
MOX-Report No. 07/2021

The Importance of Being a Band: Finite-Sample Exact
Distribution-Free Prediction Sets for Functional Data

Diquigiovanni, J.; Fontana, M.; Vantini, S.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



The Importance of Being a Band: Finite-Sample Exact

Distribution-Free Prediction Sets for Functional Data

Jacopo Diquigiovanni1,4, Matteo Fontana2,3, Simone Vantini2

1Department of Statistical Sciences, University of Padova, Italy.

2MOX - Department of Mathematics, Politecnico di Milano, Italy

3now at European Commission, Joint Research Centre (JRC), Ispra (VA), Italy

4Corresponding Author: jacopo.diquigiovanni@phd.unipd.it

Abstract: Functional Data Analysis represents a field of growing interest in statis-

tics. Despite several studies have been proposed leading to fundamental results,

the problem of obtaining valid and efficient prediction sets has not been thor-

oughly covered. Indeed, the great majority of methods currently in the literature

rely on strong distributional assumptions (e.g, Gaussianity), dimension reduc-

tion techniques and/or asymptotic arguments. We propose a new nonparametric

approach in the field of Conformal Prediction, based on a new family of non-

conformity measures inducing conformal predictors able to create closed-form

finite-sample valid or exact prediction sets for functional data under very minimal

distributional assumptions. In addition, our proposal ensures that the prediction
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sets obtained are bands, an essential feature in the functional setting that al-

lows the visualization and interpretation of such sets. The procedure is also fast,

scalable, does not rely on functional dimension reduction techniques and allows

the user to select different nonconformity measures depending on the problem at

hand always obtaining valid bands. Within this family of measures, we propose

also a specific measure leading to prediction bands asymptotically no less efficient

than those with constant width.

Key words and phrases: Conformal Prediction, Distribution-free prediction, Ex-

act prediction set, Functional data, Prediction band, Uncertainty quantification.

1. Introduction

One of the main roles of statistics in our new, data-rich world is to provide

scientists, business people and policy makers with tools able to deal with an

increasing amount of data, of increasing complexity. Automated sensor ar-

rays and measuring systems now provide huge quantities of high-frequency

and high-dimensional data about all sorts of social or physical phenomena.

Among the most popular toolboxes that have the capacity to deal with

this kind of complex data one can find Functional Data Analysis (FDA,

Ramsay and Silverman, 2005). FDA is an ebullient field of statistics which

aim is to develop theory and methods to deal with data sets made of func-



tions defined over a domain, either uni- or multidimensional, and usually

characterized by some degree of smoothness. In the following, we will indi-

cate with Y(T ) the family of functions y : T → R belonging to L∞(T ) with

T closed and bounded subset of Rd, d ∈ N>0, and with y1, . . . , yn possible

realizations of n i.i.d. random functions Y1, . . . , Yn ∼ P taking values in

Y(T ). Without loss of generality, hereafter we will consider d = 1 since

it is the most common practical case. Despite being born in relatively re-

cent times (Ramsay, 1982), a plethora of standard multivariate tools have

ported to the functional realm: among others Functional Principal Com-

ponent Analysis (Ramsay and Silverman, 2005, Chapter 10), Functional

Linear Regression (Ramsay and Silverman, 2005, Chapter 12) and Func-

tional Boxplots (Sun and Genton, 2011).

A problem that, perhaps surprisingly, has not been covered in a satis-

factory way in the FDA literature is the issue of uncertainty quantification

in prediction and forecasting. In a more formal way, the interest is in the

creation of prediction sets, namely subsets of Y(T ) that include a new func-

tion Yn+1 (i.i.d to Y1, . . . , Yn) with a certain nominal confidence level 1−α.

In particular, the aim is to obtain either exact - i.e. ensuring a coverage

equal to the nominal confidence level - or at least valid - i.e. ensuring a

coverage no less than the nominal confidence level - prediction sets. Recent



works in FDA provide novel insights into this very meaningful applied and

theoretical issue. These attempts can be broadly classified in two classes:

The first one is composed of works based mainly on bootstrapping tech-

niques, either parametric (e.g., Degras, 2011; Cao et al., 2012) or, via the

use of functional quantiles, via nonparametric bootstrap techniques (e.g.,

Cuevas et al., 2006; Berg et al., 2017; Schüssler and Trede, 2016). The first

two references are involved with construction of simultaneous confidence

bands for the mean of functional data, but it should be noted that in the

case of Gaussian functional data this problem and the issue of forecasting

a new functional observation are essentially equivalent, and one can trans-

form the simultaneous confidence bands for the mean into simultaneous

prediction bands via a simple rescaling. The second class is represented by

cases in which a dimensionality reduction technique is applied to render the

naturally infinite-dimensional problem more tractable by projecting it on a

finite dimensional functional basis (e.g., Hyndman and Shahid Ullah, 2007;

Antoniadis et al., 2016). These approaches carry some shortcomings: the

first group of techniques is computationally intensive, thus requiring long

calculation times, while the second ones rely on the approximations intro-

duced by basis projection. Both of them, in any case, either rely on not

easily provable distributional assumptions and/or on asymptotic results.



The framework of this manuscript is Conformal Prediction (Vovk et al.,

2005; Shafer and Vovk, 2008), a novel method of forecasting firstly devel-

oped in the Machine Learning community as a way to define prediction

intervals for Support Vector Machines (Gammerman et al., 1998). The

interested reader can find a recent review in Fontana et al. (2023). In uni-

variate setting, Conformal Prediction is able to generate distribution-free,

valid prediction intervals and it has also been used as a data exploration

tool for Functional Data (Lei et al., 2015), via the use of a truncated basis

approach.

In this article, we build on top of the literature about set prediction for

functional data and Conformal Prediction, by introducing several theoreti-

cal and methodological innovations.

1. After having introduced the importance in interpretative terms of

obtaining functional prediction sets having a specific shape (i.e. pre-

diction bands) in Section 2.2 functional prediction sets are formally

defined and the Semi-Off-Line Inductive Conformal framework, also

known simply as Split Conformal, is introduced. Specifically, we con-

tribute in two ways to the Conformal Prediction literature: via en-

riching the results about the validity of split conformal prediction sets

by making the exact probability reached by them explicit (Theorem



1) and we provide what is to the best of our knowledge the first for-

mal proof of the exactness of smoothed split conformal prediction sets

(Appendix S1.1).

2. In Section 2.3 we propose a nonconformity measure inducing a con-

formal predictor able to create closed-form finite-sample either valid

or exact prediction bands of constant amplitude, under minimal dis-

tributional assumptions. The procedure is fast, scalable and does not

rely on widespread functional dimension reduction techniques.

3. In Section 2.4 we propose a family of nonconformity measures (to

which the nonconformity measure introduced in Section 2.3 belongs)

indexed by modulation function sI1 that allows for prediction bands

with non-constant width, but able to keep all the aforementioned

appealing properties. As a consequence, prediction bands induced by

the nonconformity measures belonging to this family can be compared

on the basis of features other than validity, such as efficiency (i.e. the

size).

4. In Section 2.4 we focus on a specific nonconformity measure belonging

to this family which leads to valid prediction bands asymptotically

no less efficient than those obtained by not modulating (Theorem 2,



Theorem 3).

Finally, in Section S2 in the Supplementary Materials we propose a simula-

tion study to compare our method with four alternatives, and in Section 3

we apply our approach to the Berkeley Growth Study data set (Tuddenham

and Snyder, 1954). Section 4 provides an overview of the main results.

2. Conformal Prediction Bands

2.1 The Importance of Being a Band

Set prediction is an issue of key importance in the statistical community.

Specifically, three main features characterize a prediction set: shape, cov-

erage, and size. We start by tackling, in this section, the first issue, while

the last two are explored in Section 2. In the classical multivariate sta-

tistical setting, elliptic regions have been and are still considered as the

standard shapes for prediction sets. Differently, in the functional context

many authors (López-Pintado and Romo, 2009; Lei et al., 2015) note how

the focus should be on a particular type of prediction set, commonly known

as prediction band. Formally, a band is defined as

{y ∈ Y(T ) : y(t) ∈ Bn(t), ∀t ∈ T } ,
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with Bn(t) ⊆ R interval for each t ∈ T (López-Pintado and Romo, 2009;

Degras, 2017). The focus on this type of sets, that can be defined as the

Cartesian product of the (infinitely many) intervals {Bn(t) : t ∈ T }, comes

from the fact that – differently from a generic region of Y(T ) – such a shape

can be easily visualized on a plot (i.e., it is a band, in parallel coordinates,

as noted by López-Pintado and Romo, 2009) and thus interpreted with

respect to the domain T .

It should also be noted that, differently from prediction sets character-

ized by other shapes, prediction bands always coincide with (and are not

only a subset of) their envelope. In view of this, the development of a

method that necessarily outputs prediction bands - instead of more general

prediction sets - represents the starting point of this work.

2.2 Conformal Prediction

The framework we use to develop our prediction sets is Conformal Predic-

tion, a nonparametric approach proposed in the multivariate literature for

the first time by Gammerman et al. (1998) and thoroughly described in

Vovk et al. (2005), that can be used to construct finite-sample either valid

or exact prediction sets under no assumptions other than i.i.d. data (for a

review of the topic see, e.g., Lei et al., 2018; Fontana et al., 2023). Even



2.2 Conformal Prediction

though the theory holds also under the weaker assumption of exchangeable

data, in this manuscript we will focus on the case of i.i.d. data which is

a very common case in applications and in particular on the case of i.i.d.

functional data taking value in Y(T ).

Following the notation of Vovk et al. (2005), given a set of i.i.d. random

functions Y1, . . . , Yn ∼ P and an independent random function Yn+1 ∼ P , a

valid prediction set Cn,1−α := Cn,1−α(Y1, . . . , Yn) for Yn+1 is a set such that

P (Yn+1 ∈ Cn,1−α) ≥ 1− α (2.1)

for any significance level α ∈ (0, 1) and with P the probability corresponding

to the product measure induced by P (Lei et al., 2015). If the inequality in

(2.1) is replaced by the equality, the prediction set is also said to be exact.

In order to avoid ambiguity, later in the discussion the term coverage (or

unconditional coverage) will be used to refer to P (Yn+1 ∈ Cn,1−α), the term

conditional coverage will be used to refer to P (Yn+1 ∈ Cn,1−α|Cn,1−α) and the

terms empirical coverage and empirical conditional coverage will be used to

refer to the estimate - from simulated data - of the coverage and conditional

coverage respectively.

Specifically, we will focus on the Semi-Off-Line Inductive Conformal

framework, also known simply as Split Conformal, a computationally effi-
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cient modification of the original Transductive Conformal method (firstly

proposed in Papadopoulos et al., 2002). In order to present this approach,

let us consider the following procedure: given data y1, . . . , yn, let {1, . . . , n}

be randomly divided into two sets I1, I2 and let us define the training set

as {yh : h ∈ I1} and the calibration set as {yh : h ∈ I2}, with |I1| = m,

|I2| = l and m, l ∈ N>0 such that n = m+ l. Let us also define nonconfor-

mity measure as any measurable function A({yh : h ∈ I1}, y) taking values

in R̄ whose aim is to score how different y ∈ Y(T ) is from the training set.

The split conformal prediction set constructed on the basis of the observed

sample y1, . . . , yn is defined as Cn,1−α := {y ∈ Y(T ) : δy > α}, with

δy :=
|{j ∈ I2 ∪ {n+ 1} : Rj ≥ Rn+1}|

l + 1

and nonconformity scores Rj := A({yh : h ∈ I1}, yj) for j ∈ I2, Rn+1 :=

A({yh : h ∈ I1}, y). In particular, hereafter we will focus on nonconformity

scores {Rh : h ∈ I2} having a continuous joint distribution, an assumption

generally satisfied in the functional context.

The essential result (due to Vovk et al., 2005) traditionally evoked

when dealing with the Conformal approach concerns the validity of split

prediction sets: indeed, under the exchangeability assumption (a direct

consequence of having i.i.d. data) δY is uniformly distributed over {1/(l +

1), 2/(l + 1), . . . , 1} and then (2.1) holds. Theorem 1 proves and enriches
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such known result by making the exact probability reached by split predic-

tion sets explicit. The proof is given in Appendix S1.1.

Theorem 1. Let Cn,1−α be a split conformal prediction set. If Y1, . . . , Yn+1

are i.i.d. and {Rh : h ∈ I2} have a continuous joint distribution, then

P (Yn+1 ∈ Cn,1−α) = 1− ⌊(l + 1)α⌋
l + 1

.

Specifically, Cn,1−α always satisfies

1− α ≤ P (Yn+1 ∈ Cn,1−α) < 1− α +
1

l + 1
. (2.2)

A natural consequence of the first part of Theorem 1 is that when

⌊(l+1)α⌋ = (l+1)α the procedure automatically outputs exact prediction

sets: in practice, since in most cases both α and l are given by the ap-

plication in hand, such property should be simply considered as an useful

by-product that may occur in some circumstances. More generally, The-

orem 1 states that the Conformal approach ensures an easy-to-compute

precise coverage for split prediction sets, and not only their validity. Fur-

thermore, the second part of Theorem 1 suggests that the coverage provided

by split conformal prediction sets is no less than 1−α and over-coverage is

basically avoided when sample size is large. In particular, inequality (2.2)

represents a minimal modification of Theorem 2 of Lei et al. (2018): the
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only difference - besides notation - is the change of ‘’≤” with “<” in the

upper bound of (2.2).

Conformal inference is a field of deep interest as minimal assumptions

are required on P to obtain prediction sets satisfying (2.1) for any finite

sample size n, a property particularly appealing in the functional context.

A slight modification (Vovk et al., 2005) of the aforementioned procedure

even allows to obtain a stronger version of Theorem 1: in order to present it,

first of all let us introduce an element of randomization τn+1, realization of a

uniform random variable in [0, 1]. The smoothed split conformal prediction

set is defined as Cn,1−α,τn+1 :=
{
y ∈ Y(T ) : δy,τn+1 > α

}
, with

(l + 1) · δy,τn+1 := |{j ∈ I2 : Rj > Rn+1}|+

τn+1 |{j ∈ I2 ∪ {n+ 1} : Rj = Rn+1}| .

Smoothed split conformal prediction sets are, by construction, exact for any

α, l, i.e. P
(
Yn+1 ∈ Cn,1−α,τn+1

)
= 1 − α: to the best of our knowledge, in

the literature there is no formal proof of this well-established result (due to

Vovk et al., 2005), and so a proof is given in Appendix S1.1.

Remark 1. Our discussion was limited to the split setting because our

work only focuses on it, but the results of this section are very general and

require just little changes to be applied to the Transductive/Full Conformal
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framework. In addition, as highlighted by Vovk et al. (2005) and briefly

mentioned at the beginning of this section, Theorem 1 and the result about

exactness of smoothed prediction sets hold even when the weaker assump-

tion of exchangeability is formulated instead of the traditional hypothesis

of i.i.d. data.

Remark 2. The division of data into the training and calibration sets

always induces an element of randomness into the procedure, also in the

non-smoothed scenario. A possible approach to limit the effect of this

evidence consists of combining prediction sets obtained from different splits,

but the results provided by Lei et al. (2018) suggest to perform a single split.

As a consequence, in this article the aforementioned single-split process is

considered. The computation of the effect of splitting - as well as the impact

of the specific values m and l - on the procedure has not yet been properly

analyzed in the Conformal Prediction literature (see e.g. Fontana et al.,

2023), but it is a topic worth of further research.

Remark 3. The Conformal approach can be also successfully applied to

regression and classification problems. A detailed presentation is not in-

cluded hereafter being out of scope, but an exhaustive discussion can be

found in Vovk et al. (2005).

Remark 4. Although we focus on the functional setting, the Conformal
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framework has initially been developed in the traditional univariate and

multivariate settings and so all arguments and results presented in this

section can also be applied to univariate variables and random vectors.

2.3 The Nonconformity Measure

Although some authors proposed different approaches to find prediction

bands under the Gaussian assumption (Yao et al., 2005) and through finite

dimensional projection (Lei et al., 2015), to the best of our knowledge no

method to create valid prediction bands by only assuming i.i.d. functional

data and by avoiding dimension reduction is available in the literature.

In light of this and of the discussion in Section 2.1, we propose a fast and

scalable split conformal predictor that outputs closed-form finite-sample

valid (or even exact) prediction bands under only the i.i.d. assumption.

Indeed, the Conformal framework ensures, by construction, that the pre-

diction sets obtained are always valid, but other features such as shape and

size depend on the specific nonconformity measure used: as a consequence,

the core of the Conformal approach is represented by the choice of such

measure.

In particular, the nonconformity measure we propose automatically al-
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lows to obtain prediction bands and is based on the essential supremum:

A({yh : h ∈ I1}, y) = ess sup
t∈T

|y(t)− gI1(t)| , (2.3)

with gI1 : T → R a function belonging to L∞(T ) based on {yh : h ∈ I1}

and acting as a point predictor of the new observation. Although valid

prediction bands are obtained regardless the specific gI1 involved, a careful

choice of this function helps to obtain small prediction bands, a desirable

property from an application point of view which will be investigated in

Section 2.4 (Lei et al., 2018). In view of this, gI1 is typically a point pre-

dictor summarizing information provided by {yh : h ∈ I1}, e.g. the sample

functional mean. However, since the purpose of the article is to construct

either valid or exact prediction bands starting from any point predictor in

order to obtain a widely usable procedure, later in the discussion we will

always consider gI1 as given - and properly chosen by the expert according

to the specific framework considered. Focusing on the non-smoothed sce-

nario (the minor changes needed for the smoothed case are introduced in

Appendix S1.4), first of all it is possible to notice that if α ∈ (0, 1/(l + 1))

then Cn,1−α = Y(T ) since δy can not be less than 1/(l+ 1): for this reason,

later in the discussion we will always consider α ∈ [1/(l + 1), 1), unless

otherwise stated. If α ∈ [1/(l+1), 1), the definition of Cn,1−α and δy implies

that y ∈ Cn,1−α ⇐⇒ Rn+1 ≤ k, with k the ⌈(l + 1)(1 − α)⌉th smallest
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value in the set {Rh : h ∈ I2}. Then

ess sup
t∈T

|y(t)− gI1(t)| ≤ k ⇐⇒

|y(t)− gI1(t)| ≤ k ∀t ∈ T ⇐⇒

y(t) ∈ [gI1(t)− k, gI1(t) + k] ∀t ∈ T .

Therefore, the split conformal prediction set induced by the nonconformity

measure (2.3) is

Cn,1−α := {y ∈ Y(T ) : y(t) ∈[gI1(t)− k, gI1(t) + k]

∀t ∈ T }. (2.4)

Besides having the shape of a a band, the introduced prediction set can

be found in closed form, an appealing property that incredibly speeds up

computation time. In addition, the Conformal framework and the simplicity

of the nonconformity measure ensure highly scalable prediction bands as,

on top of the cost needed to build the point predictor gI1 , the time required

to find k increases linearly with l. Then, if a particularly sophisticated

predictor is chosen for gI1 , one is justified in expecting the total computation

cost to be dominated by the calculation of such point predictor. Moreover,

as usual in the prediction framework the band is built around a “central”

object (gI1 in this case), a fact that further suggests to define this function as

a data-driven point predictor. Finally, the prediction bands defined in (2.4)
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are simultaneous by construction, i.e. bands ensuring the desired coverage

globally (in addition to the pointwise validity). Similarly to the multivariate

setting, a simple concatenation of pointwise prediction intervals based on

the pointwise nonconformity score |y(t)− gI1(t)| for all t ∈ T would lead to

a prediction band: that is a subset of the simultaneous prediction band (2.4)

(the proof is given in Appendix S1.2); with guaranteed pointwise coverage

for all t ∈ T ; but whose simultaneous coverage over the domain T can be

dramatically lower than the desired one.

Remark 5. In application scenarios where data are characterized by spe-

cific features (e.g., positivity, monotonicity etc...), the approach presented

in this Section allows to remove portions of the observed prediction bands

that violate such known characteristics, without affecting the coverage. An

example of this band trimming procedure is given in Section 3. This possi-

bility is a desirable implication which derives from using a fully nonparamet-

ric approach to prediction, since this takes away the burden of an explicit

and possibly non-trivial modeling of the existing constraints.
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2.4 Improving Efficiency: the Choice of the Modulation Func-

tion

It can be easily noted that the width of (2.4) over T is constant and equal to

2k but, intuitively, prediction bands that do not adapt their width according

to the local variability of functional data, even though theoretically sound,

may be of limited interest in real applications. For this reason it is of key

importance to create prediction bands whose width can be adapted to the

local variability of functional data.

Let us consider the following running example: let y1, . . . , y198 be in-

dependent realizations of the random function Y (t) := X1 +X2 cos(6πt) +

X3 sin(6πt), with t ∈ [0, 1] and (X1, X2, X3) being a Gaussian random vec-

tor such that E[Xi] = 0, Var[Xi] = 1, Cov[Xi, Xj] = 0.6 for i, j = 1, 2, 3,

i ̸= j. The solid light blue band in the left panel of Figure 1 shows the

prediction band obtained by the procedure presented in Section 2.3 consid-

ering α = 0.1, m = n/2 and gI1 sample functional mean of the training set:

given the different variability of functional data over T , in the low-variance

parts of the domain the prediction band is dramatically large containing all

the pointwise evaluations of the functional data (see, for example, t = 0.5

and nearby points).

A possible solution to this drawback consists of defining the following
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Figure 1: The left panel shows the split conformal prediction band com-

puted as in (2.4) (solid light blue band) and that computed as in (2.6) by

considering the standard deviation function as sI1 (dashed purple band).

For visualization, a random subsample of y1, . . . , y198 is plotted. The right

panel shows the empirical pointwise conditional coverage reached by the

first band (solid light blue line) and by the second one (dashed purple line).

α = 0.1.
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nonconformity measure and nonconformity scores:

A({yh : h ∈ I1}, y) = ess sup
t∈T

∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ , (2.5)

Rs
j := ess sup

t∈T

∣∣∣∣yj(t)− gI1(t)

sI1(t)

∣∣∣∣ ,
Rs

n+1 := ess sup
t∈T

∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ ,
with j ∈ I2 and sI1 := s({yh : h ∈ I1}) : T → R>0 a function which

belongs to L∞(T ) based on {yh : h ∈ I1}. At the interpretative level, the

new nonconformity measure (2.5) can be suitably considered as the noncon-

formity measure (2.3) taking the transformed functions ys(t) := y(t)/sI1(t)

and gsI1(t) = gI1(t)/sI1(t) ∀t ∈ T as input instead of the original functions

y(t), gI1(t). It is important to notice that, since sI1(t) > 0 ∀t ∈ T , the

function sI1 modulates the original data without altering the order of the

functions at each point t: for this reason, later in the discussion the term

modulation function will be used to refer to sI1 .

Therefore, the split conformal prediction band induced by the noncon-

formity measure (2.5), obtained by replicating the computations of Section

2.3 (see Appendix S1.3 for the proof), is

Cs
n,1−α :={y ∈ Y(T ) : y(t) ∈ (2.6)

[gI1(t)− kssI1(t), gI1(t) + kssI1(t)]∀t ∈ T },
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with ks the ⌈(l+1)(1−α)⌉th smallest value in the set {Rs
h : h ∈ I2}. In other

words, the procedure presented in this section consists of modulating the

data, computing the prediction band (2.4) by using the transformed data

and back-transforming it in the non-modulated space: in so doing, predic-

tion bands adapt their width according to the specific modulation function

chosen and their validity is guaranteed by the Conformal framework. A

similar consideration has been highlighted also in the scalar regression set-

ting by Lei et al. (2018), who proposed a locally weighted Split Conformal

method to vary the width of the prediction sets over the covariates x ∈ Rp.

In order to understand the modification introduced by the modulation

function, let us consider the aforementioned running example and specif-

ically the left panel of Figure 1: in this case, the band obtained by con-

sidering the standard deviation function (Ramsay and Silverman, 2005) as

sI1 (dashed purple band) is deeply different from the one in the top panel

and it seems to better adapt to the variability of the data over T . Intu-

itively, one is justified in accepting the bands to become wider in the parts

of the domain where data show high variability in order to obtain narrower

and more informative prediction bands in those parts characterized by low

variability.

Remark 6. Replacing function sI1 with sI2 does not allow to obtain closed-
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form valid prediction bands. This is due to the fact that their dependence on

the calibration set involves {Rs
h : h ∈ I2∪{n+1}} not being exchangeable,

and consequently validity not being guaranteed.

Remark 7. Prediction bands induced by the modulation functions sI1

and λ · sI1 , with λ ∈ R>0, are identical. The proof is given in Appendix

S1.3. As a consequence, an equivalence relation naturally arises and so

for each specific equivalence class (made up of modulation functions equal

up to a multiplicative factor) we will consider the modulation function

whose integral is equal to 1. In view of this, the original nonconformity

measure (2.3) can be interpreted as the nonconformity measure induced by

the modulation function s0(t) := 1/|T | ∀t ∈ T , whose notation does not

include the subscript I1 to underline the lack of dependence of this function

on the training set.

Remark 8. One of the aim of the introduction of sI1 is to reduce the

variability of the pointwise miscoverage over T . In order to clarify this

concept, let us consider the right panel of Figure 1. The solid light blue

(dashed purple respectively) line shows the empirical pointwise conditional

coverage of the solid light blue (dashed purple respectively) prediction band

showed in the left panel of the same figure, that was obtained by setting α =

0.1. The empirical conditional coverage has been computed considering the
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number of times that 200,000 - independent from and identically distributed

to the original sample - new functions belong to the two prediction bands

over T . As expected, the absence of modularization involves the empirical

pointwise converage being highly variable over T , whereas the use of the

standard deviation function as modulation function leads to an empirical

pointwise coverage concentrated around 0.98.

However, in absence of an optimality criterion there are no formal rea-

sons to prefer a specific modulation function over another, as the Conformal

approach ensures valid prediction sets regardless the choice of sI1 . In this

regard, a criterion that naturally arises in the prediction framework to dis-

criminate between modulation functions is maximization of efficiency, i.e.

minimization of the size of prediction sets (Vovk et al., 2005) . The reason

of this choice is very intuitive: since prediction bands are, by construction,

valid, one is justified in seeking small prediction bands because they include

subregions of the sample space where the probability mass is concentrated

(Lei et al., 2013). In view of this, first of all it is essential to define what the

size of a prediction band is, a nontrivial topic in the functional framework.

The definition we will consider is simply the area between the upper and

lower bound of the prediction band:

Q(sI1) :=

∫
T
2 · ks · sI1(t)dt = 2 · ks, (2.7)
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that is equal to ks up to a constant and proportional to 2ks/|T |, i.e. the

average width of the prediction band over the domain T .

Formally, in the usual finite-dimensional setting the aim would be to

find the optimal modulation function that minimizes the risk functional

E[ks]. Unfortunately, in the functional setting even the concept of proba-

bility density function is generally not well defined since there is no σ-finite

dominating measure (Delaigle et al., 2010), and so that minimization is not

feasible for general P . As a consequence, the minimization problem must

be simplified: by considering ks as a non-random quantity depending on

observed functions y1, . . . , yn instead of random functions Y1, . . . , Yn, the

aim becomes the direct minimization of ks. Although initially it may seem

like an oversimplification to some readers, it is important to underline that

this approach is made possible by a well-established principle represent-

ing the core idea of many algorithms and methods (e.g. machine learning

techniques) known as empirical risk minimization principle (Vapnik, 1992).

The proposed adjustment reduces the complexity of the optimization

task, but the problem still presents tricky aspects. Indeed, not only the

minimization can not be analytically addressed by calculus of variations

given the complexity of ks, but also the optimal modulation function can

not be uniquely determined given the specific structure of Rs
h, h ∈ I2. In
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fact, the dependency of sI1 only on the functions of the training set and of

the numerator of Rs
h (i.e. |yh(t)− gI1(t)| , h ∈ I2) also on the functions

of the calibration set makes the optimization unfeasible for all P and the

general problem ill-posed.

In such a non-standard context, the line of reasoning must necessarily be

changed. Therefore, in the discussion below we focus on finding a function -

called c-function hereafter for the sake of simplicity - satisfying the definition

of modulation function but depending also on the calibration set through

{yh : h ∈ I2} and such that

1. For m, l → +∞ it converges to a given function and its training

counterpart (i.e. the function - called t-function hereafter - equal to

the c-function but whose dependence on {yh : h ∈ I2} is replaced by

the dependence on the training set through {yh : h ∈ I1}) converges

to the same function

2. it leads to prediction bands that are not wider (in the sense of (2.7))

than those obtained by not modulating (i.e. by using s0)

If these two conditions are met, the use of the t-function as modulation

function ensures that valid prediction bands are obtained (due to its depen-

dence only on {yh : h ∈ I1}) and that asymptotically the second condition



2.4 Improving Efficiency: the Choice of the Modulation Function

is satisfied. Specifically, that condition represents a desirable and appeal-

ing property since, if violated, the modulation process could represent a

meaningless complication compared to the original nonconformity measure

(2.3).

In order to construct a c-function able to meet these two conditions, it

is important to focus on what ks is: ignoring just for now the contribution

of the modulation function, ks is a quantity derived by the ⌈(l+1)(1−α)⌉th

least conforming function between those in the calibration set, in which the

concept of ”conformity” is induced by the metric used, being deemed as

”conforming” a function whose distance from gI1 is particularly high. In

light of this, the guidelines we decided to follow in the construction of a

meaningful c-function are two. First of all, the behavior of the l − ⌈(l +

1)(1−α)⌉ most extreme functions in the calibration set should not be taken

into account since they do not affect the value of ks. Secondly, given the

specific nonconformity measure considered, the c-function should modulate

data considering the remaining ⌈(l + 1)(1 − α)⌉ functions on the basis of

the most extreme value observed ∀t ∈ T .

Inspired by these guidelines, we propose the following c-function:

s̄cI1(t) :=
maxj∈H2 |yj(t)− gI1(t)|∫

T maxj∈H2 |yj(t)− gI1(t)|dt
(2.8)
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with

H2 := {j ∈ I2 : ess sup
t∈T

|yj(t)− gI1(t)| ≤ k}

and k defined as in Section 2.3, i.e. the ⌈(l+1)(1−α)⌉th smallest value in

the set {Rh : h ∈ I2}. The corresponding t-function is

s̄I1(t) :=
maxj∈H1 |yj(t)− gI1(t)|∫

T maxj∈H1 |yj(t)− gI1(t)|dt
(2.9)

with H1 = I1 if ⌈(m+ 1)(1− α)⌉ > m, otherwise

H1 := {j ∈ I1 : ess sup
t∈T

|yj(t)− gI1(t)| ≤ γ}

with γ the ⌈(m+ 1)(1− α)⌉th smallest value in the set {ess supt∈T |yh(t)−

gI1(t)| : h ∈ I1}.

In order not to overcomplicate the notation, in the definition of s̄cI1 and

s̄I1 we quietly assumed that both numerators are different from 0 ∀t ∈ T

almost surely. If not, the adjustment described in Appendix S1.3 is devel-

oped. From an operational point of view, t-function s̄I1(t) ignores the most

extreme functions (i.e. the functions belonging to I1 \ H1) and modulates

data on the basis of the remaining non-extreme functions. Specifically, the

dependence of γ on α allows to provide carefully chosen modulation process

according to the specific level 1− α chosen for the prediction set.

The fulfillment of the two aforementioned conditions by the function

(2.8) is proved by the following two theorems.
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Theorem 2. Let m/n = θ with 0 < θ < 1 and let Var[gI1(t)] → 0 when

m → +∞. Then s̄cI1 and s̄I1 converge to the same function when n → +∞

and limn→+∞ C s̄
n,1−α = limn→+∞ C s̄c

n,1−α ∀ α ∈ (0, 1).

Theorem 3. Q(s0) ≥ Q(s̄cI1). Specifically, Q(s0) = Q(s̄cI1) if and only if

maxj∈H2 |yj(t)− gI1(t)| is constant almost everywhere.

Both proofs are given in Appendix S1.3. It is important to notice that

Theorem 2 requires very mild conditions, an evidence that allows it to hold

in many general contexts.

In light of this, the function (2.9) represents an outstanding candidate

in the choice of the modulation function since the Conformal setting and

the nonconformity measure (2.5) guarantee valid prediction bands - as well

as all the other desirable properties highlighted in Section 2.3 - and at the

same time to asymptotically obtain prediction bands no less efficient than

those induced by s0.

Remark 9. The fact that s̄cI1(t) leads to prediction bands that are not

wider than those obtained by not modulating is not the only relevant result

that is possible to obtain. The following Theorem shows that prediction

bands induced by s̄cI1 are also smaller than those induced by the functions

belonging to a specific group. This theorem provides a further theoreti-
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cal justification for preferring function (2.9) to other possible modulation

functions.

Theorem 4. Let us define CH2 := I2 \H2 and let t∗i be the value such that

|yi(t∗i )− gI1(t
∗
i )| = ess sup

t∈T
|yi(t)− gI1(t)| ∀i ∈ I2. (2.10)

If t∗i is not unique, it is randomly chosen from the values that satisfy (2.10).

Let sdI1 be a modulation function such that:

1. sdI1 ̸= s̄cI1 in the sense of Lebesgue, i.e. ∃ T ∗ ⊆ T such that sdI1(t) ̸=

s̄cI1(t) ∀t ∈ T ∗ and µ(T ∗) > 0, with µ the Lebesgue measure

2. sdI1(t
∗
i ) ≤ s̄cI1(t

∗
i ) ∀i ∈ CH2

If |H2| = ⌈(l + 1)(1− α)⌉, then Q(sdI1) > Q(s̄cI1).

The proof is given in Appendix S1.3, along with the demonstration that

Theorem 3 is not a direct consequence of Theorem 4 since s0 may not fulfill

s0(t∗i ) ≤ s̄cI1(t
∗
i ) ∀i ∈ CH2. Also in this case, the field of application of

Theorem 4 is particularly wide since the condition about the cardinality of

|H2| is always met under the assumption concerning the continuous joint

distribution of {Rh : h ∈ I2} made in Section 2.2.

Remark 10. The definitions of functions (2.8), (2.9) and Theorems 2, 3

and 4 can be easily generalized to hold also in the Smoothed Conformal

framework. Technical details are provided in Appendix S1.4.



Remark 11. As it is the case with the mean function gI1 that is chosen

according to the specific applicative problem at hand, the choice of the

modulation function sI1 has to be performed in a similar fashion. Indeed it

has to be selected on a case-by-case basis by taking into consideration the

specific charachteristics of the modelling task at hand (e.g., homooscedas-

ticity/heteroscedasticity along the domain or presence/absence of outliers).

3. Application

In order to show the wide generality of our approach, in this section we

apply our Conformal approach to a well known data set in the FDA com-

munity (i.e., the Berkeley Growth Study data set (Tuddenham and Snyder,

1954)) that is characterized by features that cannot be trivially framed in a

standard probabilistic parametric model, i.e.: heteroscedasticity along the

functional domain, phase misalignment, presence of outlier curves, and pos-

itivity constraint. The specific data set contains in detail the heights (in

cm) of 54 female and 39 male children measured quarterly from 1 to 2 years,

annually from 2 to 8 years and biannually from 8 to 18 years. We focus

on the first derivative of the growth curves, which are estimated in a stan-

dard fashion by the R function smooth.monotone of fda package (Ramsay

et al., 2020) implementing monotonic cubic regression splines (Ramsay and



Silverman, 2005, chap. 6). Specifically, the prediction bands here reported

refer to the growth velocity curves between 4 and 18 years for girls and

boys separately comparing, in the Non-Smoothed Conformal framework,

the three modulation functions analyzed in Section S2 and with gI1 being

simply for each group the corresponding functional sample mean, α = 0.5,

m = 27 for girls, m = 20 for boys.

The prediction bands are shown in Figure 2. Note that since the appli-

cation at hand does not allow the functions to be negative in any subset of

the domain, the prediction bands can be (and are indeed) truncated to 0

without decreasing their coverage.

Focusing on Figure 2, the graphical representation of the prediction

bands highlights the well-known different growth path between girls and

boys, in which the latter group typically starts to grow later but achieves

higher growth velocities. In terms of the role of modulation functions, their

impact on female growth velocity prediction seems to be less than the one

on the male bands. From a prediction point of view, girls’ curves represent a

simpler scenario in which the variance is lower along the domain, while boys’

curves represent a more complex scenario with strong heteroskedasticity of

the functions over T (due to the joint presence of misalignment of data and

a very localized high peak around 13 years of age). As expected from these
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Figure 2: Berkeley Growth Study data: each panel shows the prediction

band obtained considering a different modulation function (s0 on the left,

the normalised pointwise standard deviation function sσI1 in the middle, s̄I1

on the right). In all cases, the dashed line represents gI1 . Predictions for

girls at the top and predictions for boys at the bottom.

considerations, the prediction bands for a new girl’s velocity curve obtained

using the different modulation functions are relatively similar, with the pre-

diction band associated to s̄I1 being slightly narrower due to the presence

of outliers. Instead focusing on boys’ curves, the strong heteroskedasticity

forces the prediction band induced by s0 to be uselessly large in some parts



s0 sσI1 s̄I1

Females 2.904 3.244 2.811

Males 3.334 3.107 2.690

Table 1: Berkeley Growth Study data: average width of the prediction

bands.

of the domain, whereas in general the prediction band induced by sσI1 seems

to be smoother than that induced by s̄I1 , whose “bumps” are idiosyncratic

and caused by the specific modulation function used which is not point-

wise related to an average but on the specific value assumed by one of the

functions. This creates narrower but less smooth bands. Both for boys and

girls s̄I1 outputs the smallest prediction band, as shown in Table 1 where

the quantity Q(·)/|T | is reported.

Additionally, we have explored the role that the pointwise predictor

covers with respect to the prediction perfomance in this applied case. The

explored methods are, similarly to the simulation study, a baseline method,

represented by the sample mean (stylised ”Mean”, accompanied by the

functional median (stylised ”Median”), where the point predictor is rep-

resented by the deepest curve of the sample, according to MBD. and by



Mean Median Trimmed mean

Females 2.811 3.614 2.910

Males 2.690 4.362 3.266

Table 2: Berkeley Growth Study data: average width of the prediction

bands for different point predictors, using s̄I1 as the modulation function

a trimmed functional mean, computed excluding the 10% of the shallow-

est curves in the sample, again according to MBD. The the modulation

function selected is s̄I1 .

Some useful information can be also provided by the comparison be-

tween the proposed approach and its pointwise counterpart, in which the

prediction band is constructed by applying a coherent univariate Conformal

approach at each point t separately. Indeed, by construction the former cre-

ates prediction bands larger or equal than those obtained by the latter, but

on the other hand it guarantees simultaneous (and not pointwise) validity

and of course it interprets a function as a whole, a key aspect in the func-

tional context. In order to clarify this concept, let us consider Figure 3, in

which the pointwise prediction band (dark blue) is overlaid to the bottom-

right panel of Figure 2. As expected, the pointwise prediction band is simply
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Figure 3: Berkeley Growth Study data: the prediction band represented at

the bottom right of Figure 2 (light blue) and the correponding pointwise

conformal prediction band (dark blue).

modulated by the local variability of the 50% central curves. Differently,

the prediction bands here proposed instead take also into consideration the

behavior of the functions along the domain T with the effect of generating

narrower or wider bands also in presence of similar local variabilities and

so not just obtaining a simple expansion of the pointwise prediction band.

4. Conclusion

The creation of prediction sets for functional data is still an open problem of

paramount importance in statistical methodology research. In order to de-

fine and compute them, the great majority of methods currently presented



in the literature rely on non-provable distributional assumption, dimension

reduction techniques and/or asymptotic arguments. On the contrary, the

approach proposed in this article represents an innovative proposal in this

field: indeed, the Conformal framework ensures that finite-sample either

valid or exact prediction sets are obtained under minimal distributional

assumptions, whereas the specific family of nonconformity measures intro-

duced guarantees - besides prediction sets that are bands - also a fast,

scalable and closed-form solution. Moreover, despite the fact that our ap-

proach works regardless the specific choice of sI1 (which can be chosen, for

example, a priori), we proposed a specific data-driven modulation function,

namely s̄I1 , which leads to prediction bands asymptotically no less efficient

than those obtained by not modulating. The focus of this article was on

i.i.d. data, but we envision an extension of the procedure to regression and

classification problems.

Our procedure is able to achieve encouraging results and could represent

a promising starting point for future developments, but at least two aspects,

among others, should be carefully investigated. First of all, the division of

data into the training and calibration sets induces an intrinsic element of

randomness into the method and, although this phenomenon is well known

in the Conformal literature, a quantification of the effect of the split process



- and also of the values m and l - on the procedure has not yet been

properly analyzed. Secondly, the prediction sets proposed in this article are

purposely shaped as functional bands. This geometrical characterization in

most application scenarios can be considered well suited. Nevertheless, one

can think at more complicated scenarios (e.g., functional mixtures) where

prediction set made of multiple bands could be considered more suited from

an application point of view. This possible extension will be the object of

future work.

Supplementary Materials

The supporting material contains the technical proofs and the supplemen-

tary material for the simulation study.
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López-Pintado, S. and J. Romo (2009). On the concept of depth for functional data. J. Amer.

Statist. Assoc. 104 (486), 718–734.

Papadopoulos, H., K. Proedrou, V. Vovk, and A. Gammerman (2002). Inductive confidence ma-

chines for regression. In European Conference on Machine Learning, pp. 345–356. Springer.

Ramsay, J. O. (1982). When the data are functions. Psychometrika 47 (4), 379–396.

Ramsay, J. O. and B. W. Silverman (2005). Functional data analysis (Second edition ed.).



REFERENCES

Springer series in statistics. New York, NY: Springer. OCLC: 249216329.

Ramsay, J. O., H. Wickham, S. Graves, and G. Hooker (2020). fda: Functional Data Analysis.

R package version 2.4.8.1.

Schüssler, R. and M. Trede (2016). Constructing minimum-width confidence bands. Economics

Letters 145, 182–185.

Shafer, G. and V. Vovk (2008). A Tutorial on Conformal Prediction. J. Mach. Learn. Res. 9,

371–421.

Sun, Y. and M. G. Genton (2011). Functional Boxplots. J. Comput. Graph. Statist. 20 (2),

316–334.

Tuddenham, R. D. and M. M. Snyder (1954). Physical growth of california boys and girls

from birth to eighteen years. University of California publications in child development 1,

183–364.

Vapnik, V. (1992). Principles of risk minimization for learning theory. In Advances in neural

information processing systems, pp. 831–838.

Vovk, V., A. Gammerman, and G. Shafer (2005). Algorithmic learning in a random world.

Springer Science & Business Media.

Yao, F., H.-G. Müller, and J.-L. Wang (2005). Functional data analysis for sparse longitudinal

data. J. Amer. Statist. Assoc. 100 (470), 577–590.



The Importance of Being a Band: Finite-Sample Exact

Distribution-Free Prediction Sets for Functional Data

Jacopo Diquigiovanni1,4, Matteo Fontana2,3, Simone Vantini2

1Department of Statistical Sciences, University of Padova, Italy.

2MOX - Department of Mathematics, Politecnico di Milano, Italy

3now at European Commission, Joint Research Centre (JRC), Ispra (VA), Italy

4Corresponding Author: jacopo.diquigiovanni@phd.unipd.it

S1 Technical Proofs

S1.1 Proofs of Section 2.2

Proof of Theorem 1.

Since Cn,1−α := {y ∈ Y(T ) : δy > α}, then Cn,1−α := {y ∈ Y(T ) : (l + 1)δy > (l + 1)α}.

Under the hypothesis of the theorem, (l + 1)δY ∼ U{1, 2, . . . , l + 1} holds. As a consequence:

P (Yn+1 ∈ Cn,1−α) = P ((l + 1)δY > (l + 1)α)

= 1− P ((l + 1)δY ≤ (l + 1)α)

= 1− ⌊(l + 1)α⌋
l + 1

.

The present manuscript is a working paper, the final version has been currently submitted to a

journal
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In addition, since

⌊(l + 1)α⌋
l + 1

≤ (l + 1)α

l + 1
= α

then P (Yn+1 ∈ Cn,1−α) ≥ 1− α, i.e. Cn,1−α is valid. Finally, since

⌊(l + 1)α⌋
l + 1

>
(l + 1)α− 1

l + 1
= α− 1

l + 1

then P (Yn+1 ∈ Cn,1−α) < 1− α+ 1
l+1

.

Proof that smoothed split conformal prediction sets are exact.

Let us consider the hypothesis of Theorem 1. Let us notice that

δy,τn+1 :=
|{j ∈ I2 : Rj > Rn+1}|+ τn+1 |{j ∈ I2 ∪ {n+ 1} : Rj = Rn+1}|

l + 1

=
τn+1

l + 1
+

|{j ∈ I2 : Rj ≥ Rn+1}|
l + 1

.

Under the hypothesis of Theorem 1, |{j ∈ I2 : Rj ≥ Rn+1}| ∼ U{0, 1, . . . , l} holds. As a conse-

quence:

P
(
Yn+1 ∈ Cn,1−α,τn+1 |τn+1

)
= P

(
δY,τn+1 > α|τn+1

)
= P (|{j ∈ I2 : Rj ≥ Rn+1}| > (l + 1)α− τn+1|τn+1)

= 1− P (|{j ∈ I2 : Rj ≥ Rn+1}| ≤ (l + 1)α− τn+1|τn+1)

= 1− ⌊(l + 1)α− τn+1⌋+ 1

l + 1
.

Let us call f(τn+1) = 1 · 1{τn+1 ∈ [0, 1]}. Then

P
(
Yn+1 ∈ Cn,1−α,τn+1

)
=

∫ 1

0

P
(
Yn+1 ∈ Cn,1−α,τn+1 |τn+1

)
f(τn+1)dτn+1

=1−(∫ (l+1)α−⌊(l+1)α⌋

0

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1+

∫ 1

(l+1)α−⌊(l+1)α⌋

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1

)
.
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Let us consider
∫ (l+1)α−⌊(l+1)α⌋
0

⌊(l+1)α−τn+1⌋+1

l+1
dτn+1. Since if τn+1 ≤ (l+1)α−⌊(l+1)α⌋

then ⌊(l + 1)α− τn+1⌋ = ⌊(l + 1)α⌋, we can notice that

∫ (l+1)α−⌊(l+1)α⌋

0

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1

=

∫ (l+1)α−⌊(l+1)α⌋

0

⌊(l + 1)α⌋+ 1

l + 1
dτn+1

=
⌊(l + 1)α⌋+ 1

l + 1
· ((l + 1)α− ⌊(l + 1)α⌋) .

Let us consider
∫ 1

(l+1)α−⌊(l+1)α⌋
⌊(l+1)α−τn+1⌋+1

l+1
dτn+1. Since if τn+1 > (l+1)α−⌊(l+1)α⌋

then ⌊(l + 1)α− τn+1⌋ = ⌊(l + 1)α⌋ − 1, we can notice that

∫ 1

(l+1)α−⌊(l+1)α⌋

⌊(l + 1)α− τn+1⌋+ 1

l + 1
dτn+1

=

∫ 1

(l+1)α−⌊(l+1)α⌋

⌊(l + 1)α⌋
l + 1

dτn+1

=
⌊(l + 1)α⌋

l + 1
· (1− ((l + 1)α− ⌊(l + 1)α⌋)) .

Then

P
(
Yn+1 ∈ Cn,1−α,τn+1

)
=1−(

⌊(l + 1)α⌋+ 1

l + 1
· ((l + 1)α− ⌊(l + 1)α⌋)+

⌊(l + 1)α⌋
l + 1

· (1− ((l + 1)α− ⌊(l + 1)α⌋))

)

=1− α.
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S1.2 Proofs of Section 2.3

Proof that the concatenation of pointwise prediction intervals leads to a prediction

band that is a subset of the simultaneous prediction band (2.4).

Let Un,1−α be the pointwise prediction set. Let us define R̃j(t) := |yj(t)− gI1(t)| ∀t ∈

T , j ∈ I2, R̃n+1(t) := |y(t)− gI1(t)| for a given y ∈ Y(T ) and k̃(t) the ⌈(l + 1)(1 − α)⌉th

smallest value in the set {R̃h(t) : h ∈ I2}. By construction Rj = ess supt∈T R̃j(t), and so

Rj ≥ R̃j(t) ∀t ∈ T , j ∈ I2 and then k ≥ k̃(t) ∀t ∈ T . Let us consider y ∈ Un,1−α, i.e. y(t) ∈

[gI1(t)− k̃(t), gI1(t)+ k̃(t)] ∀t ∈ T . Since k ≥ k̃(t), also y(t) ∈ [gI1(t)−k, gI1(t)+k] ∀t ∈ T ,

i.e. y ∈ Cn,1−α.

Since the converse is not necessarily true (in the sense that y ∈ Cn,1−α does not imply

y ∈ Un,1−α), we conclude that Un,1−α ⊆ Cn,1−α.

S1.3 Proofs of Section 2.4

Proof of the prediction set induced by the nonconformity measure A({yh : h ∈ I1}, y) =

ess supt∈T

∣∣∣ y(t)−gI1
(t)

sI1
(t)

∣∣∣.
For a given y ∈ Y(T ), let us define

δsy :=

∣∣{j ∈ I2 ∪ {n+ 1} : Rs
j ≥ Rs

n+1

}∣∣
l + 1

.

The split conformal prediction set is defined as Cs
n,1−α :=

{
y ∈ Y(T ) : δsy > α

}
. As a conse-

quence, y ∈ Cs
n,1−α ⇐⇒ Rs

n+1 ≤ ks, with ks the ⌈(l + 1)(1 − α)⌉th smallest value in the set

{Rs
h : h ∈ I2}. Then:

ess sup
t∈T

∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ ≤ ks

⇐⇒
∣∣∣∣y(t)− gI1(t)

sI1(t)

∣∣∣∣ ≤ ks ∀t ∈ T

⇐⇒ y(t) ∈ [gI1(t)− kssI1(t), gI1(t) + kssI1(t)] ∀t ∈ T .
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Therefore, the split conformal prediction set is

Cs
n,1−α := {y ∈ Y(T ) : y(t) ∈ [gI1(t)− kssI1(t), gI1(t) + kssI1(t)] ∀t ∈ T } .

Proof of Remark 7.

Let us define Cλ·s
n,1−α the prediction set obtained by considering the modulation function

λ · sI1 . The nonconformity scores are

Rλ·s
j =ess sup

t∈T

∣∣∣∣yj(t)− gI1(t)

λ · sI1(t)

∣∣∣∣ = 1

λ
Rs

j , j ∈ I2

Rλ·s
n+1 =ess sup

t∈T

∣∣∣∣y(t)− gI1(t)

λ · sI1(t)

∣∣∣∣ = 1

λ
Rs

n+1.

Let us also define

δλ·sy :=

∣∣{j ∈ I2 ∪ {n+ 1} : Rλ·s
j ≥ Rλ·s

n+1

}∣∣
l + 1

.

The split conformal prediction set is defined as Cλ·s
n,1−α :=

{
y ∈ Y(T ) : δλ·sy > α

}
. As a conse-

quence, y ∈ Cλ·s
n,1−α ⇐⇒ Rλ·s

n+1 ≤ kλ·s, with kλ·s the ⌈(l+1)(1−α)⌉th smallest value in the set

{Rλ·s
h : h ∈ I2}. In addition, since Rλ·s

j = Rs
j/λ ∀j ∈ I2, then kλ·s = ks/λ. Then:

Rλ·s
n+1 ≤ kλ·s

⇐⇒ 1

λ
Rs

n+1 ≤ ks

λ

⇐⇒ Rs
n+1 ≤ ks,

and since y ∈ Cs
n,1−α ⇐⇒ Rs

n+1 ≤ ks, then Cλ·s
n,1−α = Cs

n,1−α.

Adjustment procedure of s̄cI1
and s̄I1

If maxj∈H2 |yj(t)−gI1(t)| = 0 for at least one value t but the condition
∫
T maxj∈H2 |yj(t)−

gI1(t)|dt ̸= 0 still holds, in order to ensure that s̄cI1
(t) > 0 ∀t ∈ T it is sufficient to add an
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arbitrarily (small) positive value to s̄cI1
(t) ∀t ∈ T and to adjust the normalization constant

accordingly. The pathological case in which
∫
T maxj∈H2 |yj(t)− gI1(t)|dt = 0 is addressed only

when yj(t) = gI1(t) ∀j ∈ H2 and almost every t ∈ T and it represents a case of no practical

interest.

Should ∃ t ∈ T such that maxj∈H1 |yj(t)− gI1(t)| = 0, the same procedure is developed.

Proof of Theorem 2.

Let us focus on s̄I1(t). Since m/n = θ with 0 < θ < 1, if n → +∞ then m → +∞. By

definition, the scalar γ is the empirical quantile of order ⌈(m+1)(1−α)⌉) of {ess supt∈T |yh(t)−

gI1(t)| : h ∈ I1}. First of all note that

lim
m→+∞

⌈(m+ 1)(1− α)⌉
m

= lim
m→+∞

m+ 1− ⌊(m+ 1)α⌋
m

and since

(m+ 1)α− 1

m
≤ ⌊(m+ 1)α⌋

m
≤ (m+ 1)α

m
∀m ∈ N

and

lim
m→+∞

(m+ 1)α− 1

m
= lim

m→+∞

(m+ 1)α

m
= α

then by the squeeze theorem (also known as the sandwich theorem) we obtain that

lim
m→+∞

⌊(m+ 1)α⌋
m

= α

and then

lim
m→+∞

⌈(m+ 1)(1− α)⌉)
m

= 1− α.

As a consequence, γ is the empirical quantile of order 1− α when m → +∞.

For convenience, let us define xi := ess supt∈T |yi(t) − gI1(t)| ∀ i ∈ I1. The random

variables {Xh : h ∈ I1} from which {xh : h ∈ I1} are drawn are continuous and they are
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asymptotically i.i.d. as Var[gI1(t)] → 0. The Glivenko-Cantelli theorem ensures that the em-

pirical distribution function of these variables converges uniformly (and almost surely pointwise)

to its distribution function, and then also the empirical quantiles converge in distribution (and

so in probability) to the corresponding theoretical quantiles, as shown for example by Van der

Vaart (2000, chap. 21). Specifically, empirical quantile γ converges to q1−α, the theoretical

quantile of order 1− α. As a consequence, when m → +∞:

H1 := {j ∈ I1 : ess sup
t∈T

|yj(t)− gI1(t)| ≤ q1−α}

with q1−α deterministic quantity. Let us focus on the numerator of s̄I1(t) since the denominator

is just a normalizing constant. ∀t ∈ T , the sequence {maxj∈H1 |yj(t)− gI1(t)|}m is eventually

bounded by q1−α and is eventually increasing since {|H1|}m is eventually increasing. By the

monotone convergence theorem, the sequence converges to its supremum.

In order to prove the convergence of the numerator of s̄cI1
to the same limit function, it is

sufficient to consider the previous computations by noting that if n → +∞ then l = n(1− θ) →

+∞ and by substituting γ with k, m with l, H1 with H2 and I1 with I2 (except for gI1 that

is naturally not substituted by gI2). Since the numerators of s̄I1 and s̄cI1
converge to the same

function, also the two normalizing constants converge to the same quantity. In view of this and

since Cs̄
n,1−α and Cs̄c

n,1−α are defined as

Cs̄
n,1−α :=

{
y ∈ Y(T ) : y(t) ∈ [gI1(t)− ks̄s̄I1(t), gI1(t) + ks̄s̄I1(t)] ∀t ∈ T

}
,

Cs̄c

n,1−α :=
{
y ∈ Y(T ) : y(t) ∈ [gI1(t)− ks̄c s̄cI1

(t), gI1(t) + ks̄c s̄cI1
(t)] ∀t ∈ T

}

then limn→+∞ Cs̄
n,1−α = limn→+∞ Cs̄c

n,1−α.

Proof of Theorem 3.

The proof consists of two steps. At the first step we show that ks̄c =
∫
T maxj∈H2 |yj(t)−

gI1(t)|dt, a fundamental result to obtain, at the second step, the proof of the theorem.
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I step

In order not to overcomplicate the proof, first of all let us consider the case in which

|H2| = ⌈(l + 1)(1 − α)⌉. It is important to notice that under the assumption concerning the

continuous joint distribution of {Rh : h ∈ I2} made in Section 2.2 such condition is always

satisfied. However, the result proved at this first step holds also when this assumption is

violated, and its proof requires just minor changes. Therefore, for the sake of completeness such

proof is addressed below.

• ∀i ∈ H2 the following relationship holds ∀t ∈ T :

∣∣∣∣∣yi(t)− gI1(t)

s̄cI1
(t)

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ·
|yi(t)− gI1(t)|

maxj∈H2 |yj(t)− gI1(t)|

≤
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt,

and then

Rs̄c

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

s̄cI1
(t)

∣∣∣∣∣ ≤
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

Specifically, ∃ i ∈ H2 such that Rs̄c

i =
∫
T maxj∈H2 |yj(t)− gI1(t)|dt since ∀t ∈ T at least

one function yi satisfies |yi(t)− gI1(t)| = maxj∈H2 |yj(t)− gI1(t)|.

• Let us define CH2 := I2 \ H2 and let t∗i be the value such that

|yi(t∗i )− gI1(t
∗
i )| = ess sup

t∈T
|yi(t)− gI1(t)| ∀i ∈ I2.

If t∗i is not unique, it is randomly chosen from the values that satisfy that condition.

∀i ∈ CH2, by definition ofH2 we obtain that |yi(t∗i )− gI1(t
∗
i )| > maxj∈H2 |yj(t∗i )−gI1(t

∗
i )|
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and so the following relationship holds:

∣∣∣∣∣yi(t∗i )− gI1(t
∗
i )

s̄cI1
(t∗i )

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ·
|yi(t∗i )− gI1(t

∗
i )|

maxj∈H2 |yj(t∗i )− gI1(t
∗
i )|

>

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

As a consequence,

Rs̄c

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

s̄cI1
(t)

∣∣∣∣∣ >
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

Since:

• |H2| = ⌈(l + 1)(1− α)⌉

• ∀i ∈ H2 R
s̄c

i ≤
∫
T maxj∈H2 |yj(t)−gI1(t)|dt and ∃ i ∈ H2 such thatRs̄c

i =
∫
T maxj∈H2 |yj(t)−

gI1(t)|dt

• ∀i ∈ CH2 Rs̄c

i >
∫
T maxj∈H2 |yj(t)− gI1(t)|dt

we conclude that ks̄c =
∫
T maxj∈H2 |yj(t) − gI1(t)|dt, with ks̄c the ⌈(l + 1)(1 − α)⌉th

smallest value in the set {Rs̄c

h : h ∈ I2}.

If |H2| > ⌈(l + 1)(1 − α)⌉, then Rs̄c

i =
∫
T maxj∈H2 |yj(t) − gI1(t)|dt is valid ∀i ∈ H2

such that ess supt∈T |yi(t)− gI1(t)| = k and in the same way we can conclude that ks̄c =∫
T maxj∈H2 |yj(t)− gI1(t)|dt.

II step

Let us define ∀i ∈ I2

Rs0

i := ess sup
t∈T

∣∣∣∣yi(t)− gI1(t)

s0(t)

∣∣∣∣ = |T | ess sup
t∈T

|yi(t)− gI1(t)| .
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Since ks0 is the ⌈(l + 1)(1− α)⌉th smallest value in the set {Rs0

h : h ∈ I2}, by definition of H2

we obtain that

ks0 = |T | max
j∈H2

(
ess sup

t∈T
|yj(t)− gI1(t)|

)
= |T | ess sup

t∈T

(
max
j∈H2

|yj(t)− gI1(t)|
)
.

Since at the first step we proved that ks̄c =
∫
T maxj∈H2 |yj(t)− gI1(t)|dt, we obtain that

ks0 − ks̄c = |T | ess sup
t∈T

(
max
j∈H2

|yj(t)− gI1(t)|
)
−
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

Since the right side of the equation is greater than or equal to 0 by the integral mean value

theorem, then Q(s0) ≥ Q(s̄cI1
).

The same theorem ensures that

|T | ess sup
t∈T

(
max
j∈H2

|yj(t)− gI1(t)|
)

=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt

⇐⇒ max
j∈H2

|yj(t)− gI1(t)| is constant almost everywhere,

i.e. if and only if s̄cI1
(t) = s̄0(t) almost everywhere.

Proof of Theorem 4.

We have already shown at the first step of the previous proof that ks̄c =
∫
T maxj∈H2 |yj(t)−

gI1(t)|dt. Since by assumption sdI1
(t∗i ) ≤ s̄cI1

(t∗i ) ∀i ∈ CH2 and |H2| = ⌈(l + 1)(1 − α)⌉, let us

define ai ≥ 0 ∀i ∈ CH2 the value such that sdI1
(t∗i ) = s̄cI1

(t∗i )− ai.
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• Case 1 : If ∃ x ∈ CH2 s.t. ax > 0, ∃ i ∈ H2 such that

∣∣∣∣∣yi(t∗x)− gI1(t
∗
x)

sdI1
(t∗x)

∣∣∣∣∣
=

∣∣∣∣∣yi(t∗x)− gI1(t
∗
x)

s̄cI1
(t∗x)− ax

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ×

|yi(t∗x)− gI1(t
∗
x)|

maxj∈H2 |yj(t∗x)− gI1(t
∗
x)| − ax ·

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

>

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt

since ∀t ∈ T (and specifically for t∗x) at least one function yi satisfies |yi(t) − gI1(t)| =

maxj∈H2 |yj(t)− gI1(t)|.

Case 2 : If ai = 0 ∀i ∈ CH2, there exist at least two values t↓, t↑ ∈ T ∗ such that

sdI1
(t↓) < s̄cI1

(t↓) and sdI1
(t↑) > s̄cI1

(t↑) since otherwise sdI1
(t) = s̄cI1

(t) ∀t ∈ T ∗. Let us

define a↓ > 0 the value such that sdI1
(t↓) = s̄cI1

(t↓)− a↓. Therefore ∃ i ∈ H2 such that

∣∣∣∣∣yi(t↓)− gI1(t↓)

sdI1
(t↓)

∣∣∣∣∣
=

∣∣∣∣∣yi(t↓)− gI1(t↓)

s̄cI1
(t↓)− a↓

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ×

|yi(t↓)− gI1(t↓)|
maxj∈H2 |yj(t↓)− gI1(t↓)| − a↓ ·

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

>

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt

since ∀t ∈ T (and specifically for t↓) at least one function yi satisfies |yi(t) − gI1(t)| =

maxj∈H2 |yj(t)− gI1(t)|.

As a consequence, in both cases (∃x ∈ CH2 s.t. ax > 0 and ai = 0 ∀i ∈ CH2) we obtain
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that ∃ i ∈ H2 such that

Rsd

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

sdI1
(t)

∣∣∣∣∣ >
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

• ∀i ∈ CH2, by definition ofH2 we obtain that |yi(t∗i )− gI1(t
∗
i )| > maxj∈H2 |yj(t∗i )−gI1(t

∗
i )|

and so the following relationship holds:

∣∣∣∣∣yi(t∗i )− gI1(t
∗
i )

sdI1
(t∗i )

∣∣∣∣∣
=

∣∣∣∣∣yi(t∗i )− gI1(t
∗
i )

s̄cI1
(t∗i )− ai

∣∣∣∣∣
=

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt ×

|yi(t∗i )− gI1(t
∗
i )|

maxj∈H2 |yj(t∗i )− gI1(t
∗
i )| − aj ·

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

>

∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

As a consequence,

Rsd

i := ess sup
t∈T

∣∣∣∣∣yi(t)− gI1(t)

sdI1
(t)

∣∣∣∣∣ >
∫
T
max
j∈H2

|yj(t)− gI1(t)|dt.

Since:

• |H2| = ⌈(l + 1)(1− α)⌉

• ∃ i ∈ H2 such that Rsd

i >
∫
T maxj∈H2 |yj(t)− gI1(t)|dt

• ∀i ∈ CH2 Rsd

i >
∫
T maxj∈H2 |yj(t)− gI1(t)|dt

we conclude that ksd >
∫
T maxj∈H2 |yj(t) − gI1(t)|dt, i.e. ksd > ks̄c , with ksd the ⌈(l +

1)(1− α)⌉th smallest value in the set {Rsd

h : h ∈ I2}.

Proof that Theorem 4 does not imply Theorem 3.
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Theorem 4 does not imply Theorem 3 since s0 may not fulfill s0(t∗i ) ≤ s̄cI1
(t∗i ) ∀i ∈ CH2.

In fact, ∀i ∈ CH2:

s0(t∗i ) ≤ s̄cI1
(t∗i ) ⇐⇒

∫
T maxj∈H2 |yj(t)− gI1(t)|dt

|T | ≤ max
j∈H2

|yj(t∗i )− gI1(t
∗
i )|

and the condition on the right side is not always satisfied because no constraints are imposed

on yj(t
∗
i ), with j ∈ H2, i ∈ CH2.

S1.4 Proofs about Smoothed Conformal Predictor

Proof of the smoothed conformal prediction set

By considering the notation of Section 2, first of all let us notice that, by definition,

Cn,1−α,1 = Cn,1−α.

Since δy,τn+1 can not be less than τn+1/(l+1) and can not be greater than (l+τn+1)/(l+1),

we consider the case in which α ∈ [τn+1/(l + 1), (l + τn+1)/(l + 1)). Let us define w the

⌈l + τn+1 − (l + 1)α⌉th smallest value in the set {Rh : h ∈ I2}, and rn (vn respectively) the

number of elements in the set {Rh : h ∈ I2} that are equal to w and that are to the right

(left respectively) of w in the sorted version of the set. Under the assumption concerning

the continuous joint distribution of {Rh : h ∈ I2} made in Section 2.2 rn = vn = 0 holds,

but generally speaking we assume rn, vn ∈ N≥0 such that rn + vn ≤ l − 1. By performing

calculations similar to those needed in the non-randomized scenario, we obtain that:

• if

τn+1 >
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rn

rn + vn + 2

then y ∈ Cn,1−α,τn+1 ⇐⇒ Rn+1 ≤ w and so

Cn,1−α,τn+1 = {y ∈ Y(T ) : y(t) ∈ [gI1(t)− w,

gI1(t) + w] ∀t ∈ T }
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• if

τn+1 ≤ (l + 1)α− ⌊(l + 1)α− τn+1⌋+ rn
rn + vn + 2

then y ∈ Cn,1−α,τn+1 ⇐⇒ Rn+1 < w and so

Cn,1−α,τn+1 = {y ∈ Y(T ) : y(t) ∈
(
gI1(t)− w,

gI1(t) + w
)

∀t ∈ T }.

Also the introduction of the modulation function presented in Section 2.4 can be easily

generalized in the smoothed conformal context. Let us define for a given y ∈ Y(T )

δsy,τn+1
:=

∣∣{j ∈ I2 : Rs
j > Rs

n+1

}∣∣+ τn+1

∣∣{j ∈ I2 ∪ {n+ 1} : Rs
j = Rs

n+1

}∣∣
l + 1

Cs
n,1−α,τn+1

:=
{
y ∈ Y(T ) : δsy,τn+1

> α
}
.

By reconsidering the previous computations and by substituting δy,τn+1 with δsy,τn+1
, w with

ws, Rh with Rs
h, rn with rsn and vn with vsn it is possible to notice that

• if

τn+1 >
(l + 1)α− ⌊(l + 1)α− τn+1⌋+ rsn

rsn + vsn + 2

then

Cs
n,1−α,τn+1

= {y ∈ Y(T ) : y(t) ∈ [gI1(t)− wssI1(t),

gI1(t) + wssI1(t)] ∀t ∈ T }

• if

τn+1 ≤ (l + 1)α− ⌊(l + 1)α− τn+1⌋+ rsn
rsn + vsn + 2

then

Cs
n,1−α,τn+1

= {y ∈ Y(T ) : y(t) ∈
(
gI1(t)− wssI1(t),

gI1(t) + wssI1(t)
)

∀t ∈ T }.
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Proof of Remark 10.

The functions s̄cI1
and s̄I1 are defined as in Section 2.4 except for k (γ respectively)

that is the ⌈l + τn+1 − (l + 1)α⌉th (⌈m + τn+1 − (m + 1)α⌉th respectively) smallest value

in the corresponding set; similarly, if ⌈m + τn+1 − (m + 1)α⌉ > m then H1 = I1 and if

⌈m+τn+1− (m+1)α⌉ ≤ 0 we arbitrarily set s̄I1 = s0. The theorems of Section 2.4 still hold by

substituting ⌈(l+1)(1−α)⌉, ⌈(m+1)(1−α)⌉ with ⌈l+ τn+1 − (l+1)α⌉, ⌈m+ τn+1 − (m+1)α⌉.

S2 Simulation Study

S2.1 Study Design

In this section, we summarize the results of a two-stage simulation study comparing our ap-

proach with four alternative methods from the literature that will be detailed in the following:

Naive, Band Depth, Modified Band Depth, Extremal depth and Bootstrap. In Section S2.2

the empirical coverage is evaluated for each approach in three different scenarios, whereas in

Section S2.3 the prediction bands obtained by the methods that guarantee a proper coverage

are compared in terms of efficiency. The simulation study has been mainly performed in the R

programming language using the conformalInference.fd package (Diquigiovanni et al. 2022).

The code to reproduce the simulations and the analyses of the test case is available upon request

to the authors. The hierarchical structure of the simulation study reflects the “nested” nature

of the two features we are considering, i.e. coverage and size: indeed, the size of a prediction set

should be investigated only after verifying that the method which outputted that specific pre-

diction set guarantees the desired coverage, which represents the primary aspect when assessing

prediction sets.

Specifically, the three scenarios allow to compare the methods in three different frameworks:



Jacopo Diquigiovanni, Matteo Fontana and Simone Vantini

when data show a constant variability over the domain (Scenario 1), when data show a different

variability over the domain (Scenario 2) and when data are characterized by outliers (Scenario

3). The data generating processes of the three scenarios are:

• Scenario 1. ∀i = 1, . . . , n

yi(t) = xi1 + xi2 cos(6π( t+ ui)) + xi3 sin(6π (t+ ui))

with T = [0, 1], (x11, x12, x13)
T , . . . , (xn1, xn2, xn3)

T i.i.d. realizations of

X ∼ N3

(
0,
[

1 0.6 0.6
0.6 1 0.6
0.6 0.6 1

])

and u1, . . . , un i.i.d. realizations of

U ∼ Unif

[
−1

6
,
1

6

]
.

• Scenario 2. ∀i = 1, . . . , n

yi(t) =

13∑
j=1

cijB
ω
j (t)

with T = [0, 1], Bω
j (t) the b-spline basis system of order 4 with interior knots ω =

(0.1, 0.2, . . . , 0.9) and (c1,1, . . . , c1,13)
T , . . . , (cn,1, . . . , cn,13)

T i.i.d. realizations of C =

(C1, . . . , C13) ∼ N13 (0,Σ) such that Var[Ci] = 0.032 ∀i ̸= 7, Var[C7] = 0.0032 and

Cov[Ci, Cj ] = 0 for i, j = 1, . . . , 13, i ̸= j.

• Scenario 3. The scenario is the previous one after contamination with outliers. Formally,

(c1,1, . . . , c1,13)
T , . . . , (cn,1, . . . , cn,13)

T are i.i.d. realizations of a vector random variable

whose probability density function is a Gaussian mixture density with weights (1− β, β),

shared mean vector 0, the covariance matrix defined as in Scenario 2 for the first group

and such that Var[C7] = 0.32 instead of Var[C7] = 0.0032 for the second group.
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Figure S2.1: Graphical representation of the scenarios. The sample size is n = 18.

A graphical representation of a replication for each scenario with n = 18 is provided in Fig-

ure S2.1. The Conformal approach presented in Section 2 is evaluated in the non-smoothed

framework and considering three different modulation functions: s0, the normalised pointwise

standard deviation function sσI1
as natural representative of functions that capture data vari-

ability, and s̄I1 . Since the focus of the work is not on the construction of sophisticated point

predictors gI1 but rather on the construction of valid prediction bands around any point pre-

dictor gI1 , we hereby simply set gI1(t) = ȳI1(t).

The performance of our approach is compared to four alternative methods. These are:

Naive method, which outputs prediction bands defined as {y ∈ Y(T ) : y(t) ∈ [qα
2
(t) , q1−α

2
(t)]

∀t ∈ T } with qα (t) empirical quantile of order α for (y1(t), . . . , yn(t)). Such approach represents

a very naive solution to the prediction task we are considering and we expect it to suffer

greatly from undercoverage; BD and MBD methods, which output the sample (1 − α) central

region induced by the band depth (BD) and the modified band depth (MBD) respectively (Sun

& Genton 2011); Extremal which output the sample (1 − α) central region induced by the
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extremal depth (Narisetty & Nair 2016); Boot. method, which outputs the band based on

2500 bootstrap samples, as proposed by Degras (2011). We consider α = 0.1, β = 0.06 and

three different sample sizes: n = 18, n = 198, n = 1998. In order not to overcomplicate the

simulation study, the ratio ρ = l/n is kept fixed and equal to 0.5 as commonly suggested in

the Conformal literature. A deeper investigation about the possible effect of the ratio ρ = l/n

on efficiency - even though possibly interesting - is out of the scope of this work. The atypical

values of n in the simulations have been simply chosen to have a miscoverage exactly equal to

α (indeed in these cases ⌊(l+1)α⌋/(l+1) = α) and consequently making the simulation results

easier to read. Similar results would have been attained with rounded values of n (e.g. n = 20,

n = 200, n = 2000) by evaluating the empirical miscoverage considering the theoretical one:

⌊(l+ 1)α⌋/(l+ 1) (see Theorem 1). The simulations are achieved by using the R Programming

Language (R Core Team 2018) and the computation of the band depth and the modified band

depth by roahd package (Tarabelloni et al. 2018). Finally, every combination of scenario and

sample size is evaluated considering N = 500 replications.

S2.2 Coverage

In this section we focus on the sample mean and the standard deviation of the empirical condi-

tional coverage provided by the prediction bands generated by each method for each combination

of sample size and scenario (see Table S2.1). Specifically, the empirical conditional coverage of a

given prediction band (i.e. the empirical coverage obtained conditioning on the prediction band

obtained by the observed data) is computed as the fraction of times that 10,000 new functions -

independent from and identically distributed to the original sample - belong to such prediction

band. The purpose of this scheme is twofold: first of all, by averaging the N = 500 empirical

conditional coverages obtained for each combination of scenario and sample size it is possible to
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Conformal Method Alternative Methods

s0 sσI1
s̄I1

Naive MBD BD Ext. Depth Boot.

n = 18 Scenario 1 0.902 0.900 0.900 0.409 0.504 0.547 0.498 0.875

(0.088) (0.085) (0.087) (0.092) (0.109) (0.111) (0.107) (0.064)

Scenario 2 0.901 0.910 0.909 0.048 0.123 0.145 0.119 0.922

(0.089) (0.081) (0.083) (0.021) (0.044) (0.051) (0.042) (0.042)

Scenario 3 0.904 0.904 0.907 0.049 0.124 0.148 0.122 0.932

(0.084) (0.089) (0.085) (0.023) (0.049) (0.055) (0.048) (0.061)

n = 198 Scenario 1 0.901 0.902 0.901 0.625 0.861 0.900 0.826 0.865

(0.029) (0.030) (0.031) (0.031) (0.028) (0.028) (0.028) (0.019)

Scenario 2 0.901 0.899 0.900 0.189 0.733 0.788 0.678 0.897

(0.029) (0.031) (0.029) (0.019) (0.036) (0.032) (0.033) (0.015)

Scenario 3 0.897 0.900 0.899 0.197 0.742 0.798 0.688 0.892

(0.031) (0.030) (0.031) (0.020) (0.034) (0.030) (0.033) (0.020)

n = 1998 Scenario 1 0.900 0.899 0.900 0.666 0.942 0.918 0.885 0.866

(0.010) (0.010) (0.010) (0.011) (0.006) (0.008) (0.008) (0.008)

Scenario 2 0.900 0.900 0.899 0.233 0.958 0.971 0.858 0.899

(0.009) (0.010) (0.010) (0.007) (0.006) (0.005) (0.008) (0.008)

Scenario 3 0.900 0.899 0.900 0.240 0.959 0.973 0.859 0.884

(0.010) (0.010) (0.010) (0.008) (0.006) (0.005) (0.008) (0.007)

Table S2.1: For each combination of sample size and scenario, the first line shows the

sample mean of the empirical conditional coverage, the second line the sample standard

deviation in brackets.

obtain the empirical coverage, which is an estimate of the (unconditional) coverage. Secondly,

this scheme allows to evaluate the variability of the conditional coverage when the observed

sample varies, a particularly useful indication in real applications.
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The simulation study fully confirms the theoretical property concerning the validity of split

conformal prediction sets with 53 out of the 54 99%-confidence intervals associated to conformal

bands including the nominal value 1−α. The evidence provided is particularly appealing since

the desired coverage is guaranteed also when a very small sample size (n = 18) is considered, a

framework in which such property is traditionally hard to obtain. Vice versa, in almost all cases

the alternative methods do not ensure the desired coverage with some estimates dramatically

far from 1 − α, especially for small sample sizes (i.e., n = 18). In view of this, in Section S2.3

only the efficiency of the Conformal methods is evaluated and compared.

S2.3 Efficiency

In this section the sample mean and the standard deviation of the size defined as in (2.7) of

the prediction bands computed in the previous section are evaluated for each combination of

modulation function, sample size and scenario (see Table S2.2). First of all, it is noticeable that

when n = 18 the absence of modulation (i.e. s0) seems to provide smaller prediction bands

than those induced by sσI1
and s̄I1 , conceivably because the extremely low number of functions

belonging to the training set (m = 9) leads to an unstable and possibly misleading modulation

function supporting the statistical intuition that for small sample sizes simpler modulation

functions should be preferred.

More deeply, focusing now on each scenario separately and considering the remaining

sample sizes, Scenario 1 represents a framework in which a constant width prediction band is the

ideal candidate since the horizontal shift due to the random variable U induces constant variance

along the domain. As a consequence, the pointwise evaluations Y (t) are equally distributed

∀t ∈ T and so one is justified in expecting sσI1
and s̄I1 to be of no practical use. The results

confirm this conjecture, but the differences between the three modulation functions seems to



S2. SIMULATION STUDY

s0 sσI1
s̄I1

Mean st.dev Mean st.dev Mean st.dev

n = 18 Scenario 1 8.113 (2.044) 10.088 (3.618) 11.638 (4.309)

Scenario 2 0.142 (0.025) 0.165 (0.041) 0.185 (0.049)

Scenario 3 0.246 (0.192) 0.448 (0.550) 0.505 (0.633)

n = 198 Scenario 1 7.175 (0.560) 7.295 (0.608) 7.556 (0.647)

Scenario 2 0.127 (0.006) 0.109 (0.005) 0.120 (0.006)

Scenario 3 0.139 (0.013) 0.139 (0.013) 0.137 (0.020)

n = 1998 Scenario 1 7.059 (0.179) 7.065 (0.176) 7.128 (0.184)

Scenario 2 0.125 (0.002) 0.106 (0.001) 0.117 (0.002)

Scenario 3 0.136 (0.003) 0.137 (0.004) 0.131 (0.003)

Table S2.2: Size of the prediction bands.

decrease as the sample size grows (see, for example, the difference between s0 and s̄I1 when n

increases from 198 to 1998).

Scenario 2 represents a completely different setting, in which a modulation process is

appropriate since the curves highlight a reduction of variability in the central part of the domain.

As expected, s0 induces larger predictions bands (on average) than those obtained by sσI1
and

s̄I1 and it forces the band to be unnecessary large around t = 0.5. On the other hand, the

other two modulation functions (especially sσI1
) provide a better performance since they allow

the band width to be adapted according to the behavior of data over T .

Scenario 3 is obtained by contaminating Scenario 2 with outliers. Table S2.2 suggests that

s̄I1 outperforms both s0 and - unlike Scenario 2 - also sσI1
. In order to clarify this evidence, let
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Figure S2.2: The prediction bands obtained considering a combination of modulation

functions (s0 at the top, sσI1
in the middle, s̄I1

at the bottom) and sample (the original

one on the left, the contaminated one on the right). In all cases, the dashed line represents

gI1
.

us consider a sample y1, . . . , y198 generated as in Scenario 2 that, after being created, is exposed

to a contamination process in which each function yi, i = 1, . . . , 198, becomes an outlier as

described in Scenario 3 with probability β = 0.06. Figure S2.2 shows examples of prediction

bands induced by the three modulation functions (s0 at the top, sσI1
in the middle, s̄I1 at the

bottom) obtained by considering the original sample (on the left) and the contaminated one

(on the right). Moving from Scenario 2 to Scenario 3 and focusing on sσI1
, it is possible to
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notice that the increased variability in the central part of the domain due to the contamination

process involves an increase in the band width around t = 0.5. This behavior, although not

surprising, is counterproductive since the purpose of the method is to create prediction bands

with coverage at the level 1− α = 0.9 and in this specific case ∼ 94% of the functions tends to

be highly concentrated around gI1 in the central part of the domain, and not overdispersed. By

contrast, s̄I1 by construction removes the most extreme (in terms of measure (2.3)) functions

and properly modulates data on the basis of the non-extreme functions keeping the band shape

unchanged. From a methodological point of view, this is due to the dependency of s̄I1 on α

which allows only a portion of the training set - chosen according to the specific level 1 − α -

to be taken into account and the trend of the “misleading” functions to be completely ignored.

Overall, the evidence provided by this example - together with the results provided by Table

S2.2 - suggests that s0 is not affected by the contamination process (pro) but does not modulate

(con), sσI1
modulates (pro) but overreacts to the contamination process (con), whereas s̄I1 is

able to simultaneously modulate (pro) and manage the contamination process (pro).

In short, the three scenarios seem to highlight that s0 is an outstanding candidate when

the sample size is very small, whereas a modulation process is useful in the very common case in

which the variability over T varies and the sample size is either moderate or large. Specifically,

s̄I1 provides encouraging results in some complex scenarios as it focuses on the specific behavior

of the central (according to the level 1− α) portion of data.

As an additional step, and to further evaluate the robustness of the proposed prediction

method with respect to the use of different point forecasting methods, we inspect the sample

mean and the standard deviation of the size, defined as in (2.7), of the prediction bands com-

puted using different point predictors. Namely, we propose a table similar to S2.2, with the same

declination in different sample sizes and different scenarios, but we explicitly explore different
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point prediction methods (S2.3. The explored methods are a baseline case, represented by the

sample mean (stylised ”Mean”, already used as a candidate in all the previous simulations.

The baseline is accompanied by two less standard cases, represented by a functional median

case (stylised ”Median”), where the point predictor is represented by the deepest curve of the

sample, according to MBD. The third case is instead represented by a trimmed mean, computed

excluding the 10% of the shallowest curves in the sample, again according to MBD. In all the

simulations the modulation function selected is s̄I1 .

In our specific simulation scenario, the use of more complex methods does not seem to

be justified by a statistically significant increase in prediction performance, nevertheless deeper

explorations of this important and relatively overlooked topic are in order.

Mean Median Trimmed Mean 90%

Mean st.dev Mean st.dev Mean st.dev

n = 18 Scenario 1 11.749 (4.458) 11.849 (4.269) 11.749 (4.458)

Scenario 2 0.183 (0.046) 0.195 (0.050) 0.183 (0.046)

Scenario 3 0.491 (0.605) 0.506 (0.604) 0.491 (0.605)

n = 198 Scenario 1 7.509 (0.648) 7.582 (0.663) 7.522 (0.660)

Scenario 2 0.120 (0.006) 0.130 (0.007) 0.120 (0.006)

Scenario 3 0.138 (0.023) 0.149 (0.023) 0.138 (0.026)

n = 1998 Scenario 1 7.134 (0.186) 7.144 (0.188) 7.133 (0.188)

Scenario 2 0.117 (0.002) 0.128 (0.006) 0.117 (0.002)

Scenario 3 0.131 (0.003) 0.143 (0.007) 0.131 (0.003)

Table S2.3: Size of the prediction bands for different point predictors, modulated using

s̄I1
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