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Abstract

In this paper we show how to efficiently achieve thermal cloaking from a computational standpoint in
several virtual scenarios by controlling a distribution of active heat sources. We frame this problem in the
setting of PDE-constrained optimization, where the reference field is the solution of the time-dependent
heat equation in the absence of the object to cloak. The optimal control problem then aims at actuating
the space-time control field so that the thermal field outside the obstacle is indistinguishable from the
reference field. In particular, we consider multiple scenarios where material’s thermal diffusivity, source
intensity and obstacle’s temperature are allowed to vary within a user-defined range. To tackle the
thermal cloaking problem in a rapid and reliable way, we rely on a parametrized reduced order model
built through the reduced basis method, thus entailing huge computational speedups compared to high-
fidelity, full-order model exploiting the finite element method while dealing both with complex target
shapes and disconnected control domains.

1 Introduction

The possibility of forging a ring or using a cloak to disappear and not be seen by others has stimulated for
centuries the imagination of human beings. In practice, an observer that is trying to locate something would
not be capable to do it, if the field surrounding the target is locally indistinguishable from that observed
without the object itself. The design of a cloaking device implies, by consequence, the capability of covering
the target with a special coat, whose properties make the inclusion neutral to the probing field. A solution
for such an inverse engineering problem, for long considered impossible to find, has firstly been provided
by the development of transformation theories [1, 2]. These methods rely on reinterpreting the metric
coefficients appearing in the transformed governing equations as space varying material properties, using
anisotropy to distort the field inside the cloak, while leaving it unchanged outside. Originally inspired by the
invariance of Maxwell’s equation, this theory has spread to all the domains of physics where the governing
Partial Differential Equations (PDEs) retain their form under curvilinear coordinates transformations [3, 4].
Cloaking is thus now an established and active field of research not only in optics, but also in other wave
propagation phenomena like acoustics [5, 6, 7], elastodynamics [8, 9], surface water waves [10] and matter
waves [11, 12].

Exploiting the close similarity in the mathematical structure of governing equations, the concept of
transformation-based cloaks has been extended also to non-wave phenomena, like conduction [13], diffusion
[14, 15] and heat flow [16]. In hydrodynamics [17], the invariance of the Laplacian operator has long been
used to build conformal mappings and solve problems of incompressible flows around complicated shapes
exploiting the knowledge of the solution for a simple reference domain. In this context, Transformation
Thermodynamics (TT) [18] has allowed to achieve experimental evidence of cloaking for thermal fluxes [13],
based on the implementation of a space varying anisotropic conductivity with alternating layers of indented
copper and polydimethylsiloxane (PDMS). A similar approach is used in [19], where the required degrees of
freedom for implementing the physical parameter distribution are obtained by adopting five different material
ingredients. The weak point of this passive strategy can be thus identified in the high complexity of the
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resulting cloak to be fabricated: it has been shown that improving the performance of the cloak designed in
[13] implies increasing the number of alternating material’s layer of three orders of magnitude [20]. Moreover,
the shapes of the target for which solutions are readily available are limited to simple geometries. Efforts
have thus been put on finding alternative strategies to overcome these weaknesses. As an example, Ji et al
[21] have recently compared TT to the Neutral Inclusion method [22], which allows for cloaking with a single
layer of isotropic material.

Among alternative methods, another possible option is represented by the so-called ”active” cloaking:
firstly developed in the context of the Helmholtz equation [23, 24, 25, 26], where sensors and sources are
used in a similar fashion as in classical noise cancellation [27], it has become an attractive solution for the
thermal case as well [28, 29, 30]. Indeed, thermoelectric materials can be used to design heat sources and
sinks that exert a suitable manipulation of the thermal field in a localized region of the domain (usually
around the target to cloak) to achieve the cloaking objective. In [28], an air hole in a steel plate is thermally
cloaked in the steady-state regime by using Peltier elements, while heat flows from the left to the right side
of a steel plate. More recently, in [29] an active thermal cloaking technique is developed exploiting Green
representation formulas, and is able to cloak the target in the transient regime. In this case, the unper-
turbed transient evolution of the thermal field due to a heat source in an unbounded domain is described
through boundary integrals defined on the active cloak region; this in turns allows to generate the space-
time modulated actuation needed to hide an obstacle that would otherwise perturb the thermal background
field. The same approach can be used for mimicking, that is, the problem of making the thermal trace of
an object appear as the one of a completely different target. However, the approach introduced in [29] has
the drawback of dealing with complex boundary integrals and does not take into account the dimension-
ality of the thermoelectric actuators. Furthermore, it requires a closed surface for the active cloaking to work.

In this paper, we take instead another route to obtain thermal cloaking, that is, we tackle the design
phase by reformulating the problem following an optimization strategy. We formulate an infinite-dimensional
optimization problem whose objective is aimed at tracking the unperturbed thermal field generated by a heat
source. Similar ideas from PDE-constrained optimization were exploited in [31] to derive material properties
for the design of passive acoustic cloaks while in [32] an optimization strategy is derived to design cloaks
implementable with sonic metamaterials. We frame this objective in the context of optimal control of PDEs
where the state equation describes the temperature field in presence of an obstacle with constant temperature
(i.e., the heat diffusion equation), and the active cloaking sources, playing the role of distributed control
functions, are defined in an annular region around the obstacle to cloak. With respect to other existing
techniques, this allows us to show that connectedness of the control domain is not necessary to achieve the
cloaking objective, thus setting the ground towards more realistic applications. Furthermore, the flexibility
of the optimization framework allows to cloak complex objects both in the steady-state and the transient
regime.

We first consider the steady-state problem and then proceed to the transient case. After deriving the
optimality system of equations to be fulfilled by the optimal state and actuation fields, we derive its numerical
approximation relying on a high-fidelity, full-order model consisting of a finite element discretization in
space. Indeed, as most other active cloaking strategies, our approach presents the significant drawback
that the probing reference field needs to be known ahead of time. However, due to the computational
efficiency and real-time potential of our strategy, an estimation problem could be implemented with similar
optimization methods thus overcoming this important issue by reconstructing the probing field with real-time
measurements.

At the discrete level, we propose a fast and efficient way to solve in one-shot the steady-state problem
and present the computational issues in treating the transient problem. Then, we develop a Reduced Order
Model (ROM) to reduce the computational burden of the Optimal Control Problem (OCP) for a different set
of scenario parameters, thus dealing with the model order reduction of a class of parametrized OCPs (see e.g.,
[33]). In particular, we make use of the Proper Orthogonal Decomposition (POD) technique to simultaneously
reducing the reference and the optimal control problem while considering a set of scenario parameters that
affect the solution both of the reference and of the optimal control. In particular, we are interested in studying
parametric OCPs where obstacle’s temperature, thermal diffusivity and source intensity are parameterized.
The POD reduction methods is particularly well suited for parabolic problems (see e.g., [33, 34, 35]) since
the diffusion operator filters out higher frequency contributions and a lower dimensional solution can be well
resolved with carefully selected reduced basis, if the dependence on parameters is sufficiently smooth [33]. In
this way, it is possible to recompute the optimal control field for a new set of such parameters in a fraction of
a second. The computational speedup achieved enables to deploy the control algorithm in situations where
the obstacle temperature or the material properties of the background are not precisely known but they are
known to belong to some parameter set.
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The paper is organized as follows. In Section 2, the cloaking problem is formulated as a PDE-constrained
optimization problem and a set of first-order optimality conditions is derived. In Section 3 the reduced-order
model for both the reference and the optimal control problem is developed. In Section 4, several test cases
both for the steady-state and the transient problem are presented to show the effectiveness of the proposed
method, while some conclusions are finally reported in Section 5.

2 The optimal control problem

In this Section, we formulate the cloaking objective as an OCP in the PDE settings. As a reference unper-
turbed state, we consider the thermal field generated by a source in a bounded domain Ωun during the time
interval (0, T ). The reference thus satisfies the heat equation:

ρc
∂z(x, t)

∂t
− k∆z(x, t) = s̃(x) in Ωun × (0, T ) (1)

where the temperature z is measured in Kelvin, x ∈ R2 is the spatial coordinate in meters, t indicates time
in seconds, c is the specific heat (JK−1kg−1), ρ the mass density (kg m−3) and k is the thermal conductivity
(W m−1 K−1) of the material. It is useful to define the thermal diffusivity µ = k

ρcp
(m2s−1) and rewrite

equation (2) equivalently as:
∂z

∂t
− µ∆z = s in Ωun × (0, T ) (2)

where s = s̃
ρcp

(Ks−1) is the source term. To solve it, we equip the problem with suitable initial and boundary

conditions. For the sake of simplicity, we consider a square computational domain with homogeneous Robin
boundary conditions that approximate to first-order an unbounded domain [36]. Hence, the unperturbed
field z ∈ L2(0, T ;H1(Ωun)) is the solution of:

∂z

∂t
− µ∆z = s in Ωun × (0, T )

−µ∇z · n + α z = 0 on ∂Ωun × (0, T )

z(x, 0) = 0 in Ωun × {0}

(3)

whereas the steady-state reference is simply obtained by considering the Poisson equation −µ∆z = s with
the same boundary conditions on Γd = ∂Ωun and neglecting the initial conditions.

Note that in order to simulate the domain’s unboundedness, the simple choice α = 1 allows to obtain good
results in practice [36]. The unperturbed layout together with the steady-state solution obtained through
the FEM for selected values of µ,α,s is shown in Figure 1.

We now consider the temperature field generated by considering the presence of an obstacle Θ ⊂ Ωun
whose temperature is kept constant. The obstacle thus induces an inhomogeneous boundary conditions
of Dirichlet type along its boundary Γo = ∂Θ that perturbs the background thermal field. We denote as
q ∈ L2(0, T ;H1

Γo
(Ω)) the temperature field in the presence of the obstacle, that is the solution of:

∂q

∂t
− µ∆q = s+ u in Ω× (0, T )

−µ∇q · n + q = 0 on Γd × (0, T )

q = To on Γo × (0, T )

q(x, 0) = 0 in Ω× {0}.

(4)

where Ω = Ωun \Θ and ∂Ω = Γo ∪Γd. A layout of the state problem and the effect of the Dirichlet obstacle
is shown in Figure 1 where an obstacle’s temperature of To = 75◦C is considered. Note that the farther the
temperature To from the temperature in the corresponding region of the unperturbed field, the more evident
the effect of the perturbation.

We now turn to the setup of the Optimal Control Problem (OCP), referring to Figure 2 for its illustration.
We consider an annular region Ωc ⊂ Ω in which a space-time varying control source u(x, t) is defined. The
cloaking objective can be rephrased as finding u ∈ L2(0, T,H1(Ωc)) so that the state q is as close as possible
to the reference thermal field z onto an observation region Ωobs ⊂ Ω, exterior to the object. In our case the
control region is defined as a circular annulus with thickness rc surrounding the target to cloak. Note that
the flexibility allowed by the PDE-constrained formulation allows the control region to be arbitrarily shaped
in the domain thus bridging the gap towards realistic applications.
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Figure 1: Top Figure: Unperturbed temperature field generated by a heat probing source at the mid-right
part of the domain for µ = 5, α = 1 and s = 10000. Bottom Figure: Perturbed temperature field generated
by a certain obstacle with constant temperature To = 75◦C. The obstacle generates a thermal signature
that modifies the temperature field in its neighborhood. The parameters µ,α and s are the same as the top
figure.

Figure 2: Conceptual domains definition (left plot) and illustrative coarse computational mesh (right plot).
The unperturbed problem is defined on the square Ωun while the domain of the control problem is Ω =
Ωun \Θ. The control domain Ωc and the observation domain Ωobs are shown in red and green, respectively.
The obstacle domain Θ is colored in blue. The Dirichlet boundary condition induced by Θ is represented by
the blue points on the right.
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Therefore, the cloaking problem can be recast as the following OCP:

min
u,q

J(q, u) =
1

2

∫ T

0

∫
Ωobs

(q(x, t)− z(x, t))2 dΩ dt+
1

2

∫ T

0

∫
Ωc

(
β u(x, t)2 + βg ||∇u(x, t)||2

)
dΩdt

subject to
∂q

∂t
− µ∆q = u+ s in Ω× (0, T )

−µ∇q · n + q = 0 on Γd × (0, T )

q = To on Γo × (0, T )

q(x, 0) = 0 in Ω× {0},

(5)

where z is the solution of the reference problem (3). The OCP (5) consists of the minimization of a quadratic
cost functional subject to a linear constraint in the form of the parabolic heat equation.

The theory of linear-quadratic OCPs in the PDE setting is well developed (see e.g. [37, 38, 39]) and
the existence and uniqueness of a solution can be proved. Reasoning in a similar way, we can state the
steady-state OCP as:

min
u,q

Jss(q
ss, uss) =

1

2

∫
Ωobs

(qss(x)− zss(x))2 dΩ +
1

2

∫
Ωc

(
β uss(x)2 + βg ||∇uss(x)||2

)
dΩ

subject to
−µ∆qss = uss + s in Ω

−µ∇qss · n + qss = 0 on Γd

qss = To on Γo.

(6)

We now proceed by recovering a system of first-order necessary and sufficient optimality conditions for the
transient problem, exploiting the Lagrange method [37, 40]. The Lagrangian functional L : V ×U ×W∗ 7→ R
is defined as

L(q, u, p) = J(q, u) + 〈p,G(q, u)〉W∗,W
where V = H1(0, T ;H1

Γo
(Ω), H1

Γo
(Ω)∗),W = L2(0, T ;H1

Γo
(Ω)∗) and G is the abstract PDE constraint, so that

state, control and adjoint variables are considered independently. Therefore, the set of first-order necessary
optimality conditions consists of imposing that the Gateaux derivative of the Lagrangian with respect to the
triple (q, u, p) along an arbitrary variation (ψ, h, φ) is equal to zero. In our case, the Lagrangian takes the
explicit form

L = J(q, u) +

∫
Ω

∫ T

0

(
−∂q
∂t

+ µ∆q + u+ s

)
p dΩdt, (7)

and the resulting optimality system in strong form consists of the state dynamics (4), the adjoint dynamics:
−∂p
∂t
− µ∆p = (q − z)χobs in Ω× (0, T )

−µ∇p · n + p = 0 on Γd × (0, T )

p = 0 on Γo × (0, T )

p(x, T ) = 0 in Ω× {0}

(8)

and the optimality condition (Euler equation) :

−βg∆u+ βu+ p = 0 in Ωc × (0, T ).

In the adjoint problem (8), χobs denotes the characteristic function of the observation domain Ωobs that is
equal to one on that domain and zero elsewhere. Furthermore, we remark that the adjoint variable p satisfies
the backwards heat equation which is ill-posed when the time datum is given as an initial condition. In our
case however, the problem is well-posed since a terminal condition is prescribed (see e.g. [37], Chapter 3).

Since this kind of OCPs is rather standard, we skip the details about the derivation of the optimality
system and refer the reader to [37], Chapter 3. On the other hand, the system of optimality conditions for
the steady-state problem is obtained simply by deleting the time derivatives in the state and the adjoint
problem. Note that the transient problem is cast along a finite time horizon (0, T ) without any terminal cost,
that is, we did not put any weight on the final state q(x, T ) and control u(x, T ) achieved. As a consequence,
the final adjoint condition is homogeneous p(x, T ) = 0. However, it is reasonable to require that the optimal
solution of the transient OCP (5) converges to the optimal solution of the steady-state OCP (6). This
condition is enforced by replacing the final adjoint condition with p(x, T ) = pss(x), where pss is the solution
of the steady-state OCP.
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Finally, to handle several possible scenarios at the same time, we consider as input parameters the
diffusivity constant µ, the obstacle’s temperature To and the source intensity I, thus ending up with two
parametric OCPs for the steady-state and the transient heat transfer problems coupled with the reference
dynamics z that in turn depends on the input parameters as well. Note that the new final adjoint condition
generates a one-way coupling between the steady-state and the transient problems.

2.1 Numerical discretization of the OCP

For the numerical approximation of the reference problem and the OCPs, we employ the Finite Element
Method (FEM). We introduce a triangulation of the domain Ωun made by triangular elements and select
piecewise linear, globally continuous ansatz functions φi (P1 finite elements) for the space approximation of
state and adjoint variables in Ω, while the basis are restricted to Ωc for the control approximation.

To generate a suitable triangulation on Ω, we restrict the previous mesh to those elements belonging to
Ωun \ Θ, so that the nodes that belong to the obstacle are masked and a Dirichlet boundary is introduced
instead. An illustrative example of the computational mesh and the resulting domain definition is shown in
Figure 2. We define by E ∈ RNq×Nz the matrix that restricts the reference nodes to the OCP mesh nodes,
where Nq and Nz are the dimension of the state and reference variables, respectively. In this way, a matrix
A ∈ RNz×Nz assembled on the reference mesh can be restricted to the OCP mesh through the projection
Ã = EAE>. In the following, we indicate with a tilde the matrices restricted to the computational domain
of the control problem, e.g, Ã = EAE>. The FEM approximation of the reference dynamics is therefore{

M ż +Az = F , t ∈ (0, T )

z(0) = 0 ,
(9)

where Mij =
∫

Ωun
φiφjdΩ, Aij =

∫
Ωun

µ∇φi ·∇φjdΩ+
∫
∂Ωun

φiφjdΓ and Fi =
∫

Ωun
sφidΩ for i, j = 1 . . . , Nz.

Regarding the OCP discretization, we follow an Optimize-then-Discretize strategy (see e.g. [40]) that consists
of discretizing the optimality conditions obtained at the continuous level. Hence, the discretization of the
optimality system gives: 

EME>q̇ + EAE>q = Fo + EF +Bu , t ∈ (0, T )

q(0) = 0

−EME>ṗ + EAE>p = Mobs(q− Ez) , t ∈ (0, T )

p(T ) = pss

(βMu + βgAu)u +B>p = 0 , t ∈ (0, T )

(10)

where Fo is the contribution arising from the Dirichlet data, B ∈ RNq×Nu is the control matrix with
elements Bik =

∫
Ω
φiφkdΩ, while Mobs is the observation domain mass matrix, Mu and Au the control mass

and diffusion matrices. The role of Au and βg will be made clear later on.
On the other hand, the algebraic optimality system for the steady-state problem (6) – whose variables

are denoted with a “ss” superscript – reads
Azss = F

EAE>qss = Fo + EF +Buss

EAE>pss = Mobs(q
ss − Ezss)

(βMu + βgAu)uss +B>pss = 0.

(11)

Note that system (11) can be solved with a “one-shot” method by grouping the unknowns as:
A

EAE> −B
MobsE −Mobs EAE>

B> βMu + βgAu


︸ ︷︷ ︸

K


zss

qss

pss

uss


︸ ︷︷ ︸

y

=


F

Fo + EF
0
0


︸ ︷︷ ︸

F

(12)

so that the reference state, optimal state, adjoint and control variables are obtained from the solution of a
single (yet moderately large) linear system with a saddle-point structure.

Regarding the time discretization of the transient problems, we rely on the Crank-Nicolson method, so
that the systems of ODEs involved in (9) and (10) are turned into large algebraic systems to be solved at
each time step. We note that, being the adjoint equation well-posed backwards in time, there are no issues
in the time discretization. We discretize the time interval (0, T ) into N subintervals of length ∆t = T

N and
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we use the subscript k = 0, . . . , N to indicate a vector computed at a discrete time instance tk = k∆t. Thus,
we look for the unknown vectors zk,qk,pk,uk at each instant tk which solve the discretized version of the
optimality system (10). Although a one-shot implementation is also possible [41], we rely on an iterative
quasi-Newton method that allows for a finer discretization of the OCP. Indeed, the dimension of the linear
system in that case would result O(N(Nz +2Nq +Nu)), thus making its handling computationally intensive.
The pseudocode is shown in Algorithm 1. The Quasi-Newton step for the control update at each iteration
can be written as:

d
(i)
k = −(βMu + βgAu)−1

(
(βMu + βgAu)u

(i)
k +B>p

(i)
k

)
= −u

(i)
k − (βMu + βgAu)−1B>p

(i)
k

for time index k = 0, . . . , N . Then the update reads:

u
(i+1)
k = (1− τ)u

(i)
k − τ(βMu + βgAu)−1B>p

(i)
k = (1− τ)u

(i)
k + τΛp

(i)
k (13)

where we have defined the matrix Λ = −(βMu + βgAu)−1B>. We also remark the fact that the update
step (13) can be interpreted as a fixed-point iteration and that the preconditioner (βMu + βgAu) does not
correspond to the reduced Hessian, that is the Hessian of the OCP interpreted as a function of the control
variable u only.

3 Reduced order model

In this Section, the optimal control formulation of the cloaking problem is considered in a parametrized
setting, to take into account a range of possible scenarios of physical interest [42, 43, 44], and determine
the optimal cloaking strategy for each scenario inexpensively. Indeed, relying on high-fidelity solvers – such
as the ones that exploit the finite element method – would be infeasible if the OCP must be solved several
times, or in a very short amount of time. To this goal, we rely on reduced order modeling techniques for
parametrized PDEs, applying the reduced basis (RB) method to the optimality system arising from the (now,
parametrized) OCP. This represents a further step towards practical applications of the cloaking algorithm,
since a ROM enables a reduction of the computational complexity by orders of magnitude.

The parametrized version of the optimality system (10) and the reference dynamics (9) for the case at
hand can be written as: 

M ż +A(µ)z = F(µ) , t ∈ (0, T )

z(0) = 0

M̃ q̇ + Ã(µ)q = EF(µ) + Fo(µ) +Bu , t ∈ (0, T )

q(0) = 0

−M̃ ṗ + Ã(µ)p = Mobs(q− Ez) , t ∈ (0, T )

p(T ) = pss

(βMu + βgAu)u +B>p = 0 , t ∈ (0, T )

(14)

Algorithm 1 Modified Newton method for parabolic OCPs

1: zss,qss,pss,uss ← Solve “one-shot” linear system (12) . Solve steady-state OCP
2: z← Solve reference dynamics
3: pN ← pss . Assign final condition to adjoint variable

4: u
(0)
k ← uss for k = 0, . . . , N . Initialize control variable as the steady-state one

5: for i = 0 : maxIter do
6: q(i) ← Solve state equation with control u(i)

7: p(i) ← Solve modified adjoint equation with control u(i) and state q(i)

8: ∇J(u(i))← (βMu + βgAu)u(i) +B>p(i) . Compute reduced gradient
9: d(i) ← Solve linear system (βMu + βgAu)d(i) = −∇J(u(i)) . Quasi-Newton direction

10: τ ← ArmijoBacktracking(J,d(i),u(i)) . Line search in direction d(i)

11: u(i+1) ← u(i) + τd(i) . Update control
12: if

∥∥∇J(u(i))
∥∥ < tol then

13: return
14: end if
15: end for
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where µ = [µ I To ] and Fo is the forcing term arising from the non-zero temperature of the obstacle. In the
system above we have highlighted which matrices depend on the parameter vector µ. The set of parameters
considered are the temperature of the obstacle To, the thermal diffusivity of the material µ and the intensity
of the heat source I. The parameter space, representing the (product) of the range of variation of each
parameter, is denoted by P ⊂ Rp; in our case p = 3. Note that we still treat the control variable as a
distributed field, and describe through a set of input parameters a range of virtual scenarios of interest.
Similarly, the matrix A and the vector F would depend on µ = [µ I To ], with the same meaning of the
input parameters, in the parametrized version of the optimality system (11) for the steady OCP.

3.1 The Reduced Basis Method for linear transient parametrized problems

We now briefly recall how to set up a ROM through the RB method for a linear transient parametrized
problem, as in the case of the state and the adjoint problems appearing in the system (14). For the sake of
simplicity, we focus on the case of a Ny-dimensional problem of the form{

M ẏ +A(µ)y = F(µ) , t ∈ (0, T )

y(0) = y0

(15)

and postpone to the following section further details about the coupling between state, adjoint, and control
variables. A POD-Galerkin RB method to approximate the solution of the FOM (15) aims at approximating
y = y(t,µ) as a linear combination of n � Ny POD modes, under the form y(t,µ) ≈ V yn(t,µ). Here
V ∈ RNy×n denotes a matrix whose columns are orthogonal and represent the n basis vectors spanning the
reduced basis subspace the solution is sought in. This reduced basis is built from a set of n× ns snapshots
{y(tk,µ

i), k = 1, . . . , N, i = 1, . . . , ns} obtained by solving the FOM (15), by selecting the first n left
singular vectors of the matrix stacking all the snapshots. In particular, prescribed a given tolerance εPOD on
the sum of the discarded modes (quantified by the sum of the squares of the corresponding singular values),
a resulting dimension n = n(εPOD) of the POD space is obtained. Note that the RB matrix V does not
depend on µ or time. We denote by Ξ = {µi, i = 1, . . . , ns} the train sample of size ns of parameter values
upon which the snapshots are computed.

To obtain the ROM that, for any given µ ∈ P, allows us to compute the RB coordinates, we project
the initial datum onto the RB subspace, getting yn(0) = V Ty0, and introduce the residual of the FOM
evaluated on the ROM approximation,

r(yn(t,µ);µ) = F(µ)−MV ẏn(t,µ)−A(µ)V yn(t,µ);

then, we impose that the residual is orthogonal to the subspace spanned by the n selected basis functions,
that is,

V T r(yn(t,µ);µ) = V T (F(µ)−MV ẏn(t,µ)−A(µ)V yn(t,µ)) = 0, t ∈ (0, T ).

This yields the following n-dimensional ROM,{
Mnẏn +An(µ)yn = Fn(µ) , t ∈ (0, T )

yn(0) = V Ty0

(16)

where Mn = V TMV , An(µ) = V TA(µ)V , and Fn(µ) = V TF(µ). Note that the similar strategy is used
to obtain a ROM for a steady problem, and ultimately yields a steady ROM, provided the snapshots are
computed by solving the (steady) FOM for ns selected input parameters vectors. Note that all the ROM
arrays that do not depend on the parameter vector can be assembled and stored once and for all.

The ROM (16) can be efficiently solved relying on the time integrator used for the FOM, provided its
arrays can be assembled inexpensively, that is, independently of the FOM dimension Ny. This requirement
is automatically fulfilled provided A and F are affinely parametrized, i.e.,

A(µ) =

QA∑
q=1

ΘA
q (µ)Aq, f(µ) =

QF∑
q′=1

ΘF
q′(µ)Fq

′

for a set of µ-dependent functions ΘA
q (µ), ΘF

q′(µ), and µ-independent matrices Aq, q = 1, . . . , QA and

vectors Fq
′
, q′ = 1, . . . , QF . Under this assumption, we can express

An(µ) = V TA(µ)V =
∑QA

q=1 ΘA
q (µ)V TAqV =

∑QA

q=1 ΘA
q (µ)Aqn,

Fn(µ) = V TF(µ)V =
∑QF

q′=1 ΘF
q′(µ)V TFq

′
=
∑QF

q′=1 ΘF
q′(µ)Fq

′

n ,

8



so that we can precompute and store all the (low-dimensional) ROM arrays Aqn, q = 1, . . . , QA and Fq
′

n ,
q′ = 1, . . . , QF , and retrieve the parameter-dependent ROM operators inexpensively. In the case the affine
parameteric assumption is not automatically fulfilled by the original FOM, suitable hyper-reduction strategies
must be considered, however potentially limiting the overall computational speedup offered by the ROM.
See, e.g., [33, 45] for further details.

3.2 Reduced order modeling of parametrized OCPs

The reduction strategy we employ to speedup the solution of the OCPs we focus on is based on a projection
of the reference, the state, the adjoint and the control variables onto lower dimensional subspaces, following
the strategy described for parametrized OCPs in [33, Chapter 12]. The mathematical theory behind the
construction of ROMs for linear quadratic OCPs is by now well-developed and has proven to be powerful
in many OCPs for parametrized PDEs, among many others we highlight the model-order reduction of fluid
flow, advection-diffusion and acoustic problems (see, e.g.,[46, 47, 48] ), as well as, more recently, transient
problems [41].

3.2.1 Steady state OCP

Following the strategy proposed in [47, 48] for the case of steady parametrized OCPs, we build a ROM for
the parametrized optimality system (12) relying on a POD-Galerkin RB method. In particular, we look at
(12) as a unique parametrized linear system, of the form

K(µ)y(µ) = F(µ), y(µ) =


zss(µ)
qss(µ)
pss(µ)
uss(µ)

 (17)

in which the matrix A and the vectors F and Fo – appearing as blocks of K and F , respectively – depend
on the parameter vector µ. Here K(µ) ∈ R(Nz+2Nq+Nu)×(Nz+2Nq+Nu) and F(µ) ∈ RNz+2Nq+Nu . A POD-
Galerkin ROM is then obtained by projecting problem (17) onto a (product) space spanned by a set of POD
modes for each component. To do this, we first (i) solve (17) for ns parameter vectors sampled from P, and
then (ii) perform POD on each component. Collecting the snapshots onto the following matrices

Sqp = [qss(µ1) | . . . |qss(µns)| . . . |pss(µ1) | . . . |pss(µns)],

Sz = [zss(µ1) | . . . | zss(µns)], Su = [uss(µ1) | . . . |uss(µns)]

the selected POD modes are then used to form the matrices Vz, Vs and Vqp; this latter is a basis matrix used
to express both state and adjoint variables. Indeed, basis vectors for the state and the adjoint variables are
combined together to form a unique space to approximate both components to ensure the well-posedness of
the ROM problem

VTK(µ)V︸ ︷︷ ︸
Kn(µ)

yn(µ) = VTF(µ)︸ ︷︷ ︸
Fn(µ)

, yn(µ) =


zssn (µ)
qssn (µ)
pssn (µ)
ussn (µ)

 , V =


Vz

Vqp
Vqp

Vu

 ; (18)

a detailed explanation of the construction of the RB spaces in this case can be found, e.g., in [47, 48]. Note
that the matrices Vqp, Vz and Vu have in general a different number of columns, that is, RB spaces of different
dimensions are usually generated to approximate the four fields.

3.2.2 Transient OCP

In the case of the transient OCP, we consider the simultaneous reduction of the optimality system and
the reference dynamics, thus building a low-dimensional approximation for the solution manifold of the
OCP and the reference, too. In principle, one could follow the same reduction steps as for the steady-state
problem by introducing an additional time discretization. The resulting dimensions of the KKT matrix
K̃ ∈ RN(Nz+2Nq+Nu)×N(Nz+2Nq+Nu) quickly become computationally intractable for relatively fine space
and time discretization. Furthermore, we face an additional numerically heavy task in performing the
POD reduction of the snapshot matrices Z,Q,P and U which are N times wider than the corresponding
steady-state ones. As a consequence, we resort to the iterative Quasi-Newton Algorithm (1) to generate
snapshot matrices for a set of scenario parameters sampled from P using the Latin Hypercube Sampling
(LHS) technique, and solving problem (14) for ns parameter vectors sampled from P.
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Then, the generation of the Vz,Vpq and Vu is performed sequentially in the parameter set without explicitly
performing the reduction of the complete snapshot matrices. In order to do this, for each element of the
parameter set, we extract the corresponding snapshot matrix and we build the associated reduced basis
sequentially. For example, regarding Z we extract ns matrices Zi with dimension Nz ×N and perform the
POD reduction at each step updating the associated reduced basis Vz. The conceptual steps of the transient
reduction are reported in Algorithm 2. The resulting matrices are then used to project the optimality system
(10) onto a lower dimensional subspace, with the same ideas of the previous sections. In particular, the same
basis matrix Vqp, built through POD from snapshots of both the state and the adjoint problems, is used to
express the ROM approximation of both these fields. Also in this case the matrices Vqp, Vz and Vu have in
general a different number of columns – for ease of notation, we do not distinguish among those dimensions
when inserting a subscript n on the RB approximations of the four fields.

The reduced-order approximation of the KKT system (14) thus reads as follows:

V >r MVrżn + V >r A(µ)Vrzn = V >r F(µ) , t ∈ (0, T )

zn(0) = 0

V >pqM̃Vpqq̇n + V >pq Ã(µ)Vpqqn = V >pqEF(µ) + V >pqFo(µ) + V >pqBVuun , t ∈ (0, T )

qn(0) = 0

−V >pqM̃Vpqṗn + V >pq Ã(µ)Vpqpn = V >pqMobs(Vpqqn − VrEzn) , t ∈ (0, T )

pn(T ) = pssn(
βV >u MuVu + βgV

>
u AuVu

)
un + V >u B

>Vpqpn = 0 , t ∈ (0, T ).

(19)

We highlight that the transient reduction contains a nested steady-state reduction due to the presence of
the final adjoint condition which needs the solution of the steady-state problem. The problems appearing
in (19) are sequentially solved, relying on the modified Newton algorithm (1); in this latter, each query to
a FOM problem must be replaced by the query to the corresponding ROM. A similar strategy had been
considered in [49] to address the RB approximation in the simpler case of steady, linear parametric OCPs,
in which parameters were used to define a (low-dimensional) control function.

Algorithm 2 POD reduction of the parabolic OCP

1: Snapshot generation from FOM
2: for µ in Ξ do . in parallel
3: z,q,p,u← Solve full order OCP with parameter vector µ using Algorithm (1)
4: Z,Q, P, U ← z,q,p,u . Assemble snapshots matrix
5: end for
6: Reduced basis construction
7: for i = 1 : ns do
8: Vz = POD([Vz, Zi], tol)
9: Vpq = POD([Vpq, Qi, Pi], tol)

10: Vu = POD([Vu, Ui], tol)
11: end for

4 Numerical experiments

In this Section, we present several numerical tests both in the transient and steady-state regimes, and for
different layouts of the cloak and the obstacle. After numerically checking that solving the optimality system
(10) allows to converge to the steady-state solution at the final instant, we investigate the performance of the
reduction technique in capturing the dynamics of the parametrized OCP arising from the cloaking objective.

Before considering ROM performances, we numerically test that replacing the adjoint condition with
p(x, T ) = pss(x) in the optimality system actually allows the dynamics of the optimal variables to converge
to their respective steady-state solution. In order to assess convergence, we use the L2 norm in Ω. Recall

that the L2 norm of a function f ∈ L2(Ω) is defined as ‖f‖L2(Ω) =
√∫

Ω
f(x, t)2dx and is a function of time

for time-dependent variables, while it is obviously a constant for steady-state variables. Thus, we want to
confirm that

limT→∞ ‖q(·, T )− qss‖L2(Ω) = 0,

limT→∞ ‖p(·, T )− pss‖L2(Ω) = 0,

limT→∞ ‖u(·, T )− uss‖L2(Ωc) = 0,
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that is, for a sufficiently large time horizon T , the transient optimal solution converges to the steady-state
ones at the final time T . Therefore, we solve the parabolic OCP using Algorithm (1) with the parameters
set µ = [ 3.5 104 0 ] and we check the convergence at their steady-state value. In Figure 3 the time history
of the L2 norms of the reference and of the optimal variables is shown. The controlled optimal dynamics
converge to the steady-state value. Note that we have chosen a sufficiently large time interval T to let the
uncontrolled reference reach its steady-state value.

Figure 3: Convergence in the L2-norm of the optimal dynamics of the transient regime to its steady-state
counterpart. Note that the final time T is chosen sufficiently large to reach the reference steady-state.

4.1 Steady-state OCP reduction

We can now proceed to assess the POD-Galerkin ROM for the steady-state OCP. A parameter set of ns = 50
snapshots is considered using Latin-Hypercube sampling of the parameter space P = [1, 5] × [ 5 · 102, 1.5 ·
104 ]× [0, 200]. Then, for the sake of visualization, we test the performance of the ROM on µt1 = [ 3.5 104 0 ]
and µt2 = [ 3.5 104 100 ]. The dimension of the FOM space discretization is Nq = 17504, Nz = 18721,
Nu = 3348 for the state, reference and control variables, respectively. Hence, the sparse linear system (12)
has dimension Nz + 2Nq + Nu = 57077. The steady-state problem is solved for each parameter in the set
of snapshots using direct methods, while for the assembling of the FEM matrices and the construction of
the POD-Galerkin ROM we rely on RedbKit [50]. Figure 4 shows that the FOM and ROM results are
practically indistinguishable. Furthermore, the optimal control formulation of the cloaking problem is able
to closely follow the reference field. Control parameters β = 10−7 and βg = 10−8 are used in this case.
The gradient weighting term βg allows to exploit the whole control domain so that the control intensity
is evenly distributed in the control region. When the case βg = 0 is considered, the control intensity is
concentrated in a thin layer close to the boundary of the control region. The numerical results of such a case
are not presented for the sake of brevity. The POD algorithm selects nq = 31, nz = 12 and nu = 11 basis
functions with a final computational speedup of roughly 3170 with respect to the FOM. As a consequence,
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the ROM is able to compute the optimal solution for a new set of input parameters in 0.49 milliseconds.
The relative accuracy of the ROM is shown in Figure 5 where, for a sufficiently rich basis, we are able to
reach approximation errors close to machine epsilon.

Figure 4: Reduction of the parametrized steady-state OCP, computational results for µt1 = [ 3.5 104 0 ].

Figure 5: Relative errors between the ROM and FOM solutions. The ROM is able to achieve a computational
speedup of 3170 times without losing in accuracy of the optimal and reference solutions. Solution time for the
projected linear system (12) is 0.49 milliseconds on a standard laptop computer while it takes 1.57 seconds
to solve the FOM.
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4.2 Transient OCP reduction

We are now ready to tackle the reduction of the transient cloaking problem, that is we use Algorithm (1)
to construct a POD-Galerkin ROM for the parametrized parabolic OCP (5) with the additional guarantee
that the optimal variables of the transient problem converge to their respective steady-state solution as
numerically proved in Figure 3. Due to the huge memory needed by a fine discretization in space and time
of the transient problem, we limit the snapshot dataset to ns = 25 keeping the same parameters range as
for the steady-state problem. The discrete (in time and space) version of the optimality system (10) is still
a linear system and could be theoretically solved in one-shot [40, 41], that is the reference and optimal
variables in space and time could be computed as the solution of a single yet huge linear system.

Discretizing the time interval in N = 100 time steps, we would end up with a linear system with roughly
N(Nz + 2Nq + Nu) ≈ 5.5 · 106 variables, that is intractable for the computational resources of a standard
laptop computer. Instead, we solve both the FOM and the ROM using the iterative Algorithm (1) and the
sequential reduction steps detailed in Algorithm (2). The reduction algorithm selects nq = 48, nz = 10
and nu = 20 reduced basis with a final computational speedup of roughly 1550 with respect to the FOM
solution. The solution of the FOM takes 186 seconds while the ROM needs only 0.11 seconds. A sequence
of snapshots taken at time instances t = 0.25(s) and t = 1.25(s) is shown in Figures 6, 7. It is clear that
the FOM achieves thermal cloaking of the obstacle in the transient domain and that the reduced basis are
rich enough to closely follow the evolution both of the reference and of the optimal dynamics. The accuracy
of the ROM is confirmed by the convergence results in Figure 8. For the transient problem we use the
norm in L2(0, T, L2(Ω)) to measure errors between the FOM and ROM solutions. Recall that for a function
f ∈ L2(0, T, L2(Ω)) this norm is defined as:

‖f‖2L2(0,T,L2(Ω)) =

∫ T

0

‖f(·, t)‖2L2(Ω) dt.

Figure 6: Reduction of the parametrized transient OCP, computational results for µt1 = [3.5 104 0] at time
instance t = 0.25(s).

We now turn to the case of a disconnected control domain. In this case, the active sources composing
the cloak are disconnected circular domains that surround the obstacle. This layout is inspired by common
practical layouts with thermoelectric devices, where it is extremely useful to allow for such flexibility in the
control domain. As a test case of cloaking device with detached sources, we consider a set of eight equally
spaced heat sources. The control layouts considered in this paper are shown in Figure 9, where the second
one consists of the disconnected cloak domain while the third one illustrates the complex shape to be treated
later.
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Figure 7: Reduction of the parametrized transient OCP, computational results for µt1 = [3.5 104 0] at time
instance t = 1.25(s).

Figure 8: Relative errors between the ROM and FOM solutions for the transient problem. The ROM is able
to achieve a computational speedup of 1550 times without losing in accuracy of the optimal and reference
solutions.
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Figure 9: The three cloaking layouts considered in this paper with increasing complexity from left to right.
The quantitative assessment of complexity can be seen from the intensity of the control field and from the
entity of the tracking errors in Figure 20.

As for the previous test case, we first consider the reduction of the steady-state problem and then we
tackle the transient one. As for the connected cloak, the reduction algorithm is able to achieve a huge com-
putational speedup without any losing in accuracy. The same parameters range and number of snapshots is
used to build the ROM and the reduction performances are shown in Figure 11 and 14 for the steady-state
and transient case respectively. The ROM and FOM field obtained for the disconnected case are shown in
Figure 10 for the steady-state case while three snapshots taken at time instances t = 0.25(s), t = 1.25(s) are
shown in Figures 12 and 13.

Figure 10: Reduction of the parametrized steady-state OCP with disconnected control domain, computa-
tional results for µt1 = [ 3.5 104 0 ].

As a final test case, we consider the thermal cloaking problem of a complex object where the cloaking
sources are composed of a thin offset of the target, and thus almost replicate its complex shape. As a
representative example, for the sake of dealing with complex shapes, we cloak the silhouette of the half-
woollen boar, a legendary creature related to the foundation of the city of Milan. With the same ideas as
for the previous test cases we consider the steady-state and transient regimes. Regarding the steady-state,
the comparison between ROM and FOM is shown in Figure 15, while the convergence results are plotted in
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Figure 11: Relative errors between the ROM and FOM solutions for the disconnected control domain. The
ROM is able to achieve a computational speedup of 1600 times without losing in accuracy of the optimal
and reference solutions. Solution time for the projected linear system (12) is 0.29 milliseconds on a standard
laptop computer while it takes 0.46 seconds to solve the FOM.

Figure 16. Due to the complexity of the cloak shape and of the target, the ROM solution time is roughly
260 times faster with respect to the FOM one. However, the relative errors are still negligible. The transient
reduction results are shown in Figure 17 and 18 where the snapshots are taken at the same time instances as
for the previous cases. As shown in Figure 19, the relative accuracy slightly worsens for the transient case
but as it is evident from the figures that the reduction technique is extremely accurate. Note that due to
the higher complexity of the problem, related with both the complex shape of the target and of the cloak, a
richer basis is required to track the optimal variables and reproduce the OCP in the projected space. The
computational speedup is 1385 with respect to the FOM solution. It takes roughly 1 second to compute the
solution of the FOM while the ROM needs only 0.78 milliseconds.
In Figure 20, we show the tracking error fields at steady-state for the three layouts considered in this work.
The more complex the target to cloak and the shape or the cloak domain, the higher the tracking error. We
measure the tracking performance computing the mean value in the L2(Ωobs) sense of the squared difference
between the optimal state and the reference state in the observation domain. We thus define the Mean
Tracking Error (MTE) as:

MTE =

√√√√∫Ωobs
(qss(x)− zss(x))2 dΩ∫

Ωobs
dΩ

.

The observation domain is defined as in Figure 2 for the circular and disconnected cloaks while it is the
domain outside the cloak for the complex shape case. Note that the MTE is closely related to the first term
in the cost functional of the OCP (5), that is the term the optimization problem aims at minimizing while
finding a weighted trade-off with the control norm. In order to compare the different cloaking layouts we
compute the MTE for the uncontrolled case and define the cloaking efficiency as:

η =
|MTE −MTE?|

MTE

where MTE? indicates the optimal variables while the absence of the superscript denotes the uncontrolled
case. Note that a perfect cloak achieves η = 1 while the uncontrolled case results in η = 0. The resulting
value of η for each cloaking layout is shown in Figure 20.
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Figure 12: Reduction of the parametrized transient OCP with disconnected control domain, computational
results for µt1 = [3.5 104 0] at time instance t = 0.25(s).

Figure 13: Reduction of the parametrized transient OCP with disconnected control domain, computational
results for µt1 = [3.5 104 0] at time instance t = 1.25(s).
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Figure 14: Relative errors between the ROM and FOM solutions for the transient problem of the disconnected
control domain case. The ROM is able to achieve a computational speedup of 4000 times without losing in
accuracy of the optimal and reference solutions. The solution of the FOM takes 900 seconds while the ROM
needs only 0.22 seconds.

Figure 15: Reduction of the parametrized steady-state OCP concerning the complex shape case, computa-
tional results for µt1 = [ 3.5 104 0 ].
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Figure 16: Relative errors between the ROM and FOM solutions for the complex shaped target. The ROM
is able to achieve a computational speedup of 1385 times without losing in accuracy of the optimal and
reference solutions. Solution time for the projected linear system (12) is 0.78 milliseconds on a standard
laptop computer while it takes 1.08 seconds to solve the FOM.

Figure 17: Reduction of the parametrized transient OCP with complex shaped obstacle and cloak, compu-
tational results for µt1 = [3.5 104 0] at time instance t = 0.25(s).
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Figure 18: Reduction of the parametrized transient OCP with complex shaped obstacle and cloak, compu-
tational results for µt1 = [3.5 104 0] at time instance t = 1.25(s).

Figure 19: Relative errors between the ROM and FOM solutions for the transient problem of the complex
shaped object. The ROM is able to achieve a computational speedup of 863 times without losing in accuracy
of the optimal and reference solutions. The solution of the FOM takes 394 seconds while the ROM needs
only 0.45 seconds.
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(a) η = 0.999 (b) η = 0.989 (c) η = 0.966

Figure 20: Tracking error fields of the Full Order Model for the layouts considered in this paper. The scale is
symmetric about the maximum absolute value of the error. Water green color indicates relatively accurate
tracking. The more complex is the problem the more the tracking error increases.

It is worthy to note that the cloaking error is higher in the proximity of the cloak and in particular where its
profile is locally concave. Finally, we comment on the performance of the cloaking algorithm as the control
weighting parameter varies since the optimization problem inherently depends on it. Figure 21 shows the
steady-state performances for the three cases considered in this work as a function of the control parameter
β. When the control weighting is sufficiently small, the performance of the cloak cannot be increased over a
certain efficiency which depends implicitly on the complexity of the target to cloak and on the cloak shape.

Figure 21: Steady-state cloaking performances of the Full Order Model as a function of the control weighting
parameter β for the parameters set µt1 = [3.5 104 0]. The gradient weighting parameter βg is set to 10−8.

5 Conclusion

In this paper we have shown how to reformulate the design phase of the active thermal cloaking problem from
an optimization standpoint. We recalled the theory of linear-quadratic OCP in the PDE settings and derived
a system of necessary and sufficient conditions for optimality. Then, we developed a reduction framework
to simultaneously treat the parametrized reference and optimal dynamics achieving a huge computational
speedup without losing in accuracy, both in the transient and steady-state regimes and for a wide range
of scenario parameters. The computational time needed to build the reduced basis offline is justified by
the performance of the ROM that is able to compute the optimal solution for a time interval of 5 seconds
in approximately 0.2 seconds. As a consequence, our reduction framework can be embedded in real-time
applications where the reference field is measured or estimated. We leave as future work the matter of inves-
tigating such applications in, for example, a suitable Model Predictive Control (MPC) framework. Finally,
we demonstrated that the optimal control framework allows to successfully treat complex and disconnected
geometries both of the target to cloak and of the cloaking sources distribution.
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