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Abstract

Hydrodynamic problems often feature geometrical configurations that
allow a suitable dimensional model reduction. One-dimensional models
may be sometimes accurate enough for describing a dynamic of interest. In
other cases, localized relevant phenomena require more precise models. To
improve the computational efficiency, geometrical multiscale models have
been proposed, where reduced (1D) and complete (2D-3D) models are cou-
pled in a unique numerical solver. In this paper we consider an adaptive
geometrical multiscale modeling: the regions of the computational domain
requiring more or less accurate models are automatically and dynamically
selected via a heuristic criterion. To the best of our knowledge, this is a
first example of automatic geometrical multiscale model reduction.

1 Introduction

Typically, in hydrodynamic problems high activity regions, characterized by a
wide range of spatial scales (due to shocks, wave fronts, etc.), alternate with
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zones where the dynamics occurs mostly along the mainstream. Due to this het-
erogeneity of dynamics, a high-dimensional (complete) model is often strictly re-
quired in a small portion of the computational domain whereas a low-dimensional
(reduced) model is usually sufficient elsewhere. In this paper the reference hydro-
dynamic model is represented by the classical shallow water equations (SWE),
used to describe several physical problems of interest in environmental and hy-
draulic engineering (e.g., tidal flows, open channel flows, free surface flows caused
by dam breaking).
The simultaneous presence of heterogeneous dynamics prompted us to resort to
the so-called geometrical multiscale reduction (see [7]), where dimensionally het-
erogeneous models are coupled in order to reduce the computational costs of the
simulation without affecting the overall accuracy. A similar approach has been
advocated in other engineering fields, like gas dynamics in internal combustion
engines and computational hemodynamics (see, e.g., [2], Chap. 11). As shown
in [7], the selection of the areas associated with the different models is often
a challenging task, especially in the presence of fast transients. This choice is
usually done a priori, driven by physical considerations. The main limitation
is that a non optimal assignment of the 2D and 1D areas may either affect the
accuracy of the computation when 1D equations are solved in regions where a
complete model would be necessary; or affect the efficiency of the computation
when the solution of the complete model is actually redundant.

Aim of this paper is to provide a criterion for an automatic selection of the
2D and 1D areas. We define a heuristic modeling error indicator based on the
flow fluctuations across the control volume boundaries. Then, driven by this
indicator, we set a model adaptive procedure. Preliminary results suggest that
the automatic procedure improves the efficiency of the geometrical multiscale
model reduction in comparison with the a priori splitting.

2 The shallow water equations

SWE are obtained by integrating the Reynolds-averaged Navier-Stokes equations
over the depth of the fluid and by assuming hydrostatic pressure distribution
([10]). They express the conservation of mass and momentum for an incom-
pressible fluid with a free surface. Getting rid of viscosity, turbulence effects
and the Coriolis force, the conservative form of SWE reads

∂u

∂t
+ ∇ · F = s in Ω, (1)

where u = u(x, y, t) is the vector of the conserved variables, F = F(u) is the
convective flux and s is the source term. In 2D these quantities are defined by
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where h is the water depth, v and w are the (horizontal) depth-averaged velocity
components along the x- and y- direction, respectively, g is the acceleration due
to the gravity, b measures the bottom elevation with respect to a fixed reference
level, m is the Manning coefficient due to the bed roughness and r is the hydraulic
radius.
In a one-dimensional setting, equation (1) still holds provided that the definitions
of u, F and s simplify in

u =

[

h

hv

]

, F =

[

hv
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2
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]

, s =

[

0

−gh( db
dx + m2v2

r 4/3
)

]

,

respectively. Appropriate initial and boundary conditions depending on the
considered hydrodynamic configuration complete equations (1).

2.1 A finite volume discretization

Godunov-type finite volume schemes are largely employed to discretize SWE
on both structured and unstructured meshes (see, e.g., [9, 3, 4]). Here we use
a structured quadrilateral grid T , with a second-order Godunov-type scheme
based on the Roe linearized Riemann solver and the super bee flux limiters (see,
e.g., [8, 4]), combined with the 2D corner transport upwind (CTU) method due
to Colella for multidimensional integration ([1]).

Let the cells of T be identified by the pairs (i, j), being i(j) the cell index
in the x(y)-direction, with the notation Ci,j = [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2].
Index n refers to the time level; ∆x, ∆y and ∆t denote the uniform size of T
along the x- and y-direction and the time step; Un

i,j is the numerical approxima-

tion to 1
∆x ∆y

∫

Ci,j
u(x, y, tn) dxdy. The finite volume discretization in the wave

propagation form reads

Un+1
i,j = Un

i,j −
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+ ∆tSn
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(2)
Since scheme (2) is explicit, we select a time step ∆t to fulfill the CFL condition.
The horizontal fluctuations

A±∆Un
i∓1/2,j =

3
∑

p=1

(

sp
i∓1/2,j

)±
Wp

i∓1/2,j (3)

measure the net effect of all the right-going waves Wp
i−1/2,j from the interface

{x = xi−1/2}× [yj−1/2, yj+1/2] with speed sp
i−1/2,j and of all the left-going waves
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Wp
i+1/2,j from the interface {x = xi+1/2} × [yj−1/2, yj+1/2] with speed sp

i+1/2,j ,
respectively; likewise, the vertical fluctuations

B±∆Un
i,j∓1/2 =

3
∑

p=1

(

sp
i,j∓1/2

)±
Wp

i,j∓1/2
(4)

take into account the net effect of all the up-going waves Wp
i,j−1/2

from the

interface [xi−1/2, xi+1/2] × {y = yj−1/2} with speed sp
i,j−1/2

and of all the down-

going waves Wp
i,j+1/2

from the interface [xi−1/2, xi+1/2]×{y = yj+1/2} with speed

sp
i,j+1/2

, respectively. Notice that all the fluctuations in (3) and (4) are suitably
modified via the Harten-Hyman entropy fix correction to treat also transonic
rarefaction waves [4].

Terms Fn
i±1/2,j and Gn

i,j±1/2
in (2) include the effects related to the waves

transversely propagating from the neighboring cells into Ci,j : they can be dis-
tinguished into the left-going and right-going transverse waves
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respectively, and into the down-going and up-going transverse waves
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,

respectively (see Figure 1). These corrections are first-order accurate. In the
sequel, we resort to a second order extension (see [4], Chap. 20).

The source term is integrated via a fractional step method (the Godunov
splitting). We first solve the SWE with no source term on the time interval
In = [tn, tn+1), with initial datum Un = [Un

i,j ]; this predictor step yields an

intermediate solution Un+1,∗. Then, we solve the independent system of ODEs
∂u/∂t = s on each cell and on In, with initial datum Un+1,∗. This corrector
step provides the approximation Un+1. In particular, we use an explicit second-
order Runge-Kutta scheme to solve the system of ODEs: fulfillment of the CFL
condition is guaranteed by an appropriate selection of the time step.

Two types of boundary conditions are used herein: nonreflecting boundary
conditions in correspondence with the open boundaries and slip conditions along
the solid walls. In both the cases, we use the so-called ghost cells. At the
beginning of each time step, the values of the solution in the ghot cells are
determined by an appropriate extrapolation of the solution at the previous steps
or of the boundary conditions. In particular, we add two ghost cells along ∂Ω
and we employ a zero-order extrapolation to set values here (see [4] for further
details).

3 The adaptive geometrical multiscale solver

In this section we consider a geometrical multiscale formulation. This means
that equations (1) for both the 1D and 2D domains are numerically coupled.
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Our goal is an automatic detection of the areas of Ω where the water dynamics
needs to be described with a 2D model or can be modelled by a 1D problem. To
this aim, we need a modeling error indicator; then we set a modeling adaptive
procedure driven by such an indicator to get the 2D-1D SW model.

3.1 Heuristic modeling error estimate for the SWE

Two different error indicators are devised to estimate: a) in 2D subdomains the
possible reduction to 1D (model coarsening); b) in 1D subdomains the possible
expansion to 2D (model refinement). They are both heuristic indicators and
are based on the concept of fluctuation introduced in (3)-(4). In particular,
we assume as reference hydrodynamic configuration an open rectilinear channel
characterized by a constant rectangular cross-section and subdivided into Nx ×
Ny cells, slip conditions being assigned along the solid walls.

Model coarsening. Let us focus on the i-th column of cells and, in particular,
on relation (2) which updates the value of U on the cell Ci,j at t = tn+1. For
simplicity, we assume here that the source term Sn

i,j is zero.
As indicator driving the model coarsening we assume the value |B±∆Un

i,j∓1/2
|

of the vertical fluctuations: if they are small, i.e.,

|B±∆Un
i,j∓1/2| ≤ Toll1D ∀j = 1, . . . , Ny, (5)

then the i-th column is marked to be assigned to the 1D model at t = tn+1 (see
Figure 1). Notice that Toll1D ∈ R

3 since the coarsening check has to be tested
for each component of ∆Un

i,j∓1/2
.

Let us provide some rationale behind criterion (5), referring to [6] for further
details. Let us assume that the fluctuations B±∆Un

i,j∓1/2
are identically equal

to zero, for j = 1, . . . , Ny. Then, the third term on the right-hand side in (2) as
well as the terms Fn

i±1/2,j vanish. To decide whether also the down-going and up-

going transverse waves may be ignored, we consider the (i− 1)-th and (i + 1)-th
columns, where we assume that the vertical fluctuations are equal to zero as well.
It can be empirically inferred that, if B±∆Un

k,j∓1/2
= 0 for k = i− 1, i, i+1 and

j = 1, . . . , Ny, then, in those three columns, w vanishes while the water depth h
is column-wise constant. Physically, this is consistent with two cases: i) h and v
are constant along the x-direction: the horizontal fluctuations A±∆Un

i∓1/2,j and

the transverse waves Gn
i,j±1/2

vanish, so that equation (2) reduces to Un+1
i,j = Un

i,j

and no vertical fluctuation is expected in the i-th column at time t = tn+1; ii)
h and v are constant along the y-direction: A+∆Un

i−1/2,j = A−∆Un
i+1/2,j and

Gn
i,j+1/2

= Gn
i,j−1/2

, so that (2) reduces to

Un+1
i,j = Un

i,j −
∆t

∆x

(

A+∆Un
i−1/2,j + A−∆Un

i+1/2,j

)

(6)

and no vertical fluctuation is expected in the i-th column at time t = tn+1.
Should h and v vary along both x- and y-direction, the four terms A±∆Un

i∓1/2,j ,
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Adjacent horizontal fluctuations ≥ Toll2D

F±

Figure 1: Fluctuations driving the modeling adaptive procedure

Gn
i,j±1/2

do not vanish and vary for different values of j. So we infer that this
assumption is not compatible with the condition that the vertical fluctuations
in the current and adjacent columns vanish.

In practice, condition B±∆Un
i,j∓1/2

= 0 is relaxed and turns into criterion

(5). If this check holds for the (i−1)-th, i-th and (i+1)-th column, then the i-th
column is eligible to be associated with the 1D model. At this point equation
(6) is solved by assuming for Un

k,j , with k = i, i ± 1/2, the mean value of Un
k,j

over the k-th column.

Model refinement. It is less immediate to find a reliable criterion driving the
refinement of the 1D areas. In principle one should quantify the vertical fluctu-
ations but, of course, these quantities are not computed by a one-dimensional
model.
Thus, we focus on the horizontal fluctuations with the following idea: high hori-
zontal fluctuations in the neighborhood of an element are likely to transfer energy
along the vertical direction, triggering a significant vertical component of the ve-
locity. At t = tn, we compute therefore the entity of horizontal fluctuations in all
the columns associated with the 2D model and neighboring with a 1D segment:
if they are large enough, the 1D domain becomes eligible to be associated with
the 2D model. In more detail, if the i-th column is adjacent, on the right, to a
1D segment and |A+∆Un

i+1/2,j | is sufficiently large, for some j = 1, . . . , Ny, then

the 1D segment becomes a candidate to be a (the (i+1)-th) 2D column; likewise
if the i-th column is adjacent, on the left, to a 1D segment and |A−∆Un

i−1/2,j | is
sufficiently large, for some j = 1, . . . , Ny, then the 1D segment becomes eligible
to be a (the (i − 1)-th) 2D column (see Figure 1).

The error indicator driving the model refinement is consequently represented
by the horizontal fluctuations A±∆Un

i±1/2,j ; the corresponding refinement cri-
terion reads: if

|A±∆Un
i±1/2,j | ≥ Toll2D for some j = 1, . . . , Ny, (7)

then the 1D segment at the right (at the left) of the i-th column is marked to be
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assigned to the 2D model at t = tn+1. As in (5), Toll2D ∈ R
3 and the refinement

check has to be verified for each component of ∆Un
i±1/2,j .

3.2 The modeling adaptive procedure

This procedure moves from the coarsening and the refinement criteria above to
set up an automatic selection of the 2D and 1D areas. We can itemize the generic
k-step of the modeling adaptive procedure we propose in such a way: running
over all the Nx columns,

1. we mark all the 2D columns where criterion (5) holds as eligible for the
1D model and we group the consecutive columns thus marked;

2. we mark all the 1D intervals neighboring with a 2D column where one
of the criteria (7) holds as eligible for the 2D model and we group the
consecutive intervals thus marked;

3. we select the groups in 1. and 2. which are neighbors with sets of at least
min2d 2D columns and/or sets of at least min1d subintervals;

4. all the groups identified by 1. and 3. constituted by at least q columns,
with q ≥ min1d, are assigned to the 1D model;

5. all the groups identified by 2. and 3. constituted by at least p subintervals,
with p ≥ min2d, are assigned to the 2D model.

This approach guarantees always a minimum size for both the 2D and 1D areas
given by min2d · ∆y and min1d · ∆x, respectively. Moreover, we permanently
associate a certain area of the domain with the 2D model in the presence of a
hydrodynamic configuration (e.g., a pillar, a pier) or a boundary condition (e.g.,
a lateral inlet) which implicitly induces vertical fluctuations.

Concernig the matching conditions between the two classes of models, we
distinguish 1D-2D and 2D-1D couplings. For the former, we extend the 1D
values of h and hv to all the Ny cells in the first column of the 2D domain,
while setting hw = 0. For the latter, the mean value of h and hv over the Ny

cells in the last column of the 2D domain is assigned to the corresponding 1D
variables. Alternative and more sophisticated approaches are discussed in [6],
also suitable in the presence of a source term. Notice that empirical criteria (5)
and (7) rely on the assumption of no-forcing term. Should a forcing term be on,
these criteria need to be properly modified [6].

The same time step ∆t for both the 2D and the 1D domains is selected so
that the CFL condition is globally fulfilled. Finally, to contain the computational
cost of the whole adaptive procedure, we update the 2D/1D model every M∗

time-steps instead at each time step.
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Figure 2: Adaptive geometrical multiscale modeling: test case sketch (top-left);
3D representation of the free surface at t = 1s (top-right), t = 2s (bottom-left),
t = 10s (bottom-right)

Numerical validation. With this test case we analyze the proposed modeling
adaptive procedure, essentially from a qualitative viewpoint. We have imple-
mented the adaptive solver in Clawpack 4.3 ([5]). We consider a popular hy-
drodynamic benchmark, i.e., a rectangular dam-break simmetrically localized
in a 10m ×3m rectangular channel with a flat horizontal frictionless bed (see
Figure 2, top-left). The dam break occurs due to the istantaneous collapse of
three of the dam walls. We employ a grid consisting of 100× 30 cells, we assign
slip boundary conditions on the whole ∂Ω, and we set 1 as maximum value for
the CFL condition. Concerning the parameters involved in the modeling adap-
tive procedure, we set: Toll1D = Toll2D = [10−1, 10−1, 10−1]T , min2d = 10,
min1d = 2, M∗ = 5.
In Figure 2 we show the water surface for three different times: the 2D model
follows the evolution of the dynamics as well as that the intrisic symmetry of
the problem is preserved by the model adaptation.

For a more quantitative investigation of the modeling adaptive procedure we
refer to [6].
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[3] Krámer, T., Józsa, J.: Solution-adaptivity in modelling complex shallow
flows. Computers & Fluids 36, 562–577 (2007)

[4] LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cam-
bridge, (2001).

[5] LeVeque, R.J.: Clawpack, Version 4.3.
http://depts.washington.edu/clawpack/clawpack-4.3/

[6] Mauri, L., Perotto, S., Veneziani, A.: An adaptive geometrical multiscale
model for the shallow water equations. In preparation (2012)

[7] Miglio, E., Perotto, S., Saleri, F.: Model coupling techniques for free-surface
flow problems. Part I. Nonlinear Analysis, 63, 1885–1896 (2005)

[8] Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference
schemes. J. Comput. Phys. 43, 357–372 (1981)

[9] Sleigh, P.A., Berzins, M., Gaskell, P.H., Wright, N.G.: An unstructured fi-
nite volume algorithm for predicting flow in rivers and estuaries. Computers
& Fluids 27, 479–508 (1998)

[10] Vreugdenhil, C.B.:Numerical Methods for Shallow-Water Flow. Springer,
(1994).

9



MOX Technical Reports, last issues
Dipartimento di Matematica “F. Brioschi”,

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

09/2012 Mauri, L.; Perotto, S.; Veneziani, A.

Adaptive geometrical multiscale modeling for hydrodynamic problems

08/2012 Sangalli, L.M.; Ramsay, J.O.; Ramsay, T.O.

Spatial Spline Regression Models

07/2012 Perotto, S; Zilio, A.

Hierarchical model reduction: three different approaches

06/2012 Micheletti, S.; Perotto, S.

Anisotropic recovery-based a posteriori error estimators for advection-

diffusion-reaction problems

05/2012 Ambrosi, D; Arioli, G; Koch, H.

A homoclinic solution for excitation waves on a contractile substratum

04/2012 Tumolo, G.; Bonaventura, L.; Restelli, M.

A semi-implicit, semi-Lagrangian, p-adaptive Discontinuous Galerkin

method for the shallow water equations

03/2012 Fumagalli, A.; Scotti, A.

A reduced model for flow and transport in fractured porous media with

non-matching grids

02/2012 Arioli, G.

Optimization of the forcing term for the solution of two point boundary

value problems

01/2012 Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G.

A reduced computational and geometrical framework for inverse prob-

lems in haemodynamics

47/2011 Antonietti, P.F.; Borz, A.; Verani, M.

Multigrid shape optimization governed by elliptic PDEs


