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Abstract

In this paper, we generalize the metric-based permutation test for the equality
of covariance operators proposed by Pigoli et al. (2014) to the case of multiple sam-
ples of functional data. To this end, the non-parametric combination methodology
of Pesarin and Salmaso (2010) is used to combine all the pairwise comparisons be-
tween samples into a global test. Different combining functions and permutation
strategies are reviewed and analyzed in detail. The resulting test allows to make in-
ference on the equality of the covariance operators of multiple groups and, if there is
evidence to reject the null hypothesis, to identify the pairs of groups having different
covariances. It is shown that, for some combining functions, step-down adjusting
procedures are available to control for the multiple testing problem in this setting.
The empirical power of this new test is then explored via simulations and compared
with those of existing alternative approaches in different scenarios. Finally, the pro-
posed methodology is applied to data from wheel running activity experiments, that
used selective breeding to study the evolution of locomotor behavior in mice.

Keywords: Non-Euclidean metrics, non-parametric combination, post-hoc analysis,
quantitative genetics.

1 Introduction

In recent years, an increasing number of applications has involved data that are best
described as being functional. Examples can be found in medicine (West et al., 2007),
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neuroimaging (Jiang et al., 2009, Viviani et al., 2005), biology (Wu and Müller, 2010,
Illian et al., 2009), finance (Laukaitis, 2008) and quality control (Colosimo and Pacella,
2010, Torres et al., 2011), to mention just a few fields.

These data asked for the development of new methodologies that take into account
the properties of the functional data (see Ramsay and Silverman, 2005, Ferraty and
Vieu, 2006 and Horváth and Kokoszka, 2012). Most recently, much attention has been
devoted to inferential procedures for covariance operators of functional data. Panaretos
et al. (2010) examined the testing of equality of covariance structures from two groups of
functional curves generated from Gaussian processes and Fremdt et al. (2013) extended
their approach to the case of non Gaussian data. Both methods make use of test statistics
based on the Karhunen–Loéve expansions of the covariance operators, thus exploiting
the embedding of the space of covariance operators in the space of Hilbert–Schmidt
operators, which is the infinite dimensional equivalent of embedding covariance matrices
in the space of symmetric matrices. However, Pigoli et al. (2014) show that better results
can be achieved by using metrics that take into account the non Euclidean geometry of
the space of covariance operators. The drawback is that explicit analytic distributions
are not available for the test statistics based on these metrics and therefore the authors
proposed to use a permutation approach to carry out the test.

The aim of this work is to extend this idea to the case of multiple samples of functional
data. The testing of equality of several covariance operators has been first considered by
Boente et al. (2014), that, in order to improve asymptotic approximations, proposed to
apply a bootstrap procedure to calibrate the critical values of the test statistic obtained
from the Hilbert–Schmidt norm of the differences between sample covariance operators.
Paparoditis and Sapatinas (2016) investigated then the properties of an empirical boot-
strap methodology, applicable to more than two populations, but its consistency has
been proven only for test statistics based on the Hilbert–Schmidt norms and on the
Karhunen–Loéve expansions of the covariance operators. More recently, Kashlak et al.
(2016) applied concentration inequalities to the analysis of covariance operators. These
allow to construct non-asymptotic confidence sets that can be used to make multiple-
sample tests for the equality of covariances.

Since in the two-sample case the choice of the distance to define the test statistic has
been shown to impact the inferential performance in many scenarios (Pigoli et al., 2014),
we propose here a more general approach that can be applied to test statistics defined
through any valid distance between covariance operators. Moreover, an appropriate
choice of the permutation strategy provides also pairwise tests between groups with a
guaranteed control of the family-wise error rate.

Let us consider q samples of random curves. We assume that curves in sample i:

xi1, . . . , xini ∈ L2(Ω), i = 1, . . . , q

are realizations of a random process with mean µi and covariance operator Σi. We would
like to test the hypothesis

H0 : {Σ1 = Σ2 = · · · = Σq} against H1 : ∃i 6= j s.t. Σi 6= Σj .
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Moreover, if the null hypothesis H0 is rejected, we would like to identify which pairs
of groups show a difference between covariance operators. To do this, we will rely
on the non-parametric combination methodology introduced by Pesarin and Salmaso
(2010) for multivariate permutation, which enables to combine many different partial
tests in an overall global test. In our case, the idea is to combine all the pairwise
comparisons between the q samples in order to obtain the p-value of the global test.
Using this method, the post-hoc comparisons are straightforward: the global p-value
and the partial p-values of the pairwise group comparisons are computed simultaneously.
However, some care is required when jointly analyzing the latter, because a multiple
testing problem arises. Thus, we suggest to use a step-down approach to control the
family-wise error rate. The empirical power of the proposed test is evaluated through
simulation studies and compared with those of previously proposed testing procedures.
Finally, we analyze the covariance operators of wheel-running mice activity curves. These
data have been collected during an evolutionary biology experiment to investigate the
evolutionary behaviour of these activity trait (see Swallow et al., 1998; Koteja et al.,
1999; Kane et al., 2008).

2 Testing equality of covariance operators

In this section, we describe the proposed strategy to test the equality of covariance oper-
ators across multiple groups, which allows for the use of the most appropriate metric for
covariance operators in the problem at hand and, at the same time, for the investigation
of pairwise difference between groups. First, we discuss a few possible choices of distance
between covariance operators.

2.1 Metrics for covariance operators

Let x be a random function which takes values in L2(Ω), Ω ⊆ R, such that E(||x||2L2(Ω)) <

+∞. The covariance operator Σx is defined, for g ∈ L2(Ω), as Σxg(t) =
∫

Ω cx(s, t)g(s)ds,
where cx(s, t) = cov(x(s), x(t)) = E [(x(s)− E [x(s)]) (x(t)− E [x(t)])] . Then, Σx is
a trace class, self-adjoint, compact operator on L2(Ω) with non negative eigenvalues
(see, e.g., Bosq, 2012, Section 1.5). Indeed, any compact operator T has a canonical
decomposition that implies the existence of two orthonormal bases {uk}, {vk} for L2(Ω)
such that Tf =

∑
k σk〈f, vk〉uk, or, equivalently, Tvk = σkuk, where 〈v, v〉 indicates

the inner product in L2(Ω) and the non negative real numbers {σk}k∈N, are called the
singular values of T . If the operator is self-adjoint, there exists an orthonormal basis
{vk} such that Tf =

∑
k λk〈f, vk〉vk, or, equivalently, Tvk = λkvk and the sequence

{λk} ∈ R is called the sequence of eigenvalues for T . A compact operator T is said to be
trace class if the trace tr(T ) =

∑
k〈Tek, ek〉 < +∞ for every orthonormal basis {ek}. A

compact operator T is said instead to be Hilbert–Schmidt if its Hilbert–Schmidt norm is
bounded, i.e., ||T ||2HS = tr(T ′T ) < +∞, where T ′ denotes the adjoint operator of T . The
Hilbert-Schmidt norm is a generalization of the Frobenius norm for finite-dimensional
matrices.
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It is then possible to embed the space of covariance operators in the space of Hilbert–
Schmidt operators and use the Hilbert–Schmidt distance ||Σ1 − Σ2||HS to measure the
distance between two covariance operators Σ1 and Σ2. However, this is an extrinsic
metric based on the above embedding and thus ignores the geometry of the space of
covariance operators, such as the trace class property and the non negativity constraints
on the eigenvalues. Pigoli et al. (2014) show that when the covariance operator is the
object of interest for the statistical analysis, taking into account the property of the
space leads to tests with higher empirical power. This motivated the introduction of
new metrics such as the square root distance and the Procrustes distance.

Let Σ be a self-adjoint trace class operator, there exists a Hilbert-Schmidt self adjoint
operator

(Σ)1/2f =
∑
k

λ
1/2
k 〈f, vk〉vk,

where λk are eigenvalues and vk eigenfunctions of Σ. The square root distance between
two covariance operators Σ1 and Σ2 is therefore defined as

dR(Σ1,Σ2) = ||Σ1/2
1 − Σ

1/2
2 ||HS.

The square root distance is based on the mapping of the two operators Σ1 and Σ2 from
the space of covariance operators to the space of Hilbert–Schmidt operators, through the
square root map. This is a particular choice among a family of such maps that transform
the covariance operator Σ to a Hilbert–Schmidt operator L so that Σ = LL′. It is easy to
see that L is defined up to a unitary operator R, since (LR)(LR)′ = LRR′L′ = LL′ = Σ.
Therefore, it is natural to follow a Procrustes approach to minimize the distance with
respect to this arbitrary unitary operator. Pigoli et al. (2014) define the square of the
Procrustes reflection size-and-shape distance between two covariance operators Σ1 and
Σ2 as

dP (Σ1,Σ2)2 = inf
R∈O(L2(Ω))

||L1 − L2R||2HS = inf
R∈O(L2(Ω))

trace((L1 − L2R)′(L1 − L2R)),

where Li are such that Σi = LiL
′
i, for i = 1, 2, and O(L2(Ω)) is the space of unitary

operators on L2(Ω).

2.2 Non-parametric combination

In this section we describe how it is possible to test the global hypothesis that all the co-
variance operators are equal across the groups by combining pairwise group comparisons
which are based on the two-sample permutation test described in Pigoli et al. (2014).
This approach will allow us to use any metric in the definition of the test statistics
without making any assumption on the data generating process.

Let us assume we have q independent groups of functional data

xi1, . . . , xini ∈ L2(Ω), i = 1, . . . , q.
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and they are independent and identically distributed samples from a random process
with distribution Pi, mean µi and covariance operator Σi. In the following, we denote
with xi the vector of observations (xi1, . . . , xini) from group i. We would like to test if
the covariance operators are all equal. The global null hypothesis can be viewed as an
intersection of partial null hypotheses and the global alternative hypothesis as the union
of the corresponding alternative hypotheses, i.e.

H0 :
⋂
i 6=j

H ij
0 against H1 :

⋃
i 6=j

H ij
1 , where H ij

0 : {Σi = Σj} and H ij
1 : {Σi 6= Σj}.

The idea is to combine the k = q(q−1)/2 two-sample tests for each pair of groups in
a global test, using the non-parametric combination algorithm of Pesarin and Salmaso
(2010).

Let Tij = d(Si, Sj) be the test statistic of our choice, associated to the partial test

H ij
0 of groups i and j respectively, where Si, Sj are sample covariance operators of

the corresponding groups and d(·, ·) is some distance between covariance operators. In
particular, in this work we consider the square root, Procrustes and Hilbert–Schmidt
distances defined in Section 2.1. Let us define by T = (T1,2, T1,3, . . . , Tq−1,q), the vector
of all partial test statistcs Tij , with 1 ≤ i < j ≤ q.

The partial tests H ij
0 : d(Σi,Σj) = 0 against H ij

1 : d(Σi,Σj) 6= 0 marginally satisfy
the assumptions required for the test (i.e. they are marginally unbiased, consistent and
significant for large values) for any of the distances presented in Pigoli et al. (2014).
Therefore, the considered algorithms can be applied to any functional dataset using the
vector of test statistics T.

The partial test statistics in T are combined by a function Ψ that must satisfy the
properties indicated by Pesarin and Salmaso (2010):

1. Ψ is non-decreasing in each argument,

2. If one or more arguments are zero, Ψ attains its supremum value Ψ̄, possibly not
finite.

3. For all α > 0, the critical value TαΨ of Ψ is assumed to be finite and strictly smaller
than Ψ̄.

Also, the curves must be centred around the sample mean of each group, because
exchangeability of the observations is required in order to apply permutations.

We indicate by x
(0)
ij the observations centred around the sample mean of the group

mi, by x
(0)
i the vector of centred observations of group i and by S

(0)
i the associated

sample covariance operator. Similarly, we indicate by u(b) the b-th permutation of the
data labels and so the superscript (b) indicates the centred dataset, permuted according
to u(b).

We obtain the following algorithm:

Algorithm 2.1 (Multiple-sample permutation test for the equality of covariance oper-
ators).
Let xij , i = 1, . . . , q, j = 1, . . . , ni be the considered dataset.
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1. Let x
(0)
ij = xij − mi, where mi is the sample mean of xi, for all i = 1, . . . , q,

j = 1, . . . , ni.

2. Let T(0) be the k-dimensional vector containing the pairwise distances between the

sample covariance operators of the centred groups x
(0)
i and x

(0)
j , d(S

(0)
i , S

(0)
j ), for

all 1 ≤ i < j ≤ q.

3. For b = 1, . . . , B, consider a random permutation u(b) of the data labels and com-
pute the k-dimensional vector T(b) containing the distances between the sample

covariance operators of the groups of the permuted data set, d(S
(b)
i , S

(b)
j ), for all

1 ≤ i < j ≤ q. {T(b)}Bb=1 is a random sampling from the permutational distribution
of the random vector T.

4. Let

λ̂ij(d) =

∑
b 1
[
d(S

(b)
i , S

(b)
j ) ≥ d

]
B

be consistent estimates of λij(d) = P
(
d(S

(b)
i , S

(b)
j ) ≥ d

)
, d ∈ R, d ≥ 0.

5. Compute the estimated partial p-values of the test as λ̂ij = λ̂ij(d(S
(0)
i , S

(0)
j )).

6. Combine the λ̂ij through the combining function Ψ to obtain the observed global

test statistic T
(0)
Ψ = Ψ(λ̂1,2, λ̂1,3, . . . , λ̂q,q−1).

7. For b = 1, . . . , B, compute the b-th combined test statistic as

T
(b)
Ψ = Ψ(λ̂

(b)
1,2, λ̂

(b)
1,3, . . . , λ̂

(b)
q−1,q), where λ̂

(b)
ij = λ̂ij

(
d(S

(b)
i , S

(b)
j )
)
.

8. Compute the estimate of the p-value of the combined test

λ̂Ψ =

∑
b 1[T

(b)
Ψ ≥ T (0)

Ψ ]

B
.

9. If λ̂Ψ ≤ α, reject H0.

Proposition 1. If we make the additional assumptions that, when n goes to infinity,
then so also do the sample sizes of all groups and that the number B of Monte Carlo
iterations goes to infinity while k and α remain fixed, then it is possible to prove that
the test we obtain is strongly consistent and unbiased for the overall null hypothesis H0

against the alternative H1.

This is a direct consequence of Theorems 2, 4.3.1 and 3, 4.3.2 of Pesarin and Salmaso
(2010).
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2.3 Synchronized permutation tests

When data belong to multiple groups, a few different strategies can be used to generate
the permuted samples. In particular, Step 3. of Algorithm 2.1 requires to generate a
certain number of permutations of the original dataset. In Solari et al. (2009), three
different ways of permuting data are proposed. The simplest idea is to perform permu-
tations involving the whole data set, so-called pooled permutations. This can be done
because, under H0, the observations of all groups are exchangeable. However, this strat-
egy does not allow to test also the partial hypotheses, since each comparison involves not
only the observations belonging to the pair of considered groups, but also those of the
other groups. Therefore, the resulting global p-value is correct, but the partial p-values
would not be accurate when doing post-hoc comparisons. The second proposal is to ap-
ply paired permutations, that is while comparing the i-th and j-th groups, the inference
is made on each paired vector (xi,xj) independently. The result would be opposite than
the one obtained with pooled permutations: the partial tests are exact, just like in the
two-sample case, but the global test is not reliable since this method does not take into
account the dependencies between the marginal tests.

Therefore, we want paired permutations to be done not independently but jointly. At
the same time, we would like to keep the partial comparisons separate, so as to be able
to do post-hoc comparison with no additional computational effort. Then, if the design
is balanced, i.e. n1 = · · · = nq = n̄, a further possibility explored by Solari et al. (2009)
is to apply synchronized permutations, exchanging the same number ν of units between
each pair of blocks. Applying synchronized permutations allows both maintaining the
dependencies among partial tests and involving the observations of each comparison at
the same time. First of all, we build the pseudo-data matrix

[
x1 x1 . . . xq−1

x2 x3 . . . xq

]
=



x1,1 x1,1 . . . xq−1,1

x1,2 x1,2 . . . xq−1,2
...

...
...

x1,n̄ x1,n̄ . . . xq−1,n̄

x2,1 x3,1 . . . xq,1
x2,2 x3,2 . . . xq,2

...
...

...
x2,n̄ x3,n̄ . . . xq,n̄


where each column is formed by the samples from two different groups and we have as
many columns as needed to account for all the groups pairings. Then, we can apply
constrained synchronized permutations, that is to exchange units in the same original
position within each block. This can be done by permuting the rows of the pseudo-data
matrix. Since there are

NCSP =

(
2n̄

n̄

)
possible ways to exchange units in the first pair of blocks, NCSP is the cardinality of
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the constrained synchronized permutations. Since the test statistic is symmetric, the
number of possible distinct values of the vector of test statistics T is NCSP/2.

2.4 Post-hoc analysis

After performing the global test, if the null hypothesis H0 is rejected in favour of the
alternative H1, it is often of interest to find out which of the data samples led to this
conclusion. One of the advantages of the non-parametric combination methodology is
that partial p-values are computed at the same time of the global one. Therefore, the
post-hoc comparisons can be done with a small computational effort. We investigate here
the methods that allow to control the family-wise error rate, in order to simultaneously
assess which of the partial null hypotheses H ij

0 are rejected.
First, we recall the resampling step-down method proposed by Westfall and Young

(1993). The idea is that, rather than adjusting all p-values according to the minimum
p-value distribution, one should only adjust the minimum p-value using this distribution
and then adjust the remaining p-values according to smaller and smaller sets of p-values.
The effect of using restricted sets of p-values is to make the adjusted p-values smaller,
thereby improving the power of the method.

Let the ordered partial p-values have indexes r1, . . . , rk so that λ̂(1) = λ̂r1 , λ̂(2) =

λ̂r2 , . . . , λ̂(k) = λ̂rk . The step-down adjusted p-values are defined sequentially as follows:

λ̃(1) = P
(

min
j∈{r1,...,rk}

λ̂j ≤ λ̂(1)|H0

)

λ̃(i) = max

{
λ̃(i−1),P

(
min

j∈{ri,...,rk}
λ̂j ≤ λ̂(i)|H0

)}
, i = 2, . . . , k.

The use of max operator insures that the order of the adjusted p-values is the same
as that of the original p-values. Westfall and Young (1993) proved that this procedure
controls the family-wise error rate in the strong sense.

Pesarin and Salmaso (2010) showed that the resampling method proposed by Westfall
and Young (1993) is equivalent to iteratively use the non-parametric combination with
the Tippett combining function ΨTippett (Birnbaum, 1954):

Algorithm 2.2 (Step-down method for the Tippett combining function).
Let λ(1), . . . , λ(k) be the increasing ordered p-values corresponding to the set of partial

hypotheses.

1. λ̃(1) = ΨTippett(λ(1), . . . , λ(k)) = min(λ(1), . . . , λ(k)),

– If λ̃(1) ≤ α, reject the corresponding hypothesis H
(1)
0 and continue;

– Otherwise retain the hypotheses H
(1)
0 , . . . ,H

(k)
0 and stop.

2. For i = 2, . . . , k, λ̃(i) = ΨTippett(λ(i), . . . , λ(k))

– If λ̃(i) ≤ α, reject also H
(i)
0 and continue;
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– Otherwise retain the hypotheses H
(i)
0 , . . . ,H

(k)
0 and stop.

Furthermore, Lehmann and Romano (2006) presented a similar step-down method,
that uses the test statistics Tij instead of the p-values λij . This method is equivalent to
the one based on the Tippett combining function but allows to avoid the computations
of the permutational distributions of the partial p-values. For example, let us suppose
that the individual tests H ij

0 are based on test statistics Tij with large values indicating

evidence against the partial null hypotheses. Let K = {H ij
0 , 1 ≤ i < j ≤ q} be the set

of all the partial test hypotheses and K̄ a subset of K, K̄ ⊆ K. First of all, we have
to define the critical value of the combined test of all the hypotheses contained in K̄ at
level α ∈ [0, 1] so that the family-wise error rate is controlled in the strong sense. Many
definitions are possible, as long as the properties indicated in Lehmann and Romano
(2006), Theorem 9.1.3 are verified. We choose to use the definition given in Solari et al.
(2009), where the critical value of K̄ at level α is defined as the m-th smallest value
among the permutation distributions of TK̄ = max

Hij
0 ∈K̄

Tij

cK̄(α) =

{
max
Hij

0 ∈K̄
T

(b)
ij , b = 1, . . . , B

}
(m)

,

where m = B − bBαc. For this reason we will refer to this as the step-down method for
the maxT combining function. The algortithm is defined as follows:

Algorithm 2.3 (Step-down method for the maxT combining function).
Let T(1) = Tr1 ≥ . . . ≥ T(k) = Trk denote the observed ordered test statistics where

r1, . . . , rk are such that Tr1 ≥ Tr2 ≥ . . . ≥ Trk and let H
(1)
0 , H

(2)
0 , . . . ,H

(k)
0 be the corre-

sponding hypotheses.

1. Let K1 = K,

– If Tr1 ≥ cK1(α) reject H
(1)
0 and continue;

– Otherwise retain the hypotheses H
(1)
0 , . . . ,H

(k)
0 and stop.

2. For i = 2, . . . , k, let Ki be the set of hypotheses not previously rejected, i.e. Ki =

{H(i)
0 , . . . ,H

(k)
0 },

– If Tri ≥ cKi(α) reject H
(i)
0 and continue;

– Otherwise retain the hypotheses H
(i)
0 , . . . ,H

(k)
0 and stop.

Lastly, when using another combining function, it is possible to use the closed testing
procedure of Marcus et al. (1976). This method is based on the idea that one may reject
any hypothesis H ij

0 , while controlling the family-wise error rate, when the test of H ij
0

itself is significant and the test of every intersection of partial hypotheses that includes
H ij

0 is significant. Hence, λ̃ij is the maximum of all the p-values of the partial hypotheses

containing H ij
0 . This method has two major drawbacks: it requires a greater number of

computations and it is very conservative. However, it is a useful tool when the use of
the Tippett or maxT combining functions is not suitable.
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(b) Female (Σ2).

Figure 1: Covariance operators of the subjects in the Berkeley growth study dataset.

3 Simulation studies

3.1 Synthetic data sets

We generate synthetic data sets as follows. All the curves are generated on an equispaced
grid of p = 31 points on Ω = [0, 1] and the sample size of each group is n̄ = 20.
Unless otherwise stated, curves are simulated from a multivariate Gaussian process. We
consider q different groups (with q varying across simulation studies) and for all q groups
the mean function is equal to sin(x), x ∈ [0, 1]. The covariance operator of each group
varies according to the test case. Let Σ1 and Σ2 be the sample covariance operators of
the male and female subjects in the Berkeley growth study dataset described in Ramsay
and Silverman (2005), rescaled to [0, 1].

We consider two forms for the expression of the covariance operators of some of the
groups under the alternative:

First test case Some of the groups have covariance operator Σ(γ) = [(Σ1)1/2+γ{(Σ2)1/2R̃−
(Σ1)1/2}][(Σ1)1/2 +γ{(Σ2)1/2R̃−(Σ1)1/2}]′ where R̃ is the operator minimizing the
Procrustes distance between Σ1 and Σ2 (Pigoli et al., 2014) and γ ∈ [0, 5] is a pa-
rameter which controls how far this covariance operator is from Σ1.

Second test case Some of the groups have covariance operator Σ(γ) = (1 + γ)Σ1,
γ ∈ [0, 5].
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The two test cases represent two different ways in which the null hypothesis can be
violated. The second case pertains to a difference in the total variation between groups,
while the first test case presents also a difference in shape between covariance operators.

Each permutation test is performed with B = 1000 iterations of the Monte Carlo
Algorithm 2.1 and is repeated for 1000 replicates of the simulated dataset.

In the following, we use this simulated data to evaluate the empirical size and the
empirical power of the proposed test when using different distances between covariance
operators.

All the functions needed to apply the permutation tests to these simulated data have
been made available in the R package “fdcov” (Cabassi and Kashlak, 2016).

3.2 Empirical size and power of the test

We consider first a simulation with q = 3 groups, where the first group has covariance
operator Σ1 and the others two covariance operators Σ(γ). Figures 2 and 3 show the
empirical power of the global and partial tests done using the synchronized permutations,
the maxT combining function and the Procrustes, square root and Hilbert–Schmidt
distance, for the first and second test cases respectively. It is evident that the test has
greater empirical power when using Procrustes and square root distances, with the latter
being in this case preferable due to the lower computational cost. Moreover, the global
test appears to have the correct level for all the distances while the partial tests are
conservative for γ = 0, as expected, and the proportion of rejection for the partial test
between the second and third group (which have equal covariances) is less than 5% for
all values of γ.

We want now to explore how the performance of the test changes when the number
of groups increases. Figure 4(a) shows the empirical power of the global test using the
square root distance when the number of groups goes from 4 to 10, always with the first
group with covariance operator Σ1 and all the others with covariance operator Σ(γ),
with γ varying from 1 to 5. It is possible to see that the level of the test is respected for
all numbers of groups while the empirical power tends to decrease when the number of
groups increases. This is due to the fact that only q partial tests out of q(q − 1)/2 are
bringing information about the violation of the null and they form a smaller and smaller
proportion of all the partial tests when q increases. If we instead have half of the groups
with covariance operator Σ1 and half with covariance operator Σ(γ), the loss of empirical
power when q increases is smaller, as shown by the empirical power curves reported in
Figure 4(b). This is because of the larger proportion of false partial hypothesis.

3.3 Comparison with the other existing tests

We compare now the proposed method, using the square root distance and the maxT
combining function, with some alternative approaches to test for the difference between
covariance operators. We consider first a generalization of the Levene’s test (Anderson,
2006) which is sensitive only to the difference in total variation between groups and it
is implemented using the permutational analysis of variance. Paparoditis and Sapatinas
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(d) Samples 1 and 3.

Figure 2: Empirical power of synchronized permutation global and partial tests applied
to the first test case using maxT combining function. p-values have been adjusted using
the maxT step-down procedure.
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Figure 3: Empirical power of synchronized permutation global and partial tests applied
to the second test case using the maxT combining function. p-values have been adjusted
using the maxT step-down procedure.
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(b) Half of the groups have fixed covari-
ance Σ1, the others have covariance Σγ .

Figure 4: Empirical power of synchronized permutation global tests applied to the first
test case using the maxT combining function, with 4, 6, 8 and 10 data samples.

(2016) introduced an empirical bootstrap approach based on Hilbert–Schmidt distance
(or alternatively, on other test statistics based on the Karhunen–Loéve expansions of
the covariance operators). In the interest of a fair comparison, we apply here the same
procedure to the test statistics based on the square root distance. It should be noted
however that the theoretical properties of this modified procedure still need to be studied.
Finally, we consider the test based on the concentration inequalities method of Kashlak
et al. (2016).

Figures 5 show the empirical power of the generalisation of Levene’s test (Anderson,
2006), the empirical bootstrap by Paparoditis and Sapatinas (2016) and the concen-
tration inequalities method of Kashlak et al. (2016) for the two test cases, compared
to the results obtained using the proposed permutation test. Here data are simulated
from q = 3 groups with the first group having covariance operator Σ1 and the other
two covariance operators Σ(γ). It appears that the permutation test and the empiri-
cal bootstrap have approximately the same empirical power in both test cases. On the
contrary, Levene’s test performs very differently. As expected, it outperforms the others
in the second test case, where it captures very well the differences in scale, but it is
dramatically less powerful in the first test case, where the difference between the covari-
ance operator is mostly in shape. The non-asymptotic test of Kashlak et al. (2016) is
slightly less powerful than the permutation test and the empirical bootstrap but it has
the advantage of being much less computationally expensive than the resampling-based
methods.

We want also to explore what happens when data are generated from a non Gaussian
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Figure 5: Empirical power of synchronized permutation, Levene’s, empirical bootstrap
and concentration inequalities-based global tests applied to the first (left) and second
(right) test cases. Data are sampled from a Gaussian process. The results shown were
obtained using the combining function maxT and the p-values have been adjusted with
the step-down procedure.

distribution. We simulated data from a multivariate t distribution with 4 degrees of
freedom and correlation matrix implied by the covariance operator Σ1 for the first group
and Σ(γ) for the other two groups. Here it is not possible to apply the non-asymptotic
test of Kashlak et al. (2016), because calibration parameters are not yet available when
data are not Gaussian. Figure 6 shows the empirical power for the permutation test,
the empirical bootstrap test and the Generalized Levene’s test. Here the permutation
test appears to perform slightly better then the bootstrap, while Levene’s test is again
performing very well in the second tests case but not in the first. Overall, the empirical
power of all tests is lower than in the Gaussian case, but they respect the nominal level.

4 Application to evolutionary biology

In this section we apply the proposed permutation test to a data set of interest in
evolutionary biology. The question of interest here is whether there is a difference in
the covariance operator of a function-valued trait (Kingsolver et al., 2001; Stinchcombe
et al., 2012) among experimental lines of mice with known differences in evolutionary
histories.
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Figure 6: Empirical power of synchronized permutation, Levene’s and empirical boot-
strap global tests applied to the first (left) and second (right) test cases. Data are
generated using a multivariate t-Student. The results shown were obtained using the
combining function maxT and the p-values have been adjusted with the step-down pro-
cedure.

4.1 Data set

Data were collected from aging house mice (Mus domesticus) that were members of the
16th generation of a selective breeding experiment for increased voluntary wheel-running
behavior (Swallow et al., 1998). This experiment produced four replicate lines selected
for the total number of wheel revolutions run on days 5 and 6 of a six day exposure to
running wheels that occurred when the mice were six to eight weeks of age, and four
replicate control lines that were randomly bred each generation (see Swallow et al., 1998,
for additional details). At generation 16, a total of 360 mice were used to establish an
aging colony (Morgan et al., 2003; Bronikowski et al., 2006). Half of the mice in the
colony were from the four high-selected lines and half were from the four control lines
that were randomly bred with respect to running behavior, and half of each selection
group was housed with running wheels (active mice) and half was housed in cages without
wheels (sedentary mice). One male from one of the control lines died of unknown causes
during the early stages of the experiment. Each week every mouse was measured for
body mass and food consumed, and each active mouse had the total number of wheel
revolutions run that week recorded (see Morgan et al., 2003; Bronikowski et al., 2006,
for more details).

Herein we examine only data from the active mice from both selection groups from
the first 80 weeks of the experiment, as reported by Morgan et al. (2003). The variables
in the dataset are: a unique id number for each mouse and id of fullsib family from which
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the mouse was drawn; the age and sex of the mouse; the line number (lines 1, 2, 4, 5 are
control lines, the others are selected lines); the week of wheel measure and the number
of revolutions run during the week. Total activity, measured as number of revolutions
run in a given day, can be decomposed into the product of mean velocity and duration
of activity. Thus, increased total activity levels could be accomplished by an increase
in mean velocity, an increase in the amount of time spent running, or a combination of
both.

The raw data are presented in Figure 7. Each line connects the number of revolutions
run by each mouse during the first 80 weeks of the experiment (Morgan et al., 2003).
Mice identified by ID numbers 90183 and 90224 are taken as examples of the selected
and control lines respectively. The corresponding wheel-running functions have been
highlighted in each figure. The first one is a male belonging to family number 29 from
line 1 (control), while the second one is a female belonging to family number 11 from
line 3 (selected).

At several times during the experiment, data collection was skipped for one or two
weeks. In these cases, the data collected after the skipped week(s) was divided by
number of weeks, giving multiple weeks in a row with the same value. This is easily seen
in Figure 7 at weeks 38, 39, 40, when the values are constant for each mouse, because
the wheel revolutions recorded for week 40 were divided by 3 and assigned to weeks 38
and 39 as well as 40. The weeks in which this occurred are: 34; 35; 38; 39; 40; 50; 51;
72; 73.

We regularized data using cubic smoothing splines. In particular, we used the the
routine spline.smooth() of the R package “stats” (R Core Team, 2016). Since indi-
vidual mice can have their own biological clock, curves are aligned to remove phase
variability (Ramsay and Silverman, 2005), via the elastic analysis described in Tucker
et al. (2013) and implemented in the R package “fdasrvf” (Tucker, 2016). Figure 8 shows
the smooth and aligned wheel-running activity curves.

4.2 Missing observation

In the voluntary wheel running activity data set, all groups (experimental lines) are
composed of 20 mice. However, one of the mice died of unknown causes during the early
stages of the experiment and therefore one group has only 19 observations. For this rea-
son, in order to apply the synchronized permutations, we have to prove that the presence
of a missing observation does not affect the inference. Following the guidelines given by
Pesarin and Salmaso (2010), we give a new formulation of the test that takes into account
the presence of missing data. Thanks to this, we are able to prove that it is possible to
apply the proposed test to an unbalanced data set with one missing observation, under
certain assumptions on the process that generates the missing observations.

Consider again a functional data set of the form

X = {xij , i = 1, . . . , q, j = 1, . . . , ni},
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Figure 7: Voluntary wheel running activity dataset, raw data, control and selected lines.

that consists of q ≥ 2 samples of size ni ≥ 2. The groups are related to q levels of a
treatment and the data xij are supposed to be independent and identically distributed
with distributions Pi ∈ P, i = 1, . . . , q. In order to take into account that, for whatever
reason, some of the data are missing, Pesarin and Salmaso (2010) suggested to consider
the inclusion indicator associated to the considered data set, that is

O = {oij , i = 1, . . . , q, j = 1, . . . , ni},

where oij = 1 if xij has been observed and collected, oij = 0 otherwise. We denote
with oi the vector of observation indicators (oi1, . . . , oini) from group i. This indicator
represents the observed configuration in the data set. Hence, the data set can be seen
as the pair of matrices (X,O). Therefore we would like to perform the following test:

H0 : {(x1,o1)
d
= . . .

d
= (xq,oq)} against H1 : {H0 is not true}.

Thus, if we assume that data are jointly exchangeable under the null hypothesis with
respect to the groups, we can, again, utilize a permutation test. Let us represent by
Pi the joint multivariate distribution of (xi,oi), i = 1, . . . , q under the null hypothesis.
Then it holds:

Pi = Poi · Pxi|oi
.
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Figure 8: Voluntary wheel running activity dataset after smoothing and alignment,
control and selected lines.

The idea of Pesarin and Salmaso (2010) is to break down the null hypothesis in the
following way:

H0 : {[o1
d
= . . .

d
= oq] ∩ [x1

d
= . . .

d
= xq|O]} = {HO

0 ∩H
X|O
0 }.

Furthermore, we assume that the missing data are missing completely at random. In this
case, we can condition with respect to the observed inclusion indicator and ignore HO

0 ,
because O does not provide any information about treatment effects (Rubin, 1976). In
other words, the partial hypotheses on O are true by assumption and the null hypothesis
can be simplified:

H0 = H
X|O
0 = {x1

d
= . . .

d
= xq|O}.

We indicate by O∗ any permutation of O, the permutational vector of inclusion indica-
tors, and by κ∗ = [κ∗1, . . . , κ

∗
q ] the corresponding vector of counts of valid observations

in each group, where

κ∗i =

ni∑
j=1

o∗ij , i = 1, . . . , q.

Then we can group the set of all permutations of the dataset, according to the vectors
of actual sample sizes of valid data κ∗. Now, let T be the vector of partial test statis-
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tics based on functions of sample valid data; we denote its permutation distribution as
F [T|(X,O)], T ∈ Rk. Pesarin and Salmaso (2010) pointed out that, if the permutation
sub-distributions of the partial test statistics are invariant with respect to the sub-groups
induced by O∗, then we can simply evaluate F [T|(X,O)] ignoring the missing values.
This implies that

F [T|(X,O)] = F [T|(X,O∗)]
holds for every T ∈ Rk, for every permutation O∗ of O and for all data sets X. In the
case of the tests for covariance operators, this is true because the test statistic TΨ of
the global test is a combination of the partial test statistics of the pairwise comparisons
between the groups. These, in turn, depend only on the distances between covariance
operators and their permutations. We can suppose that, under the null hypothesis, the
permutation distribution of the partial test statics Tij depends essentially on the number
κ∗i , κ

∗
j of summands. Thus, just like in the case of the multivariate analysis of variance

studied in Pesarin and Salmaso (2010), the previous distributional equality is equivalent
to

F [T|(X,κ)] = F [T|(X,κ∗)], . (1)

Hence, we would like our partial test statistics to be invariant with respect to κ∗ and
for all X. Now, suppose that we are in the balanced case, i.e. n1 = · · · = nq = n̄ and
one observation is missing in one of the groups, say group a, where 1 ≤ a ≤ q. In the
wheel-running data set, for instance, q = 8, n̄ = 20 and one observation is missing in
group 1. All the pairwise comparisons between groups i and j with 1 ≤ i < j ≤ q and
i, j 6= a are not affected by the problem of missing data since κ∗i = κ∗j = n̄. As regarding
the others, at each iteration of the algorithm, we could have κ∗a = n̄ and κ∗j = n̄ − 1
or viceversa, depending on the permutation. However, since distances are symmetric,
this two cases are permutationally equivalent under the null hypothesis and Equation
(4.2) is always satisfied. For this reason, we can apply the synchronised permutations as
usual. At each iteration of Algorithm 2.1 the sample covariance of each permuted group
is computed only with the available data. This is more complicated when the number
of missing data becomes greater than one, since the vector κ∗ of actual sample sizes can
assume other values.

4.3 Hypothesis testing

We can finally apply the test to the smoothed and aligned wheel-running activity curves.
The aim of the analysis is to check if the covariance operators of the eight groups of mice
are the same and, if this is not the case, to identify which lines have different covariances.
This is necessary for two reasons. First, the covariance operator is in itself of biological
interest for exploring which type of variability is environmental in nature and which is
due to genetic components. Second, inference on the mean functions often requires the
assumption of equality of covariance operator and it is important to be able to check
this assumption.

We want then to test the hypothesis

H0 : {Σ1 = · · · = Σ8} against H1 : {at least one of the equalities is not true}.
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To this end, we use the Monte Carlo Algorithm 2.1 to obtain an estimate of the per-
mutation test proposed in Section 2.2. We have shown in the previous section that
synchronized permutations can be used, even if one of the observations is missing. We
use here the square root distance between covariance operators as partial test statistic
and we choose the Tippett combining function. We set the number of iterations B to
1000.

The p-values of the partial tests between each pair of lines, adjusted with the step-
down method, are reported in Figure 9. The p-value of the global test (< 0.001) indicates
that there is strong evidence to reject the null hypothesis. This is due mainly to the first
group of mice for which many partial null hypotheses are rejected (i.e., the differences
between the covariance operator of line 1 and the covariance operators of these others
lines are significant) and, when using the maxT combining function, we reject H0 even
if only one of the partial tests is rejected.

The results of this test are somewhat surprising. First, no systematic differences were
detected between the selected lines and the control lines, while under directional selection
there is at least a theoretical expectation that genetic variances and covariances would
change between selected and unselected populations (e.g. Falconer and Mackay, 1996),
and work on the 31st generation of mice from this selection experiment has demonstrated
some changes in the genetic variances of wheel running over the first 6 days of wheel run-
ning (Careau et al., 2015). Second, the results suggest that line 1 randomly differs from
one other control line and one other selected line. Such random differences in biological
populations can be caused by genetic drift occurring during the selection experiment
or by founder effects when the original base population was randomly subdivided into
eight lines. Indeed, the trait of selection itself (wheel running on days 5 and 6 of a 6 day
exposure) and underlying physiological traits (e.g., basal metabolic rate) demonstrate
the effects of drift and/or founder effects (Swallow et al., 1998; Kane et al., 2008). The
results presented herein are suggestive of similar processes influencing the phenotypic
covariance structure of wheel running across age, which presents interesting possibilities
of additional biological experiments.

5 Conclusions and further developments

We extended the application of hypothesis tests that take into account the geometry of
the space of covariance operators to the case of multiple groups, using a permutation
approach. In particular, synchronized permutations allow us to make inference also on
the pairwise comparison between groups while controlling the family-wise error rate. We
illustrate via simulation studies that the proposed test has the correct effect size and
indeed the square root distance and the Procrustes distance lead to higher empirical
power in the multiple groups comparison as well. While we have shown that the method
can be applied in the case of a missing observation, a more general treatment of the case
of unbalanced design and missing data is scope for future works.

We have also shown that the empirical power for the global test is comparable to
those obtained using bootstrap approximation in the Gaussian case and slightly better
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Figure 9: Partial p-values of the synchronized permutation test on the covariance op-
erators of the aligned data. For each 1 ≤ j ≤ i ≤ q, i 6= j, the value reported in row
i, column j corresponds to the adjusted p-value of the test H0 : {Σi = Σj} against
H1 : {Σi 6= Σj}. The global p-value of the test is the minimum of the partial p-values
and therefore is less than 0.001.

in the non Gaussian case. It is worth to notice that, while simulation results shows the
bootstrap approach to be promising as well for the global test, its property has not yet
rigorously studied for test statistics based on metric different from the Hilbert-Schmidt
distance and this is an interesting direction for future research.

The application of the procedure to the mice voluntary wheel running activity curves
shows that, while a difference between covariance operators is indeed present, this is not
caused by selection itself. Instead it would appear that random biological processes
such as genetic drift or founder effects are influencing the covariance operators of the
phenotypic curves, suggesting further investigation of this trait and demonstrating the
importance of random processed during evolution.
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