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Abstract

A wavelet-based method is proposed to obtain accurate estimates of
curves in more than one dimension and of their derivatives. By means
of simulation studies, we compare this novel method to another locally-
adaptive estimation technique for multidimensional functional data, based
on free-knot regression splines. This comparison shows that the proposed
method is particularly attractive when the curves to be estimated present
strongly localized features. The multidimensional wavelet estimation method
is thus applied to multi-lead electrocardiogram records, where strongly lo-
calized features are indeed expected.

1 Introduction

Functional Data Analysis (FDA) is the branch of statistics which focuses on
data that can be seen as the observed value of a functional random variable.
However, from a practical point of view, every data is observed on a discrete
grid and a measurement error is also present. A crucial step of the analysis thus
consists in the estimation of the continuous functional data starting from its
discrete observation. In this process the functional basis plays an essential role.
Usual choices are Fourier bases and spline bases (see, e.g., Ramsay and Silver-
man, 2005). Wavelet bases have been so far mainly applied in problems where
there was no interest in derivatives, because of the absence of close analytical
forms for smooth wavelet bases. This issue has restricted their application to a
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small part of the FDA field. To overcome this limitation, we resort here to a nu-
merical method that allows to obtain derivatives of wavelet estimated data. We
moreover extend traditional wavelet estimators to curves in general dimensions;
this requires the development of a new estimation procedure which takes into
account simultaneously all the space coordinates of the multidimensional curve.

The paper is organized as follows. In Section 2 we briefly recall wavelet
bases. In Section 3 we describe a numerical method that allows to compute
point-wise values of a wavelet and its derivatives, even in the absence of a close
analytical form for the wavelet basis. Section 4 reviews wavelet smoothing for
one dimensional functional data; in this section, we also describe the choice
of the translation of the wavelet basis functions, that minimizes the approxi-
mation error in the wavelet representation of a function. Section 5 accurately
extends wavelet-based estimation techniques to the case of curves in more than
one dimension. Section 6 illustrates the good performances of the proposed tech-
nique, especially in the case of multidimensional functional data characterized
by strongly localized features. An important example of real life data having
this nature is given by multi-lead Electro Cardio Grams (ECG); Section 7 shows
an application to a dataset of multi-lead ECGs collected by the 118 Dispatch
Center (the medical emergency unit) in Milano, Italy. Finally, some conclusive
considerations are drawn in Section 8.

All simulations and analysis of real data are performed in R 2.10.1 (R De-
velopment Core Team, 2009), with extensive use of the package wavethresh

(Nason, 2010).

2 An overview on wavelets

In this section we briefly recall wavelet bases for L2(R). For a systematic intro-
duction to wavelets, see, e.g., Mallat (1999) or Nason (2008).

Wavelets are defined starting from an orthogonal multiresolution:

Definition 2.1 Let {Vj}j∈Z be a sequence of closed subspaces Vj ⊆ L2(R) and
let ϕ ∈ V0. An orthogonal multiresolution for L2(R) is a couple ({Vj}j , ϕ) such
that:

1. Vj ⊂ Vj+1

2.
⋃

j Vj = L2(R) and
⋂+∞

j=−∞ Vj = {0}

3. {l 7→ f(l)} ∈ Vj ⇔ {l 7→ f(2l)} ∈ Vj+1

4. {ϕ(l − k)}k∈Z is an orthonormal basis for V0 and
∫
R
ϕ 6= 0.

The projections of f ∈ L2(R) on the sequence {Vj}j give a progressively better
approximation of f as j increases. The function ϕ is called scaling function or
father wavelet. Thanks to property 3 above, {2j/2ϕ(2jl−k)}k is an orthonormal
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basis for Vj . However, it is often more useful exploring the detail information
needed to go from the space Vj to the space Vj+1, starting from a coarse space
V0. This is the reason to introduce the sequence of the complement spaces
Wj = Vj+1\Vj . A mother wavelet is a function ψ ∈ W0 so that {ψ(l − k)}k is a
basis for W0. As a consequence,

L2(R) =
⊕

j∈Z
Wj

and {ψj,k(l)}k = {2 j
2ψ(2jl− k)}k is an orthonormal basis for L2(R). Therefore,

for each f ∈ L2(R), we have

f =
∑

j

∑

k

< f, ψj,k > ψj,k =
∑

k

< f, ϕj0,k > ϕj0,k +

+∞∑

j=j0

∑

k

< f, ψj,k > ψj,k =

=
∑

k

sj0,kϕj0,k +
+∞∑

j=j0

∑

k

dj,kψj,k

where < ·, · > is the scalar product in L2(R), sj0,k :=< f, ϕj0,k > and dj,k :=<
f, ψj,k >. The coefficients {sj0,k}k∈Z, {dj,k}j∈Z∩{j>=j0},k∈Z are called discrete
wavelet transform of f . It can be shown that ϕ and ψ satisfy del dilation/refinement
equations:

ϕ(l) =
∑

k

hk
√
2ϕ(2l − k)

ψ(l) =
∑

k

gk
√
2ϕ(2l − k) (1)

for some sequences {hk}k and {gk}k, named respectively scaling filter and wavelet
filter. These equations are essential for the development of the so-called fast
wavelet transform, which computes the discrete wavelet transform in O(n) op-
erations. It is important to note that smooth and compactly supported wavelet
bases have no analytical form, and they are instead defined via their scaling and
wavelet filters.

3 Wavelet derivatives

Wavelet bases have already proved to be very useful in functional data analysis,
thanks largely to their natural local-adaptivity, that allows them to accommo-
date a wide variety of functional forms. See for instance Antoniadis et al. (2010)
and Wang et al. (2007), and references therein, for contributions in the frequen-
tist and bayesian literature, respectively. As mentioned in the Introduction,
though, their application has so far been mainly confined to problems in which
derivative estimates were not required, this limitation being due to the absence
of a close analytical form for wavelet bases smooth enough for this purpose.
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Wavelets have been used by Leung et al. (1998) to compute approximate
function derivatives as difference between the scaling coefficients coming from
different scaling/wavelet bases. This procedure exploits the fact that different
wavelet bases cause different shifts of the function projected on the subspace
VJ−1, so that a pair of bases can be found whose difference approximates the
function variation at that scale. Anyway, this method offers a derivative es-
timation on a space that is coarser than the original one. Since higher order
derivatives are estimated through an iterative procedure, evaluation points be-
come fewer and fewer, resulting in not accurate estimates of the derivatives.
Moreover, an high observation noise strongly worsen this issue, being necessary
to use coarser level scaling coefficients.

Here we instead resort to a numerical method that allows to compute point-
wise values of wavelets and their derivatives, even in the absence of a close
analytical form for the wavelet basis. The method is based on a common ap-
proach for solving dilation equations (see, e.g., Strang, 1989). Its starting point
is constituted by the scaling filter {hk}k and the wavelet filter {gk}k, which are
available for all the wavelet bases of interest. First of all, recall that if the filter
{hk}k is of finite length N , then the support of the scaling function ϕ is [0, N−1].
This happens because of the dilation equation:

ϕ(l) =
√
2

N−1∑

k=0

hkϕ(2l − k). (2)

In fact, supposing that the support of ϕ is [a, b], we have

• ϕ(2l) has support [a2 ,
b
2 ]

• ϕ(2l − 1) has support [a+1
2 , b+1

2 ]
...

• ϕ(2l − (N − 1)) has support [a+N−1
2 , b+N−1

2 ].

The right hand side of equation (2) has therefore support [a2 ,
b+N−1

2 ]. However,
this must coincide with the support [a, b] of the left hand side. Thus,





a = a
2

b = b+N−1
2

⇒
{
a = 0
b = N − 1.

We describe directly how to obtain point-wise values of wavelet derivatives. De-
riving the dilation equation and evaluating it at the integers in the support of
ϕ, we obtain

ϕ′(0) = 2
√
2(h0ϕ

′(0))

ϕ′(1) = 2
√
2(h0ϕ

′(2) + h1ϕ
′(1) + h2ϕ

′(0))
...

ϕ′(N − 1) = 2
√
2(hN−1ϕ

′(N − 1)).
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This linear system can be rewritten as



ϕ′(0)
...

ϕ′(N − 1)


 = 2H




ϕ′(0)
...

ϕ′(N − 1)




where H is the matrix formed by the filter coefficients. For example, for N = 6,
the matrix H turns out to be

H =
√
2




h0 0 0 0 0 0
h2 h1 h0 0 0
h4 h3 h2 h1 h0 0
0 h5 h4 h3 h2 h1
0 0 0 h5 h4 h3
0 0 0 0 0 h5




It becomes then clear that the vector (ϕ′(0), . . . , ϕ′(N − 1)) is the eigenvector
associated to the eigenvalue 2 of the matrix H. It is thus possible to obtain the
values of ϕ′ on the integers 0, . . . , N−1, thanks to known methods for computing
eigenvectors (see, e.g., Quarteroni et al., 2000). Since eigenvectors are defined up
to a scaling coefficient, it is therefore necessary to impose a normalization. Being
[lϕ(l)]+∞

−∞ = 0 and
∫
ϕ(l) = 1, we have that

∫
lϕ′(l) = [lϕ(l)]+∞

−∞ −
∫
ϕ(l) = −1;

hence, a suitable normalization for the eigenvector is
∑N−1

k=0 kϕ
′(k) = −1. Using

the dilation equation a second time, we get

ϕ′(
l

2
) =

√
2
∑

k

hk2ϕ
′(l − k),

so that ϕ′ can be evaluated at the middle points 1
2 , . . . , N − 3

2 . Iterating this
procedure, it is possible to compute the desired refinement of ϕ′. Once ϕ′ is
obtained, ψ′ is computed deriving the wavelet dilation equation (1):

ψ′(l) = 2
√
2
∑

k

gkϕ
′(2l − k).

By the same procedure, taking the second and subsequent derivatives of the
dilation equation, it is possible to obtain the second and subsequent derivatives
of ϕ and ψ.

4 Wavelet smoothing of functional data

As we recalled in Section 2, every function f ∈ L2(R) can be represented by a
scaling/wavelet basis. This can be used to obtain an estimator of a functional
data, starting from its discrete observation. Let the statistical model be

wi = f(li) + εi, i = 1, . . . , n, n = 2J , J ∈ N, (3)
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where f is the true curve, to be estimated, li = i/n are evenly spaced points
and εi are independent and identically distributed (i.i.d.) errors with N(0, σ2)
distribution. The wavelet smoothing procedure consists in changing over to
wavelet domain, where the model becomes

dj,k = d0j,k + ρj,k

dj,k being the empirical coefficients corresponding to the data, d0j,k the true

wavelet coefficients of f , and ρj,k ∼ N(0, σ2d) the wavelet transforms of the error.
Section 4.1 describes how the empirical coefficients dj,k, and the coefficients sj0,k
are computed from the data w1, . . . , wn. Here we instead recall how the esti-
mates d̂j,k of the true wavelet coefficients d0j,k can be obtained starting from the
empirical coefficients dj,k. A first idea consists in the so-called hard-thresholding
estimator, which fixes a threshold t and considers all coefficients below this
threshold as coming only from noise, thus setting d̂j,k = dj,kI{dj,k>t}. A more
refined idea consists in also shrinking the coefficients above this threshold, with
the aim of removing their component due to noise. In particular, the wavelet
estimator becomes

d̂j,k = sign(dj,k)(|dj,k| − t)+

which is called soft-thresholding estimator. The corresponding estimate of the
true function f is then given by

f̂(l) =

2j0∑

k=1

sj0,kϕj0,k(l) +

j=J−1∑

j=j0

2j∑

k=1

d̂j,kψj,k(l). (4)

It should be noticed that since wavelet bases are by construction localized in both
space and frequency, (4) very naturally provides a locally adaptive estimate of
the function f .

The level j0 in (4) is the lowest for which thresholding is applied; wavelets
coefficients of levels lower than j0 do not undergo any thresholding. The choice
of this smoothing coefficient depends on the signal to noise ratio of the data and
on the problem under analysis; in general lower signal to noise ratios lead to
choosing lower values of j0 (see, e.g., Nason, 2008). Many strategies have been
instead proposed for the choice of the threshold t, (see, e.g., Cai and Zhou, 2009;
Donoho and Johnstone, 1995; Donoho et al., 1995)), among which a popular one
is the universal threshold :

t = σ̂d
√
2 log n . (5)

The estimation of σd is based on the fact that, in the wavelet transform, the
wavelet coefficients of the finer level J − 1 are essentially pure noise. Donoho et
al. (1995) proposed to use a robust estimator, that is given by the median of the
absolute deviation from the median of these coefficients, i.e.,

σ̂d =
median(|dJ−1 −median(dJ−1)|)

0.6745
.
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Since wavelet bases are localized for definition both in space and frequency, esti-
mation of the wavelet coefficients provides naturally a locally adaptive estimation
of the function f .

4.1 Computation of the empirical coefficients and

optimal translation for scaling and wavelet basis functions

To initialize the estimating algorithm, it is necessary to compute the empirical
coefficients dj,k from the data w1, . . . , wn. The fast wavelet transform algorithm,
described in Beylkin et al. (1991), allows to compute all the scaling and wavelet
coefficients, starting from the coefficients sJ,1, . . . , sJ,n. A common procedure
consists in approximating these coefficients with the data values w1, . . . , wn.
This is justified by the fact that the support of ϕJ,i is localized around the point
li, if J is large enough (i.e., if n is large enough). For a general discussion on
the adequacy of this choice see, e.g., Nason (2008). Anyway, since every wavelet
basis is defined up to a translation, it is convenient to look for an appropriate
translation τ of the basis functions such that the error of this approximation is
as small as possible. Here we use the translation τ =

∫
R
yϕ(y)dy. We motivate

this choice by the following argument. Approximating f by its first order Taylor
expansion, we obtain

sJ,i =

∫

R

f(l)ϕJ,i(l + τ) dl ≈
∫

R

(f(li) + lf ′(li))ϕJ,i(l + τ) dl =

= f(li)

∫

R

ϕJ,i(l + τ) dl + f ′(li)
∫

R

lϕJ,i(l + τ) dl

⇓

sJ,i ≈ f(li) + f ′(li)
∫

R

lϕJ,i(l + τ) dl,

since
∫
R
ϕJ,i(l + τ) dl = 1. Hence, if the translation τ is such that

∫

R

lϕ(l + τ) dl = 0, (6)

then f(li) would be a good approximation of sJ,i, so that using the data value
wi to approximate sJ,i seems well justified in this case. If we thus impose the
supplementary condition (6), we get

∫

R

lϕ(l + τ) dl = 0 ⇒
∫

R

(y − τ)ϕ(y)dy = 0 ⇒

⇒
∫

R

yϕ(y)dy − τ

∫

R

ϕ(y)dy = 0 ⇒ τ =

∫

R

yϕ(y)dy.

(7)

We therefore use the basis associated to the translation τ found above. Empirical
results (not reported here for sake of brevity) confirm that this is an optimal
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translation. The estimate of the true function f hence becomes

f̂(l) =

2j0∑

k=1

sj0,kϕj0,k(l + τ) +

j=J−1∑

j=j0

2j∑

k=1

d̂j,kψj,k(l + τ)

and the corresponding estimate of the first derivative is

f̂ ′(l) =
2j0∑

k=1

sj0,kϕ
′
j0,k(l + τ) +

j=J−1∑

j=j0

2j∑

k=1

d̂j,kψ
′
j,k(l + τ)

where point-wise values of ϕ′
j0,k

and ψ′
j,k are computed as detailed in Section 3.

Subsequent derivative estimates are obtained analogously.

5 Wavelet estimation for curves in more than one

dimension

We now extend wavelet-based estimation techniques to the case of curves in
more than one dimension. The function f we want to estimate has the form

f : R ∋ l 7→
(
f1(l), . . . , fp(l)

)
∈ R

p

which describes parametric curves in p dimensions. The observed values are
generated by the model

wk = f(lk) + εk k = 1, . . . , n = 2J (8)

where εk is a multinormal error with mean the null vector 0 ∈ R
p and variance-

covariance matrix σ2Ip. Our aim is to estimate the function f and its derivatives.
A first idea could be to estimate each coordinate function f1, . . . , fp indepen-
dently, applying separately on each coordinate the procedure described in the
previous sections. However, if the curve has a significant feature at some point
of the physical space, we expect that this will be reflected on all p coordinates
concurrently. For this reason, we develop an estimation technique that takes
into account the vectorial structure of the function to be estimated. In par-
ticular, the proposed estimation technique is such that the same wavelet basis
functions are used for the estimation of all coordinate functions f1, . . . , fp of f ;
a specific wavelet basis function, with a specific frequency and location, is either
used for each of the coordinate functions, in order to capture a feature of the
p-dimensional function f , or is not used for any of the coordinate functions, if un-
necessary to capture relevant features of f . Thus, the proposed soft-thresholding
works on p-dimensional wavelet coefficients, so that these coefficients are set to
the null vector 0, or undergo an appropriate shrinkage, that takes accurately
into account all p coordinates.
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5.1 Generalization of Universal Threshold in p dimensions

Starting from model (8) and using the orthogonality of the wavelet transform,
we have that

dj,k = d0
j,k + ρj,k,

with dj,k,d
0
j,k,ρj,k ∈ R

p, where dj,k are the vectors of the empirical wavelet

coefficients corresponding to the data, d0
j,k are the vectors of the true wavelet

coefficients of the p-dimensional function f , and ρj,k are the wavelet transforms
of the noise and have multivariate normal distribution with mean 0 and variance-
covariance matrix σ2dIp. In order to decide if d0

j,k can be estimated as the null

vector, we focus on ||dj,k||22 and try to fix a threshold for this quantity. In
particular, we want to find an estimation procedure that generalizes the 1D
universal threshold, which is based on the following result.

Proposition 5.1 (Donoho et al., 1995) Let {Xn}n be a sequence of i.i.d. N(0, 1)
random variables and An = {maxi=1,...,n |Xi| ≤

√
2 log n}. Then

P(An) → 1 for n→ +∞.

Thanks to Proposition 5.1, we have in fact that if the number n of observations
in model (3) is large enough, then the universal threshold (5) contains, with high
probability, all the coefficients coming from noise.

In the p-dimensional case, we know that ||ρj,k

σd
||22 ∼ χ2(p). We shall thus

look for a threshold which contains with high probability n observations from
a random variable having χ2(p) distribution. To find such threshold we exploit
the following well-known theorem on random processes (see, e.g., Leadbetter et
al., 1983, Theorem 1.5.1).

Theorem 5.1 Let {Yn}n be a sequence of i.i.d. random variables with cumula-
tive distribution function F . Let {un}n be a real sequence such that

n(1− F (un)) → τ for n→ +∞,

for some 0 ≤ τ < +∞. Then

P [ max
1≤k≤n

Yk ≤ un] → e−τ .

Proof.
P [ max

1≤k≤n
Yk ≤ un] = {F (un)}n =

= {1− (1− F (un))}n ∼ (1− τ

n
+ o(

1

n
))n → e−τ for n→ +∞.

�

Indeed, applying Theorem 5.1, we can prove the following result.
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Proposition 5.2 Let {Yn}n be a sequence of i.i.d. χ2(p) random variables and
An = {maxi=1,...,n Yi ≤ cp log n}, where

cp =

{
2 if p = 1
3 if p ≥ 2.

Then
P(An) → 1 for n→ +∞.

Proof. Denoting by F and f respectively the cumulative distribution function and
the density function of χ2(p), we have

lim
n→+∞

n(1− F (cp log n)) = lim
n→+∞

1− F (cp log n)
1
n

=

= lim
n→+∞

−f(cp log n) cpn
− 1

n2

= lim
n→+∞

2−p/2

Γ(p/2)
cp/2p n(logn)p/2−1e(−

cp log n

2
)

= lim
n→+∞

cp/2p

2−p/2

Γ(p/2)
n(logn)p/2−1n−cp/2 =

= lim
n→+∞





21/2 2−1/2

Γ(1/2)n(logn)
1/2−1n−2/2 = 1

Γ(1/2)
1√
logn

= 0 if p = 1

3p/2 2−p/2

Γ(p/2)n(logn)
p/2−1n−3/2 = 3p/2 2−p/2

Γ(p/2)
(log n)p/2−1

√
n

= 0 ∀p ≥ 2.

Then, using Theorem 5.1, we obtain

P [ max
1≤k≤n

Yk ≤ cp log n] → e−0 = 1.

�

Applying Theorem 5.1 it is also possible to prove Proposition 5.1. It should
be noticed that Proposition 5.2 when p = 1 (i.e., when Yi is the square of a
Gaussian random variable) gives the same threshold supported by Proposition
5.1. In the multidimensional case p ≥ 2, Proposition 5.2 supports instead the
following threshold on ||dj,k||22:

tp = σ̂2d(3 log n).

A simple estimator for multidimensional case is therefore the following hard-
thresholding scheme:

d̂j,k =

{
0 if ||dj,k||22 ≤ tp
dj,k if ||dj,k||22 > tp.

Likewise hard thresholding in the 1D case, this estimator does not take into ac-
count that also the coefficients larger than the threshold contains a component
due to noise. To obtain a more refined result, we shall use a soft-thresholding
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estimator which applies a shrinkage to the coefficients larger than the thresh-
old tp. However, the generalization to the p-dimensional setting of the simple
shrinkage operation usually performed in 1D case is not straightforward.

Recall that the empirical wavelet coefficient dj,k is a vector of Rp and tp is a
threshold on its euclidian norm. Starting from the hypothesis that the variance
of the error on the coefficients is the same in all p directions, we can consider the
direction of the vector dj,k to be mainly determined by that of the true coefficient
d0
j,k. Thus, we choose to estimate d0

j,k keeping unchanged the direction of the
empirical coefficient dj,k and diminishing its norm by

√
tp , i.e.,

if ||dj,k||22 > tp then ||d̂j,k||2 = ||dj,k||2 −
√
tp .

Setting ||d̂j,k||2 = ||cdj,k||2, we get

c = 1−
√
tp

||dj,k||2
,

so that the soft-thresholding estimator will be

d̂j,k =

{
0 if ||dj,k||22 ≤ tp

(1−
√
tp

||dj,k||2 )dj,k if ||dj,k||22 > tp

i.e.,

d̂j,k =

(
1−

√
tp

||dj,k||2

)

+

dj,k . (9)

Geometrically, this soft-thresholding procedure works as follows. Consider a
p-dimensional sphere with radius

√
tp and centered in the origin; if the p-

dimensional vector dj,k lies completely inside the sphere, then the estimated

wavelet coefficient d̂j,k is set to 0; otherwise, d̂j,k is obtained from dj,k by re-
moving the part of dj,k that lies inside the sphere. Figure 1 gives a visual
representation of this procedure for p = 3.

6 Simulation studies

In this section we illustrate, via a two-case simulation study, the good perfor-
mances of the proposed wavelet fitting technique for multi-dimensional func-
tional data, particularly when the true curves to be estimated are characterized
by strongly localized features. In the implementation of the technique, we use
here the Daubechies wavelet basis with 10 vanishing moments, because this basis
is compactly supported and smooth enough to allow the estimation of second
derivatives (see Daubechies, 1988, for details).

As a comparison, we use another locally adaptive regression technique, based
on free-knot splines (see, e.g., Luo and Wahba, 1997; Miyata and Shen, 2003);
this technique has been shown to give functionally very accurate estimates of
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Figure 1: Visual representation in three dimensions of the soft-thresholding
procedure: only the part of the vector dj,k that lies outside the sphere with
radius

√
tp is retained as significant.

Figure 2: Left panel: curve c1, first dataset. Right panel: curve c51, second
dataset; obtained from curve c1, left panel, by adding strongly localized features.

multidimensional curves and their derivatives, even when the curve are charac-
terized by spatially inhomogeneities, having parts where the curve varies more
rapidly and others where it varies more slowly (see Sangalli et al., 2009). The
comparison is carried out on two different datasets, each consisting of 50 simu-
lated curves. Both the curves in the first and in the second dataset are spatially
inhomogeneous and with varying roughness, but the curves in the second dataset
also present strongly localized features, which are instead absent in the curves
of the first dataset.

First dataset. The curves of the first dataset, c1, . . . , c50, are generated in
the following way. Independently for i = 1, . . . , 50, we generate three order-5
splines, xi(l), yi(l), zi(l), for l ∈ [−1, 2], with xi, yi, zi having a common knot
vector ki = (ki 1, . . . , ki 20); the locations of the 20 knots in ki are obtained via
i.i.d. sampling from a uniform distribution on [−1, 2], and the coefficients of the
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corresponding spline-basis expansions that yield xi, yi and zi are obtained via
i.i.d. sampling from a Gaussian distribution with mean 0 and variance 0.5. We
then apply the following non-linear transformation,

xi(l) = log10(xi(l) + q) yi(l) = log10(yi(l) + q) zi(l) = log10(l + zi(l) + q),

where q is a fixed positive constant that makes the logarithm well defined; we
thus consider the curves ci(l) = {xi(l), yi(l), zi(l)} for l ∈ [0, 1]. Note that,
thanks to this non-linear transformation, the 50 curves ci, for i = 1, . . . , 50,
are no longer splines. Figure 2, left panel, gives a 3D visualization of the first
generated curve, c1. We hence simulate from each curve ci on an equispaced
grid of n = 28 points along l, l ∈ [0, 1], adding independent normally distributed
errors ε = {ε[x], ε[y], ε[z]} with mean 0 = (0, 0, 0) and variance-covariance matrix
σ2eI3, where σe = 2 · 10−4, thus obtaining a noisy and discrete observation of the
curve: {(xiu, yiu, ziu) : u = 1, . . . , n = 28}.
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Figure 3: Space coordinates and derivatives of the curve c1, first dataset. Top:
three space coordinates {x1(l), y1(l), z1(l)} (black), superimposed to raw data
(grey). Center: first derivatives {x′1(l), y′1(l), z′1(l)} (black), superimposed to
first central differences. Bottom: second derivatives {x′′1(l), y′′1(l), z′′1 (l)} (black),
superimposed to second central differences.
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Figure 3 shows the noisy and discrete observation of curve c1: the top
panel displays the three space coordinates {x1(l), y1(l), z1(l)} (black), super-
imposed to sampled data (grey); the center panel displays the first derivatives
{x′1(l), y′1(l), z′1(l)} (black), superimposed to first central differences of sampled
data, and the bottom panel displays the second derivatives {x′′1(l), y′′1(l), z′′1 (l)}
(black), superimposed to second central differences of sampled data.

Second dataset. Let us denote the curves in the second dataset by c51, . . . , c100.
For i = 51, . . . , 100, the curve ci is obtained from the corresponding curve ci−50,
in the first dataset, by adding to ci−50 a three-dimensional curve characterized
by strongly localized features, generated as follows. Consider three-dimensional

wavelets having coefficients dj,k = (d
[x]
j,k, d

[y]
j,k, d

[z]
j,k), where dj,k are coefficients

associated to the Daubechies wavelet functions with 10 vanishing moments. In-
dependently for i = 51, . . . , 100, we randomly select 6 wavelet coefficients dj,k

among levels j = 4 and j = 5, and sample the values of these coefficients from
a Gaussian distribution with mean 0 and variance-covariance matrix 0.00032I3;
the remaining coefficients are set to 0. We then apply the inverse fast wavelet
transform to the three coordinates of this wavelet representation to obtain a 3D
wavelet wi on an equispaced grid of 28 points over [0, 1]. The curve ci is hence
given by

ci(l) = ci−50(l) + log(6wi(l) + 2) t ∈ [0, 1].

Figure 2, right panel, gives a 3D visualization of the first generated curve of
this second dataset, c51. Likewise for the first dataset, we hence simulate from
each curve ci, for i = 51, . . . , 100, on the equispaced grid of n = 28 points over
[0, 1], adding independent normally distributed errors with mean 0 and variance-
covariance matrix σ2eI3, where σe = 2 · 10−4, thus obtaining a noisy and discrete
observation of the curve: {(xiu, yiu, ziu) : u = 1, . . . , n = 28}. Figure 4 shows the
noisy and discrete observation of curve c51.

RASEDATA(ĉi) =

=

√√√√ 1

n− 2m

n−m∑

u=1+m

[(
xiu − x̂i(lu)

)2
+

(
yiu − ŷi(lu)

)2
+

(
ziu − ẑi(lu)

)2]

with m=15 boundary grid points not considered in the computation of RASEDATA.
The performances of the different methods will thus be measured by the er-

rors with respect to the true curve. In particular, we shall consider the following
goodness of fit measures.
Root Mean Squared Error of the curve estimate with respect to true curve:

RMSETRUE(ĉi) =

=

√√√√ 1

n− 2m

n−m∑

u=1+m

[(
xi(lu)− x̂i(lu)

)2
+

(
yi(lu)− ŷi(lu)

)2
+

(
zi(lu)− ẑi(lu)

)2]
;
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Figure 4: Space coordinates and derivatives of the curve c51, second
dataset. Top: three space coordinates {x51(l), y51(l), z51(l)} (black), super-
imposed to raw data (grey). Center: first derivatives {x′51(l), y′51(l), z′51(l)}
(black), superimposed to first central differences. Bottom: second derivatives
{x′′51(l), y′′51(l), z′′51(l)} (black), superimposed to second central differences.

Root Mean Squared Error of the estimate of first derivative with respect to
true first derivative:

RMSEder1TRUE(ĉi) =

=

√√√√ 1

n− 2m

n−m∑

u=1+m

[(
x′i(lu)− x̂′i(lu)

)2
+

(
y′i(lu)− ŷ′i(lu)

)2
+

(
z′i(lu)− ẑ′i(lu)

)2]
;

Root Mean Squared Error of the estimate of second derivative with respect to
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true second derivative:

RMSEder2TRUE(ĉi) =

=

√√√√ 1

n− 2m

n−m∑

u=1+m

[(
x′′i (lu)− x̂′′i (lu)

)2
+

(
y′′i (lu)− ŷ′′i (lu)

)2
+

(
z′′i (lu)− ẑ′′i (lu)

)2]
.

Note that we are here using the term “Root Average Squared Error” to denote
errors with respect to observed data, and the term “Root Mean Squared Error”
to denote errors with respect to true curve values.

Figure 5 shows the boxplots of RASEDATA, RMSETRUE, RMSEder1TRUE and
RMSEder2TRUE for the estimates of the curves in the first dataset, obtained
by free-knot regression splines and wavelet smoothing. In this case, the two
methods gives comparable results: if allowed the same level of data-adaptation,
the estimates provided by the two methods have comparable errors with respect
to the true curves and their derivatives.
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Figure 5: First Dataset. Boxplots of RASEDATA, RMSETRUE, RMSEder1TRUE
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Figure 6 shows instead the results found for the second dataset. In this case,
wavelet fitting provides more accurate estimates. In fact, wavelet estimates, even
if allowed comparable or even worse levels of data-adaptation, still provide better
estimates of the curves and their derivatives. The comparative advantage of the
wavelet estimation method over free-knot splines is here due to the fact that
wavelets can better capture the strongly localized features of the curves; some
of these features may instead be missed even by a locally adaptive estimation
technique such free-knot regression splines, that has been shown to provide very
accurate estimates of spatially inhomogeneous curves.
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Figure 7: Estimates of the three space coordinates (top) and first and second
derivatives (center and bottom) of c51, obtained by wavelet smoothing (blue)
and free-knot regression splines (red), superimposed to true curve (black).

Figures 7 and 8 illustrate this issue. Figure 7 displays the estimates of the
three space coordinates and of the first and second derivatives of c51, the first
curve in the second dataset; wavelet estimates (blue) and spline estimates (red)
are superimposed to the true curve (black). The figure highlights that some
strongly localized features of the curve, that are evidenced by large oscillations
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of the derivatives, are well captured by wavelet estimates, whilst are missed by
spline estimates, that smooth them away. This can be better appreciated in the
left panel of Figure 8 that, as an example, zooms in the estimates of the second
derivative in the z direction, in correspondence of one of these features (blue,
wavelet estimate; red: spline estimate; black: true curve). The right panel of the
same figure displays the residuals z′′51−ẑ′′51 for the wavelet estimate (blue) and the
spline estimate (red); also this figure highlights the smaller errors committed by
wavelet estimates in correspondence of the strongly localized features. It should
be mentioned that considering higher levels of data-adaptation does not improve
spline estimates, because the estimates start interpolating also the noise. This
two-case simulation study has shown that the proposed wavelet-based estimation
procedure for multidimensional curves is particularly attractive when the data
are characterized by strongly localized features. In the absence of these charac-
teristics, the proposed method provides estimates that have a level of accuracy
comparable to that of free-knot regression splines, the latter technique having
though the advantage of not being bound to evenly spaced grids of 2J points.
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Figure 8: Left: Zoom of the estimates of the second derivative in the z direction
of c51, in correspondence of one of the strongly localized feature; wavelet estimate
(blue) and spline estimate (red), superimposed to true derivative (black). Right:
Residuals z′′51− ẑ′′51 for the wavelet estimate (blue) and the spline estimate (red).

7 Application to ECG data

In this section we apply the proposed multidimensional wavelet fitting technique
for the estimation of electrocardiogram (ECG) records. The data come from
the 118 Dispatch Center, the medical operating emergency unit, operating in
Milano, Italy. These records are collected as part of the PROMETEO (PROgetto
Milano Ecg Teletrasmessi ExtraOspedaliero) Project (see Barbieri et al., 2010;
Ieva et al., 2010), whose aim is to anticipate diagnostic time in heart attacks, in
order to improve the prognosis of reperfusive treatments and reduce infarction
complications.
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The processing of ECG records as functional data is becoming increasingly
important with the advent of statistical techniques that exploit curves shapes
in the analysis of these records (see, e.g., Boudaoud et al., 2007; Trigano et al.,
2010). These data have a multidimensional nature, because the ECG records
provide potential differences, named leads, between multiple electrodes.

In particular, ten electrodes are used for a standard “12-leads” ECG. Among
the 12 leads provided by the experimental device, eight leads are needed to
capture all the information:

• Leads I and II jointly describe heart activity on the sagittal plane; they
are called limb leads because the electrodes for these signals are located
on the limbs.

• Leads V1, V2, V3, V4, V5 and V6 jointly record heart electric activity on
the horizontal plane; these leads are called precordial and the electrodes
that measure them are placed on the chest.

Figure 9, left panel, shows the positions of electrodes and leads. Since the eight
significant leads jointly describe the complex heart dynamics, when smoothing
these data it is appropriate to use a technique which takes into account all the
eight significant leads simultaneously. Moreover, this helps in detecting signifi-
cant features, which reflect on more than one lead. Furthermore, wavelet basis
are particularly suited to capture ECG shapes, because these are characterized
by localized strong oscillations. Figure 9, right panel, gives a scheme of the
typical structure of Lead I. Figure 10 shows one of the ECG records stored in
the PROMETEO database. In particular, the figure display the raw data of the
eight significant ECG leads for a patient affected by ST Elevation Myocardial
Infarction; superimposed are the estimates of these eight-dimensional functional
data, obtained by the proposed technique using Daubechies wavelet basis with
10 vanishing moments and the generalized soft-thresholding estimator (9).

Figure 9: Left: Scheme of the directions along which the potential difference
is measured for every lead. Right: Template of a physiological ECG record on
Lead I.
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Figure 11 shows the estimated first and second derivatives of Lead I for this
patient. The obtained estimates of the eight-lead traces and of their derivatives,
for the records in the PROMETEO database, are the starting point of extensive
analyses that aim at identifying existing pathologies via ECG shapes, as well as
exploring epidemiologic correlations among different cardiovascular diseases. A
first promising result in this respect is for instance the identification of patients
affected by Bundle Branch Blocks (Ieva et al., 2010). These analyses are not
described here as they will be the object of a dedicated publication.

0 200 600 1000

−1
00

0
50

15
0

25
0

I

0 200 600 1000

0
20

0
40

0
60

0

II

0 200 600 1000

−5
00

−3
00

−1
00

10
0

V
1

0 200 600 1000

−8
00

−4
00

0
40

0

V
2

0 200 600 1000

−1
00

0
−5

00
0

V
3

0 200 600 1000

−5
00

0
50

0

V
4

0 200 600 1000

0
50

0
10

00
15

00

V
5

0 200 600 1000

0
40

0
80

0
12

00

V
6

Figure 10: Eight significant leads in a 12-leads ECG for a patient affected by ST
Elevation Myocardial Infarction; raw data (grey) and multidimensional wavelet
estimate (blue).
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Figure 11: Left: Estimate of first derivative of Lead I (blue), superimposed to
first central differences of raw data (grey). Right: Estimate of second derivative
of Lead I (blue), superimposed to second central differences of raw data (grey).

8 Discussion

We have described a wavelet-based method for the accurate estimation of multi-
dimensional curves and their derivatives. As illustrated by means of simulation
studies, the proposed estimation technique is particularly attractive when the
multidimensional functional data are characterized by strongly localized fea-
tures. In particular, a stimulating application for this research concerned the
fitting of multi-lead ECG records.

Other contributions, such us Storlie et al. (2010), have recently appeared, on
locally adaptive smoothing techniques able to accurately deal with functional
data having spatial inhomogeneities and varying roughness, highlighting the
growing interest for this topic.
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