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Abstract

Quasi-static crack propagation in brittle materials is modeled via the
Ambrosio-Tortorelli approximation [7]. The crack is modeled by a smooth
phase-field, defined on the whole computational domain. Since the crack
is confined to a thin layer, the employment of anisotropic adapted grids is
shown to be a really effective tool in containing computational costs. We
extend the error analysis in [3, 4, 5] to the generalized Ambrosio-Tortorelli
functional introduced in [8], where a unified framework for several elasticity
laws is dealt with as well as a non-convex fracture energy can be accommo-
dated. After deriving an anisotropic a posteriori error estimator, we devise
an algorithm which alternates optimization and mesh adaptation. Both
anti-plane and plane-strain configurations are numerically checked.
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1 Introduction

Modeling crack propagation in brittle materials is an area of great interest in
different areas, such as in materials science, solid mechanics or geoscience.

A very accurate setting to model crack propagation is provided by the Francfort-
Marigo theory, introduced in [18]. The main strength of this approach is the
capability to predict the crack path without any a priori knowledge [12, 13, 17].
Nevertheless, the Francfort-Marigo model requires minimizing a highly irregular
functional (also known as the Mumford-Shah functional in image segmentation)
which is very complex to be approximated numerically.

Therefore, several methods have been proposed in the literature to approxi-
mate the Francfort-Marigo model and to end up with a more handy computable
approximation. A very well-known approach in this context is the Ambrosio-
Tortorelli approximation [1, 2]. The fracture propagation is described in terms
of a free-discontinuity problem, through the introduction of a dedicated phase-
field variable. The main challenge of a phase-field approach is represented by
the sharp detection of the transition region between fractured and unfractured
material. With a view to a finite element discretization, this may represents a
numerical obstacle since a very fine mesh is demanded in a neighborhood of the
crack, whose location is unknown and varying in time.

Mesh adaptation represents an effective answer to this issue, since it allows
one to refine the mesh only where strictly necessary, i.e., along the crack path.
In [7], for instance, the authors provide a first theoretically sound attempt in
such a direction by introducing an isotropic mesh adaptation procedure driven
by an a posteriori error estimator. This analysis is extended to an anisotropic
setting in [3, 4, 5], where the well-established benefits of anisotropic meshes
are successively assessed. In [8], a generalized Ambrosio-Tortorelli functional
is provided to include more general elastic laws and energy contributions and
discretized via isotropic adaptive finite elements.

The new contribution of this work is the extension of the anisotropic a poste-
riori error analysis in [3, 4, 5] to the generalized Ambrosio-Tortorelli functional,
thus including a possible non-convex dependence of the functional on the phase-
field variable. This requires a careful modification of the optimization procedure.
The new adaptive algorithm is verified on some benchmark test cases by check-
ing the consistency with respect to the results in the literature and emphasizing
the benefits led by an anisotropic mesh adaptation.

The paper is organized as follows. Section 2 introduces the generalized
Ambrosio-Tortorelli functional in the original formulation and in a modified
version where the physical constraints of the problem are weakly imposed by
penalty. Section 3 represents the main core of this work where the anisotropic a
posteriori error analysis is carried out. The Optimize-while-Adapt algorithm is
set in Section 4 together with all the practical numerical details. In Section 5,
we focus on the numerical assessment by considering anti-plane and plane-strain
configurations. Finally, some conclusions are drawn in the last section.
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2 The generalized Ambrosio-Tortorelli functional

The goal of the proposed generalization is twofold. On the one hand, we pro-
vide a unique framework combining the plane and anti-plane linear elasticity
tackled separately in [5, 3] and [4], respectively; on the other hand, we consider
the generalized Ambrosio-Tortorelli (gAT) functional proposed in [8]. As the
standard Ambrosio-Tortorelli functional has been introduced to Γ-approximate
the Francfort-Marigo (FM) energy functional, according to [8], we may assume
that gAT still Γ-converges to FM.

With a view to the first issue, we introduce some new notation to embrace
simultaneously vector and tensor quantities.

Definition 2.1 We introduce three multiplication operators:

Z ⋄W =

{

Z ·W if Z,W ∈ R
2

Z :W if Z,W ∈ R
2×2,

where · and : denote the standard inner product in R
2 and R

2×2, respectively;

Z ⊙W =

{

ZW if Z,W ∈ R

Z ·W if Z,W ∈ R
2;

Z ×W =

{

Z ⊗W if Z,W ∈ R
2

ZW if Z ∈ R,W ∈ R
2,

where ⊗ denotes the Kronecker product between vectors.

We now focus on the second issue. The gAT functional depends on two
functions, F ,G ∈ C3([0, 1]), such that F is an increasing function with F (0) = 0
and F (1) = 1, G is non-negative with G(z) = 0 if and only if z = 1. It is defined
by

Jε(u, v) =

∫

Ω
(F (v) + η)A∇u ⋄ ∇u dx+K

∫

Ω
(ε−1G(v) + ε|∇v|2) dx, (1)

where Ω ⊂ R
2 is a polygonal domain, u : Ω → R

n for n = 1, 2, and v : Ω → [0, 1]
are the displacement and the phase-field, respectively, 0 < η ≪ ε ≪ 1 are
suitable regularization constants, A is the elasticity tensor and K is the fracture
toughness of the body. In particular, the displacement u is assigned over a subset
ΩD ⊂ Ω through the vector field g : Ω× [0, T ] → R

n, with

g(t) =

{

gD(t) on ΩD, t ∈ [0, T ]

0 otherwise,
(2)
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T being the final time and where the dependence on x = (x1, x2)
T is understood;

the phase-field v is a smoothed crack path indicator, such that

v(x) =

{

0 if the material is damaged at x

1 otherwise;

the elasticity tensor A is assumed symmetric (major symmetries) and frame
indifferent (minor symmetries). Due to these symmetries, we can assume that,
for Z = {Zi}ni=1 : Ω → R

n, the gradient is defined by (∇Z
)

ji
= ∂Zi/∂xj , with

j = 1, 2, i = 1, . . . , n, where it is understood that, for n = 1, Z1 = Z.
From a physical viewpoint, functions F and G weight the contributions of the

elastic and of the crack energy to the total one, so that the total energy coincides
with the elastic one where the material is unbroken, whereas it reduces to the
crack energy where the material is completely damaged, up to the η-contribution.
The gAT functional recovers the classical Ambrosio-Tortorelli functional when
F (v) = v2 and G(v) = (1− v)2/4 [6, 19].

Independently of the particular choice for F and G, the variational model
describes a quasi-static evolution of the crack propagation. Thus, we discretize
the problem in time and define a new minimization problem, associated with each
time level. For this purpose, we subdivide the time window [0, T ] by the partition
0 = t0 < t1 < · · · < tN = T , so that, at each time step, we are led to find the
pair (u(tk), v(tk)) ∈ H1(Ω;Rn)×H1(Ω; [0, 1]) satisfying u(tk)|ΩD

= gD(tk) and,
for each k > 0, the irreversibility condition v(tk) ≤ v(tk−1) in CRk−1, where
CRk−1 = {x ∈ Ω : v(tk−1) < CRTOL} describes the damaged area at tk−1 up to
the tolerance CRTOL. The condition on v ensures that, after a part of the body
is damaged, it cannot heal.

The minimization problem can thus be formalized as: find (u, v) ∈ H1
g (Ω)×K

such that
(u, v) ∈ argmin{Jε(û, v̂) : û ∈ H1

g (Ω), v̂ ∈ K}, (3)

where H1
g (Ω) = {u ∈ H1(Ω;Rn) : u = gD(tk) on ΩD}, K = {v ∈ H1(Ω;R) :

0 ≤ v ≤ χ a.e. inΩ}, where χ ∈ H1(Ω; [0, 1]) is equal to v(tk−1) in CRk−1 and
increases continuously to 1 away from CRk−1 [8].

2.1 Penalizing the gAT functional

Following [3, 4, 5], we enforce in a weak sense the constraint on the assigned
displacement on ΩD and the irreversibility condition. Thus, at each time step,
we minimize the modified cost functional

J(u, v) =
1

2
Jε(u, v) +

1

2γA

∫

ΩD

|u− gD(tk)|2 dx+
1

2γB

∫

CRk−1

v2 dx, (4)

where γA and γB are the penalty constants. As a consequence, problem (3) is
reformulated as: find (u, v) ∈ H1(Ω;Rn)×H1(Ω; [0, 1]) such that

(u, v) ∈ argmin{J(û, v̂) : û ∈ H1(Ω;Rn), v̂ ∈ H1(Ω; [0, 1])}. (5)
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The two minimization problems (5) and (3) are related by the property that
the minimizers of (5) converge to the minimizers of (3) for γA, γB → 0, since
the penalization constraints are continuous, convex and always non-negative
(see [11]).

To solve the minimization problem (5), we introduce the Gâteaux derivatives
of gAT functional J . In particular, by mimicking Proposition 2.1 in [8], we have
that functional J is Gâteaux differentiable in V = H1(Ω;Rn) × (H1(Ω; [0, 1]) ∩
L∞(Ω)). In more detail, the Gâteaux derivative of J at (u, v) ∈ V along the
direction (φ, ψ) ∈ V is given by

J ′(u, v;φ, ψ) = a(v;u,φ) + b(u; v, ψ), (6)

where

a(v;u,φ) = ∂uJ(v;u,φ)

=

∫

Ω
(F (v) + η)A∇u ⋄ ∇φ dx+

1

γA

∫

ΩD

(u− gD(tk))⊙ φ dx
(7)

and

b(u; v, ψ) = ∂vJ(u; v, ψ)

=
1

2

∫

Ω
F ′(v)A∇u ⋄ ∇uψ dx

+
K
2

∫

Ω
(ε−1G′(v)ψ + 2ε∇v · ∇ψ) dx+

1

γB

∫

CRk−1

vψ dx.

(8)

Solving (5) is equivalent to computing the critical points (u, v) ∈ V which
satisfy the variational equality and inequality:

∂uJ(v;u,φ) = 0 ∀φ ∈ H1(Ω;Rn)

∂vJ(u; v, v − ψ) ≤ 0 ∀ψ ∈ H1(Ω; [0, 1]) ∩ L∞(Ω).
(9)

2.2 Discretization of the minimization problem

Following [3, 4, 5], we move to the discrete setting. For the present purposes,
we introduce a family {Th} of conforming meshes of Ω̄, by denoting with Xh the
associated space of continuous piecewise linear finite elements [9]. We approxi-
mate the assigned displacement in (2) at t = tk by gh(tk) = {gh,i(tk)}ni=1 ∈ [Xh]

n

such that
∫

ΩD

gh(tk)⊙wh dx =

∫

ΩD

gD(tk)⊙wh dx ∀wh ∈ [Xh]
n.

The discrete version of (5) reads: find uh = {uh,i}ni=1 ∈ [Xh]
n and vh ∈

Xh ∩H1(Ω; [0, 1]) such that

(uh, vh) ∈ argmin{Jh(ûh, v̂h) : ûh ∈ [Xh]
n, v̂h ∈ Xh ∩H1(Ω; [0, 1]), (10)
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where

Jh(uh, vh) =
1

2

∫

Ω
(Ph(F (vh)) + η)A∇uh ⋄ ∇uh dx

+
K
2

∫

Ω

(

ε−1Ph(G(vh)) + ε|∇vh|2
)

dx

+
1

2γA

n
∑

i=1

∫

ΩD

Ph(uh,i − gh,i(tk))
2 dx+

1

2γB

∫

CRk−1

Ph(v
2
h) dx,

Ph : C0(Ω̄) → Xh being the Lagrange interpolation operator associated with Xh.
The introduction of Ph is motivated by the consistency with the standard discrete
Ambrosio-Tortorelli functional in [3, 4, 5], where the constraint 0 ≤ vh ≤ 1 is
automatically guaranteed. In the general case of the gAT functional, this last
constraint has to be enforced directly during the optimization procedure.

We replicate the procedure in (6)-(9) in the discrete setting. In particular,
(6) is replaced by

J ′
h(uh, vh;φh, ψh) = ah(vh;uh,φh) + bh(uh; vh, ψh),

where
ah(vh;uh,φh) = ∂uh

Jh(vh;uh,φh)

=

∫

Ω
(Ph(F (vh)) + η)A∇uh ⋄ ∇φhdx

+
1

γA

2
∑

i=1

∫

ΩD

Ph ((uh,i − gh,i(tk))φh,i) dx

(11)

with φh = {φh,i}ni=1, and

bh(uh; vh, ψh) = ∂vhJh(uh; vh, ψh)

=
1

2

∫

Ω
Ph(F

′(vh)ψh)A∇uh ⋄ ∇uh dx+
K
2

∫

Ω
(ε−1Ph(G

′(vh)ψh)

+ 2ε∇vh · ∇ψh) dx +
1

γB

∫

CRk−1

Ph(vhψh) dx.

(12)
Thus, we are led computing the critical points (uh, vh) ∈ [Xh]

n×Xh∩H1(Ω; [0, 1])
of Jh that satisfy relations

∂uh
Jh(vh;uh,φh) = 0 ∀φh ∈ [Xh]

n

∂vhJh(uh; vh, vh − ψh) ≤ 0 ∀ψh ∈ Xh ∩H1(Ω; [0, 1]).
(13)

3 Anisotropic a posteriori error analysis

This section provides the main theoretical contribution of this work. After a
brief introduction on the anisotropic setting, we derive the a posteriori error
estimator used to drive the mesh adaptation.
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3.1 The anisotropic setting

We adopt the setting employed in [15, 22, 14, 23], where the anisotropic informa-
tion is derived from the spectral properties of the standard affine map TK from
the reference triangle K̂ to the generic element, K, of Th. Map TK : K̂ → K is
such that x = TK(x̂) = MK x̂+ tK , where MK ∈ R

2×2 is its Jacobian, tK ∈ R
2

is the shift vector, x ∈ K and x̂ ∈ K̂ denote the generic point of the actual and
the reference triangles. In particular, the reference element K̂ is the equilateral
triangle inscribed in the unit circle, as shown in Figure 1.

TK

K̂

K

λ
1,K

λ
2,K

r
1,K

r
2,K1

Figure 1: Geometric quantities associated with the map TK

We compute the polar decomposition MK = BKZK of the Jacobian matrix
MK to identify the rotation ZK and the stretching BK matrices which change
the reference triangle K̂ into K, where BK is symmetric positive definite and
ZK is orthogonal. We successively perform the spectral decomposition of BK

as BK = RT
KΛKRK , with RT

K = [r1,K , r2,K ], ΛK = diag(λ1,K , λ2,K) and λ1,K ≥
λ2,K > 0. In particular, the eigenvectors ri,K identify the directions of the
semi-axes of the ellipse circumscribing K, while the eigenvalues λi,K measure
the corresponding lengths (see Figure 1). The aspect ratio sK = λ1,K/λ2,K ≥ 1
quantifies the deformation of the element K, sK = 1 identifying the undeformed
case of an isotropic equilateral triangle.

To derive the a posteriori error estimator, we recall the anisotropic estimates
for the Clément quasi-interpolant operator Ch : L2(Ω) → Xh. These estimates
are proved in [10] for the isotropic case and generalized to an anisotropic setting
in [15, 16].

Lemma 3.1 Let w ∈ H1(Ω), diam(T−1
K (∆K)) ≤ C∆ and #∆K ≤ N , for some

N ∈ N, where #∆K denotes the cardinality of the patch ∆K = {T ∈ Th :
T ∩ K 6= ∅} of the elements associated with K. Then, for any K ∈ Th, the
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following estimates hold

‖w − Ch(w)‖L2(K) ≤ C1

[ 2
∑

j=1

λ2j,K(rTj,KG∆K
(w)rj,K)

]1/2

,

|w − Ch(w)|H1(K) ≤ C2
1

λ2,K

[ 2
∑

j=1

λ2j,K(rTj,KG∆K
(w)rj,K)

]1/2

,

‖w − Ch(w)‖L2(∂K) ≤ C3

(

hK
λ1,Kλ2,K

)1/2 [ 2
∑

j=1

λ2j,K(rTj,KG∆K
(w)rj,K)

]1/2

,

for some constants Cs = Cs(N , C∆), with s = 1, 2, 3, where hK = diam(K) and
G∆K

(w) is the 2-by-2 symmetric semipositive definite matrix with entries

[

G∆K
(w)

]

ij
=

∑

T∈∆K

∫

T

∂w

∂xi

∂w

∂xj
dx i, j = 1, 2.

Moreover, we recall the following equivalence result between the H1(∆K)-
seminorm and an anisotropic counterpart. The proof can be found in [21].

Lemma 3.2 Let w ∈ H1(Ω) and K ∈ Th. For any β1, β2 > 0, it holds

min{β1, β2} ≤

2
∑

i=1

βi(r
T
i,KG∆K

(w)ri,K)

|w|2
H1(∆K)

≤ max{β1, β2}.

3.2 The anisotropic a posteriori error estimator

We extend the a posteriori analysis in [3, 4, 5] to the gAT functional, by properly
dealing with the general functions F and G. For the sake of simplicity, we replace
the variational inequality in (13) with the constraint ∂vhJh(uh; vh, ψh) = 0, for
any ψh ∈ Vh. This is essentially equivalent to assuming that the constraint on
vh reduces to the strict inequality 0 < vh < 1 in Ω, i.e., the upper and lower
coincidence sets are empty.

We start by providing a technical result which links the multiplication oper-
ators introduced in Definition 2.1 and follows by a straightforward application
of the Gauss theorem and some componentwise differential relations.

Lemma 3.3 Let v : D → R, Z,W : D → R
n, Y : D → R

2 be sufficiently regular
functions with D a polygonal domain in R

2. Then, it holds

∫

D

F (v)A∇Z ⋄ ∇W dx =

∫

∂D
F (v)A∇Z ⋄ (W × n) ds

−
∫

D

[

F ′(v)A∇Z ⋄
(

W ×∇v
)

+ F (v)∇ ·
(

A∇Z
)

⊙W
]

dx,
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where F and A are the same functions as in (1), n is the unit outward normal
vector to ∂D and the divergence operator ∇· is denoted by the same symbol for
both vectors and tensors. Moreover, componentwise it holds

A∇Z ⋄ ∇W =
n
∑

i=1

(

A∇Z
)

i
·
(

∇W
)

i

A∇Z ⋄
(

W × Y
)

=

n
∑

i=1

(

A∇Z
)

i
· Y Wi,

with Y = (Y1, Y2)
T , and where

(

·
)

i
denotes the i-th column for tensors or the

quantity itself for vectors.

Theorem 3.1 Let (uh, vh) ∈ [Xh]
n ×Xh be a critical point of Jh. Then, for all

(φ, ψ) ∈ [H1(Ω)]n ×H1(Ω), with φ = {φi}ni=1, the following estimate holds:

|J ′(uh, vh;φ, ψ)| ≤ C
∑

K∈Th

{ n
∑

i=1

ρAi,K(vh,uh)ωK(φi) + ρBK(uh, vh)ωK(ψ)

}

, (14)

where the weights are

ωK(z) =

[ 2
∑

j=1

λ2j,K
(

rTj,KG∆K
(z)rj,K

)

]1/2

∀z ∈ H1(Ω), (15)

while the residual ρAi,K , i = 1, . . . , n, and ρBK are defined as

ρAi,K(vh,uh) =
∥

∥F ′(vh)(A∇uh)i · ∇vh + F (vh)∇ · (A∇uh)i
∥

∥

L2(K)

+
1

λ2,K
‖F (vh)− Ph(F (vh))‖L∞(K)‖(A∇uh)i‖L2(K)

+
1

2
‖J(A∇uh)iK‖L∞(∂K) ‖F (vh) + η‖L2(∂K)

(

hK
λ1,Kλ2,K

)1/2

+
δK,ΩD

|K|1/2h2K
λ2,KγA

|uh,i − gh,i(tk)|W 1,∞(K)

+
δK,ΩD

γA

(

‖uh,i − gh,i(tk)‖L2(K) + ‖gh,i(tk)− gi(tk)‖L2(K)

)

,

ρBK(uh, vh) =
1

2

∥

∥F ′(vh)A∇uh ⋄ ∇uh +Kε−1G′(vh)
∥

∥

L2(K)

+
Kε
2

‖J∇vhK‖L2(∂K)

(

hK
λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K) +

h2K
λ2,K

(

∣

∣F ′(vh)
∣

∣

W 1,∞(K)
‖A∇uh ⋄ ∇uh‖L2(K)

+
|K|1/2K

2ε

∣

∣G′(vh)
∣

∣

W 1,∞(K)
+

|K|1/2δK,CRk−1

γB
|vh|W 1,∞(K)

)

,
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with

J(A∇uh)iK =

{

[(A∇uh)i · n]e e ∈ Eh ∩Ω

2((A∇uh)i · n)
∣

∣

e
e ∈ Eh ∩ ∂Ω,

(16)

J∇vhK =
{

[∇vh · n]e e ∈ Eh ∩Ω

2(∇vh · n)
∣

∣

e
e ∈ Eh ∩ ∂Ω,

(17)

the generalized jumps, [·]e denoting the jump across the generic edge e of the
skeleton Eh of Th, with n the unit normal vector to e.

Proof. From equation (6), for any pair (φ, ψ) ∈ [H1(Ω)]n ×H1(Ω) and for u = uh,
v = vh, it holds

|J ′(uh, vh;φ, ψ)| ≤ |a(vh;uh,φ)|+ |b(uh; vh, ψ)|.

Now, let us estimate the two terms on the right-hand side, separately.

Estimate for a(vh;uh,φ) Since ah(vh;uh,φh) = 0 for any φh ∈ Xh, (uh, vh) being
a critical point of ah(·; ·, ·), and thanks to the linearity of a(·; ·, ·) with respect to the
third argument, we have

|a(vh;uh,φ)| ≤ |a(vh;uh,φ− φh)|+ |a(vh;uh,φh)− ah(vh;uh,φh)|. (18)

We tackle the two contributions on the right-hand side in (18) in turn.

Term |a(vh;uh,φ− φh)| Using (7), and Lemma 3.3, we obtain

|a(vh;uh,φ− φh)|

=

∣

∣

∣

∣

∑

K∈Th

[
∫

K

(F (vh) + η)A∇uh ⋄ ∇(φ− φh) dx

+
1

γA

∫

K

(uh − gD(tk))⊙ (φ− φh)χΩD
dx

]
∣

∣

∣

∣

=

∣

∣

∣

∣

∑

K∈Th

[

−
∫

K

(

F ′(vh)A∇uh ⋄
(

(φ− φh)×∇vh
)

+ F (vh)∇ · (A∇uh)⊙ (φ− φh)
)

dx

+

∫

∂K

(F (vh) + η)A∇uh ⋄
(

(φ− φh)× n
)

ds

+
1

γA

∫

K

(

uh − gh(tk) + gh(tk)− gD(tk)
)

⊙ (φ− φh)χΩD
dx

]∣

∣

∣

∣

,
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where χΩD
denotes the characteristic function of ΩD. By applying Lemma 3.3, the

Cauchy-Schwarz inequality and definition (16), we have

|a(vh;uh,φ− φh)|

≤
∑

K∈Th

n
∑

i=1

[

‖F ′(vh)(A∇uh)i · ∇vh + F (vh)∇ · (A∇uh)i‖L2(K) ‖φi − φh,i‖L2(K)

+
1

2
‖J(A∇uh)iK‖L∞(∂K) ‖F (vh) + η‖L2(∂K) ‖φi − φh,i‖L2(∂K)

+
δK,ΩD

γA

(

‖uh,i − gh,i(tk)‖L2(K) + ‖gh,i(tk)− gi(tk)‖L2(K)

)

‖φi − φh,i‖L2(K)

]

,

where δK,ΩD
= 1 if K ⊂ ΩD, and is equal to zero otherwise. Since this inequality

holds for any φh ∈ [Xh]
n, we pick φh such that φh,i = Ch(φi). Using Lemma 3.1 and

definition (15), we obtain

|a(vh;uh,φ− φh)|

≤ C
∑

K∈Th

n
∑

i=1

[

‖F ′(vh)(A∇uh)i · ∇vh + F (vh)∇ · (A∇uh)i‖L2(K)

+
1

2
‖J(A∇uh)iK‖L∞(∂K) ‖F (vh) + η‖L2(∂K)

(

hK
λ1,Kλ2,K

)1/2

+
δK,ΩD

γA

(

‖uh,i − gh,i(tk)‖L2(K) + ‖gh,i(tk)− gi(tk)‖L2(K)

)

]

ωK(φi).

Notice that constant C may change value throughout this proof.

Term |a(vh;uh,φh)− ah(vh;uh,φh)| Recalling definitions (7) and (11), we have

|a(vh;uh,φh)− ah(vh;uh,φh)| =
∣

∣

∣

∣

∫

Ω

(F (vh)− Ph(F (vh)))A∇uh ⋄ ∇φh dx

+
1

γA

∫

ΩD

(I − Ph) ((uh − gh(tk))⊙ φh) dx

∣

∣

∣

∣

,

that componentwise, via Lemma 3.3, becomes

|a(vh;uh,φh)− ah(vh;uh,φh)|

=

∣

∣

∣

∣

∑

K∈Th

n
∑

i=1

[
∫

K

(

(F (vh)− Ph(F (vh)))A∇uh

)

i
· (∇φh)i dx

+
1

γA

∫

K

(I − Ph) ((uh,i − gh,i(tk))φh,i)χΩD
dx

]∣

∣

∣

∣

.

Applying the Cauchy-Schwarz inequality, the interpolation estimate ‖v − Ph(v)‖L2(K)

≤ Ch2K |v|H2(K) and result |whvh|H2(K) ≤ 2|wh|W 1,∞(K)‖∇vh‖L2(K), for any K ∈ Th,
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we derive

|a(vh;uh,φh)− ah(vh;uh,φh)|

≤
∑

K∈Th

n
∑

i=1

[

‖F (vh)− Ph(F (vh))‖L∞(K)‖(A∇uh)i‖L2(K)‖∇φh,i‖L2(K)

+
δK,ΩD

γA
|K|1/2‖(I − Ph)((uh,i − gh,i(tk))φh,i)‖L2(K)

]

≤
∑

K∈Th

n
∑

i=1

[

‖F (vh)− Ph(F (vh))‖L∞(K)‖(A∇uh)i‖L2(K)‖∇φh,i‖L2(K)

+
CδK,ΩD

|K|1/2h2K
γA

|(uh,i − gh,i(tk))φh,i|H2(K)

]

≤ C
∑

K∈Th

n
∑

i=1

[

‖F (vh)− Ph(F (vh))‖L∞(K)‖(A∇uh)i‖L2(K)

+
δK,ΩD

|K|1/2h2K
γA

|uh,i − gh,i(tk)|W 1,∞(K)

]

(

‖∇(φh,i − φi)‖L2(K) + ‖∇φi‖L2(K)

)

.

In order to estimate ‖∇φi‖L2(K), we use Lemma 3.2 with βi = λ2i,K , i = 1, 2, and we
apply Lemma 3.1 to estimate the norm ‖∇(φh,i − φi)‖L2(K), thus obtaining

|a(vh;uh,φh)− ah(vh;uh,φh)|

≤ C
∑

K∈Th

n
∑

i=1

[

‖F (vh)− Ph(F (vh))‖L∞(K)‖(A∇uh)i‖L2(K)

+
δK,ΩD

|K|1/2h2K
γA

|uh,i − gh,i(tk)|W 1,∞(K)

]

1

λ2,K
ωK(φi).

Estimate for a(vh;uh,φ) Combining the upper bounds for the two contributions
on the right-hand side of (18), we have

|a(vh;uh,φ)| ≤ C
∑

K∈Th

n
∑

i=1

[

‖F ′(vh)(A∇uh)i · ∇vh + F (vh)∇ · (A∇uh)i‖L2(K)

+
1

2
‖J(A∇uh)iK‖L∞(∂K) ‖F (vh) + η‖L2(∂K)

(

hK
λ1,Kλ2,K

)1/2

+
δK,ΩD

γA

(

‖uh,i − gh,i(tk)‖L2(K) + ‖gh,i(tk)− gi(tk)‖L2(K)

)

+
1

λ2,K

(

‖F (vh)− Ph(F (vh))‖L∞(K)‖(A∇uh)i‖L2(K)

+
δK,ΩD

|K|1/2h2K
γA

|uh,i − gh,i(tk)|W 1,∞(K)

)]

ωK(φi)

= C
∑

K∈Th

n
∑

i=1

ρAi,K(vh,uh)ωK(φi).
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Estimate for b(uh; vh, ψ) Since bh(uh; vh, ψh) = 0, for any ψh ∈ Xh, and thanks
to the the linearity of b(·; ·, ·) with respect to the third argument, we have

|b(uh; vh, ψ)| ≤ |b(uh; vh, ψ − ψh)|+ |b(uh; vh, ψh)− bh(uh; vh, ψh)|. (19)

Let us estimate the two terms on the right-hand side, separately.

Term |b(uh; vh, ψ − ψh)| By exploiting definition (8), we have

|b(uh; vh, ψ − ψh)| =
∣

∣

∣

∣

1

2

∫

Ω

F ′(vh)(ψ − ψh)A∇uh ⋄ ∇uh dx

+
K
2

∫

Ω

(

ε−1G′(vh)(ψ − ψh) + 2ε∇vh · ∇(ψ − ψh)
)

dx+
1

γB

∫

CRk−1

vh(ψ − ψh) dx

∣

∣

∣

∣

.

Integrating elementwise by parts the third term, using the Cauchy-Schwarz inequality,
definition (17) and since ∆vh

∣

∣

K
= 0 as vh ∈ Xh, it follows

|b(uh; vh, ψ − ψh)|

≤
∑

K∈Th

[

1

2

∥

∥F ′(vh)A∇uh ⋄ ∇uh +Kε−1G′(vh)
∥

∥

L2(K)
‖ψ − ψh‖L2(K)

+
Kε
2

‖J∇vhK‖L2(∂K) ‖ψ − ψh‖L2(∂K) +
δK,CRk−1

γB
‖vh‖L2(K) ‖ψ − ψh‖L2(K)

]

,

where δK,CRk−1
= 1 if K ⊂ CRk−1 and vanishes otherwise. We pick ψh = Ch(ψ) and

we apply Lemma 3.1, thus obtaining

|b(uh; vh, ψ − ψh)|

≤ C
∑

K∈Th

[

1

2

∥

∥F ′(vh)A∇uh ⋄ ∇uh +Kε−1G′(vh)
∥

∥

L2(K)

+
Kε
2

‖J∇vhK‖L2(∂K)

(

hK
λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K)

]

ωK(ψ).

Term |b(uh; vh, ψh)− bh(uh; vh, ψh)| Using definitions (8) and (12), we have

|b(uh; vh, ψh)− bh(uh; vh, ψh)| =
∣

∣

∣

∣

1

2

∫

Ω

(I − Ph)(F
′(vh)ψh)A∇uh ⋄ ∇uh dx

+
K
2

∫

Ω

ε−1(I − Ph)(G
′(vh)ψh) dx+

1

γB

∫

CRk−1

(I − Ph)(vhψh) dx

∣

∣

∣

∣

.

13



By mimicking the same procedure adopted to bound |a(vh;uh,φh)−ah(vh;uh,φh)|, we
derive

|b(uh; vh, ψh)− bh(uh; vh, ψh)|

≤
∑

K∈Th

[

‖(I − Ph)(F
′(vh)ψh)‖L2(K) ‖A∇uh ⋄ ∇uh‖L2(K)

+
|K|1/2K

2ε
‖(I − Ph)(G

′(vh)ψh)‖L2(K) +
|K|1/2δK,CRk−1

γB
‖(I − Ph)(vhψh)‖L2(K)

]

≤ C
∑

K∈Th

h2K

[

|F ′(vh)|W 1,∞(K) ‖A∇uh ⋄ ∇uh‖L2(K) +
|K|1/2K

2ε
|G′(vh)|W 1,∞(K)

+
|K|1/2δK,CRk−1

γB
|vh|W 1,∞(K)

]

(

‖∇ψh −∇ψ‖L2(K) + ‖∇ψ‖L2(K)

)

≤ C
∑

K∈Th

h2K
λ2,K

[

|F ′(vh)|W 1,∞(K) ‖A∇uh ⋄ ∇uh‖L2(K)

+
|K|1/2K

2ε
|G′(vh)|W 1,∞(K) +

|K|1/2δK,CRk−1

γB
|vh|W 1,∞(K)

]

ωK(ψ).

Estimate for b(uh; vh, ψ) The separate upper bounds for the two terms on the
right-hand side of (19) yield the estimate

|b(uh; vh, ψ)| ≤ C
∑

K∈Th

[

1

2

∥

∥F ′(vh)A∇uh ⋄ ∇uh +Kε−1G′(vh)
∥

∥

L2(K)

+
Kε
2

‖J∇vhK‖L2(∂K)

(

hK
λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K)

+
h2K
λ2,K

(

|F ′(vh)|W 1,∞(K) ‖A∇uh ⋄ ∇uh‖L2(K)

+
|K|1/2K

2ε
|G′(vh)|W 1,∞(K) +

|K|1/2δK,CRk−1

γB
|vh|W 1,∞(K)

)]

ωK(ψ)

= C
∑

K∈Th

ρBK(uh, vh)ωK(ψ).

�

According to Corollary 3.4 in [5], we choose φi = ui − uh,i and ψ = v − vh
in (14). This allows us to control the error J(u, v) − J(uh, vh), which coincides
with J ′(uh, vh;φ, ψ) up to a third-order term in u − uh and v − vh. Thus, the
resulting anisotropic a posteriori error estimator is represented by

η =
∑

K∈Th

ηK(uh, vh),

where the local error estimator is

ηK(uh, vh) =

n
∑

i=1

ρAi,K(vh,uh)ω
R
K(ui − uh,i) + ρBK(uh, vh)ω

R
K(v − vh),

14



with

ωR
K(z − zh) =

[ 2
∑

j=1

λ2j,K
(

rTj,KG
R
∆K

(z − zh)rj,K
)

]1/2

with z = ui, v.

In particular, GR
∆K

(z − zh) is the matrix with lm-entry

[

GR
∆K

(z − zh)
]

lm
=

∑

T∈∆K

∫

T

(

Rl(zh)−
∂zh
∂xl

)(

Rm(zh)−
∂zh
∂xm

)

dx l,m = 1, 2,

where Rl(zh) is the recovered partial derivative of zh with respect to xl, for
l = 1, 2 [26, 29, 27, 28].

4 The adaptive numerical algorithm

In this section, we focus on the numerical method for solving the minimiza-
tion problem (10), based on an adaptive procedure. At each time level, the
minimization of the functional is combined with a mesh adaptation strategy.

4.1 Metric-based mesh adaptation

We adopt the approach in [15, 22, 14, 23]. A metric is a symmetric positive
definite tensor field M : Ω → R

2×2, which, for x ∈ Ω, provides the size of the
optimal mesh along all the directions around x. In practice, we approximate M
via a piecewise constant metric on a given mesh Th such that M|K = RT

KΛ−2
K RK ,

for any K ∈ Th, where RK and ΛK are defined as in Section 3.1. Notice that
whereas in Section 3.1 it is understood that Th is given, here Th is the actual
unknown of the adaptive procedure. Estimator η will help us in providing the
metric associated with the unknown mesh. Once the metric is defined, the
corresponding mesh is built using the mesh generator BAMG of FreeFem++ [20].

The unknown mesh is built by minimizing the number of elements, while
guaranteeing a given accuracy TOL on the global error estimator η. In particular,
we resort to an iterative procedure, which, at each step, first solves a constrained
minimization problem for the local metric on each element of the current mesh,
and then updates the mesh via BAMG with the derived metric as an input.
We provide the result about the constrained minimization problem, by referring
to [23] for all the details.

Proposition 4.1 The solution to the local constrained minimization problem
identifies the metric whose entries are

r1,K = γ2,K , r2,K · r1,K = 0,

λ1,K =

(

1

|K̂|
√
2

(

g1,K
g22,K

)1/2
TOL

#Th

)1/3

, λ2,K =

(

1

|K̂|
√
2

(

g2,K
g21,K

)1/2
TOL

#Th

)1/3

,
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where {γi,K , gi,K}, i = 1, 2, are the eigenvector-eigenvalue pairs of the weighted-
residual matrix

ΓK =
n
∑

i=1

[ρ̄Ai,K(vh,uh)]
2ḠR

∆K
(ui − uh,i) + [ρ̄BK(uh, vh)]

2ḠR
∆K

(v − vh),

with

ρ̄Ai,K(vh,uh) =
ρAi,K(vh,uh)

(|K̂|λ1,Kλ2,K)1/2
, ρ̄BK(uh, vh) =

ρBK(uh, vh)

(|K̂|λ1,Kλ2,K)1/2

and ḠR
∆K

(·) = GR
∆K

(·)/(|K̂ |λ1,Kλ2,K).

4.2 The optimize-while-adapt numerical procedure

The full adaptive algorithm is obtained by combining the mesh adaptive proce-
dure with the solution to the optimization problem (10). For this purpose, we
generalize the algorithm proposed in [4] by considering general expressions for
functions F and G. The algorithm is implemented in FreeFem++.

Given an initial mesh T 0
h , the adopted procedure is itemized in Algorithm 1.

Algorithm 1: Optimize-while-Adapt algorithm

for k = 0, · · · , N do
set l=0; errmesh=1; err=1;

if k = 0, set v0h=1; else v0h = vh(tk−1);
while ((errmesh > MESHTOL | err > VTOL) & l < nADAPT) do

set i=0;

while (err > VTOL & i < nMIN) do

ui

h=argmin
zh∈[X

(l)
h

]n
Jh(zh, v

i

h);

vi+1

h =argmin
zh∈X

(l)
h

Jh(u
i

h, zh);

err=‖vi+1

h − vih‖L∞(Ω);
i=i+1;

compute metric M(l+1) based on ui−1

h , vih and TOL;

build the adapted mesh T (l+1)
h , associated with M(l+1);

errmesh=|#T (l+1)
h −#T (l)

h |/#T (l)
h ;

set v0h = Πl→l+1(v
i

h);
l=l+1;

set uh(tk) = Πl−1→l(u
i−1

h ); vh(tk) = Πl−1→l(v
i

h); T k
h = T (l)

h ;

set T (0)
h = T (k)

h ; k = k + 1;

The algorithm alternates the optimization through a fixed-point scheme with
a maximum number nMIN of iterations, to mesh adaptation, until the convergence
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is reached. In particular, mesh adaptation is driven by tolerance MESHTOL which
monitors mesh stagnation; the minimization of Jh is controlled by the increment
on the phase field vh to within a tolerance VTOL. Moreover, a maximum number,
nADAPT, of global iterations is fixed to ensure termination of the whole procedure.
Operator Πn→n+1 is used to interpolate the finite element functions defined on

T (n)
h onto the new mesh T (n+1)

h .
According to the form of F and G, the minimization of the functional Jh

is performed differently. In particular, if we are dealing with the classical
Ambrosio-Tortorelli functional (F (v) = v2, G(v) = (1−v)2/4), Jh is strictly con-
vex with respect to each variable. In such a case, the Euler-Lagrange equations,
associated with the minimization of the functional, correspond to second-order
elliptic problems which are then approximated by a finite element method. On
the contrary, when F and G are linear functions, Jh is strictly convex only with
respect to uh. Therefore, we compute the minimum of Jh with respect to vh
via the FreeFem++ function IPOPT [25]. This function implements an interior
point optimization algorithm, to approximate a local solution of a constrained
minimization problem. In this case, we enforce the irreversibility condition by
requiring

v
(i+1)
h ≤

{

vh(tk−1) if vh(tk−1) < CRTOL

1 elsewhere,

by neglecting the corresponding penalty term in Jh.

5 Numerical assessment

We validate the performance of the proposed adaptive procedure by comparing
the corresponding results with the literature.

We particularize the gAT functional for two choices of the elasticity law, i.e.,
the plane-strain and anti-plane strain configurations. In the first case, u : Ω →
R
2 is a vector field and A∇u⋄∇u = σ(u) : ε(u), where σ = 2µε+λtr(ε)I is the

Cauchy stress tensor, λ and µ are the Lamé constants and ε = (∇u+(∇u)T )/2
is the strain tensor. The relations between the Lamé constants, the Young
modulus E and the Poisson ratio ν for homogeneous isotropic elastic media are

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

In the second case, u reduces to the scalar field u : Ω → R and A∇u⋄∇u = |∇u|2.
Three test cases are presented. In the first one, we check the consistency

of the adaptive method with [4], in the case of plane-strain elasticity, with the
classical Ambrosio-Tortorelli functional. The second test case investigates dif-
ferent choices for F and G in anti-plane configurations, and deal with the gAT
functional, while the last test case considers quadratic functions F and G, under
plane-strain conditions on a new benchmark.
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5.1 Test case I

We consider the crack branching test case in [6], where Ω = (−1.5, 1.5)2 is
characterized by a horizontal initial slit of length 1.5 and thickness 2 · 10−5 (see
Figure 2), under plane-strain elasticity, with E = 45 and ν = 0.18 (i.e., λ = 10.73
and µ = 19.07). An increasing in time displacement, with constant orientation
θ with respect to the x1-direction, is applied on top and bottom of the domain
in opposite directions, as shown in Figure 2.

Ω

ΩD−

ΩD+

θ

θg1

g2

Figure 2: Test Case I: geometric configuration.

In particular, ΩD consists of two subdomains, ΩD− = (−1.5, 1.5)×(−1.5,−1.3)
and ΩD+ = (−1.5, 1.5) × (1.3, 1.5), while gD(t) is defined as

gD(t) =

{

g1(t) = (t cos(θ), t sin(θ)) on ΩD+

g2(t) = (−t cos(θ),−t sin(θ)) on ΩD−,

for θ = {π/2, π/4, π/6, π/20, π/60, 0}. The final time is T = 0.23 and the number
of time steps is N = 23. To compare with [4], we adopt the classical Ambrosio-
Tortorelli functional with ε = 10−2, K = 1, η = 10−5, γA = γB = 10−5,
CRTOL = 3 · 10−4.

The parameters involved in Algorithm 1 are set to VTOL = 10−4, MESHTOL =
10−2, TOL = 10−3, nADAPT = 50, nMIN = 7.

In Figure 3, we show the phase-field vh for different choices of the angle θ.
The results are in agreement with the ones in Figure 6 of [4] from a qualita-
tive viewpoint. In particular, we observe that the branching angle depends, as
expected, on θ.

In Figure 4, we provide the adapted meshes for θ = π/2 (top) and θ = 0
(bottom). In both cases, the anisotropic features of the mesh are evident along
the crack whereas the mesh is essentially isotropic on the crack tip and, as expect,
far off the crack. In particular, the maximum aspect ratio sK is on the order
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of 102 for all the choices of θ, being largest for θ = π/60 (maxK sK = 713) and
smallest for θ = π/6 (maxK sK = 352).

(a) (b) (c)

(d) (e) (f)

Figure 3: Test case I: detail of the vh-field around the crack for θ =
{π/2, π/4, π/6, π/20, π/60, 0} (left-right, top-bottom).

In Figure 5, we plot the branching angle as a function of the orientation θ.
We consider the angle with respect to the x1-axis, computed by picking the angle
at which the distribution of the unit vectors, r1,K , gathered in bins of 20 angles
each, over the rectangle [0, 0.08] × [−0.08, 0] is a maximum. We observe a good
agreement with the results in [4]. In particular, the reliability of Algorithm 1 is
guaranteed for angles θ & 3◦ in contrast to [6] where the lower bound for θ is
about 7◦.

5.2 Test case II

We compare the results provided by the proposed adaptive procedure with [8]
by considering the gAT functional for different choices of F , G. Moreover, we
perform a sensitivity analysis to ε and TOL.

The domain is the plate Ω = (0, 2) × (0, 2.1) exhibiting a circular hole of
radius 0.7 in the bottom-left corner (see Figure 6) and an initial vertical slit of
length 0.6 and thickness 2 ·10−5. An anti-plane strain condition is applied to the
plate. In particular, a growing in time displacement gD(t) is applied on the two
upper parts of the domain, orthogonally to the plane and in opposite directions,
with

gD(t) =

{

t on ΩD+

−t on ΩD− ,
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(a) θ = π/2 - 3591 triangles (b) θ = π/2 - zoom

(c) θ = 0 - 4775 triangles (d) θ = 0 - zoom

Figure 4: Test case I: adapted grids for θ = π/2 (top) and θ = 0 (bottom) and
corresponding details on the right.

0 10 20 30 40 50 60 70 80 90
−70

−60

−50

−40

−30

−20

−10

0

Figure 5: Test case I: branching angle as a function of the orientation of the
applied displacement.
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where ΩD− = (0, 1) × (2, 2.1) and ΩD+ = (1, 2) × (2, 2.1). Moreover, we set
K = 1, η = ε2, γA = γB = 10−4, CRTOL = 10−3. The final time is T = 1.5 and
the number of time steps is N = 150.

Ω

ΩD− ΩD+

Figure 6: Test Case II: geometric configuration.

Following [8], the different choices of F and G are identified by the following
notation:
quadratic: J22: F (v) = v2, G(v) = (1− v)2/4;
linear: J11: F (v) = v, G(v) = 9(1− v)/64;
mixed: J21: F (v) = v2, G(v) = 9(1− v)/64.

In Algorithm 1, we set the input parameters as VTOL = 10−3, MESHTOL =
10−2, TOL = 10−2, nADAPT = 10, nMIN = 20.

Sensitivity with respect to ε

In this first check, we adopt the linear choice J11. In Figure 7, we compare the
phase-field vh and the energy distribution, for different choices of ε. In particular,
we distinguish between elastic and fracture energy, represented by the first and
the second integral in (1), respectively. The total energy is clearly the sum of
these two contributions.

We observe that for ε→ 0, a higher energy is demanded to initiate the crack
propagation. Consistently with [3], the crack thickness reduces as ε decreases.
The path of the crack is also influenced by ε, in particular with respect to the
breaking point on the circular profile.

Sensitivity with respect to TOL

We refer to J11 also for this check, by choosing the smallest value for ε in view
of the previous check, ε = 0.02. Figure 8 collects the corresponding results.
We notice that if TOL is large (e.g., TOL = 3 · 10−2), the predicted crack path
fails to detect the expected behavior. Nevertheless, if TOL is small, the number
of mesh element increases. For instance, when TOL = 7 · 10−3 the number of
mesh elements at t = T is 3020, while for TOL = 10−2, 2634 elements suffice.
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(a) ε = 0.02 (b) ε = 0.03 (c) ε = 0.04

Figure 7: Test Case II : energy distribution (top) and vh-field (bottom) for
different choices of ε and for the linear case J11.

(a) TOL= 3 · 10−2 (b) TOL= 10−2 (c) TOL= 7 · 10−3

Figure 8: Test Case II : phase-field vh for different choices of TOL and for the
linear case J11.
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The tuning of the parameters may obviously benefit of a reduced number of
elements.

Anisotropic vs isotropic mesh adaptation

We finally compare the performance of Algorithm 1 with the results in [8], Figure
3. In particular, we focus on both the qualitative behavior of the crack path and
on the cardinality of the final adapted grid.

ε = 0.02 ε = 0.03 ε = 0.04

J11

J21

J22

Figure 9: Test Case II : vh-field for different choices of F and G (by rows) and
ε (by columns).

The crack path shown in Figure 9 is in agreement with the results in [8] by
exhibiting the same trend according to the linear or quadratic nature of F and
G. Apparently, the case J11 is more robust in preserving the expected shape of
the crack path. Moreover, we notice that the anisotropic adapted meshes sharply
capture the crack path, with a very reduced number of triangles. For instance,
the number of mesh elements in [8] is about 100000 for J22 and 500000 for J11.
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The anisotropic meshes cut off drastically this number, which is about two orders
of magnitude less (see Figure 10 for the actual cardinalities). Moreover, we notice
that the number of elements decreases for increasing values of ε. Concerning the
anisotropic features of the elements, the maximum aspect ratio of the meshes in
Figure 10 varies between 64 and 630, as reported in Table 1.

ε = 0.02 ε = 0.03 ε = 0.04
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J21

J22
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2
7
1

Figure 10: Test Case II : anisotropic adapted meshes for different choices of F
and G (by rows) and ε (by columns). The cardinality is provided next to the
meshes.

5.3 Test Case III

We focus on the benchmark problem in [24]. We consider the rectangular plate
Ω = (0, 8) × (0, 2), under plane-strain elasticity, with a triangular slit on the
bottom edge (see Figure 11). An increasing in time vertical displacement is
applied on ΓD,1 = (3.9, 4.1) × {2}, while a homogeneous Dirichlet boundary
condition is applied on ΓD,2 = (0, 0.1)×{0} and a vanishing vertical displacement
is enforced on ΓD,3 = (7.9, 8) × {0}. The final time is T = 3.5 and the number
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ε = 0.02 ε = 0.03 ε = 0.04

J11 6.3 · 102 1.0 · 102 2.0 · 102
J21 1.6 · 102 1.8 · 102 6.6 · 101
J22 7.9 · 101 6.4 · 101 1.2 · 102

Table 1: Test Case II : maximum aspect ratio for different choices of F and G
(by rows) and ε (by columns).

of time steps is N = 3500. The applied displacement consists of increments of
10−4 for the first 360 steps, and of 10−5 successively.

To be consistent with [24], we choose F (v) = v2 and G(v) = (1 − v)2 in the
gAT functional, for K = 0.5 η = 10−6, γA = γB = 10−5, CRTOL = 10−6.

We set the input parameters in Algorithm 1 as VTOL = 10−4, MESHTOL =
10−2, TOL = 10−2, nADAPT = 50, nMIN = 10.

In Figure 12 and 13, we observe that the qualitative behavior of the fracture
is similar to Figure 13 in [24]. Moreover, decreasing ε, the fracture thickness be-
comes thinner, as expected, and the required number of mesh elements increases
(about 7800 for ε = 0.06 and 12000 for ε = 0.03). In both cases, the cardinality
is significantly lower with respect to the meshes in [24] which consist of about
20000 mesh elements. In Figure 14, we show a detail of the mesh around the
crack for both values of ε at t = T . For the two choices of ε, the maximum
aspect ratio sK is about 2000.

6 Conclusions

The optimize-while adapt algorithm employed to model brittle fractures is shown
to perform effectively both in terms of computational saving (degrees of freedom)
and accuracy for anti-plane and plane-strain elasticity benchmarks.

The first test case confirms the consistency of the analysis for the general-

ΓD,1

ΓD,2 ΓD,3

0.4

0.2

2

44

Figure 11: Test Case III : geometric configuration.
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(a) ε = 0.03

(b) ε = 0.06

Figure 12: Test Case III : vh-field for different choices of ε.

(a) ε = 0.03 (b) ε = 0.06

Figure 13: Test Case III : detail of the vh-field around the crack path for different
choices of ε.
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(a) ε = 0.03 (b) ε = 0.06

Figure 14: Test Case III : detail of the anisotropic adapted mesh around the
crack path, for different choices of ε.

ized Ambrosio-Tortorelli model with respect to the classical Ambrosio-Tortorelli
approximation studied in [4].

The sensitivity analysis to the parameters ε and TOL, performed in the second
test case, highlights the key-role played by TOL in ensuring the correct path
tracking. In particular, too high a value of TOL fails to detect the expected
curved path. The effect of ε seems less strong, at least in the linear case J11,
since it affects essentially only the thickness of the fracture.

The plane-strain configuration in the third test case corroborates the ef-
fectiveness and accuracy of the whole adaptive procedure compared with the
reference literature [24].

As a next step, a comparison with experimental results is clearly advisable
to move from verification to validation. A further generalization of the model
to include effects due to thermal shocks is also ongoing.
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