for the numerical simulations is available on GitHub:
https://github.com/riccobelli/coiling-rod.
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