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Abstract

We present three different approaches to model, in a computationally
cheap way, problems characterized by strong horizontal dynamics, even
though in the presence of transverse heterogeneities. The three approaches
move from the hierarchical model reduction setting introduced in [1, 3].

1 Motivations

We focus on the modeling of engineering applications which exhibit a dominant
dynamic (e.g., flows in tubular domains as in haemodynamics or in a channel
network as in hydrodynamics, flows through anisotropic porous media). For this
modeling, downscaled models, where only the dominant space dependence is
considered, are sometimes advisable. Nevertheless, in the presence of significant
transverse dynamics, these downscaled models may become uneffective (see, e.g.,
[2]).

We move consequently to a different approach, known as Hierarchical Model
(Hi-Mod) reduction to get a sort of trade-off between accuracy and efficiency
([3, 1]). We suitably rewrite the full problem as a set of coupled 1D differential
problems (i.e., the reduced model) associated with the dominant dynamic, while
the information along the transverse directions are lumped in the coefficients
of the reduced formulation. We focus on a generic second-order elliptic full
problem, given by

find u ∈ V : a(u, v) = F(v) ∀v ∈ V, (1)
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with V ⊆ H1(Ω) a Hilbert space, a(·, ·) : V × V → R a continuous and coercive
bilinear form and F(·) : V → R a continuous linear functional.

In this paper we introduce three different techniques for a Hi-Mod reduction.
As confirmed by the numerical assessment, two of these approaches turn out to
be effective in dealing with localized as well as widespread transverse dynamics.

2 Hierarchical model reduction techniques

We fix the basic ingredients to perform a Hi-Mod reduction ([3, 1]). We first in-
troduce a constraint on the computational domain. We assume Ω =

⋃
x∈Ω1D

{x}×
γx, i.e., Ω coincides with a fiber bundle, where Ω1D = (x0, x1) is the supporting
fiber (parallel to the dominant dynamics) while γx is the transverse fiber at x

(parallel to the secondary transverse dynamics). In particular, we focus on 2D
domains.

Then, for any x ∈ Ω1D, we introduce the map ψx : γx → γ̂ between the
generic fiber γx and the reference fiber γ̂, so that the physical domain Ω is
mapped into the reference domain Ω̂ = Ω1D × γ̂ via the map Ψ : Ω → Ω̂, given
by Ψ(z) = ẑ, where z = (x, y), ẑ = (x̂, ŷ) with x̂ = x and ŷ = ψx(y). We assume
that ψx is a C1-diffeomorphism for all x ∈ Ω1D and that Ψ is differentiable with
respect to z. A standard choice for ψx is an affine map.

The fiber structure on Ω is at the basis of all the Hi-Mod reduction techniques
below. The common idea is to differently tackle the dependence of the full
solution on the dominant and on the transverse directions. The former is spanned
via a standard (1D) finite element basis. The latter are expanded into a modal
basis {ϕk}k∈N

+ of functions in H1(γ̂), orthonormal with respect to the L2(γ̂)-
scalar product and compatible with the boundary conditions along the horizontal
sides of Ω.

2.1 Uniform Hi-Mod reduction

This approach resorts to a global one-dimensional space V1D ⊆ H1(Ω1D) to
describe the solution along the fiber Ω1D as well as to the same number of modal
functions along the transverse directions ([3, 1]). In particular, the functions in
V1D take into account the boundary conditions on the vertical sides of Ω.

The discrete uniform Hi-Mod reduced formulation for (1) reads: for a certain
modal index m ∈ N

+,

find uh
m ∈ V h

m : a(uh
m, vh

m) = F(vh
m) ∀vh

m ∈ V h
m, (2)

where the discrete reduced space

V h
m =

{
vh
m(x, y) =

m∑

k=1

ṽ h
k (x)ϕk(ψx(y)), with ṽ h

k ∈ V h
1D, x ∈ Ω1D, y ∈ γx

}

(3)
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establishes an actual hierarchy of reduced models marked by the modal index
m, i.e., by the different level of detail in describing the transverse dynamics of
the full problem. Space V h

1D ⊂ V1D is a finite element space associated with
a subdivision Th of Ω1D, with dim(V h

1D) = Nh < +∞. A standard density
assumption is made on V h

1D. Then, suitable hypotheses of conformity and of
spectral approximability guarantee the inclusion V h

m ⊂ V as well as the well-
posedness of the reduced formulation (2).

If we replace in (2) the reduced solution with the corresponding discrete
modal representation (uh

m(z) =
∑m

k=1 ũ h
k (x)ϕk(ψx(y))) and choose vh

m = ϑiϕj ,
with ϑi the generic finite element basis function, we are led to solve

m∑

k=1

a(ũ h
k ϕk, ϑiϕj) = F(ϑiϕj) j = 1, . . . , m, i = 1, . . . , Nh (4)

i.e., a set of coupled 1D problems instead of the full 2D problem. From an
algebraic viewpoint, (4) coincides with a linear system with an m × m block
matrix, where each block is an Nh × Nh matrix exhibiting the sparsity of the
finite element space.

An appropriate choice of the modal index m in (3) is certainly the most
critical issue of the uniform Hi-Mod reduction. This choice can be driven, e.g.,
by an a priori knowledge of the phenomenon at hand. In [3] a “trial and error”
approach is suggested: we move from the computationally cheapest choice for m

(m = 1) and then we gradually increase such a value until a sort of stagnation is
detected in the corresponding reduced solution. This choice may become really
uneffective when strongly localized transverse dynamics are present. In such a
case a large number of modal functions is required on the whole Ω, even though
it would be strictly necessary only on the portion of Ω where the strong dynamics
occur.

2.2 Piecewise Hi-Mod reduction

To overcome the intrinsic limit of a uniform Hi-Mod reduction, we move in [3] to
a new formulation, where a different number of modes is employed in different
parts of Ω: essentially, large values of m are used where the transverse dynamics
are relevant, small values where the dynamics are less important. In particular,
we resort to a domain decomposition approach to glue the models associated with
a different number of modes: the reduced problem is thus split and iteratively
solved on subdomains of Ω. The modal index m becomes therefore a piecewise
constant vector: this justifies the name of this approach.

Following [4], the discrete piecewise Hi-Mod reduced formulation for (1)
reads: for a certain modal multi-index m ∈ [N+]s,

find ub,h
m ∈ V b,h

m : aΩ(ub,h
m , vb,h

m ) = FΩ(vb,h
m ) ∀vb,h

m ∈ V b,h
m , (5)

with aΩ(ub,h
m , v

b,h
m ) =

∑s
i=1 ai(u

b,h
m

∣∣
Ωi

, v
b,h
m

∣∣
Ωi

), FΩ(vb,h
m ) =

∑s
i=1 Fi(v

b,h
m

∣∣
Ωi

) where

ai(·, ·) and Fi(·) are the restrictions of the bilinear and linear forms in (1) to the s
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subdomain Ωi of Ω, such that Ω = ∪s
i=1Ωi. The modal multi-index m = {mi}

s
i=1

collects the number of modes employed on each Ωi. The discrete reduced space
V

b,h
m is defined by

V
b,h
m =

{
v

b,h
m ∈ L2(Ω) : v

b,h
m |Ωi

=

mi∑

k=1

ṽ
i,h

k |Ω1D, i
(x)ϕk(ψx(y)) ∈ H1(Ωi)

∀i = 1, . . . , s, with ṽ
i,h

k ∈ V
b,h
1D and s.t., ∀k = 1, . . . , mj

⊥
with j = 1, . . . , s − 1,∫

bγ

[
vb,h
m |Ωj+1

(σj , ψ
−1
σj

(ŷ)) − vb,h
m |Ωj

(σj , ψ
−1
σj

(ŷ))
]
ϕk(ŷ) dŷ = 0

}
,

(6)

with m
j
⊥

= min(mj , mj+1), Ω1D, i = Ω1D ∩ Ωi, σj = Ωj ∩ Ωj+1. Space V
b,h
1D

is a suitable discrete space associated with the finite element partition Th: it
represents a subset of the one-dimensional broken Sobolev space H1(Ω1D, TΩ1D

)
depending on the partition TΩ1D

= {Ω1D,i}
s
i=1 of the supporting fiber Ω1D.

Likewise, the space V
b,h
m is a subset of the two-dimensional broken Sobolev space

H1(Ω, TΩ) associated with the partition TΩ = {Ωi}
s
i=1 of Ω.

Notice that the integral condition in (6) weakly enforces the continuity of the
solution in correspondence with the minimum number of modes employed on
the whole Ω. This does not guarantee a priori the conformity of the reduced
solution u

b,h
m in (5). Different strategies can be adopted to impose this interface

condition: in [4] we resort to an iterative substructuring Dirichlet/Neumann
method (with relaxation).

From a computational viewpoint, at each iteration of the Dirichlet/Neumann
scheme, we apply, separately, a uniform Hi-Mod reduction on the subdomains
Ωi. This leads to solve s systems of coupled 1D problems as in (4), with an
miN

i
h × miN

i
h block matrix, whose factorization is stored once and for all at

the first iteration and with N i
h < +∞ the dimension of the finite element space

associated with Ω1D, i.
The choice of the modal multi-index m in (5) can be made a priori, as in

[3], when we have some hints about u, or automatically, as in [4], if a suitable a

posteriori modeling error estimator drives the selection of both Ωi and m.

2.3 Nodewise Hi-Mod reduction

The piecewise Hi-Mod reduction represents a significative computational im-
provement with respect to the uniform Hi-Mod approach. Yet, it exhibits some
limitations especially when dealing with extremely localized (almost pointwise)
transverse dynamics or, on the contrary, with dynamics which involve the whole
domain, even though with a different intensity (see Section 3 for an example).
In the former case, a sufficiently large number of modes is assigned to a subdo-
main around the localized dynamic but, likely, the size of this domain will be
excessively large compared with the entity of the dynamic; in the latter case,
a piecewise Hi-Mod reduction may become uneffective so that the only feasible
way is the uniform approach.
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These considerations prompted us to set up a third Hi-Mod reduction procedure
in [5]: the novelty is that now the modal functions are associated with the nodes
of the finite element partition, in contrast to the piecewise approach where the
modes are associated with subdomains of Ω. The association of the modes with
the finite element nodes motivates the name chosen for this approach.

The trick which inspired us in setting up the nodewise approach consists of
properly rewriting the modal expansion in the discrete space (3). By exploting
the finite element basis {ϑi}, we have indeed

vh
m(x, y) =

m∑

k=1

ṽ h
k (x)ϕk(ψx(y)) =

m∑

k=1

[ Nh∑

i=1

ṽ h
k,i ϑi(x)

]
ϕk(ψx(y)). (7)

Notice that the leading role in such an expansion is taken by the summation on
the modes. Simply by exchanging the two summations, we get

vh
m(x, y) =

Nh∑

i=1

[ m∑

k=1

ṽ h
k,i ϕk(ψx(y))

]
ϑi(x), (8)

i.e., a representation for vh
m, equivalent to (7), where the expansion runs over

the finite element nodes. This leads us to define, in a straightforward way, a
new discrete reduced space V h

M
where, ideally, the number of the modal basis

functions may vary on each finite element node:

V h
M

=
{

vh
M(x, y) =

Nh∑

i=1

[ mN
i∑

k=1

ṽ h
k,i ϕk(ψx(y))

]
ϑi(x), with x ∈ Ω1D, y ∈ γx

}
.

(9)
The global modal index m in (8) is here replaced by the nodewise modal index
mN

i , with M = {mN
i }Nh

i=1 the vector of the modes for each finite element node.
The discrete nodewise Hi-Mod reduced formulation for (1) thus reads: for a

certain modal multi-index M ∈ [N+]Nh ,

find uh
M ∈ V h

M : a(uh
M, vh

M) = F(vh
M) ∀vh

M ∈ V h
M (10)

where a(·, ·) and F(·) coincides with the bilinear and linear forms in (1).
The algebraic counterpart of (10) is represented by a linear system whose

matrix has a structure similar to that of the uniform case (with m = maxi m
N
i ),

except that some rows ans columns are deleted where mN
i < maxi m

N
i .

The change of perspective introduced by the nodewise Hi-Mod reduction re-
lieves us from using a domain decomposition scheme in the presence of a differ-
ent number of modal functions in Ω. This represents a significative improvement
with respect to the piecewise Hi-Mod approach. No iterative procedure is now
requiered to get the reduced solution; on the contrary, a domain decomposition
scheme could now be employed to deal with more complex geometries (e.g., a
bifurcation) not taken into account by the setting in Section 2.
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The nodewise Hi-Mod reduction yields a reduced solution which is continuous,
i.e., H1-conformal, in Ω unlike the piecewise approach, where model discontinu-
ities may occur. Moreover, the nodewise formulation makes sense, by definition,
only after introducing the finite element basis. Spaces V h

m and V
b,h
m have, on the

contrary, a continuous counterpart obtained by replacing the Fourier coefficients
in (3) and (6) with functions in V1D and H1(Ω1D, TΩ1D

), respectively (see [1, 3]
for the details).

Concerning the choice of the modal multi-index M in (10), we can proceed
via an a priori or an automatic selection, exactly as for the piecewise approach.
In [5] we propose an automatic procedure for time dependent problems able to
efficiently select not only the modal distribution but also the time step.

3 Numerical assessment

We numerically validate the proposed Hi-Mod reduction procedures, to focus
on the corresponding advantages and limits. In particular, we use affine finite
elements to discretize the problem along Ω1D, while employing sinusoidal func-
tions to model the transverse dynamics. We evaluate the integrals of the sine
functions via Gaussian quadrature formulas, based on, at least, four quadrature
nodes per wavelenght.

First test case. This test case is meant to compare the three approaches onto the
same full configuration. For this purpose, we consider a problem characterized
by an analytical solution. We solve the Poisson problem −∆u = f on Ω =
(0, 2) × (0, π), completed with full homogeneous Dirichlet boundary conditions,
so that V ≡ H1

0 (Ω), V1D ≡ H1
0 ((0, 2)). The source term f is chosen such that

the full solution is

u(x, y) = (256−x8)(256−(2−x)8)
64800

{
100
247y(π − y)(2 − x)

+ y
(

π
5 − y

)(
π
3 − y

)(
3
5π − y

)(
3
4π − y

)
(π − y)

(
1 + tanh(10x − 10)

)}
.

In Figure 1 (left) we show the contour plot of the full solution approximated via
a finite element scheme on a uniform unstructured grid of about 25300 elements.
Solution u clearly exhibits a smooth behaviour on the left part of Ω and a more
irregular trend on the right.

We first apply the uniform Hi-Mod approach, by selecting m = 7 and m = 16
modes and choosing a uniform partition Th of Ω1D into 20 subintervals. Figure 1
(center-right) gathers the contour plots of the corresponding reduced solution:
as expected, 16 modes provide us with a more close approximation, even though
the difference between uh

7 and uh
16 is not so striking.

We successively assess the piecewise approach, inspired by the intrinsic het-
erogeneity of u. We split Ω into the subdomains Ω1 = (0, 0.9) × (0, π) and
Ω2 = (0.9, 2) × (0, π); then we employ m1 = 1 and m2 = 7 modes, respec-
tively and the same partition Th as above. The domain decomposition algorithm
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Figure 1: First test case: full solution (left); uniformly reduced solutions, uh
7

(center), uh
16 (right)

(with relaxation equal to 0.5) converges after three iterations to the reduced so-

lution u
b,h
1,7 in Figure 2 (left). The model discontinuity is evident: we are in

the presence of a nonconformal reduced solution. Formulation (6) guarantees
indeed the continuity on Ω of both the trace and the flux only to the first
mG

⊥
= mins

j=1 mj modal components of ub
m. More in general, as proved in [3],

for a partition TΩ = {Ωi}
s
i=1 of Ω, an H1-conforming approximation is yielded

only if mi > mi+1, for any i = 1, . . . , s − 1.
By comparing Figure 2 (left), e.g., with Figure 1 (center), we recognize that

a single mode is enough to describe u on Ω1 with sufficient accuracy.
Finally, we resort to the node-wise Hi-Mod approach. The adopted modal

distribution is shown in Figure 2 (right): it is here assumed as an a priori

distribution despite it has been obtained via a suitable a posteriori analysis
([5]), based on a uniform partition Th with 50 subintervals. The corresponding
reduced solution (see Figure 2 (center)) is fully comparable with the uniform
one, uh

16, in Figure 1: nevertheless, sixteen modes are now employed only on
few nodes with a reduction of the size of the corresponding linear system, i.e.,
of the whole computational cost. As expected, the current reduced solution is
continuous.

Second test case. This test case provides an example of nodewise Hi-Mod
reduction applied to a strong dynamic involving the whole Ω. We solve on
Ω = (0, 4) × (0, 1) the advection-diffusion problem −∇ ·

(
a(z)∇u

)
+ b · ∇u = 1,

with a(z) = 5 + 4.8 sin(πx) cos(πy)1/5 the diffusive coefficient, b = (100, 0)T the
advective field. We assign homogeneous Dirichlet boundary conditions along
the horizontal sides, a nonhomogeneous Dirichlet datum, u = 4 sin(πx), at the
inflow, homogeneous Neumann conditions at the outflow. This problem may
model the density u of a fluid flowing horizontally (from left to right) in a me-
dia with a nonhomogenous permeability a. A distributed source, f = 1, is also
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Figure 2: First test case: piecewise reduced solution u
b,h
1,7 (left); nodewise reduced

solution (center) and corresponding modal ditribution (right)

present.
Due to the complex dynamics involved, it turns out to be a hard task to iden-
tify, a priori, suitable subdomains with a view to a piecewise approach. We
consequently resort to both a uniform and a nodewise Hi-Mod reduction, by
comparing the corresponding performances. Figure 3 (top) shows the uniform
solution obtained by employing ten modes on the whole Ω. In Figure 3 (bottom-
left) we show the nodewise solution based on the modal distribution on the right.
The two reduced solutions are really similar, but in the latter case at most eight
modes are associated with a node. The order of the system reduces from 501 to
251.

Figure 3: Second test case: uniformly reduced solution uh
10 (top); nodewise

reduced solution and associated modal distribution (bottom)
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