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Abstract: In this work we develop an adaptive and reduced computational framework based on
dimension-adaptive hierarchical approximation and reduced basis method for solving high-dimensional
uncertainty quantification (UQ) problems. In order to tackle the computational challenge of “curse-of-
dimensionality” commonly faced by these problems, we employ a dimension-adaptive tensor-product
algorithm [29] and propose a verified version to enable effective removal of the stagnation phenomenon
besides automatically detecting the importance and interaction of different dimensions. To reduce the
heavy computational cost of UQ problems modelled by partial differential equations (PDEs), we adopt
a weighted reduced basis method [18] and develop an adaptive greedy algorithm in combination of
the previous verified algorithm for efficient construction of an accurate reduced basis approximation
space. The effectivity, efficiency and accuracy of this computational framework are demonstrated and
compared to several other existing techniques by a variety of classical numerical examples.

Keywords: uncertainty quantification, curse-of-dimensionality, generalized sparse grid, hierarchi-
cal surpluses, reduced basis method, adaptive greedy algorithm, weighted a posteriori error bound

1 Introduction

While discovering deterministic laws from observation and experimental data remains at the center
of computational science and engineering problems, how to identify, quantify and interpret various
uncertainties arising from raw data, mathematical models and computational errors become more and
more important. Indeed, input data may inevitably be affected by many different uncertainties, for
instance computational geometries extracted from noisy images, lack of knowledge for model coeffi-
cients and external loadings; another one arises from the increasing interest in more precise statistical
assessment of output quantities such as probability distribution, expectation, risk evaluation, sensi-
tivity analysis and so on. Further instances concern the solution of optimal control and parameter
identification problems in the presence of uncertainties, data assimilation problems aimed at reducing
the uncertainties of the state variable by observational data. These and other requests have lead to
the development of statistical and stochastic computational methods in solving, what nowadays falls
under the general term of, uncertainty quantifications (UQ) problems.

Many different computational methods have been proposed and developed during the last few
decades to solve UQ problems. Among the most widely used is the sampling based Monte Carlo
method and its various accelerated versions [25, 20], which are straightforward for implementation
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although it is commonly blamed for slow convergence. A fast convergent method based on the classi-
cal idea of projection has been developed under the name of stochastic Galerkin methods, for which
different bases of projection can be used such as piecewise finite element and generalized polynomials
[30, 74, 3, 66]. However, this method results in a large tensor algebraic system that brings considerable
numerical difficulty (ill-posedness) and computational effort (need to design the efficient precondition-
ers). Another efficient sampling based method, stochastic collocation method [1], has been developed
by taking advantage of the easy implementation of Monte Carlo method and the fast convergence
of stochastic Galerkin method. In order to alleviate the computational cost, sparse grid techniques
[33, 73, 47] are applied to reduce the total number of the nodes or samples. More recently, model
order reduction techniques, including the reduced basis method [45, 8, 18] and the proper generalized
decomposition method [49, 51], have been developed by expanding the stochastic solution with respect
to a few bases that are constructed offline depending on the underlying models. Many more different
computational methods have in addition been developed for specific instances of UQ problems, see
[72, 50, 2] for reviews.

Unfortunately, all these methods (except the brute-force Monte Carlo method) are affected by a
common computational challenge, which is known as “curse-of-dimensionality”. When the dimension
of the uncertainties becomes high (in the order of 100 and beyond), the number of projection bases or
collocation nodes grows exponentially fast such that the computational burden can not be handled by
even the most powerful computers. Another computational challenge stems from the fact that when
the solution of the underlying model at one sample is expensive, the available computational resource
can only afford the full solve at a few tens or hundreds samples, which is far from the required number
(in the order of million or beyond) in a high-dimensional space. Any of the two challenges makes it
impossible a direct application of the stochastic computational methods introduced above in solving
high-dimensional UQ problems.

An opportunity to tackle this “curse-of-dimensionality” is to take advantage of the sparsity – the
importance (or sensitivity) of different dimensions and their interaction/combination is very different
for the quantities of interest, so that only a limited number of dimensions play an effective role. This
role has lead to the development of the weighted function space based quasi Monte Carlo method
[20], a priori and a posteriori analysis based anisotropic sparse grid construction [46], (Sobol) de-
composition of function based techniques such as ANOVA (analysis of variance) [33, 28, 26], HDMR
(high-dimensional model representation) [42], hierarchical surplus based dimension-adaptive general-
ized sparse grid techniques [9, 29, 33], and so on [7, 6, 44]. The quasi Monte Carlo method improves
the convergence rate of the Monte Carlo method (which is O(1/

√
M) when using M randomly cho-

sen samples) by following some digit rules or lattice rules [20] that explore the “weights” of different
dimensions when choosing the samples. A faster convergence rate (typically O((log(M))K/M) for K
dimensional problems) can be achieved in this way. However, when the functions to be approximated
feature smoothness and sparsity in the sense that the effective dimensions are much less than the total
or nominal dimensions, the quasi Monte Carlo method is still too slow compared to the stochastic
Galerkin method or the stochastic collocation method. Smoothness and sparsity have been exploited
by anisotropic sparse grid techniques based on either a priori or a posteriori analysis of the convergence
rate of the approximate error in each stochastic dimension [46]. This has proved to be more efficient
than the isotropic sparse grid in certain test cases. An essential drawback remains for this approach in
that the interaction of different dimensions can not effectively be taken into account, leading to either
too many useless grid nodes or less accurate approximation for some strongly interacting variables. As
the high-dimensional function may be decomposed into a series of low-dimensional additive functions
depending on the interaction of different dimensions, the variance based ANOVA (in combination
with HDMR) approach has been employed to detect the interactions. Nevertheless, this approach
may either be too expensive (more expensive than the original approximation problem based on
Lebesgue measure) or not enough accurate (due to arbitrary choice of anchored points based on Dirac
measure) and not suitable for high-dimensional interpolation (pointwise evaluation) for stochastic
problems with arbitrary probability measure. Another recently developed method under the name of
dimension-adaptive tensor-product integration [29] uses a generalized sparse grid construction scheme
and employs hierarchical surplus from the construction as error indicators to automatically detect
different importance and interaction of different dimensions. Although being essentially equivalent to
the anchored ANOVA approach, it is more versatile with different choice of hierarchical surpluses and
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suitable for interpolation problems. Still, it is to blame for the drawback of running into stagnation
phenomenon, where too early stop of the grid construction in some region occurs before arriving at
the desired accuracy of approximation. Another drawback is it use one higher level of grid to assess
the error indicators, resulting in a very heavy computational cost.

In this work, we adopt the more versatile dimension-adaptive algorithm based on hierarchical
surpluses and generalized sparse grid construction for both integration and interpolation. However,
we propose two remedies in addressing the drawbacks and enhancing both its efficiency and accuracy
for solving different UQ problems. As for the first drawback of running into stagnation, a balanced
greedy algorithm was suggested in [29] and [39], where a purely greedy criteria of choosing the next
index by hierarchical surplus for grid construction is balanced by performing the conventional sparse
grid construction. However, it is neither possible to choose an optimal balance weight nor feasible
to use the same weight throughout the whole grid construction. Alternatively, we propose to carry
out a verification procedure in order to get rid of the stagnation phenomenon. The basic idea is that
whenever the construction is stopped at some region by meeting certain criteria, we check whether it
should be continued by some verification algorithms specific to different dimensional problems. This
approach avoids the difficulty in tuning the balanced weight parameter and works efficiently to get
out of the stagnation region for grid construction at the appropriate moment.

The verification remedy has not yet been studied in the literature or applied in practice because
it needs additional verification samples besides the ones used for assessing hierarchical surpluses in
one higher level. This drawback is critical for large-scale UQ problems that already require large
computational efforts in solving the underlying PDE model at one sample, as the second computational
challenge mentioned before. In order to harness the computational burden, we employ a reduced basis
method, which has been used in combination with ANOVA in [36], and develop an adaptive and
weighted algorithm in the framework of the verified hierarchical approximation. The rationale of this
computational approach is deeply rooted in probability theory: though the random inputs live in a
high-dimensional space, the output of interest (statistics of these random inputs) may only lie in a
low-dimensional manifold, for instance the arithmetic mean of a large number of independent random
variables fulfilling certain conditions (e.g. having finite variance) converge to a (Gaussian) random
variable, as guaranteed by the central limit theorem [22]. This fact enables us to construct a reduced
bases space with a few number of bases while achieving high accuracy in approximating the high
fidelity solution, e.g. finite element solution and the output of interest. Based on this idea and using
the reduced basis method for parametrized PDEs [43, 61, 52, 32, 31, 18], we develop an adaptive greedy
algorithm in combination with the verified dimension-adaptive hierarchical grid construction procedure
to solve high-dimensional UQ problems. In order to take the arbitrary probability measure into
account, we use a weighted a posteriori error bound for guiding the selection of the most representative
bases [18]. This proves to be more efficient with much less bases in achieving the same approximation
accuracy as the a posteriori error bound without incorporating the weight.

By the end, an adaptive and reduced computational framework is developed in efficiently and
accurately solving high-dimensional UQ problems that feature sparsity and reducibility. Application of
the proposed framework in solving high-dimensional UQ problems based on more general PDE models,
such as non-affine, non steady, non-compliant, non-coercive and nonlinear problems can be realized by
resorting to specific techniques and computational approaches, e.g. empirical interpolation, primal-
dual approach, supermizers enrichment, POD-greedy algorithm and Newton iteration, respectively,
which will be summarized in this work. A series of numerical experiments featuring various properties
for both functions and PDEs are carried out in demonstrating the efficiency and accuracy of our
method and in comparing its computational performance to several other techniques.

The paper is organized as follows. A family of uncertainty quantification problems is introduced in
section 2 based on a general formulation. For their numerical solution two computational challenges
are identified and briefly illustrated. Section 3 is devoted to the development of the verified dimension-
adaptive hierarchical approximation based on generalized sparse grid construction, for which the one
dimensional hierarchical interpolation and integration, and a conventional sparse grid construction, is
introduced and illustrated at first. Some remarks regarding the computational effectivity, efficiency
and accuracy of this method in comparison with some other techniques are provided at the end of this
section. In section 4, the adaptive and weighted reduced basis method is presented based on a simple
PDE model - a linear, coercive elliptic equation with affine random inputs, where the adaptive greedy
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algorithm and weighted a posteriori error bound are developed in details together with the presentation
of the offline-online computational decomposition for gaining computational efficiency. Remarks about
extensions of the reduced basis method in solving more general PDE models are summarized at the
end of the section. A large effort has been devoted to conducting a variety of numerical experiments in
section 5, including 10 examples in 6 different topics that offer a rich diversity for demonstrating the
accuracy and efficiency of the proposed computational framework and comparing them with several
other techniques. In the last section, we close the paper by drawing some conclusions based on the
numerical experiments and providing a few further research perspectives for developing and applying
the adaptive and reduced computational framework in solving more general high-dimensional UQ
problems.

2 Uncertainty quantification (UQ) problems

In this section, we start with defining some basic elements of probability, followed by the presentation
of a general formulation of partial differential equations (PDEs) with random inputs. We will denote
these equations as “stochastic PDEs” even though this name is traditionally reserved to PDEs with
forcing term expressed by a Brownian motion or different kind of noises [71]. Associated with the
stochastic PDEs, several uncertainty quantification (UQ) problems largely studied in the literature
will be stated in section 2.3. By the end of this section, we identify some common computational
challenges in solving the UQ problems.

2.1 Basic notation

Let (Ω,F, P ) denote a complete probability space, where Ω is a set of outcomes ω ∈ Ω, F is a σ-algebra
of events and P : F → [0, 1] with P (Ω) = 1 is a probability measure. A real-valued random variable
is defined as a measurable function Y : (Ω,F) → (R,B), being B the Borel σ-algebra on R. The
distribution function of a random variable Y : Ω → Γ ⊂ R, being Γ the image of Y , is defined as
FY : Γ → [0, 1] such that with FY (y) = P (ω ∈ Ω : Y (ω) ≤ y) and its probability density function
ρ : Γ → R is given by ρ(y)dy = dFY (y) provided that the random variable is continuous [22]. For any
positive integer k ∈ N+, the k-th moment of Y is defined as

E
[
Y k
]
=

∫

Ω

Y k(ω)dP (ω) =

∫

Γ

ykdFY (y) =

∫

Γ

ykρ(y)dy. (2.1)

Let D be an open and bounded physical domain in R
d (d = 1, 2, 3) with Lipschitz continuous

boundary ∂D. Let v : D × Ω → R represent a general real-valued random field, which is a real-
valued random variable defined in Ω for each x ∈ D. We define the product Hilbert space Hs(D) :=
L2(Ω)⊗Hs(D) ≡ L2

ρ(Γ)⊗Hs(D), s ∈ R equipped with the norm

||v||Hs(D) :=

(∫

Ω

||v(·, ω)||2Hs(D)dP (ω)

)1/2

≡
(∫

Γ

||v(·, y)||2Hs(D)ρ(y)dy

)1/2

< ∞, (2.2)

where Hs(D) is the Hilbert space of functions defined in the physical domain D [54, 58]. When s = 0,
we denote H0(D) ≡ L2(D), and thus H0(D) ≡ L2(D) by convention.

2.2 Stochastic partial differential equations

We consider the following stochastic PDE: find u : Ω×D → R such that the following equations hold
almost surely, i.e. for almost every ω ∈ Ω

{
L(u;x, ω) = f(x, ω) x ∈ D,
B(u;x) = g(x) x ∈ ∂D.

(2.3)
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Here, L is a differential operator defined in the domain D, B is a boundary operator defined on
the boundary ∂D. f and g represent forcing term and the boundary condition, respectively. The
uncertainties of the stochastic PDE may arise from coefficients, geometries, forces and boundary
conditions. For simplicity, we only consider the differential operator L and the forcing term f to be
stochastic, while the other sources of uncertainty can be accounted for in a similar way. We assume
that the random coefficients in L and the forcing term f satisfy certain regularity conditions in both
the physical space and the probability space so that the stochastic PDE are well posed and the
stochastic solution lives in a tensor-product Hilbert space, i.e. u ∈ Hs(D) for some s ∈ R depending
on the regularity of the input data.

Another important assumption, which enables the application of the stochastic computational
methods introduced in this work, is the so called “finite dimensional noise assumption” [3, 1]. In short,
the uncertainties of the stochastic PDE live in a finite dimensional probability space in the sense that
there exist K ∈ N+ random variables Yk : Ω → R, k = 1, . . . ,K, such that L(u;x, ω) and f(x, ω)
depend on ω only through Y1(ω), . . . , YK(ω), i.e. L(u;x, Y1(ω), . . . , YK(ω)) = f(x, Y1(ω), . . . , YK(ω)).
Therefore, u(x, ω) = u(x, Y1(ω), . . . , YK(ω)) and u is measurable with respect to the σ-algebra gener-
ated by Y1, . . . , YK , according to Doob-Dynkin Lemma [22]. Let the image of the random variable Yk

be Γk ⊂ R with Yk(ω) = yk ∈ Γk for k = 1, . . . ,K. Then we define the probability image domain as

Γ =
∏K

k=1 Γk and assume that there exists the joint probability density function ρ : Γ → R. Then the
stochastic PDE (2.3) can be recast as a parametric PDE: find u : Γ×D → R such that

{
L(u;x, y) = f(x, y) x ∈ D,
B(u;x) = g(x) x ∈ ∂D,

(2.4)

for almost every parameter y = (y1, . . . , yK) ∈ Γ. Therefore, when replacing the stochastic PDEs (2.3)
by the equivalent parametric PDEs (2.4), the Lebesgue measure dy is replaced by a probability measure
ρ(y)dy, e.g. the integral of the solution is given by

∫

Γ
uρ(y)dy.

2.3 Formulation of UQ problems

Associated with the stochastic PDE (2.3), the quantities of interest may be the solution u, the solution
associated to a certain physical region or to the boundary, some functional s : u(y) → s(y) ≡ s(u(y)),
etc.. Here is a list (far from exhaustive) of uncertainty quantification problems:

1. compute the probability density function or the cumulative distribution function of either u or
s [25];

2. evaluate statistical moments, e.g. mean E[s], variance V[s] := E[s2]− (E[s])2, etc. [3, 1];

3. perform derivative-based local sensitivity analysis, e.g. compute du(y)/dy or ds(y)/dy [63];

4. perform variance-based global sensitivity analysis, e.g. compute Vk[s]/V[s], where Vk[s] is the
variance of s due to the random variable Yk, k = 1, . . . ,K [10, 15];

5. perform risk analysis, e.g. for a given critical value s0, compute the failure probability [41, 12]

P (ω ∈ Ω : s(ω) < s0); (2.5)

6. solve stochastic optimal control problems, e.g. the following minimization problem [16, 14, 69]

f = arg min
f∈Uad

J (u, f) such that u satisfies problem (2.4), (2.6)

where f is regarded as a deterministic control function living in an admissible space Uad, ud is
a given observation or ideal data, α is a regularization parameter, and the cost functional is

J (u, f) := ||u− ud||Hs + α||f ||L2 . (2.7)
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7. solve an inverse problem, e.g. given experimental data u or s with certain noise η, evaluate the
posteriori density ρpost of a random coefficient a of L based on its priori density ρpr [5, 64, 75].

From a numerical standpoint, the above UQ problems could be classified as follows: for problems
1, 3, 5, 7, we look for pointwise evaluation of the stochastic solution, i.e. compute u(y) or s(y) at
many y ∈ Γ; problems 2, 4, 6 require the evaluation of statistical moments. Interpolation techniques
are requested for the former class, integration techniques for the latter.

2.4 Computational challenges

Many stochastic computational methods, e.g. the stochastic collocation method [73, 1], face a critical
computational challenge: high dimensionality, which requires an exponentially increasing number of
collocation (for interpolation) or quadrature (for integration) nodes with growing probability dimen-
sion K. Figure 2.1 depicts the total number of nodes in tensor product (left) and sparse grid (right)
structures with different probability dimensions. The left one reports the results in dimensions 1, 5,
10, 20, 50 and 100 with the number of nodes in each dimension increasing from 1 to 8, from which we
can see that the number of nodes easily overpasses the capacity of computational power in relatively
high dimensions, e.g. 2100 ≈ 1030 nodes are needed for 100 dimensional case with only 2 nodes in
each dimension. The results of sparse grid (Smolyak type with Clenshaw–Curtis nodes [73, 47], corre-
sponding to Chebyshev–Gauss–Lobatto nodes in the context of spectral methods [11]) for dimension
going up to 200, 500 and 1000 are displayed on the right of Figure 2.1. Compared to tensor product
structure, the sparse grid structure considerably reduces the number of nodes, e.g. around 106 and 109

nodes are needed with 9 nodes in each dimension at sparse grid level 3 for 100 and 1000 dimensional
cases. Nevertheless, only tens or hundreds of nodes are affordable in practical engineering problems
when a full solve of the underlying PDEs is very expansive. This requirement prevents a direct use of
sparse grid techniques for even moderate dimensional problems. This challenge is particularly relevant
to UQ problems 6 and 7, namely optimization and inverse problems, for which many full solves (in
the order of tens or hundreds) of the underlying PDEs, using some iteration method [54], have to be
performed at each of a large number of nodes [13, 14]. A large research effort has been devoted to
deal with this computational challenge, e.g. [9, 29, 33, 46, 26, 42, 51, 36, 20].
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Figure 2.1: Number of collocation (for interpolation) or quadrature (for integration) nodes of tensor
product structure (left) and sparse grid structure (right) for different probability dimensions.

Another computational challenge, which we would like to emphasize again, for solving most of
the PDE-based UQ problems is that the numerical solution of the underlying PDE model might
require a large computational effort: this is e.g. the case of multiscale and/or multiphysics problems.
In these circumstances, only a few tens or hundreds of the underlying PDEs can be fully solved,
therefore preventing direct application of any method mentioned above in solving high-dimensional
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UQ problems, for which a large number (in the order of million and beyond) of PDEs have to be
solved in order to evaluate the quantity of interest. This computational challenge is critical for UQ
analysis in many practical engineering fields. Research in addressing this challenge in the context of
high-dimensional UQ problems is still in its infancy [51].

3 Verified dimension-adaptive hierarchical approximation

In this section, we present the dimension-adaptive tensor-product algorithm for hierarchical approx-
imation of high-dimensional UQ problems based on the work [9, 29, 39]. Our original contribution
is to identify the stagnation phenomenon in the hierarchical construction of a generalized sparse grid
for this algorithm and propose a verified version of this algorithm in order to cure this undesirable
behavior. Suitable error indicators (in particular, a new integration error indicator) are provided
for interpolation and integration problems. Some comparisons with several other techniques, e.g.
anisotropic sparse grid [46] and variance-based ANOVA (HDMR) [26, 42], are provided at the end of
this section.

3.1 Hierarchical interpolation and integration in one dimension

For numerical interpolation of function s : Γ → R in a one dimensional probability domain Γ ⊂ R, we
first pick a series of collocation nodes yj ∈ Γ, j = 0, . . . ,m, ordered such that y1 < y2 < · · · < ym and
for any given y ∈ Γ, we approximate the function value s(y) by the interpolation formula

s(y) ≈ Us(y) =
m∑

j=1

s(yj)lj(y), (3.1)

where U is an interpolation operator; lj , 1 ≤ j ≤ m are basis functions that, depending on the
regularity of the function s with respect to y in Γ, are either piecewise polynomials or global poly-
nomials [57]. For instance, the piecewise linear polynomials most often used in approximating low
regularity functions are defined as

lj(y) =







y − yj−1

yj − yj−1
, if y ∈ [yj−1, yj ], j = 2, . . . ,m;

yj+1 − y

yj+1 − yj
, if y ∈ [yj , yj+1], j = 1, . . . ,m− 1.

(3.2)

Though converging very slowly (thus requiring a large number of nodes for accurate approximation),
these bases lead to uniform convergence when the nodes become dense in the domain Γ. As for the
approximation of smooth functions, more suitable are the globally supported polynomials, for instance
Lagrange polynomials defined as

lj(y) =

m∏

l=1,l 6=j

y − yl

yj − yl
, j = 1, . . . ,m, (3.3)

for a suitable set of nodes such as Gauss quadrature nodes, Chebyshev or Clenshaw–Curtis nodes [57,
70]. For instance, the Clenshaw–Curtis nodes in the interval [−1, 1] are given by

yj = cos

(
j − 1

m− 1
π

)

, 1 ≤ j ≤ m. (3.4)

Let i ∈ N+ denote the grid level, Θi denote the set of collocation nodes on the grid of level i, with
m(i) being the number of nodes on the grid of level i, for instance

m(1) = 1; m(i) = 2i−1 + 1, i ≥ 1. (3.5)
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We consider nested set of nodes, i.e. Θi ⊂ Θi+1, i = 1, 2, . . . , q with q ∈ N+. In this way, the
hierarchical interpolation formula can be written as [9, 39]

s(y) ≈ Uqs(y) =

q
∑

i=1

△is(y), (3.6)

where △i is the difference of interpolation operators at two successive levels, defined as

△i = U i − U i−1, 1 ≤ i ≤ q, (3.7)

being U0 = 0 and U i the interpolation operator supported on Θi. For notational convenience, let us
define Θi

△ = Θi \ Θi−1, 1 ≤ i ≤ q with Θi−1 := ∅, and reorder the collocation nodes y1, . . . , ym(q) in

Θq = ∪q
i=1Θ

i
△ level by level in such a way that yij ∈ Θi

△, 1 ≤ i ≤ q, 1 ≤ j ≤ m(i) − m(i − 1) with
m(0) = 0. Corresponding to the reordering of the collocation nodes, we denote the basis functions
as lij , 1 ≤ i ≤ q, 1 ≤ j ≤ m(i) −m(i − 1). Thanks to the hierarchical structure Θi−1 ⊂ Θi, U i−1s =

U i ◦ U i−1s. Moreover, s(yij) = U i−1s(yij) for yij ∈ Θi−1. Therefore, the interpolation operator (3.6)
can be rewritten as

Uqs(y) =

q
∑

i=1

(
U is(y)− U i ◦ U i−1s(y)

)
=

q
∑

i=1

∑

yi
j
∈Θi

△

(s(yij)− U i−1s(yij))
︸ ︷︷ ︸

si
j

lij(y). (3.8)

The real number sij is called hierarchical surplus [9], which provides a measure of the interpolation

accuracy of the interpolant U i−1 on the successive grid of level i. When this surplus is small, a
relatively accurate interpolation is obtained at the corresponding node and grid level.
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Figure 3.1: Construction of interpolation based on nodal basis (left) and hierarchical basis (right).

The construction of interpolation based on nodal basis (left) and hierarchical basis (right) in the
form of piecewise linear polynomials are illustrated in Figure 3.1, from which we can see that the
interpolation constructed by the two approaches are equivalent in evaluating function values at any
y ∈ Γ. However the latter also provides an estimate of interpolation error via hierarchical surpluses.
For instance, s21 and s22 are the errors of a constant approximation of the function at nodes y21 and y22 ,
which can provide a rough estimate of the interpolation accuracy.

As for numerical integration in evaluating statistical moments, we can take advantage of the
interpolation formula (3.8) and assess the accuracy of integration by hierarchical surplus. For instance,
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the expectation of the function s can be computed by

E[s] ≈ E[Uqs] =

q
∑

i=1

∑

yi
j
∈Θi

△

sijw
i
j , (3.9)

where the quadrature weights wi
j are computed by

wi
j =

∫

Γ

lij(y)ρ(y)dy, 1 ≤ i ≤ q, 1 ≤ j ≤ m(i)−m(i− 1) (3.10)

using suitable quadrature rules depending on the choice of different collocation nodes [57]. Similarly,
the kth (k ≥ 2) order statistical moments can be evaluated by setting the hierarchical surpluses as
sij = sk(yij)− U i−1sk(yij), 1 ≤ i ≤ q, 1 ≤ j ≤ m(i)−m(i− 1).

Based on the hierarchical surplus sij , we may define the interpolation error Ei and the integration
error Ee as

Ei := max
1≤j≤m(q)−m(q−1)

|sqj |, Ee :=
∑

yq
j
∈Θq

△

sqjw
q
j . (3.11)

There quantities can be used as error indicators in adaptively constructing the interpolation formula
(3.8) and integration formula (3.9), respectively. However, one drawback of using the hierarchical
surplus as error indicator is that the error may be underestimated where the refinement of the grid
has stagnated at an early stage. For instance, in the interpolation constructed from hierarchical basis,
the interpolated function values coincide with the true function values at the nodes y31 and y32 as
shown in Figure 3.2 in two cases – hierarchical interpolation based on locally supported piecewise
linear polynomials and globally supported Lagrange polynomials – so that the hierarchical surplus s31
and s32 become zero, leading to the termination of the adaptive construction of the grid to the next
level even the approximation is far from accurate in almost all the region.
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Figure 3.2: Stagnation phenomenons for hierarchical interpolation. Left: piecewise linear polynomials
based on equidistant nodes; right: Lagrange polynomials based on Clenshaw–Curtis nodes.

In order to get rid of this stagnation phenomenon, we propose to check the interpolation accuracy
(via hierarchical surplus) at the nodes of the next grid level. If the error indicator is larger than the
error tolerance, we continue the construction procedure to the next level. Otherwise, we stop. The
construction procedure of hierarchical interpolation stopped by satisfying certain error tolerance is
summarized in Algorithm 1, which can also be used for hierarchical integration with the interpolation
error indicator Ei replaced by the integration error indicator Ee.

Remark 3.1 There is the possibility that the error indicator in the next grid level might still be smaller
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than the error tolerance when the approximation is not good enough somewhere, e.g. for continuous

functions displaying high oscillation at some very locally supported region that has not been explored by

interpolation nodes. In this case, which is also difficult to handle by other interpolation techniques, we

may randomly select a certain number of nodes to perform further verification besides using the nodes

in the next grid level, expecting that the region can be touched by these nodes with large possibility.

This empirical idea needs to be further investigated to balance computational efficiency and accuracy.

Algorithm 1 Verified hierarchical interpolation in one dimension

1: procedure Initialization:

2: specify error tolerance εt, type of interpolation bases l(y) and nodes y, specify function m(i);
3: specify maximum level q, set i = 1, Θ1 = {y1j , 1 ≤ j ≤ m(1)} and evaluate s11 = s(y1j );
4: set Ei = 2εt;
5: end procedure

6: procedure Construction:

7: while Ei > εt and i ≤ q do

8: provide the set of nodes Θi
△ = {yij , 1 ≤ j ≤ m(i)−m(i− 1)};

9: for all yij ∈ Θi
△, evaluate function values s(yij) and the interpolation U i−1s(yij) by (3.8);

10: compute the hierarchical surpluses sij = s(yij)−U i−1s(yij) and error indicator Ei by (3.11);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11: procedure Verification:

12: if Ei ≤ εt then
13: go to the next level i = i+ 1 and repeat the steps in line 8 - line 10;
14: end if

15: end procedure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16: if Ei ≤ εt then
17: return .
18: else

19: go to the next level i = i+ 1;
20: end if

21: end while

22: end procedure

3.2 Hierarchical Smolyak sparse grid in multiple dimensions

In multiple dimensional numerical interpolation, when Γ ⊂ R
K ,K = 2, 3, . . . , the univariate interpo-

lation formula (3.6) can be straightforwardly extended as the tensor product interpolation [1]

Iqs(y) := (Uq
1 ⊗ · · · ⊗ Uq

K) s(y) =

q
∑

i1=1

· · ·
q
∑

iK=1

(
△i1

1 ⊗ · · · ⊗ △iK
K

)
s(y), (3.12)

where Uqk
k and△ik

k are the univariate interpolation and difference operators in dimension k = 1, . . . ,K.
Since, as shown in Figure 2.1, the tensor product interpolation needs too many collocation nodes, the
Smolyak sparse grid interpolation [67]

Sqs(y) =
∑

|i|≤q

(
△i1

1 ⊗ · · · ⊗ △iK
K

)
s(y) (3.13)

is employed to reduce the number of nodes, where the multivariate index i = (i1, . . . , iK) ∈ N
K
+

represents the multi-dimensional grid level with interaction level |i| = i1 + · · · + iK ; q ≥ K denotes
the total level of the isotropic sparse grid. To obtain a hierarchical representation of the sparse grid
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interpolation (3.13), we split it as follows

Sqs(y) = Sq−1s(y) +△Sqs(y), with △Sqs(y) :=
∑

|i|=q

(
△i1

1 ⊗ · · · ⊗ △iK
K

)
s(y). (3.14)

A more explicit expansion for △Sqs(y) is

△Sqs(y) =
∑

|i|=q

∑

j

(
s(yi1j1 , . . . , y

iK
jK

)− Sq−1s(y
i1
j1
, . . . , yiKjK )

)

︸ ︷︷ ︸

si
j

(
li1j1(y1)⊗ · · · ⊗ liKjK (yK)

)

︸ ︷︷ ︸

li
j

. (3.15)

Here, yikjk ∈ Θik
△ is the jkth node of grid level ik in dimension k = 1, . . . ,K and likjk is the corre-

sponding basis function; sij is the hierarchical surplus at node j of grid level i, which can be used as
an error indicator for the construction of adaptive sparse grid. The hierarchical construction of the
two dimensional full grid and sparse grid based on Clenshaw–Curtis nodes is illustrated in Figure 3.3
(the size of markers indicates the level of grid), where 1, 4, 8 nodes are added in the 1st, 2nd and
3rd level of sparse grid corresponding to |i| = 2, 3, 4 for the dimension K = 2. Note that the sparse
grid contains less nodes than the full grid and achieves the same approximation accuracy by taking
advantage of the assumption that the interaction level of different dimensions stays small, especially
in high-dimensional case. For instance the interpolation (3.12) based on the full grid and (3.13) on the

sparse grid in Figure 3.3 can reconstruct exactly any polynomial in the form y
m(i1)−1
1 y

m(i2)−1
2 such

that i1+ i2 ≤ 4. However sparse grid interpolation will produce approximation error when i1+ i2 > 4,
in which case the full grid interpolation is exact as long as i1 ≤ 3 and i2 ≤ 3. Problems featuring
dimensions independent to each other or small interaction level are called separable dimensional prob-
lems; for them the sparse grid approximation is more favorable. In order to detect the interaction level
of different dimensions and enrich the nodes accordingly, the hierarchical surplus sij can be employed
directly, as we will see in the next sections.

|i| = 2

(i1, i2) = (1, 1)

(i1, i2) = (1, 2)

|i| = 3

(i1, i2) = (2, 1) (i1, i2) = (3, 1)

(i1, i2) = (1, 3)

|i| = 4

(i1, i2) = (2, 2)

(i1, i2) = (2, 3)

(i1, i2) = (3, 2)

(i1, i2) = (3, 3)

Figure 3.3: Illustration of hierarchical construction of full grid and sparse grid in two dimensions.
Left: construction procedure with solid box indicating sparse grid and with the additional dashed box
full grid; right: sparse grid (nodes of the first three largest markers in size) and full grid (all nodes).

As for the multivariate numerical integration based on the hierarchical sparse grid interpolation
formula (3.13), we obtain the integration formula assembled in a hierarchical form as

E[s] ≈ E[Sqs] =

q
∑

p=K

∑

|i|=p

∑

j

sijw
i
j, (3.16)
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where the weight

wi
j =

∫

Γ

(
li1j1(y1)⊗ · · · ⊗ liKjK (yK)

)
ρ(y)dy, (3.17)

is computed approximately by a suitable quadrature rule depending on the choice of nodes. Provided
that the probability density function is separable, i.e. ρ(y) =

∏K
k=1 ρk(yk), we have

wi
j =

K∏

k=1

wik
jk
, with wik

jk
=

∫

Γk

likjk(yk)ρ(yk)dyk, 1 ≤ k ≤ K, (3.18)

which can be precomputed and stored for the sake of computational efficiency. We remark that,
when the function s is continuous in Γ, the hierarchical surpluses sij → 0 with |i| = q as the total
approximation level q → ∞ for both interpolation and integration. Therefore, we may estimate the
sparse grid interpolation error Ei and integration error Ee respectively as

Ei = max
|i|=q,j

|sij| and Ee =
∑

|i|=q

∑

j

sijw
i
j. (3.19)

3.3 Dimension adaptation for high-dimensional problems

As we can observe from Figure 2.1, sparse grid introduced in the last section considerably reduces the
total number of collocation nodes, making it advantageous to solve moderate (several tens [73, 47])
dimensional approximation problems as well as high (several hundreds or beyond [39]) but separable
dimensional problems. However, when the dimensions become too high and the interaction level
of different dimensions becomes big, sparse grid techniques are difficult to be directly applied due to
computational constraint, e.g. around 1012 nodes are needed to approximate 100 dimensional problems
with interaction level 7, see Figure 2.1. In this section, we take advantage of the hierarchical surplus
and adopt the dimension-adaptive approach [9, 39] to cope with high-dimensional approximation
problems. In particular in Algorithm 2, we will propose a high-dimensional verification procedure
to deal with possible stagnation phenomena and a new adaptive criterion more suitable for high-
dimensional integration problems. Other techniques are also considered for comparison with our
proposed approach in a series of remarks.

The sparse grid interpolation based on the difference operator (3.13) is constructed in an isotropic
manner due to the restriction |i| ≤ q. For a more general construction of sparse grid interpolation, we
break the isotropic restriction and pose only an admissibility condition to satisfy the essential property
(3.6) of the hierarchical representation [9, 39]. The set of indices S ⊂ N

K
+ is called admissible if for

each i ∈ S, the indices i− ek ∈ S for all k = 1, . . . ,K such that ik > 1. Note that ek ∈ {0, 1}K with
the kth element as one and the other elements zero. The sparse grid constructed from an admissible
set is called generalized sparse grid [9], which includes both the isotropic sparse grid with the index
set Si := {i ∈ N

K
+ : |i| ≤ q} and the full tensor product grid with the index set St := {i ∈ N

K
+ :

ik ≤ q, 1 ≤ k ≤ N}. In the admissible index set Sm, being m the cardinality of Sm, we can write the
generalized sparse grid interpolation formula (3.13) in a hierarchical way as

Sgs(y) =
∑

i∈Sm

∑

j

sijl
i
j. (3.20)

Correspondingly, the generalized sparse grid integration formula (3.16) can be written as

E[s] ≈ E[Sgs] =
∑

i∈Sm

∑

j

sijw
i
j. (3.21)

At the root level, we set S1 = {1}, in which case the hierarchical surplus sij takes the value of the

function s at yij. At the next level, we enrich S1 with the indices of the forward neighborhood of the

root index 1, i.e. Sm = {1,1+ek, 1 ≤ k ≤ K} with m = K+1 and compute the hierarchical surplus sij
for i ∈ Sm \ {1}. Afterwards, the index i is picked corresponding to the largest error indicator defined
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via sij and enrich Sm with the indices from {i + ek, 1 ≤ k ≤ K} such that Sm remains admissible.
Here, we follow [39] to use the averaged hierarchical surplus as the error indicator to pick i

i = argmax
i∈A

Ei(i) with Ei(i) :=
1

n(i)

∑

j

|sij|, (3.22)

where n(i) is the number of nodes added due to the enrichment of the index i ∈ Sm; A ⊂ Sm is the
active index set collecting all the indices in Sm whose forward neighbors has not been processed. The
complementary of A is called old index set with notation O = Sm\A . After the enrichment, we move
the index i from A to O and add the admissible forward neighbors of i into A and Sm. Subsequently,
we carry out the same procedure to enrich Sm in an adaptive way until satisfying certain stopping
criteria, e.g. error tolerance or maximum number of nodes. As for high-dimensional integration, we
propose to build the dimension-adaptive sparse grid based on a new error indicator

Ee(i) :=
1

n(i)

∣
∣
∣
∣
∣
∣

∑

j

sijw
i
j

∣
∣
∣
∣
∣
∣

, (3.23)

which takes into account three factors: the hierarchical surpluses, the quadrature weights that cor-
respond to arbitrary probability density function and the work contribution by dividing n(i). We
remark that the error indicator (3.23) tends to underestimate the integral error since only one index
is considered. We provide a more reasonable estimate for the integral error as

Ee(A ) =

∣
∣
∣
∣
∣
∣

∑

i∈A

∑

j

sijw
i
j

∣
∣
∣
∣
∣
∣

. (3.24)

The construction of the generalized sparse grid in the above procedure not only automatically de-
tects the importance and interaction of different dimensions but also adaptively builds an anisotropic
sparse grid without any a priori knowledge or a posteriori processing. However, as in the one dimen-
sional case, stagnation of the adaptive construction might occur at some index i ∈ A , thus preventing
accurate approximation at an early stage of the hierarchical construction. To overcome this draw-
back, several algorithms have been proposed in [9, 39] to keep the balance between the purely greedy
adaptive construction and a conservative grid construction. For instance, given a weight parameter
w ∈ [0, 1], we add the forward neighbors of the index i, regardless of Ei or Ee, to the active index set
A as long as [39]

mini∈A |i|
maxi∈A ∪O |i| ≤ (1− w), (3.25)

where w = 1 corresponds to the purely greedy adaptive construction and w = 0 the conservative grid
construction. Nevertheless, it is not easy to decide what value the weight parameter w should take,
leading to either deterioration of the efficiency of the adaptive construction or possible stagnation
persisting until a very fine grid has been built. We propose here, as in one dimensional case in Algo-
rithm 1, to perform the verification for each index in the active index set in order to get out of the
stagnation set as well as retain the efficiency of the adaptive construction. Our verified dimension-
adaptive hierarchical algorithm for interpolation is summarized in Algorithm 2 for high-dimensional
interpolation problems. The same algorithm can be adapted for integration by simply replacing the
interpolation error indicator Ei in (3.22) by the integration error indicator Ee in (3.23). We remark
that for function-based high-dimensional interpolation problems, the verified dimension-adaptive hi-
erarchical interpolation algorithm 2 is employed, while for PDE-based interpolation problems, we
propose to apply the certified reduced basis method developed in section 4, which produces more
accurate approximation results with certification in practice.

As pointed out in [26, 42], in addition to stagnation for the dimension-adaptive hierarchical con-
struction, another drawback is that it involves evaluating the function s(y) at one higher grid level
in each dimension in order to assess the error indicator. This is rather costly, especially for high-
dimensional uncertainty quantification problems with verification procedure, where the evaluation at
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Algorithm 2 Verified dimension-adaptive hierarchical algorithm for interpolation

1: procedure Initialization:

2: specify error tolerance εt, types of interpolation bases l(y) and nodes y, specify function m(i);
3: specify maximum number of nodesM , set i = 1, compute Θ1 and evaluate s1j = s(y1j ), y

1
j ∈ Θ1;

4: set Ei = 2εt, m = #|Θ1|, A = {1}, O = ∅, Sm = O ∪ A ;
5: end procedure

6: procedure Construction:

7: while Ei > εt and m ≤ M do

8: set O = O ∪ {i}, A = A \ {i} and enrich A by the admissible forward neighbors of i;
9: compute the set of nodes Θ△ different from old nodes at the newly added indices of A ;

10: for all yij ∈ Θ△, evaluate function values s(yij) and the interpolation Sgs(y
i
j) by (3.20);

11: compute the hierarchical surpluses sij = s(yij)− Sgs(y
i
j) and error indicator Ei by (3.22);

12: increase the number of nodes m = m+#|Θ△|, set the total index set Sm = A ∪ O;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13: procedure Verification:

14: for iv ∈ A do

15: if Ei(iv) ≤ εt then
16: set the admissible forward neighbors of iv as Av;
17: compute the set of added nodes Θ△ for all indices in Av;
18: repeat lines 10 and 11 with Av in (3.22) to get Ei in Av;
19: set O = O ∪ {iv}, A = A \ {iv}, Em

i = maxim∈Av
Ei(im);

20: if Em
i > εt then

21: enrich the active set A = A ∪ Av and repeat line 12;
22: end if

23: end if

24: end for

25: end procedure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26: pick the next index i such that i = argmaxi∈A Ei(i);
27: if Ei(i) ≤ εt then
28: return .
29: end if

30: end while

31: end procedure

each of a large number of nodes requires a full solve of the underlying PDE. Fortunately, this compu-
tational burden can be considerably alleviated by using the adaptive reduced basis method that will
be developed in section 4, where full solve of the underlying PDE model is replaced by a very cheap
solve of a reduced model. The corresponding dimension-adaptive approach with verification becomes
much more appealing.

3.4 Comparison remarks

In order to take the importance of different dimensions into consideration, an anisotropic sparse grid
was proposed in [46] by choosing the index set for the construction of the grid as

Sα =

{

i ∈ N
K
+ :

K∑

k=1

(ik − 1)αk ≤ q min
1≤k≤K

αk

}

. (3.26)

The multivariate weight α := (α1, . . . , αK) indicates the importance of different dimensions and q ∈ N

represents the grid level; its choice is a challenging task. The authors suggested two ways to specify
α in [46]. In those (simple) cases where a priori estimate for the Lagrange interpolation error exist,
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e.g.
sup

yk∈Γk

|s(yk)− Uks(yk)| ≤ Cke
−2mkg(k), 1 ≤ k ≤ K, (3.27)

being Uk the Lagrange interpolation operator and mk the number of interpolation nodes in dimension
k, the weights can be set as αk = g(k), 1 ≤ k ≤ K. An alternative way to estimate this weight is
to perform a posteriori analysis by computing the outputs of interest at a series of collocation nodes
and fitting the convergence rate in each dimension. Nevertheless, a posteriori estimate based on error
fitting in each dimension can not identify the interaction effect among different dimensions and thus
may lead to either not efficient anisotropic sparse grid construction or not accurate approximation.
Moreover, the interpolation error may not decay exponentially with respect to the number of nodes
for non smooth problems, and no general rule has been proposed for estimating the weight in these
circumstances. In comparison, the dimension-adaptive construction of the sparse grid approximation
based on hierarchical surpluses does not need to estimate the weights. Instead, it can automatically
detect the weight as well as the interaction level among different dimensions as a byproduct of the
construction procedure [39].

Another technique to deal with high-dimensional approximation problems is based on ANOVA or
HDMR, where the output of interest s can be decomposed into a series of additive functions (in total
2K) incorporating all the 2K possible interactions of different dimensions [33], written as

s(y) = s0 +
∑

1≤k1≤K

sk1
(yk1

) +
∑

1≤k1<k2≤K

sk1,k2
(yk1

, yk2
) + · · ·+ sk1,...,kK

(yk1
, . . . , ykK

), (3.28)

with

s0 =

∫

Γ

s(y)dµ(y), sk1
=

∫

Γ∗

k1

s(y)dµ(y∗k1
)− s0, sk1,k2

=

∫

Γ∗

k1,k2

s(y)dµ(y∗k1,k2
)− s0 − sk, . . . , (3.29)

with y∗k1
∈ Γ∗

k1
inK−1 dimensional probability domain except Γk1

, y∗k1,k2
∈ Γ∗

k1,k2
inK−2 dimensional

probability domain except Γk1
× Γk2

, and so on. Moreover, the variance of the function s admits the
same expansion as in (3.28). It is known that there are only a few functions involving a limited
number of dimensions play the majority role measured by variance when the function s displays
distinctive importance and interaction in different dimensions [33]. Therefore, the high-dimensional
approximation problem can be approximated by a series of low-dimensional approximation problems,
leading to the development of ANOVA (HDMR) based dimension-adaptive algorithms [37, 24, 26, 42].
However, when the measure µ is the Lebesgue measure, high-dimensional integration has to be carried
out in order to evaluate s0, sk1

, . . . . Alternatively, when µ is a Dirac measure at some anchor point
ȳ ∈ Γ, the expansion (3.28) takes the name of anchored-ANOVA [26] (or cut-HDMR [42]) expansion,
which can substantially reduce the computational effort. However, there is no general rule to pick the
anchor point, which is critical for accurate approximation and easily results in large error as pointed
out in [68]. A single point - centroid of the lowest dimensional tensorial Gaussian quadrature - was
suggested as the anchor point in [28]; improvement was also made in [34] by using a screening method,
basically selecting several anchor points and taking the average in order to enhance the robustness,
which might still not be satisfactory as our numerical examples in section 5 will reveal. Moreover,
these variance-based techniques are primarily developed for solving integration problems, which may
not be suitable when dealing with pointwise interpolation problems. In contrast, these drawbacks
are not faced by the verified dimension-adaptive hierarchical Algorithm 2 that can be used for both
high-dimensional interpolation and integration by choosing different error indicators. As a matter of
fact, the hierarchical grid construction Algorithm 2 governed by different error indicators plays an
equivalent role as automatically decomposing the targeted function into a series of additive functions
involving limited dimensions indicated by the interaction of grid level among different dimensions, as
demonstrated in the numerical experiments in section 5.
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4 Adaptive and weighted reduced basis method

As mentioned in section 2.4, solving PDE-based uncertainty quantification problems faces another
critical computational challenge when the underlying PDEs are very difficult to solve. In this circum-
stance, none of the computational techniques presented in section 3 can be directly applied to deal
with high-dimensional UQ problems. In order to tackle this difficulty, we exploit the property that
the outputs of interest of the underlying PDEs may live in low-dimensional manifold even though the
random inputs are from high-dimensional space. This property, which is known as reducibility, is quite
common in practice and is essentially supported by central limit theorem and law of large numbers in
the core of probability theory [22]. In this section, we develop an adaptive and weighted reduced basis
method in combination with the hierarchical approximation to efficiently solve high-dimensional UQ
problems. Applications to more general PDE models are also provided.

4.1 Reduced basis method

Reduced basis method was initially introduced for structural analysis [48] and recently has undergone
vast development in theories [43, 61, 52, 32, 31, 18] and in many engineering applications [55, 19, 56,
40, 59, 12, 14]. Let us present its basic formulation based on the following linear elliptic PDE:

−∇(a(x, y)∇u) = f(x, y) (x, y) ∈ D × Γ, (4.1)

where a and f are random fields standing for the positive diffusion coefficient and the forcing term,
respectively. The elliptic PDE (4.1) is closed by homogeneous Dirichlet boundary condition u = 0 on
∂D for simplicity. In most practical stochastic modelling and statistical analysis [3, 27, 1, 49], the
random fields often admit the following finite affine decomposition:

a(x, y) =

Qa∑

q=1

Θa
q (y)aq(x) and f(x, y) =

Qf∑

q=1

Θf
q (y)fq(x), (4.2)

where Qa, Qf are the number of affine terms, Θa
q ,Θ

f
q are random functions in the probability space

and aq, fq are deterministic functions in the physical space. In fact, any random field with finite second
moment can be decomposed into a finite number of affine terms by the truncated Karhunen-Loève
expansion [65]. Under the affine assumption of the random fields (4.2), the semi-weak formulation of
the elliptic PDE (4.1) can be written as

A(u, v; y) = F (v; y) ∀v ∈ H1(D), (4.3)

where the bilinear form A and the linear functional F can be expressed as

A(u, v; y) =

Qa∑

q=1

Θa
q (y)Aq(u, v) and F (v; y) =

Qf∑

q=1

Θf
q (y)Fq(v), (4.4)

with the definition Aq(u, v) := (aq∇u,∇v), 1 ≤ q ≤ Qa and Fq(v) := (fq, v), 1 ≤ q ≤ Qf . Let us define
a subspace X ⊂ H1

0 (D) for the approximation of the PDE solution in physical space, for instance the
high-fidelity finite element approximation space, spectral approximation space [54]. Then the reduced
basis problem is formulated as: find uN ∈ XN such that

A(uN , vN ; y) = F (vN ; y) ∀vN ∈ XN , (4.5)

where the reduced basis space XN ⊂ X is constructed by span of the “snapshots”, which are the
solutions at N selected samples y1, . . . , yN , i.e.

XN = span{u(yn), 1 ≤ n ≤ N}. (4.6)
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In order to guarantee algebraic stability in solving (4.5), we perform Gram-Schmidt orthogonalization
procedure [61] on the snapshots u(y1), . . . , u(yN ) and obtain a set of orthonormal bases ζ1, . . . , ζN to
form XN . We expect the reduced basis space XN to be a good approximation of the high-fidelity
space X with dimension N as low as possible, so that the reduced basis problem (4.5) be very cheap to
solve. To construct XN , we develop in the next section a new adaptive greedy algorithm, which adopts
a weighted a posteriori error bound [18] that will be briefly illustrated in section 4.3. In section 4.4,
we present an offline-online decomposition that is particularly tailored for high-dimensional problems
in order to efficiently evaluate the a posteriori error bound.

4.2 Adaptive greedy algorithm

In order to efficiently choose the N most representative samples while keeping the computational
effort under control, we propose an adaptive greedy algorithm in combination with the construction
of the dimension-adaptive hierarchical approximation in Algorithm 2. Given the reduced basis space
XN , the greedy algorithm seeks the next sample by maximizing the error between the reduced basis
solution and the high-fidelity solution among all possible y ∈ Γ [61, 52], i.e.

yN+1 = argmax
y∈Γ

Er(y), with Er(y) := ||u(y)− uN (y)||X . (4.7)

However, to solve problem (4.7) is computationally unfeasible since it is an infinity optimization
problem, for which a full solve of a high-fidelity problem is needed to evaluate u(y) at each y ∈ Γ.
To cope with this unfeasibility, we propose an adaptive greedy algorithm based on the hierarchical
approximation to render the infinity optimization problem as finite one in Algorithm 3, and use the a
posteriori error bound as presented in the next section in order to avoid the full solve of the high-fidelity
problem.

Algorithm 3 Adaptive greedy algorithm

1: procedure Initialization:

2: specify error tolerance ǫt, solve (4.3) at each y ∈ Θ1 and construct XN = span{u(y), y ∈ Θ1};
3: end procedure

4: procedure Construction:

5: at each step in line 9 of Algorithm 2, specify the set of nodes Θrb
△ = Θ△;

6: solve the reduced basis problem (4.5), compute Er(y) and s(y) at each y ∈ Θrb
△ ;

7: update Θrb
△ such that Er(y) > ǫt, ∀y ∈ Θrb

△ (remove well approximated nodes);
8: while maxy∈Θrb

△

Er(y) > ǫt do

9: pick yN+1 = argmaxy∈Θrb
△

Er(y);
10: solve (4.3) at yN+1 and update XN+1 = XN ⊕ span{u(yN+1)};
11: set N = N + 1 and repeat steps in line 6 - line 7 with new XN ;
12: end while

13: end procedure

We remark that the adaptive greedy algorithm 3 for the construction of reduced basis space explores
all the nodes in the construction of the dimension-adaptive hierarchical approximation in Algorithm 2
and the outputs of interest s are evaluated based on the surrogate (reduced basis) solution with cheap
solve of the reduced basis problem in contrast to the solution of the expensive high-fidelity problem.
Moreover, error estimates of the surrogate outputs of interest can be obtained based on the reduced
basis approximation error Er controlled by the error tolerance ǫt.

4.3 Weighted a posteriori error bound

The reduced basis approximation error Er used in the framework of the adaptive greedy algorithm
plays a crucial role in constructing an efficient and accurate reduced basis space. In order to have
a cheap, reliable and sharp evaluation of it, we adopt the residual based a posteriori error bound as
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proposed in [61, 52]: for every y ∈ Γ, let R(v; y) ∈ X ′ be the residual in the dual space of X, defined
as

R(v; y) := F (v; y)−A(uN (y), v; y) ∀v ∈ X. (4.8)

By Riesz representation theorem [23], we have a unique function ê(y) ∈ X such that

(ê(y), v)X = R(v; y) ∀v ∈ X, (4.9)

and ||ê(y)||X = ||R(·; y)||X′ , where the X-norm is defined as ||v||X = A(v, v; ȳ) at some reference value
ȳ ∈ Γ, e.g. the center of Γ. For the reduced basis error e(y) := u(y)− uN (y), we obtain the following
equation as a result of (4.3), (4.5) and (4.8)

A(e(y), v; y) = R(v; y) ∀v ∈ X. (4.10)

By setting v = e(y) and using Cauchy-Schwarz inequality, we have

α(y)||e(y)||2X ≤ A(e(y), e(y); y) = R(e(y); y) ≤ ||R(·, y)||X′ ||e(y)||X = ||ê(y)||X ||e(y)||X , (4.11)

where α(y) is the coercivity constant of the bilinear form A(e(y), e(y); y) at y, so that we can define
the a posteriori error bound △u

N (y) for the approximation error ||u(y)− uN (y)||X as

△u
N (y) := ||ê(y)||X/α(y), (4.12)

yielding ||u(y) − uN (y)||X ≤ △u
N (y) by (4.11). For the output in the compliant case, i.e. when

s(y) ≡ s(u(y); y) = F (u(y); y), we have the following error bound

|s(y)− sN (y)| = |F (u(y); y)− F (uN (y); y)| = A(e(y), e(y); y) ≤ ||ê(y)||2X/α(y) =: △s
N (y). (4.13)

We remark that the error bounds (4.12) and (4.13) not only can be used as error indicator to construct
the reduced basis space but also serve as certification of the reduced basis approximation, leading
to the so called certified reduced basis method. In practice, the surrogate output of interest sN
evaluated based on the solution of the reduced basis problem (4.5) at any given node is a more accurate
approximation of s than that obtained by the interpolation approach in Algorithm 2. Furthermore,
the a posteriori error bound △N is more reliable and accurate than the interpolation error indicator
Ei. Therefore, for pointwise evaluation in high dimensions, we employ the reduced basis method.

As for more general output where s(y) 6= F (u(y); y), an adjoint problem of (4.3) can be employed
to achieve faster convergence of the approximation error |s− sN |, as will be illustrated later. In order
to take arbitrary probability measure into account for efficient numerical integration, we employ the
weighted a posteriori error bound developed in [18] as

△ρ,u
N (y) =

√

ρ(y)△u
N (y), or △ρ,s

N (y) = ρ(y)△s
N (y), (4.14)

which put small weight on the samples with small probability density, thus generating relatively
less bases while achieving the same accuracy of total integration for UQ problems with non-uniform
distributed random variables. More details about convergence analysis and illustrative examples
are provided in [18]. In summary, computing the error indicators (4.14) requires the evaluation
of the coercivity constant α(y) and the value ||ê(y)||X at given y ∈ Γ. For the former, we may
use the successive constraint linear optimization method [38] to compute a pointwise lower bound
αLB(y) ≤ α(y), or simply use a uniform lower bound αLB ≤ α(y) that holds for all y ∈ Γ, in order to
alleviate the computational effort, provided that the coercivity constants at different samples y ∈ Γ
are not very different. For the latter, we adopt an offline-online computational decomposition that we
will illustrate in the next section.
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4.4 Offline-online decomposition

In the construction of the reduced basis space with a small number of bases and the evaluation of a
large number of outputs of interest, we efficiently split the computational work for the former at an
offline stage from that for the latter at an online stage by taking advantage of the affine structure
(4.2). To start, we expand the reduced basis solution uN (y) on the reduced bases as

uN (y) =

N∑

m=1

uNm(y)ζm, (4.15)

which is substituted in the Galerkin projection problem (4.5) as: find uNm(y), 1 ≤ m ≤ N such that

N∑

m=1

Qa∑

q=1

Θa
q (y)Aq(ζm, ζn)uNm(y) =

Qf∑

q=1

Θf
q (y)Fq(ζn), 1 ≤ n ≤ N. (4.16)

Here, the matrix Aq(ζm, ζn), 1 ≤ q ≤ Qa, 1 ≤ m,n ≤ N and the vector Fq(ζn), 1 ≤ q ≤ Qf , 1 ≤ n ≤ N
can be pre-computed and stored in the offline stage. In the online stage, we only need to assemble
and solve the resulting N×N stiffness system of (4.16) with much less computational effort compared
to solving the original high-fidelity stiffness system. The approximate compliant output sN (y) is thus
evaluated by N ×Qf operations as

sN (y) = F (uN (y); y) =
N∑

n=1





Qf∑

q=1

Θf
q (y)Fq(ζn)



uNn(y). (4.17)

As for the evaluation of ||ê(y)||2X in (4.13), we first expand the residual (4.8) as

R(v; y) = F (v; y)−A(uN , v; y) =

Qf∑

q=1

Θf
q (y)Fq(v)−

N∑

n=1

(
Qa∑

q=1

Θa
q (y)Aq(ζn, v)

)

uNn(y). (4.18)

Then, let Cq ∈ X such that (Cq, v)X = Fq(v), ∀v ∈ X, 1 ≤ q ≤ Qf and Ln
q ∈ X such that (Ln

q , v)X =
−Aq(ζn, v), ∀v ∈ X, 1 ≤ n ≤ N, 0 ≤ q ≤ Qa, which can be regarded as the Riesz representatives of Fq

and Ak
q (defined as Ak

q (v) = −Ak(ζn, v), ∀v ∈ X) in X. By recalling (4.9) we have

ê(y) =

Qf∑

q=1

Θf
q (y)Cq −

N∑

n=1

(
Qa∑

q=1

Θa
q (y)Ln

q

)

uNn(y), (4.19)

so that

||ê(y)||2X =

Qf∑

q

Qf∑

q′

Θf
q (y)Θ

f
q′(y)(Cq, Cq′)X

+ 2

N∑

n=1

Qf∑

q=1

Qa∑

q′=1

Θf
q (y)Θ

a
q′(y)(Cq,Ln

q′)XuNn(y)

+
N∑

n=1

N∑

n′=1

Qa∑

q=1

Qa∑

q′=1

Θa
q (y)Θ

a
q′(y)uNn(y)(Ln

q ,Ln′

q′ )XuNn′(y).

(4.20)

Therefore, we can pre-compute and store (Cq, Cq′)X , 1 ≤ q, q′ ≤ Qf , (Cq,Ln
q′)X , 1 ≤ n ≤ N, 1 ≤ 1 ≤

Qf , 1 ≤ q′ ≤ Qa, (Ln
q ,Ln′

q′ )X , 1 ≤ n, n′ ≤ N, 1 ≤ q, q′ ≤ Qa in the offline stage, and evaluate ||ê(y)||X
in the online stage by assembling (4.20) with O(Q2

f +NQfQa +N2Q2
a) operations.

Note that when the number of terms Qf and Qa become large, the full online evaluation of (4.20)
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will be expensive. Let us make two observations in order to further reduce the online evaluation
cost: the first is that often Θa

q (y) = yq with Qa representing the dimension of a high-dimensional
probability space for UQ problems; the other is that the nodes inside one set Θ△ or from neighbor
sets are only different from each other in limited dimensions, e.g. the node (1, 0.5, 0.5, . . . , 0.5) is a
neighbor of the node (0, 0.5, 0.5, . . . , 0.5), which are only different in the first dimension. Based on
these two observations, we may identify the different terms in (4.20) from one node to the next in the
adaptively constructed grid and only subtract these terms from ||ê(y)||2X at the previous node and
add the corresponding new terms to it at the current node, resulting in O(Qf +NQa) operations in
average for each evaluation. We remark that this computational reduction is still valid whenever there
are only a few terms among Θa

q (y), 1 ≤ q ≤ Qa different from one node to its neighbors.

4.5 Remarks on extension to more general PDE models

We presented the adaptive and weighted reduced basis method based on a coercive, steady and linear
elliptic equation with affine input and compliant output. However, the method is not constrained by
these elementary properties. In fact, it has been developed and extended to deal with many different
PDE models, [62, 60, 35, 56, 4, 31, 17, 21], and applied in a variety of physical and engineering fields,
[55, 19, 56, 40, 59, 12, 14]. We provide the following remarks for extensions with some associated
references.

First of all, the coercivity property (4.11) is used in computing a lower bound for the evaluation
of a posteriori error bound (4.12). When the problem fails to be coercive, for instance in Stokes
equations, where only an “inf-sup” compatibility condition is satisfied, we can replace the coercivity
constant α in (4.11) by an inf-sup constant and arrive at the same reliable and accurate a posteriori
error bound [62, 60]. Moreover, we may even sacrifice the reliability of the error bound if the “inf-sup”
condition is not satisfied either and only use the residual as an error indicator.

Secondly, for unsteady problems, the reduced bases should be explored not only at different samples
but also at different time steps. In order to efficiently extract the most representative bases, we may
employ proper orthogonal decomposition (POD) to project the solutions at different time steps into
a small number of bases and use a greedy algorithm to choose the samples, leading to a POD-greedy
algorithm [35, 56].

Thirdly, in order to deal with nonlinear problems, different approaches can be adopted. Taking
Navier-Stokes equations for example, where the nonlinearity is quadratic on the state variable, we may
employ Newton iteration to solve the reduced basis system as done for solving the high fidelity system
[55]. Another approach is to use the empirical interpolation for operators [31, 21] in decomposing the
nonlinear operators into linear combination of a series of linear operators.

Fourthly, when the random inputs are not given in affine structure, e.g. log-normal random field,
we may reconstruct the nonaffine random field as random field with finite affine terms by empirical
interpolation method [4, 31, 17]. This reconstruction is very efficient (resulting in a limited number
of affine terms) for smooth functions and functions that enjoy the compressibility property, i.e. a
function is compressible from a high-dimensional space to a low-dimensional space without losing too
much accuracy.

Finally, for non-compliant problems where the output of interest is different from the right hand
side of the equations, the error convergence for the approximation of the output depends only linearly
on the error convergence for the approximation of the solution. Moreover, the norm of the functional
for the output may not be easy to evaluate. In this case, we employ a primal-dual approach, where a
dual problem is formulated by setting the output as a right hand side of the dual equations and the
output is evaluated with contribution from both the primal and dual problem [61, 52]. The advantage
is that it avoids the computation of the functional norm and achieves quadratic error convergence.
We will illustrate this approach by one numerical example in section 5.6.

5 Numerical experiments

This section is devoted to demonstrate the efficiency and accuracy of the adaptive and reduced compu-
tational framework and compare it to other methods (anisotropic sparse grid, ANOVA as introduced
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in section 3.4) for high dimension uncertainty quantification problems. We illustrate the computa-
tional performance of the proposed Algorithm 2 with verification in two dimensions, and compare it to
the algorithm without verification and anisotropic sparse grid scheme (3.26) in section 5.1. In section
5.2 we illustrate why the ANOVA approach does not work well for functions with strong interaction
and arbitrary probability measure, whereas this case can be efficiently dealt with by our proposed
approach. In section 5.4, we show how the sparsity in high dimensions (from O(10) to O(1000)), in-
cluding different interaction and importance of different dimensions, can be efficiently and accurately
captured by the proposed method. The last two sections 5.5 and 5.6 deal with heat diffusion and
groundwater flow problems and demonstrate how the adaptive and weighted reduced basis method
can be effectively applied to reduce the computational effort.

5.1 Hierarchical construction with verification

In this experiment, we compare the dimension-adaptive hierarchical interpolation Algorithm 2 with
the same algorithm without the procedure of verification. The two dimensional function s : [0, 1]2 → R

is given by
s(y) = cos(2π(y1 − 0.3)) cos(2π(y2 − 0.5)). (5.1)

We run the interpolation Algorithm 2 in six different cases. The first three cases include hierarchical
construction without verification based on piecewise linear polynomials with equidistant nodes and
the weight in (3.25) are set as w = 1, 0.5, 0, corresponding to the purely dimension-adaptive grid
construction, balanced construction and conservative sparse grid construction, respectively. The fourth
case is specified with the same configuration as the first three except that the verification procedure
is incorporated. The last two cases use Lagrange polynomials based on Clenshaw–Curtis nodes with
verification and the weight w = 1 and w = 0, respectively. We set the maximum number of nodes
adaptively as one larger than the number of nodes in the current grid, with the upper bound M = 104,
and specify the interpolation error tolerance as εt = 10−15. We compute the interpolation error as
maxy∈Ξtest

|s(y)−Sgs(y)| with the set of testing nodes given by Ξtest := {y1, y2 = n/28, n = 0, . . . , 28},
a fine regular grid with step size 1/28. The final index sets Sm for the six different cases are plotted
in Figure 5.1, where the active indices are marked with boxes (blue and red) and the index to be
processed in the next step is marked with red box. Figure 5.2 reports the interpolation errors for all
the six cases.

From the first figure (left-top of Figure 5.1), we can see that the enrichment of active indices has
stagnated along y2 by the purely dimension-adaptive scheme, resulting in large interpolation error (see
left of Figure 5.2) since the function is not sufficiently well approximated in the second dimension.
The balancing scheme with w = 0.5 (see middle-top of Figure 5.1) is able to construct fine grid in
the second dimension but fails to capture the interaction of the two dimensions (due to stagnation),
and thus still leads to large interpolation error as shown in Figure 5.2 (left). The Smolyak sparse
grid construction introduced in section 3.2 does not run into the stagnation problem and achieves
small interpolation error in this example (see right-top of Figure 5.1), but it can identify neither the
important dimension nor the interaction. This drawback can be observed more clearly by comparison
of the grid construction in the last two cases, where a full tensor grid is constructed by the adaptive
scheme (see middle-bottom of Figure 5.1) and the sparse scheme that produces many more useless
nodes in each single dimension (see right-bottom of Figure 5.1). Note that the last two cases result
in higher approximation accuracy (see Figure 5.2) than the others because the globally supported
Lagrange polynomial basis is more suitable to approximate smooth functions. By using the same
locally supported piecewise linear basis as in the first three cases but incorporating the verification
procedure, we can get rid of the stagnation problem and adaptively construct the grid with automatic
identification of the importance and interaction of different dimensions, as shown in Figure 5.1 (left-
bottom). From this experiment (two dimensional case for the sake of the illustration), we can see that
the verification procedure works efficiently to get rid of the stagnation problem, which is to blame
as one drawback of the dimension-adaptive hierarchical construction approach. We remark that the
balancing scheme in (3.25) can not effectively avoid stagnation. Moreover, it is not computationally
convenient to use since the weight parameter w is not known a priori and it depends on different
problems under consideration.

In the second example, we test the efficiency of the verified dimension-adaptive algorithm for
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Figure 5.1: Illustration of dimension-adaptive hierarchical construction of the generalized sparse grid
in different cases; top row: piecewise interpolation without verification with weight w = 1 (left),
w = 0.5 (middle), and w = 0 (right); bottom row: piecewise interpolation with verification and weight
w = 1 (left), Lagrange interpolation with verification and weight w = 1 (middle), and w = 0 (right).
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Figure 5.2: Interpolation error corresponding to the grid construction in Figure 5.1; left: picecwise
interpolation in the first four cases; right: Lagrange interpolation in the last two cases.

interpolation of these anisotropic functions

s1(y) = exp(y1/5)+exp(5y2), s2(y) = exp(y1y2), s3(y) = exp(y1/5)+exp(5y2)+exp(y1y2). (5.2)

We run the interpolation Algorithm 2 with the interpolation error tolerance set as εt = 10−15. The
constructed indices are displayed in Figure 5.3, from which we can see that the verified dimension-
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adaptive algorithm efficiently and accurately captured the interaction and importance of different
variables of the test functions. The first one has no interaction term and y2 plays a more important
role (in terms of function value) than y1. The second one features strong interaction and equal
importance of the two dimensions. The last one has strong interaction and more important dimension
y2 than y1. We remark that these properties can not be captured by the anisotropic sparse grid
construction with weighted index set (3.26) as introduced in [46]. As a matter of fact, such approach
either deteriorates efficiency because many useless indices are included or loses accuracy because the
necessary indices (for strong interaction term) can not be captured, especially in high dimensions.
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Figure 5.3: Illustration of dimension-adaptive hierarchical construction of generalized sparse grid for
anisotropic interpolation; indices for s1 (left), s2 (middle), s3 (right) with tolerance εt = 10−15.

5.2 Sobol functions featuring strong interaction

In this numerical experiment, we study the functions with separated variables proposed by Sobol [68]
to test the accuracy and efficiency of the hierarchical approximation in the extreme case - building
minimal full tensor product grid, with comparison to the approximation based on anchored ANOVA
(cut-HDMR) [26, 42]. The functions are defined as

s1(y) =

K∏

k=1

|4yk − 2|+ pk
1 + pk

and s2(y) =

K∏

k=1

1 + 3pky
2
k

1 + pk
, (5.3)

where yk ∈ [0, 1], 1 ≤ k ≤ K and the parameter pk, 1 ≤ k ≤ K, is nonnegative for the first function
and positive for the second one. Both functions have separated variables, meaning that the total
integral (with value 1) can be computed by the product of individual integrals evaluated separately,
but all of them are strongly interacting for pointwise evaluation of the function value. Since the first
function has singularities (“peaks”) at yk = 0.5, 1 ≤ k ≤ K and the second function is smooth, we use
piecewise polynomial basis for the first function and global Lagrange polynomial basis for the second
one. First of all, let us take a simple low-dimensional function s2 with K = 3 and pk = 1, 1 ≤ k ≤ K
and consider the anchored ANOVA approximation with several different anchor points ȳk, 1 ≤ k ≤ K
and expansion orders. Let s̄i, 0 ≤ i ≤ K denote the approximated integral with expansion up to i
dimensions (see the expansion formula (3.28)). When i = 0, the approximated integral is taken as
the function value at the anchor point. The approximated integrals for different additive functions in
the expansion are computed by tensor product Clenshaw–Curtis quadrature formula with 3 abscissas
in each dimension. The results at different settings are reported in Table 5.1, from which we can
observe that the approximation results are far from each other at different anchor points before the
full expansion with i = K is used. Moreover, the averaged approximations in the last column do
not lead to a more accurate approximation as proposed in [34]. The approximations of the integral
converge to the exact value with growing expansion order and reach the exact value only when the
full expansion with 2K = 8 terms has been incorporated in all cases. These observations confirm

23



the drawbacks of the anchored ANOVA approximation as pointed out in section 3.4. Similar results
can be shown also for the first function s1 and for higher dimensional integration problems by this
approach. In fact, there is no gain in this case but more cost by the anchored ANOVA approximation
since not only the last term has to be evaluated in all the K dimensions but also the other 2K − 1
terms of the expansion (3.28).

ȳk 0.0000 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000 average
s̄0 0.1250 0.1589 0.2963 0.6699 1.5880 3.6641 8.0000 2.0717
s̄1 0.5000 0.5624 0.7407 0.9570 0.9074 -0.1981 -4.0000 -0.0758
s̄2 0.8750 0.9037 0.9630 0.9980 1.0046 1.1589 2.0000 1.1290
s̄3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5.1: Approximated values of the integral of the function s2 by anchored ANOVA expansion
(3.28) with different anchor points (in row) and expansion orders (in column).
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Figure 5.4: Interpolation error (left) and integration error (right) of dimension-adaptive hierarchical
approximation of the smooth function s2 with the dimension K = 3 and K = 7.

The interpolation and integration errors for the dimension-adaptive hierarchical approximation
of the smooth function s2 are displayed in Figure 5.4, where the interpolation error is defined by
maxy∈Ξtest

|s(y)−Sgs(y)| with the testing set Ξtest consisting of 100 randomly selected samples. The
decay of both interpolation and integration errors is very slow at the beginning, and fall to about
the machine precision when the minimal full tensor product grid with 3 nodes in each dimension has
been constructed, requiring in total 33 = 27 and 37 = 2187 nodes, respectively. This decay confirms
again the necessity to use all the expansion terms by the anchored ANOVA approximation in order to
have accurate integration. The dimension-adaptive hierarchical algorithm successfully detects the full
tensor product grid structure and construct it automatically with the ultimate number of nodes 33
and 2201, slightly bigger than those of the full tensor product grid due to the verification procedure.
As for the approximation of the singular function s1, we reduce the effect of the variation of yk by
setting a large parameter pk = 100, 1 ≤ k ≤ K, which leads to the results in dimensions K = 4 and
K = 8 in Figure 5.5. Similar convergence behaviour can be observed for the singular function as that
for the smooth function, in particular 89 and 6577 nodes are constructed close to the minimal number
of full tensor product grid 34 = 81 and 38 = 6561. Note that in this case, the approximation errors
decay more uniformly due to the reduced variation.
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Figure 5.5: Interpolation error (left) and integration error (right) of dimension-adaptive hierarchical
approximation the singular function s1 with dimension K = 4 and K = 8.

5.3 Approximation with arbitrary probability measure

By this experiment, we study the dimension-adaptive hierarchical approximation with arbitrary prob-
ability measure in order to demonstrate the efficiency of using the interpolation and integration error
indicators (3.22) and (3.8) for interpolation and integration problems, respectively, and illustrate why
the variance-based ANOVA (or HDMR) expansion is not suitable for interpolation problems. We use
the following exponential function

s(y) = exp

(

−
K∑

k=1

ck(yk − 0.5)

)

, (5.4)

and set ck = 1, 1 ≤ k ≤ K with dimension K = 5. The random variables are set to obey beta
distribution as yk ∼ Beta(βk, βk), 1 ≤ k ≤ K, being β ∈ R+ a scaling parameter. The probability
density function (PDF) with different parameters is displayed in Figure 5.6, from which we can see
that as the parameter becomes bigger, the more concentrated the PDF becomes and the smaller the
variance is. Therefore, the importance of different dimensions becomes different as influenced by the
given probability measure instead of the parameter ck.
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Figure 5.6: Probability density function of beta distributed random variable with different parameters.

We run the dimension-adaptive hierarchical approximation Algorithm 2 to compute both the
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interpolation and the integration of the given function with different error indicators. We employ
the nested Kronrod-Patterson quadrature nodes [53] associated with the beta measure at different
parameter β. The interpolation error is computed as the maximum at 100 randomly selected samples
and the integration error is computed by taking the approximation of the integral in the final step as
the “exact” value. The error convergence of the approximation for interpolation and integration with
different error indicators is shown for β = 1, 5, 10, 20 in Figure 5.7. From the left of Figure 5.7, we can
see that the interpolation errors obtained with interpolation error indicator converge faster than those
obtained with integration error indicators at different values of β. On the other hand, the convergence
of the integration errors shown on the right of Figure 5.7 highlights that the integration error indicator
leads to evidently more accurate approximation of the integral than the interpolation error indicator
for the cases β = 5, 10, 20. These observations confirm that the integration error indicator, closely
related by the underlying probability measure to the variance-based ANOVA approximation, works
efficiently for integration but may give rise to large errors for interpolation.
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Figure 5.7: Interpolation error (left) and integration error (right) with different scaling parameter
β = 1, 5, 10, 20 (with different markers) and error indicators, Ei in dashed line and Ee in solid line.

5.4 High-dimensional functions featuring sparsity

In this numerical experiment, we test the performance of the dimension-adaptive hierarchical approx-
imation of high-dimensional functions featuring sparsity, i.e. low interaction or distinct importance of
different dimensions. The first function has low interaction property, given by

s(y) =

K∑

k=1

y2k −
K−1∑

k=1

ykyk+1, (5.5)

which is a polynomial of total degree 2 and interaction level 2 (in the sense of ANOVA expansion
(3.28)). We set the dimension as K = 10 and 100, and run the dimension-adaptive hierarchical
approximation algorithm with the interpolation error indicator (3.22) for both the interpolation and
integration. The interpolation error is computed at 100 randomly selected samples, and the integration
error is measured with respect to the value of the exact integral K/3− (K − 1)/4. Since the function
is smooth, we use Lagrange basis with Clenshaw–Curtis nodes. The results of the error indicator,
the interpolation and integration errors, as well as the number of nodes are reported in Table 5.2,
from which we can see that the second level isotropic sparse grid is sufficient to evaluate the integral
accurately up to machine precision (with rounding error) in all the three cases, while for accurate
interpolation the third level of sparse grid is needed and sufficient due to the interaction in the second
term of s. The dimension-adaptive hierarchical construction algorithm is able to detect the isotropic
structure of the sparsity and build automatically the isotropic sparse grid as can be seen from the
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comparison of the number of nodes in Table 5.2, where a small number of extra nodes are used for
checking stopping criterion. We remark that in order to detect the full interaction relation of s by
ANOVA expansion, the total number of terms to be explored is 1 + K + (K − 1)(K − 2)/2, which
results in the same number of nodes by sparse grid or two dimensional tensor product grid (3 nodes
in each dimension) for each term of the second level.

K level # nodes error indicator Ei interpolation error integration error
10 1 1 (1) ∞ 1.9499 0.8333

2 21 (21) 0.5000 0.6306 6.661e-16
3 233 (221) 3.8858e-16 1.332e-15 6.661e-16

100 1 1 (1) ∞ 11.5087 8.3333
2 201 (201) 0.5000 1.9956 1.243e-14
3 20213 (20201) 3.5527e-15 4.796e-15 1.066e-14

Table 5.2: Interpolation and Integration errors for dimension-adaptive hierarchical approximation of
the low interacting function s1; the number of nodes in (·) corresponds to an isotropic sparse grid.

We use (5.4) as the second test function, which features the sparsity due to distinct importance
even with strong interaction of different dimensions. Here the parameter ck ∈ R+ determines the
importance of the dimension k = 1, . . . ,K; yk ∈ [0, 1], 1 ≤ k ≤ K are independent and uniformly
distributed random variables. In the first example, we set ck = α−k+1, 1 ≤ k ≤ K, with the scaling
parameter α = 1.1 and consider the dimension K = 2n, 3 ≤ n ≤ 6. Clenshaw–Curtis quadrature is
employed for the computation of the integral, where the “exact” value is taken as the approximation
at the last step. We set the maximal number of nodes as M = 10m, 1 ≤ m ≤ 5. The interpolation
and integration error convergence is depicted in Figure 5.8 and the level of interpolation (note that
we plot ik − 1 in y axis due to implementation convenience) in the 64 dimensional case is reported in
Figure 5.9. From these two figures we can conclude that only the first few dimensions dominate all
the other dimensions and the dimension-adaptive hierarchical approximation Algorithm 2 successfully
constructed the grid according to the importance of different dimensions. The convergence rate of the
integration error for the 64 dimensional problem is around 1, which is faster than that of the Monte
Carlo method (rate = 1/2) or quasi Monte Carlo method (rate ∈ (1/2, 1)) [20].
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Figure 5.8: Convergence of interpolation error and integration error with dimension K = 8, 16, 32, 64.

In the second example, we test the dimension K = 100, 400, 900, 1600 and set the parameter
ck, 1 ≤ k ≤ K as follows: we randomly select

√
K dimensions and set ck in these dimensions as 10−y0

k ,
where y0k ∈ [0, 1] is a sample drawn from uniform distribution, and in the other dimensions we set

ck = 10−y0

k−6. Therefore, the dimensions are divided into two scales. In each scale the importance
of different dimensions is determined by a random variable 10−y0

k . In another word, the important
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Figure 5.9: Grid level constructed by the dimension-adaptive hierarchical aproximation algorithm 2.

dimensions randomly distributes from 1 to K with total effective number of dimensions around
√
K.

The convergence results for the interpolation and integration error is shown in Figure 5.10, from
which we can see that the dimension-adaptive hierarchical approximation works efficiently for high-
dimensional problems, with the integration error converging faster than Monte Carlo method with the
total dimension as high as 1600. The right of Figure 5.9 demonstrates that both the scales (between
level ik = 1+1 and levels ik = 1+3, 1+4) and the importance in each scale (between level ik = 1+3
and ik = 1 + 4) of different dimensions are captured effectively by the dimension-adaptive algorithm
2. We remark that the examples in high-dimensional space feature distinct importance of different
dimensions. In the case of equal importance of different dimensions in high-dimensional problems, the
classical Monte Carlo method would achieve better computational performance.
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Figure 5.10: Convergence of interpolation error and integration error with dimension K =
100, 400, 900, 1600.

5.5 Heat diffusion in thermal blocks

In this example, we study a heat diffusion problem (4.1) in thermal blocks with the thermal conductiv-
ity modeled by random variables. The problem is defined in the physical domainD = (0, 1)2 discretized
with 1012 nodes, which can be equally divided into K (K = n2, n ∈ N+) blocks Dk, 1 ≤ k ≤ K. The
thermal conductivity of each block is a random variable. In the first test, we demonstrate the effi-

28



ciency of the weighted a posteriori error bound (4.14) in the case of arbitrary probability measure for
integration problem. We consider the random coefficient a in (4.1) as

a(x, y) =

K∑

k=1

χDk
(x)10(yk−0.5), (5.6)

where χDk
is a characteristic function supported on the block Dk and yk ∈ [0, 1], 1 ≤ k ≤ K with

K = 9, are independent random variables obeying beta distribution Beta(β, β) with β = 5, which
feature almost equal importance in each of the 9 dimensions. A deterministic force term is considered
as f = 1. We run the adaptive greedy Algorithm 3 with tolerance ǫt = 10−11 to construct the reduced
basis space based on the hierarchical construction of the generalized sparse grid by Algorithm 2. For
the construction of the generalized sparse grid, the integration error indicator (3.23) is used with the
total number of nodes specified as 10n, 0 ≤ n ≤ 4 and the nested Kronrod-Patterson quadrature nodes
are employed corresponding to the beta measure with different parameter β. The quantity of interest
is the average temperature over the whole domain

∫

D
udx, which is compliant as in (4.13). We apply

both the a posteriori error bound (4.12) and the weighted a posteriori error bound (4.14) to construct
the reduced basis space, resulting in 211 and 118 bases, respectively.
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Figure 5.11: Left: true error and error bound of reduced basis approximation constructed by a
posteriori error bound without (4.12) and with weight (4.14); right: (weighted) integration error.

The reduced basis approximation error (in the worse scenario case) tested with 100 randomly
samples and the integration error (computed with the integral at 104 nodes as the reference value)
of the two different cases are depicted in Figure 5.11. From the right of this figure we can see that
the reduced basis approximation with the weighted a posteriori error bound (4.14) achieves almost
the same accuracy for integration as that without the weight (4.12), even using much less bases
(118 compared to 211). As for the pointwise approximation, the weighted scheme results in faster
convergence of the reduced basis approximation error than that without the weighted scheme, though
does not guarantee the same small error at the end because it makes use of much less reduced bases,
see in the left of Figure 5.11. Moreover, from the comparison of the true error and error bound plotted
in the left figure, we confirm that the error bound is rather sharp, almost indistinguishable from the
true error even if we use a constant α = 1 for the lower bound in (4.12) and (4.14).

Figure 5.12 reports the reduced basis error bound during the hierarchical construction process
for both the weighted scheme and non weighted scheme. Large oscillation of the worst error bound
evaluated at the nodes corresponding to the current active index can be observed for both cases. Both
of them decrease to the prescribed tolerance ǫt = 10−11 but with different number of bases. In fact,
the probability density ρ in (4.14) becomes very small when the node is far away from the center, thus
gives rise to very small weighted a posteriori error bound and early stop of the algorithm with less
bases. Moreover, this test also demonstrates that the total number of reduced bases is much smaller
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Figure 5.12: Left: the a posteriori error bound (4.12); right: the weighted a posteriori error bound
(4.14) during the hierarchical construction of the generalized sparse grid by Algorithm 2.

than the total number of constructed nodes, thus efficiently alleviate the entire computational cost.
In the second test, we consider a high-dimensional heat diffusion problem with 100 thermal blocks.

The conductivity coefficient is

a(x, y) =

K∑

k=1

χDk
(x)10ck(yk−0.5) (5.7)

where yk ∈ [0, 1], 1 ≤ k ≤ K with K = 100, are independent and uniformly distributed random
variables; ck, 1 ≤ k ≤ K, are taken similarly to the second test of section 5.4 in separating the
dimensions into two scales: we randomly select 2

√
K dimensions and set ck = 4y0k in these dimensions

and ck = 10−4×4y0k in the other dimensions, being y0k ∈ [0, 1], 1 ≤ k ≤ K, samples drawn from uniform
distributed random variable. We set the error tolerance for the reduced basis space construction as
ǫt = 10−8 in the greedy Algorithm 3 and the maximum number of nodes as M = 10n, 0 ≤ n ≤ 5 for
the hierarchical construction of the generalized sparse grid in Algorithm 2, which result in 161 bases
in the reduced basis space. On the right, the integration error computed with different number of
nodes are shown, which decays with a rate larger than 1, demonstrating that the dimension-adaptive
hierarchical approximation converges much faster than Monte Carlo method for this high-dimensional
uncertainty quantification problem.
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Figure 5.13: Left: true error and error bound of reduced basis approximation; right: integration error.
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Figure 5.13 displays both the reduced basis approximation error and the integration error. On
the left, the true error and the error bound (in maximum norm) evaluated at 100 randomly selected
samples at different number of reduced bases confirm the effectivity of the a posteriori error bound.
The a posteriori error bounds at the selected reduced basis samples, most of which are chosen at
the beginning of the hierarchical construction process, decrease in an oscillating way to the error
tolerance and remain smaller than the maximum error bounds at the 100 samples. Figure 5.14 depicts
the effective dimensions and varied importance of different dimensions indicated by the prescribed
parameters (on the left) and the level of the generalized sparse grid in different dimensions (on the
right). From this figure, we can observe that all the dimensions in the effective scale represented by
the characteristic function χd(k), 1 ≤ k ≤ K, (on the left) are correctly identified with the grid level
ik equal or larger than 4 (on the right), and the dimensions in the ineffective scale are approximated
mostly by the grid level ik = 1 + 1. Moreover, the varied importance of different dimensions in each
scale is also successfully identified as shown in Figure 5.14, where a larger value of y0k leads to a
relatively deeper grid level.
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Figure 5.14: Left: true error and error bound of reduced basis approximation; right: integration error.

5.6 Groundwater flow through porous medium

This example is devoted to the study of groundwater flow through porous medium described by
Darcy’s law: find the pressure field p ∈ D × Γ such that the following equations hold







−∇(a∇p) = 0 in D,
p = 1 on ∂D4,
p = 0 on ∂D2,

a∇p · n = 0 on ∂D1 ∪ ∂D3,

(5.8)

where the physical domain is the two dimensional square D = (0, 1)2, as shown in Figure 5.15, with
left and right boundaries (∂D2∪∂D4) prescribed of Dirichlet boundary conditions, and the upper and
lower boundaries (∂D1 ∪ ∂D3) homogeneous Neuman boundary conditions. The permeability of the
porous medium is given by the random field (with x = (x1, x2))

a(x, y) = E[a] +

(√
πL

2

)1/2

y1 +

K∑

k=1

√

λk (sin(kπx1)y2k + cos(kπx1)y2k+1) , (5.9)
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which is a truncated Karhunen-Loève expansion of a Gauss covariance kernel exp(−(x1 − x′
1)

2/L2)
with correlation length L [47]. The eigenvalues λk, 1 ≤ k ≤ K, of this kernel decay exponentially as

λk =
√
πL exp

(

− (kπL)2

4

)

, (5.10)

and the random variables yk, 1 ≤ k ≤ 2K + 1, are assumed to be independent and obey uniform
distribution taking values in [−

√
3,
√
3] in order to guarantee that a is positive. The quantity of

interest is

s(y) := L(p; y) =

∫

Dd

a(x, y)∂x1
p(x, y)dx, (5.11)

where the disk region Dd has center (0.75, 0.5) and radius 0.2, see Figure 5.15. This quantity is not
compliant with the right hand side of equation (5.8)1. Therefore, we adopt the primal-dual approach
introduced in section 4.5. We first write the weak formulation of the Darcy equation (5.8) as: find
p ∈ H1(D) such that

A(p, q; y) = 0 ∀q ∈ H1
dir(D), (5.12)

where H1
dir(D) := {q ∈ H1(D) : q = 0 on ∂D2 ∪ ∂D4} and the bilinear form A is given by

A =

2K+1∑

k=0

Ak(p, q)yk, (5.13)

being Ak defined corresponding to the terms in the expansion of the permeability coefficient a in (5.9)
and y0 = 1 for notational convenience. The dual problem associated with the primal problem (5.12)
for the quantity of interest s is formulated as: find ϕ ∈ H1

dir such that

A(q, ϕ; y) = −L(q; y) ∀q ∈ H1
dir(D). (5.14)

We construct reduced basis space Xpr
Npr

with Npr bases and Xdu
Ndu

with Ndu bases to approximate the

primal and dual weak problems (5.12) and (5.14) and define the residual of each problem as

Rpr(q; y) = −A(pNpr
, q; y) and Rdu(q; y) = −L(q; y)−A(q, ϕNdu

; y), (5.15)

where pNpr
and ϕNdu

are the reduced basis approximations of the primal and dual solutions, respec-
tively. We apply piecewise finite element basis to approximate these solutions in the physical space
and denote the approximation space as X ⊂ H1

dir(D) and its dual as X ′. After solving the primal
and dual reduced basis problems, we can approximate the quantity of interest s defined in (5.11) by

sN (y) = L(pNpr
(y); y)−Rpr(ϕNdu

(y); y), (5.16)

whose error can be bounded as (see details in [61])

|s(y)− sN (y)| ≤ △s
N (y) :=

||Rpr(·; y)||X′ ||Rdu(·; y)||X′

α(y)
. (5.17)

For the approximation in physical space, we use piecewise linear finite element basis on a regular
triangular mesh with 17361 vertices, leading to a relatively large-scale algebraic system. We run
Algorithm 2 for the dimension-adaptive hierarchical construction of the generalized space grid with
integration error indicator (3.23) at a series of maximum number of nodes 10n, 0 ≤ n ≤ 5. The error
tolerance for the reduced basis construction for approximating the non-compliant quantity of interest s
is set as ǫt = 10−8. The a posteriori error bound (5.17) can be efficiently evaluated by an offline-online
decomposition procedure for both the primal and dual problems with error tolerance ǫt = 10−4 for
both problems. We set the correlation length L = 1/16 in (5.10) and K as 8, 16, 32, 64, which lead to
17, 33, 65, 129 dimensions taking 59%, 89%, 99% and 100% percent of the total randomness measured
by the L∞-norm of the coefficient in (5.9). A set of typical solutions of the primal problem (5.12) and
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dual problem (5.14) at a randomly selected sample are depicted in Figure 5.15 (middle and right),
where the dual solution, with evident bigger values near the disk Dd plays the role to correct the
reduced basis approximation of the quantity of interest sN by formula (5.16).
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1

Figure 5.15: Left: physical domain and boundaries; middle and right: primal and dual solutions.
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Figure 5.16: Left: reduced basis approximation error and error bound w.r.t. the number of primal
bases Npr and the number of dual bases Ndu; right: three different settings of Npr and Ndu.K = 8.

In the 17 dimensional case (K = 8), 37 primal bases and 39 dual bases are constructed. We test
the convergence of the worst reduced basis approximation error with respect to the number of primal
bases and dual bases computed with 100 randomly selected samples, which is displayed in Figure 5.16.
From the left figure, we can observe that both the approximation error and the error bound decrease
with growing number of primal and dual bases, leading to quadratically fast decrease with Npr and
Ndu increasing simultaneously as shown in the right figure on the path Npr = Ndu. Moreover, the
error bound shown in this figure is rather sharp (close to the real approximation error), demonstrating
the efficiency of the primal-dual approach using the a posteriori error bound (5.17). The interpolation
errors by the hierarchical interpolation formula (3.20) with 105 interpolation nodes are evaluated at
the same test samples, where the worst approximation error is 4.0603× 10−5, much larger than that
of the reduced basis approximation error 1.3333 × 10−10. This large difference is due to fact that
the interpolation approach adopts Lagrange basis to approximate the pointwise quantities blind to
the underlying PDE model, while the reduced basis approach performs the pointwise evaluation by
solving the underlying PDE model with cheap cost in the reduced framework. Therefore, we always
use the reduced basis approximation to evaluate pointwise value of quantity of interest s.

The worst approximation error and integration error for the cases K = 8, 16, 32, 64, corresponding
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Figure 5.17: Left: reduced basis approximation error and error bound with Npr = Ndu; right: inte-
gration error. K = 8, 16, 32, 64, corresponding to 17, 33, 65, 129 dimensional problems.

to 17, 33, 65, 129 dimensional problems, are reported in Figure 5.17. The number of primal and dual
bases increases with the dimension in order to achieve the same accuracy of approximation for point-
wise evaluation and integration. However, the increase is rather small when the dimension becomes
high because the important dimensions have been captured by the reduced basis approximation and
dimension-adaptive hierarchical integration in the first few dimensions, and all the other dimensions
play negligible role in contributing to the approximation error. It is worth to point out the remark-
able fact that only a few tens (about 50) of reduced bases have been constructed to approximate the
high dimension uncertainty quantification problems as shown in this example, thus requiring only a
few tens of full solves of the underlying PDE model compared to a really large number (105 in this
example) of full solves that would be needed without using the reduced basis method. Furthermore,
as shown in the right of Figure 5.17 that the integration error converges with rate larger than 1, which
demonstrates that the adaptive and reduced computational strategy for integration in high dimensions
is very promising.

6 Concluding remarks

In this paper we have developed an adaptive reduced computational framework for solving high-
dimensional uncertainty quantification problems. Two critical computational challenges were identi-
fied and illustrated for various uncertainty quantification problems: curse-of-dimensionality and heavy
computational burden. In order to tackle the first challenge, we adopted the approach for dimension-
adaptive tensor product integration and developed a verified algorithm based on generalized sparse
grid construction to deal with one drawback of this approach - the stagnation phenomenon, and
designed different error indicators suitable for integration and interpolation problems based on the
hierarchical surpluses. To overcome the second challenge, we developed an adaptive and weighted re-
duced basis method, using an adaptive greedy algorithm in combination with the dimension-adaptive
hierarchical grid construction and a weighted a posteriori error bound to alleviate the computational
cost in building the reduced basis space. Different techniques for extensions to more general PDE
models are summarized for application of the reduced basis method in more general UQ problems.
The numerical experiments demonstrated that Algorithm 2 worked effectively in getting rid of the
stagnation phenomenon and in automatically detecting the importance and interaction of different
dimensions, which converged faster than the Monte Carlo and quasi Monte Carlo methods for high-
dimensional integration problems. Moreover, the integration error indicator incorporating hierarchical
surpluses, work contributions as well as quadrature weights was proved to be very efficient for UQ
problems with arbitrary probability measures. As for pointwise evaluation of output of interest de-
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pending on PDE solution, the reduced basis approximation certified by the a posteriori error bound
was demonstrated to be more accurate than the interpolation scheme based on Lagrange polynomials,
one kind of dictionary bases without taking into account the underlying PDE models. Furthermore,
only a few bases, a few hundreds (about 100 - 200) for heat diffusion in thermal blocks and a few
tens (about 40 - 50) for groundwater flow through porous medium compared to 105 full solves, were
constructed by the reduced basis method in order to achieve great accuracy for the high-dimensional
approximation problems. This reduction will dramatically alleviate the prohibitive computational
effort to the affordable level in solving large-scale PDE models (with large degrees of freedom) that
consume considerable computational power.

Several further topics are worth to be investigated in applying the adaptive and reduced computa-
tional framework to solve high-dimensional uncertainty quantification problems. The first is that low
regularity points may exist in the high-dimensional space, for instance, the points featuring disconti-
nuity or singularity. Therefore, efficient low regularity detection algorithms need to be incorporated
in this framework, e.g. by checking the pointwise hierarchical surpluses instead of an averaged or
maximum value at one index [42]. In addition to the detection algorithm, we remark that the reduced
basis approximation may essentially get rid of the low regularity problems since it does not apply
any family of dictionary bases but project the new solution into the reduced basis space spanned
by solutions at some selected samples [12]. Another research topic is to develop more specific and
goal-oriented model order reduction techniques in order to circumvent the “irreducible” PDE models,
such as locally supported traveling waves, compressible flows that feature shocks, and so on. Last
but not least, when the effective dimensions become so high that the dimension-adaptive quadrature
rule converges too slow, we have to turn to other approaches, such as Monte Carlo method. Since
the reduced basis method is still applicable for Monte Carlo method, the adaptation may be carried
out for sampling set with successive enrichment of new samples and elimination of well approximated
samples, as already done in [12] for risk analysis.

Acknowledgement: We acknowledge the use of the Matlab packages rbMIT developed by the
group of Prof. Anthony Patera at MIT for reduced basis method, MLife previously developed by
Prof. Fausto Saleri from MOX, Politecnico di Milano for finite element solver and spinterp by Dr.
Andreas Klimke from Universität Stuttgart for sparse grid interpolation.
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