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Abstract
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1 Introduction

Health care expenditures have increased significantly over recent decades in developed

countries. In addition to the aging population and increasing diversity in health services,

fraud as well as abuse and waste dramatically contribute to the increase in health care

costs. For example, in the United States, the National Health Care Anti-Fraud Association

(www.nhcaa.org) estimated conservatively that at least 3%, or more than 60 billion dollars,

of annual health care expenditures was due to fraud, waste and abuse in 2010. Total health

care related spending in the United States was almost 3 trillion dollars corresponding to

9, 523 dollars per person in 2013 (www.cms.gov). Therefore, efforts for assessment and

reduction of expenses due to medical fraud are crucial in the health care industry.

The systematic use of statistical approaches in medical fraud assessment in the United

States gained momentum with the Health Care Fraud and Abuse Control Program in

1996. Sampling and overpayment estimation methods help medical auditors to use sample

data and make extrapolations for the population. Woodard (2015) demonstrates the use

of sampling by US governmental medical insurance programs. The formal governmental

guidelines (www.cms.gov) recommend the use of the lower limit of a one sided 90 percent

confidence interval of the total overpayments as the recovery amount from the provider

under investigation. This protects the provider and results in fair recovery with 95 percent

confidence. However, application of the Central Limit Theorem to compute the lower

bound is based on the assumption that the overpayment population either follows the

Normal distribution or that the sample size of overpayments is reasonably large. It is

well known that medical claims data mostly exhibit skewness and non-normal behavior,

requiring large sample sizes for a valid application. As alternatives, Edwards et al. (2005)

obtain the lower bounds using a non-parametric inferential method whereas Gilliland and

Edwards (2011) construct randomized lower bounds. Ignatova and Edwards (2012) propose

a sequential sampling framework that aims to make inference on the proportion of claims

with overpayments. Ekin et al. (2015) present a zero-one inflated mixture model for

estimation of overpayments. Musal and Ekin (2016) provide a recent overview of such

references before proposing a Bayesian mixture model.

These studies are mostly interested in the percentages of claims to be reviewed to make
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a reliable assessment on the possible fraudulent behavior of a health care provider (HP). In

contrast, our paper studies how billing by an HP, split among different prescribed services,

differs from the average behavior in a population of HPs.

There are relevant data mining studies that provide sophisticated methods to detect

possible fraud. Supervised approaches, including but not limited to neural networks, de-

cision trees and Bayesian networks, are proposed; see Li et al. (2008) for a survey. These

methods require labeled data, which correspond to already audited claims. The results of

these methods are dependent on a particular data set; therefore they cannot adapt to the

dynamic nature of fraud patterns. As a potential remedy, unsupervised methods can be

used to extract information about the relationships within medical data. Particularly, these

may serve as pre-screening tools to identify a set of potentially fraudulent claims before

domain experts are brought during the investigation phase. Onderwater (2010) provides an

overview of such outlier detection methods for fraud assessment. The anomaly detection

framework for Australia Medicare spatio-temporal data (Ng et al. (2010)), and the use of

Benford’s Law Distributions to detect anomalies in claim reimbursements (Lu and Boritz

(2005)) are some examples. In order to group medical claims data, clustering algorithms

can also be used. Musal (2010) provides an illustration of clustering of geographical regions

as input to his regression model. The Bayesian co-clustering model of Ekin et al. (2013)

investigates the dyadic patterns among providers and beneficiaries. Overall, these methods

can decrease personnel costs as fewer transactions are reviewed (Laleh and Azgomi (2009)).

Our paper presents the use of the concentration function as a pre-screening tool to aid

in medical fraud assessment. It does not suffer from the issues of supervised methods; in

particular, it does not require labeled data and can easily adapt to changes if it is run with a

different data set. This simple unsupervised tool lets the auditor analyze the billing patterns

of a particular doctor, which can reveal potential unusual behaviors. Compared to existing

data mining approaches, our approach provides a simple tool, both in implementation and

understanding, which could be used to detect an anomalous behavior and might hinder

potential fraud.

The idea behind the proposed approach is quite simple. We assume that a group of

health care providers (HPs) with similar characteristics (age, specialty, years in the area,
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etc.) are providing similar services to patient populations that are similar in terms of

distribution of age, income, gender, etc. We are aware that this assumption might not

fully reflect reality, but our goal is to provide a tool that can detect unusual behavior by

an HP in terms of deviating from a population of HPs who are expected to display similar

prescribed service patterns. Further analyses will be needed to prove if such an anomaly

is due to fraud or due to heterogeneity in population of patients. It is possible that an HP

might prescribe particular services, and charge consequently, more frequently than other

HPs with no fraudulent intent. For example, a provider may prescribe a significantly larger

number of prostate exams in one year due to a larger number of elderly patients in need

in his/her area. Assessment of potential causes of such different behavior is the next step

to be undertaken through careful review of the claims by the HP. In Section 2 we will

introduce the concentration function, an extension of the Lorenz curve, which will be used

in Section 3 to analyze real data. Final remarks will be presented in Section 4.

2 Concentration function and Lorenz curve

The proposed tool is based on the concentration function, which is a generalization of

the Lorenz curve (see, e.g., Marshall and Olkin, 1979, p. 5) and is well known in the

statistical literature. The Lorenz curve is a graphical tool used to describe the discrepancy

between a discrete probability measure Π and a discrete uniform measure Π0. Its typical

application is about the comparison of the actual income distribution in a population (Π)

with an income that is evenly distributed across the population (Π0). The Lorenz curve is

obtained by plotting the cumulative wealth of the poorest individuals in the population. In

particular, we consider a population of n individuals with wealth (income) xi, i = 1, . . . , n,

assuming no ties for simplicity. We order their incomes in ascending order and obtain the

ordered wealths x(1), . . . , x(n), from the poorest to the richest individual. We define S0 = 0

and Sk =
k∑

i=1

x(i). Therefore, Sn is the total income of the population and Sk/Sn is the

fraction of wealth owned by the k poorest individuals. We plot the curve connecting the

points (k/n, Sk/Sn), k = 0, . . . , n. For a given k, the plot displays the fraction Sk/Sn of the

total income owned by the k/n · 100% of the poorest part of the population. We obtain a
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convex, increasing function connecting the points (0, 0) and (1, 1). It is worth mentioning

that evenly distributed wealth implies a straight line since Sk = k/n ·Sn for all k. When the

discrepancy in wealth distribution gets larger, then Sk/Sn gets smaller and further away

from k/n. Therefore, the Lorenz curve deviates farther away from the straight line as the

disparity in income distribution increases. Uneven distribution of wealth can be detected

not only through visual inspection of the plot but also through some summary indices. In

particular, we consider Gini’s area of concentration (Gini, 1914) which measures the area

between the Lorenz curve and the straight line, i.e., (n + 1)/(2n) − (1/n)
∑

1≤k≤n
Sk/Sn,

and an index proposed by Pietra (1915), which measures the maximum distance between

the curve and the straight line, i.e., sup1≤k≤n−1(k/n− Sk/Sn). Larger values of the indices

denote larger disparities. Gini’s and Pietra’s indices are defined here when comparing the

income distribution with respect to a discrete uniform one. Later, we will present the

extension to the case of any (not necessarily uniform) discrete distribution.

We can compare the Lorenz curves and related indices for two or more populations. The

population with the lowest Lorenz curve, if that exists, is the one with the largest disparity

in income distribution. Sometimes, Lorenz curves might intersect and this requires the use

of Gini’s area of concentration and Pietra’s index for comparison of the income distributions.

The first case is well represented by two populations, A and B, of three individuals each,

where the wealth is distributed according to the following, already ordered, percentages of

(10%, 30%, 60%) in A and (20%, 30%, 50%) in B.

The Lorenz curves for the two populations are presented in Figure 1, where the lowest

dashed curve corresponds to the wealth distribution in A, the middle dotted one to the

distribution in B and the highest (straight) solid curve corresponds to the case in which

wealth is evenly distributed among the three individuals. In this case it is evident that both

populations have an unequal distribution of wealth, and it is more uneven in population

A.

An example of intersecting Lorenz curves is obtained when the population A and B

have percentages of (15%, 40%, 45%) and (20%, 25%, 55%), respectively. The corresponding

curves are presented in Figure 2. In this case there is no ordering of Lorenz curves. It is

true that the poorest individual in A has less income than the corresponding one in B (15%
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Figure 1: Lorenz curve for wealth distribution in population A (dashed) and B (dotted)

w.r.t. uniform distribution.

vs 20%) but the reverse holds when considering the two poorest individuals (55% vs 45%).

Gini’s area is 0.1 for A and 0.117 for B, whereas Pietra’s index is 0.183 for A and 0.217 for

B. The indices show that the income distribution is, in general, more uneven in B, where

the largest values are obtained.

The Lorenz curve can be extended to compare any pair of probability measures on the

same measurable space, as described in Cifarelli and Regazzini (1987). The same authors

showed that Pietra’s index is equal to the total variation norm distance between the two

probability measures. We do not refer to their elegant, but mathematically sophisticated,

definition but we rather prefer to illustrate its use with a very simple example related to

HPs’ prescribed services.

Suppose that HPs in a homogeneous region are prescribing only 3 tests (blood, urine

and ECG) for their patients. We are looking at the percentage of the billing for each

test with respect to (w.r.t.) the total. We are interested in discovering if an HP has a

different pattern w.r.t. the group and, therefore, if further investigation of the individual

is worthwhile in order to detect possible fraud. We suppose the billings in the HPs group

for blood test, urine test and ECG account for 20%, 40% and 40% of the total amount,
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Figure 2: Lorenz curve for wealth distribution in population A (dashed) and B (dotted)

w.r.t. uniform distribution.

respectively.

We consider two HPs and we expect that they behave in a similar way w.r.t. the

group. The billing of the first HP (called A) is split into 20% for blood tests, 70% for

urine tests and 10% for ECG, whereas the percentages for the second HP (called B) are

30%, 50% and 20%, respectively. In probabilistic terms we are interested in comparing

two probability measures: a reference one, Π0, related to the whole group of HPs with

probabilities (0.2, 0.4, 0.4) (for blood, urine and ECG, respectively) w.r.t. Π for the selected

HP, given by (0.2, 0.7, 0.1) for A and (0.3, 0.5, 0.2) for B.

Therefore, we consider two probability measures, Π and Π0, assigning probabilities

p = (p1, . . . , pn) and q = (q1, . . . , qn), respectively, to the same outcomes (x1, . . . , xn) of a

statistical experiment (here the billing for different services, i.e., blood, urine and ECG).

We suppose q represents the distribution for the group and we are interested in measuring

how far p is from it. Earlier, the Lorenz curve was constructed summing the income of

the individuals xi starting from the poorest. The concentration function is constructed

summing the probabilities of the outcomes xi which are more unlikely under Π than under

Π0 (i.e., the values where Π is less concentrated than Π0).
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For each i, i = 1, . . . , n, we compute the (likelihood) ratios ri = pi/qi and order the xi’s

according to ascending values of ri. We therefore order the outcomes from the ones where

Π assigns much less probability than Π0 towards the ones where Π assigns much more

probability thanΠ0. The ordered values are denoted as x(1), . . . , x(n), and the corresponding

probabilities are q(1), . . . , q(n) and p(1), . . . , p(n). Similar to the Lorenz curve, we plot the

curve connecting the points (Qk, Pk), k = 0, . . . , n, where Q0 = P0 = 0, Qk =
k∑

i=1

q(i) and

Pk =
k∑

i=1

p(i). As before, we obtain a convex, increasing function connecting the points

(0, 0) and (1, 1) and we call it the concentration function of Π w.r.t. Π0.

Let us focus on a particular value k and consider Qk and Pk to better understand

their meaning. When considering all possible percentages Qk100% of billings for services

prescribed by the whole group of HPs, there are some services which have been charged

less by the HP under scrutiny. In our case, the 60% of billings by the entire group could

be represented either by blood and urine tests or by blood test and ECG. Looking at HP

A, the first pair corresponds to 90% of his/her billing for the prescribed services and the

second to just 30%. We are interested in the second pair since it provides the smallest

possible percentage, Pk100%, of billings for A among all those with a given percentage

Qk100% for the group of HPs. Such choice corresponds to the largest possible dissimilarity

in behavior, and this is what we are after. In probabilistic terms, we are interested in the

set of outcomes which assign less probability under Π (here 0.3) among all those with a

given probability under Π0 (here 0.6). Such outcomes are given by x(1), . . . , x(k), whose

probabilities sum up to Pk under Π and Qk under Π0.

Like the Lorenz curve, the concentration function can be used to analyze the distance

between the probability measures Π and Π0. If the distance between the concentration

function and the straight line is short, then the distribution of the services prescribed by an

individual HP is similar to that of the group of HPs. No warning should be issued in this

case since the HP’s behavior is very similar to the group’s. Otherwise, future investigation

may be suggested in search of possible causes, potentially including fraud.

In the previous example about two HPs, it can be shown that Q1 is obtained in both

cases for the ECG billing, accounting for 40% of the group total, whereas the value of P1
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Figure 3: Concentration function for HP A (dashed) and HP B (dotted) w.r.t. population.

is given by 0.1 for A and 0.2 for B. Whereas B is not too far from the group, A should

be further investigated because of the very small amount charged for ECG and the larger

amount for the urine tests that are prescribed.

The concentration curves for the two HPs are presented in Figure 3, where the lowest

dashed curve corresponds to A, the middle dotted one to B and the highest (straight) solid

curve corresponds to the case in which the HP charges tests in the same percentages as the

group.

The different behavior of HP A is confirmed by looking at Gini’s area of concentration

and Pietra’s index. Their previous definitions can be extended to the current situation.

Pietra’s index becomes sup1≤k≤n−1(Qk −Pk) whereas Gini’s area of concentration becomes

1/2− 1/2
∑

1≤k≤n
(Pi + Pi−1)(Qi −Qi−1). The latter is 0.18 for A and 0.11 for B, whereas

the former is 0.3 for A and 0.2 for B.

Once a synthetic index exceeds a fixed threshold then a warning should be issued and

the individual HP could be subject to more detailed investigation to detect the causes of

the different behavior than the group of HPs.
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3 Application of the concentration function

In this study, we utilize the public data set, Provider Utilization and Payment Data Physi-

cian and Other Supplier Public Use File, that was prepared by The Centers for Medicare &

Medicaid Services (www.cms.gov). It includes information related to payment, number of

services and number of beneficiaries for each provider and prescribed service. We rearrange

the data and we consider here a small dataset, with 30 medical doctors (MDs) in Diagnostic

Radiology in Vermont and the percentages of their billings within a set of 61 prescribed

services. In the Appendix, Table 3 contains the service descriptions. We chose MDs in the

same specialty and in an area with a small number of people (Vermont is the second least

populous state in the United States) to make the assumption about uniformity of behavior

among HPs more reasonable. The prescribed services include X-rays, Computed Tomog-

raphy, Magnetic Resonance Imaging for different parts of the human body. We consider

just two MDs (named MD1 and MD2 respectively) out of 30 since we would like to show

how the concentration function works in the simplest case. The extension to all the MDs

is straightforward.

Table 1 presents the percentages of each MD’s billing for each ith prescribed service (p1
i

and p2
i
respectively, i = 1, 2, . . . , 61) and the average percentages qi among the population.

Whereas, Table 2 lists the likelihood ratios for each MD (r1
i
= p1

i
/qi and r2

i
= p2

i
/qi,

respectively).

First of all, the likelihood ratios r1
i
and r2

i
provide information on how the charges of

each MD differ from the average charges of the population. A value close to 1 denotes

a similar behavior in terms of percentage of billing for such service, whereas a smaller

(larger) one shows that the MD is charging less (more) than the average. Note that we are

not considering the billing in dollars, but are normalizing the figures considering just the

percentage w.r.t. the total billing.

There are some services never charged by the MDs but our interest is about those which

are overcharged w.r.t. the population: those that might be due to fraud, or, at least, abuse

and waste. In particular, we set a threshold (5 in our case) on the likelihood ratio whose

exceedance should trigger further investigations. When the likelihood ratio is more than 5,

then the percentage of charges for the related service prescribed by an MD is at least five
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Table 1: Percentages of prescriptions for MD1 (p1
i
), MD2 (p2

i
) and population (qi)

Type

p1
i

0.0089 0.0319 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0144 0.0000 0.0047 0.0123 0.0208 0.0000 0.0187 0.0000

0.0119 0.0098 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0344 0.0514 0.0000 0.0000 0.0144 0.0000 0.0000

0.0242 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0238 0.0000 0.0000 0.0000 0.0637 0.0246 0.0000 0.0331

0.1865 0.0412 0.0251 0.0467 0.0416 0.0000 0.0000 0.0514

0.0000 0.0000 0.0000 0.1155 0.0888

p2
i

0.0030 0.0000 0.0000 0.0000 0.0070 0.0076 0.0042 0.0000

0.0030 0.0061 0.0065 0.0056 0.0070 0.0035 0.0060 0.0056

0.0052 0.0039 0.0018 0.0222 0.0000 0.0033 0.0018 0.0073

0.0030 0.0138 0.0000 0.0020 0.0000 0.0083 0.0000 0.0202

0.0088 0.0026 0.0066 0.0000 0.0000 0.0169 0.0178 0.0000

0.0140 0.0182 0.0030 0.0205 0.0028 0.0018 0.0378 0.0201

0.0127 0.0249 0.0130 0.0253 0.0188 0.0030 0.0081 0.0308

0.0159 0.0886 0.0888 0.1082 0.2333

qi 0.0028 0.0034 0.0032 0.0034 0.0035 0.0033 0.0033 0.0037

0.0039 0.0035 0.0035 0.0039 0.0042 0.0046 0.0044 0.0039

0.0046 0.0048 0.0045 0.0039 0.0043 0.0047 0.0058 0.0060

0.0061 0.0065 0.0088 0.0068 0.0077 0.0076 0.0075 0.0073

0.0087 0.0088 0.0096 0.0122 0.0111 0.0104 0.0098 0.0126

0.0132 0.0127 0.0134 0.0132 0.0151 0.0163 0.0140 0.0172

0.0193 0.0178 0.0190 0.0200 0.0220 0.0216 0.0284 0.0293

0.0379 0.0736 0.0855 0.1046 0.1676
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Table 2: Likelihood ratios for MD1 (r1
i
) and MD2 (r2

i
) w.r.t. population

Type

r1
i

3.2364 9.2643 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3.7370 0.0000 1.3289 3.1351 5.0040 0.0000 4.2212 0.0000

2.5907 2.0574 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 5.2653 5.8476 0.0000 0.0000 1.8881 0.0000 0.0000

2.7880 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.8049 0.0000 0.0000 0.0000 4.2120 1.5120 0.0000 1.9252

9.6515 2.3163 1.3229 2.3307 1.8918 0.0000 0.0000 1.7561

0.0000 0.0000 0.0000 1.1039 0.5299

r2
i

1.0909 0.0000 0.0000 0.0000 1.9886 2.3194 1.2625 0.0000

0.7785 1.7313 1.8379 1.4274 1.6840 0.7538 1.3544 1.4213

1.1321 0.8188 0.3959 5.6633 0.0000 0.7031 0.3116 1.2133

0.4953 2.1122 0.0000 0.2950 0.0000 1.0883 0.0000 2.7811

1.0138 0.2945 0.6899 0.0000 0.0000 1.6307 1.8244 0.0000

1.0617 1.4308 0.2231 1.5561 0.1851 0.1106 2.6936 1.1691

0.6573 1.3999 0.6852 1.2627 0.8549 0.1391 0.2856 1.0523

0.4196 1.2046 1.0382 1.0341 1.3922

12



times larger than the average charge for that service.

In Table 2 we highlight the values of likelihood ratios exceeding the threshold, using

boldface for r1
i
(MD1) and r2

i
(MD2). Those providers and services with high likelihood

ratios are also given in bold in Table 1 to highlight their percentages p1
i
and p2

i
for the bills

by the two MDs and the average billing qi by the MDs population. This may facilitate a

more thorough examination about the anomalous billings.

First of all, for MD1 there are two ratios exceeding 9: they correspond to Computed

Tomography of the abdomen and pelvis (9.2643) and X-ray exam of abdomen (9.6515). The

former accounts for more than 3% of the charges by MD1 whereas the latter represents

almost 19%. Although both account for charges almost ten times more than average, the

major concern is about the X-ray exam of abdomen since it accounts for almost one fifth

of the total billing by MD1. Further investigation in this case should be about number of

prescriptions and diagnoses, to check for possible overcharges (and fraud, therefore) and

waste in prescribing the X-ray. The other three prescriptions with ratios larger than 5

are X-ray exam of thigh (5.0040), a different X-ray exam of abdomen (5.2653) and X-

ray exam of hip (5.8476). MD2 is prescribing just an exam, the ultrasound exam of the

abdomen back wall, charged well above average. Given that there is just one anomalous

exam, accounting only for 2% of the charges, then MD2 can be hardly considered at risk

of fraudulent behavior, unlike MD1.

The analysis of the likelihood ratios allows us to identify a different behavior of MD1

w.r.t. the MDs population regarding the charges for five prescribed services, out of 61. The

concentration function is a graphical tool which allows for an immediate recognition, at a

glance, of the anomalous behavior when considering all the prescribed services.

The concentration functions, plotted in Figure 4, denote clearly how MD1 (dashed line)

differs significantly from the population since the corresponding curve is quite far from the

straight line, unlike MD2 (dotted line). Such a distance is summarized by Pietra’s index of

0.5504, compared to 0.2198 for MD2. A similar result is obtained when considering Gini’s

index: 0.3580 for MD1 and 0.1593 for MD2.

A look at the concentration function in Figure 4 can provide further information on the

behavior of the MDs. The flat (dashed) line from 0 to almost 0.5 tells us that MD1 is never
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Figure 4: Concentration function for MD1 (dashed) and MD2 (dotted) w.r.t. population.

giving prescriptions accounting for almost 50% of the billings by the average population of

MDs. The sharp increase around 1 is interpreted as an excess of charges by MD1 w.r.t.

average (mostly due to X-ray exam of abdomen, as discussed earlier). The dotted curve

is almost parallel to the straight line: this is due to very few prescribed services which

are not charged by MD2, unlike the MDs population, implying the initial lowering of the

curve, whereas all the other services are charged quite similarly to the average, except for

the ultrasound exam of the abdomen back wall, as discussed earlier.

In Figure 5 we present the histogram of Pietra’s index values for the 30 MDs in the

group. It can be seen that 20 MDs have their index in the first two bins, denoting a sub-

stantial concordance among themselves about percentages of charges for the services they

prescribe. There are just a few values (7) exceeding 0.5, including the one corresponding

to MD1. If a warning limit is set to 0.5, then all the MDs whose Pietra’s index exceeds

that value could be subject to further investigation.

As shown in this section, the concentration function, and the likelihood ratios needed

to construct it, can be easily computed and can provide insights on the general behavior

of an MD and also on the details of his/her prescribed services and related charges.
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Figure 5: Histogram of Pietra’s index for 30 MDs.

4 Discussion

In this paper we present a simple tool which could detect anomalous behavior of health care

providers w.r.t. a population of providers believed homogeneous, with a similar pattern

in terms of charges for prescribed services. As discussed in the paper, the tool does not

provide formal evidence of fraud or abuse but it can be used as a pre-screening device to

detect possible anomalies in the pattern of charges, which could be further investigated. It

should be noted that heterogeneous behavior in terms of charges for prescribed services can

be totally legitimate, and may be due to specialists having sicker patients and performing

necessary operations. However, the tool still provides us information about different doctor

billing patterns which may also be the result of incentives that lead doctors to overcharge

for a procedure.

We are working on the assessment of potential fraud in medical practice by different

approaches. One approach that will be presented in a forthcoming paper considers sophis-

ticated methods based on Bayesian co-clustering to link groups of providers and prescribed

services. However, it is important to note that one also needs to provide simple tools that

can be used by practitioners and the current work is an attempt to meet this need. At the
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same time, it is also worth considering critical aspects of data. In fact, data pre-processing

takes a fair amount of time before conducting the statistical analysis. Furthermore, another

important aspect is medical data security. The data analyst should adhere to proper secu-

rity, access and privacy controls. Personally identifiable information that can distinguish

or trace any identity should be dealt with caution and protected properly.

Those issues should be kept in mind when considering other possible applications. As an

example, the proposed tool can be used to analyze deviations within any given category.

Therefore we can conduct the analysis for differently defined peer groups of providers.

For example, Berenson-Eggers Type of Service (BETOS) categories have been used to

categorize the providers and analyze U.S. Medicare costs. These clinical categories are a

collection of Health Care Financing Administration Common Procedure Coding System

procedure codes and can serve as peer groups. Another potential extension is to construct

sub-peer groups with respect to a co-variate, such as patient profiles. Then, the billings

of a given provider can be compared to the peer group to extract potential patterns.

These insights can be helpful before bringing domain experts into the investigation. Close

cooperation between physicians, statisticians and people involved in decision making is

essential while interpreting the results.

Appendix
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X-ray exam of humerus Ct abd & pelv 1/ > regns

Ct abdomen w/dye Us exam pelvic complete

Bone imaging whole body Transvaginal us non-ob

Us exam of head and neck Mri jnt of lwr extre w/o dye

X-ray exam of neckspine 2 view X-ray exam of neckspine 4 view

X-ray exam of ribs/chest X-ray exam of elbow

X-ray exam of thigh Pet image w/ct skull-thigh

X-ray exam of thoracic spine Extremity study

X-ray exam of lower leg X-ray exam of finger(s)

Ct angiography chest Us exam abdo back wall lim

Mri brain w/o & w/dye Diagnosticmammographyuniteral

Mri brain w/o dye Us exam abdo back wall comp

Ct neck spine w/o dye X-ray exam of abdomen 2

X-ray exam of hip Ct thorax w/o dye

X-ray exam of lower spine X-ray exam of hand

Mri lumbar spine w/o dye Echo exam of abdomen

X-ray exam of wrist Us exam abdom complete

Computer dx mammogram add-on Ht muscle image spect mult

X-ray exam of knee 3 Us exam breast(s)

Extracranial study Mammogram screening

X-ray exam of ankle Diagnosticmammographybilateral

Ct abd & pelvis Extremity study

X-ray exam series abdomen X-ray exam of knee 1 or 2

Dxa bone density axial X-ray exam of pelvis

X-ray exam of abdomen X-ray exam knee 4 or more

X-ray exam of foot X-ray exam of lower spine

X-ray exam of shoulder X-ray exam of shoulder

Ct abd & pelv w/contrast X-ray exam of hip

Ct head/brain w/o dye Comp screen mammogram add-on

Total knee arthroplasty Repair of wound or lesion

Inject spine w/cath c/t

Table 3: Service descriptions
17
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