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Abstract

We combine the good properties of recovery-based error estimators with
the richness of information typical of an anisotropic a posteriori analysis.
This merging yields error estimators which are general purpose yet simple
and easy to implement, and automatically incorporate detailed geometric
information about the computational mesh. This allows us to devise an
effective anisotropic mesh adaptation procedure suited to control the dis-
cretization error both in the energy norm and in a goal-oriented framework.
The advection-diffusion-reaction problem is considered as a computational
paradigm.

1 Introduction

Advection-diffusion-reaction (ADR) problems can be interesting per se (e.g., pollu-
tion transport in air or rivers, population dynamics in biology) or can be employed
as downscaled models for studying more complex problems in computational fluid
dynamics (e.g., the Navier-Stokes equations for modeling viscous flows around
bodies). A joint effect of geometry, advective field pattern, and boundary condi-
tions may sometimes render ADR problems hard to be numerically solved unless
ad hoc numerical schemes or computational meshes are employed.
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The objective of this work is to propose practical a posteriori error estimators
for driving an anisotropic adaptation of the mesh, i.e., where not only the size but
also the shape and the orientation of the elements are controlled so as to match the
directional features of the solution. It is in fact well known that anisotropic mesh
adaptation is cost-effective in dealing with a broad range of problems ([2, 3, 4, 8]).
In particular, we stick to recovery-based estimators, relying on the ideas proposed
by O.C. Zienkiewicz and J.Z. Zhu in [9]. After devising a simple recovery tech-
nique, different from the standard one, we introduce an estimator for controlling
the H1-seminorm of the discretization error [5, 6, 7]. This estimator automati-
cally includes the anisotropic features (size, aspect ratio, and orientation) of the
triangulation in contrast to the standard Zienkiewicz-Zhu estimator.

The strong interest in approximating goal quantities for practical applications
led us to extend the theory in [5, 6, 7] to a goal-oriented setting, showing that
recovery-based and goal-oriented are compatible approaches which can be merged
in an effective and practical way.
As a reference ADR problem used to introduce the new anisotropic estimator
we employ the standard one completed with homogeneous Dirichlet boundary
conditions, i.e., find u ∈ V = H1

0 (Ω), such that

a(u, v) =

∫

Ω
µ∇u · ∇v dx+

∫

Ω
β · ∇u v dx+

∫

Ω
σ u v dx =

∫

Ω
fv dx ∀v ∈ V, (1)

where Ω is a polygonal domain in R
2, µ > 0 is the diffusion coefficient, β ∈

[W 1,∞(Ω)]2 is the advective field, σ ∈ L∞(Ω) is the reactive coefficient, and where
standard notation are adopted for the Lebesgue and Sobolev spaces and their
norms. To guarantee the well-posedness of (1) we add the assumption σ− 1

2∇·β ≥
0.
The structure of a recovery-based estimator allows us a straightforward extension
of the a posteriori analysis below to other types of boundary conditions.

2 Zienkiewicz-Zhu like anisotropic error estimators

The good properties of the recovery-based error estimators (independence of the
problem, computational easiness, effectiveness) justify their broad use, mostly
because they work pretty well in practice in many engineering applications. On the
other hand, the presence of strong directional features in such applications requires
ad hoc meshes to sharply detect the phenomena of interest. To meet this demand,
we have proposed in [5, 6, 7] a suitable enrichment of the standard recovery-based
estimators, which explicitly takes into account the intrinsic directionalities of the
problem. For this purpose, let us first lay down the anisotropic background.

2.1 The anisotropic setting

Let Th = {K} be a conforming partition of Ω consisting of triangles. According to
the anisotropic framework in [1], the size, shape, and orientation of each element
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K of Th are described by means of the affine map TK : K̂ → K between the
reference triangle K̂ and the generic element K ∈ Th. In particular, we pick K̂ as
the equilateral triangle centered at the origin, with coordinates (−

√
3/2, −1/2),

(
√

3/2, −1/2), (0, 1) and edge length
√

3. The map TK writes out as x = TK(x̂) =
MK x̂ + tK , where MK ∈ R

2×2 is the Jacobian and tK ∈ R
2 is the shift vector.

To get the anisotropic information associated with K out of TK , we factorize MK

via the polar decomposition as MK = BK ZK , where BK ∈ R
2×2 is symmetric

positive definite, and ZK ∈ R
2×2 is orthogonal. Then BK is spectrally decomposed

as BK = RT
K ΛK RK , with RT

K = [r1,K , r2,K ] and ΛK = diag(λ1,K , λ2,K) the
eigenvector and eigenvalue matrix, respectively. The map TK stretches the unit
circle circumscribing K̂ into an ellipse circumscribing K: the unit vectors {ri,K}
provide us with the corresponding principal directions, whereas the eigenvalues
{λi,K} are the length of the ellipse semi-axes. Without loss of generality, we
assume λ1,K ≥ λ2,K > 0 so that the aspect ratio, sK = λ1,K/λ2,K is always greater
than or equal to one, for any K ∈ Th, equality holding when K is equilateral.

2.2 An error estimator for the H
1-seminorm

In [5] we propose an a posteriori error estimator for the H1-seminorm of the
discretization error eh = u − uh, where uh is the Galerkin affine finite element
approximation to (1). The actual estimator reads

η2
H1 =

∑

K∈Th

[
ηK, H1

]2
,

[
ηK, H1

]2
=

1

λ1,Kλ2,K

2∑

i=1

λ2
i,K

(
rT
i,K GK(EK(uh))ri,K

)
,

(2)
where GK(·) is the symmetric positive semidefinite matrix with entries

[GK(w)]i,j =
∑

T∈∆K

∫

T
wi wj dx, with i, j = 1, 2, (3)

with ∆K = {T ∈ Th : T ∩ K 6= ∅}, and where EK(uh) = P∆K
(∇uh) − ∇uh|∆K

is the approximation, over ∆K , to the error on the gradient via a suitable recov-
ered gradient P∆K

(∇uh) ([9]). In particular, in [5, 6, 7] we employ as recovery
procedure the area-weighted average over the patch ∆K of the gradients of the dis-
crete solution. Estimator (2) exhibits the standard recovery-based structure in the
term EK(uh), while the anisotropic contribution is represented by the weighted
projection of the isotropic estimator onto the anisotropic directions ri,K .

2.3 A goal-oriented error estimator

The strong interest in engineering applications prompted us in [7] to generalize
estimator (2) to a goal-oriented approach. That approach is however constrained
to the Poisson problem and to a special choice of the functional of interest J :
V → R. Here we propose a more general approach suited to dealing with problem
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(1) and where J can be any functional in the dual space V ′. The dual problem
associated with (1) is: find z ∈ V , such that

a(v, z) = J(v) ∀v ∈ V. (4)

Combining (1) with (4) and using the Galerkin orthogonality, we get the error
representation

J(u − uh) = a(u − uh, z − zh), (5)

with zh the Galerkin affine finite element approximation to (4). In a recovery-
based spirit, (5) suggests the quantity

∫

∆K

µEK(uh) ·EK(zh) dx +

∫

∆K

β ·EK(uh)FK(zh) dx +

∫

∆K

σ FK(uh)FK(zh) dx

(6)
as a first attempt to estimate J(eh)

∣∣
K

, where the explicit definition of a(·, ·) is
used and suitable recovered quantities replace the exact fields. In particular,
FK(uh) =

(
R(uh) − uh

)∣∣
∆K

, where R(uh) is the affine field recovered via the

arithmetic average over the patch ∆N = {T ∈ Th : T ∋ N} of uh at the centroids
of T ∈ ∆N , with N the generic node of Th.

The next step is to convert (6) into an anisotropic source of information. The
strategy that we pursue casts the generic term of (1) in the reference framework
(∆̂K = T−1

K (∆K)) and then carries it back to the physical framework, employing
the spectral properties of TK . This leads for free to a structure similar to the one
in (2), i.e., with built-in anisotropic quantities. Let us exemplify this procedure
starting from the diffusive term. We employ the relations ∇̂û = MT

K∇u, |∆̂K | =
|∆K |/(λ1,Kλ2,K), and û = u ◦TK (and similarly for v), and the decompositions of
the Jacobian MK in Sect. 2.1, to get

∫

b∆K

µ̂∇̂û · ∇̂v̂ dx̂ =
1

λ1,Kλ2,K

∫

∆K

µΛKRK(∇u) · ΛKRK∇v dx

=

∫

∆K

µ
[
sK(r1,K · ∇u)(r1,K · ∇v) + s−1

K (r2,K · ∇u)(r2,K · ∇v)
]
dx

= sKrT
1,KGK,µ(∇u,∇v)r1,K + s−1

K rT
2,KGK,µ(∇u,∇v)r2,K ,

(7)

where GK,µ is the matrix with entries [GK,µ(t,w)]ij =
∫
∆K

µtiwj dx, i, j = 1, 2,

for t,w : Ω → R
2. It is guaranteed the consistency with the isotropic case

(λ1,K = λ2,K). In an analogous manner, the advective term becomes

(λ1,Kλ2,K)1/2

∫

b∆K

β̂ · ∇̂û v̂ dx̂ = (λ1,Kλ2,K)−1/2

∫

∆K

βT ZT
KRT

KΛKRK∇u v dx

= (λ1,Kλ2,K)−1/2

∫

∆K

(ZKβ)T
[
λ1,K(r1,K · ∇u)r1,K + λ2,K(r2,K · ∇u)r2,K

]
v dx

= s
1/2
K rT

1,KGK,β(∇u, v)r1,K + s
−1/2
K rT

2,KGK,β(∇u, v)r2,K ,
(8)
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where the entries of GK,β are [GK,β(t, w)]ij =
∫
∆K

(ZKβ)itjw dx, i, j = 1, 2, for

t : Ω → R
2 and w : Ω → R. The consistency with the isotropic case is recovered

via the scaling factor (λ1,Kλ2,K)1/2.
The reactive term does not provide any anisotropic contribution.

The right-hand sides in (7) and (8) yield the anisotropic counterpart of the
first two terms in (6) after replacing ∇u with EK(uh), ∇v with EK(zh), and ∇u
with EK(uh), v with FK(zh), respectively. This suggests as a first anisotropic
attempt to estimate J(eh)

∣∣
K

the quantity

sKrT
1,KGK,µ(EK(uh),EK(zh))r1,K + s−1

K rT
2,KGK,µ(EK(uh),EK(zh))r2,K

+ s
1/2
K rT

1,KGK,β(EK(uh), FK(zh))r1,K + s
−1/2
K rT

2,KGK,β(EK(uh), FK(zh))r2,K

+

∫

∆K

σ FK(uh)FK(zh) dx.

(9)
To make such an estimator effective, we have to introduce a suitable regularization
since both GK,µ and GK,β are neither symmetric nor positive definite.
Since

rT
i,KGK,µ(t,w)ri,K = rT

i,KGK,µ(w, t)ri,K = rT
i,KGT

K,µ(t,w)ri,K ,

rT
i,KGK,β(t, w)ri,K = rT

i,KGK,ZT

K
t
(Zkβ, w)ri,K = rT

i,KGT
K,β(t, w)ri,K ,

i = 1, 2, we can replace in (9) the two matrices with their symmetric counterparts
Gsym

K,µ (·, ·) = (GK,µ(·, ·) + GT
K,µ(·, ·))/2 and Gsym

K,β(·, ·) = (GK,β(·, ·) + GT
K,β(·, ·))/2.

Next, to ensure the positive definiteness, we replace the symmetrized matrices
with the modulus matrices (e.g., if G = V T DV , then |G| = V T |D|V , with D
and V the eigenvalues and eigenvectors matrices, respectively); this leads to the
definitive estimator

ηK,J =

sKrT
1,K

∣∣G sym
K,µ (EK(uh),EK(zh))

∣∣r1,K + s−1
K rT

2,K

∣∣G sym
K,µ (EK(uh),EK(zh))

∣∣r2,K

+s
1/2
K rT

1,K

∣∣G sym
K,β (EK(uh), FK(zh))

∣∣r1,K + s
−1/2
K rT

2,K

∣∣G sym
K,β (EK(uh), FK(zh))

∣∣r2,K

+
∣∣∣
∫

∆K

σ FK(uh)FK(zh) dx
∣∣∣.

An example of the benefits due to the regularization above is shown in Fig. 1,
where we compare the contour lines associated with the absolute value of the
quantity in (9) with those of ηK,J , for given indefinite matrices GK,µ, GK,β asso-
ciated with the test case in Sect. 3. Only in the second case does it exist a unique
minimum.

Finally, the matrix ZK in the definition of GK,β(·, ·) is, in practice, taken as
the identity matrix. It represents a degree of freedom in the mesh generation as-
sociated with a rotation of K inside the ellipse given by {λi,K , ri,K}i=1,2. However
this information is, usually, not required by a metric-based mesh generator.
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Figure 1: Contour lines of the absolute value of (9) (left) and of ηK,J (right): the
red star marks the minimum

3 Numerical assessment

We provide here the actual procedure employed to convert ηK,J into a practical
tool for driving the mesh adaptation.

3.1 The adaptive procedure

Following, e.g., [7], we first properly scale the matrices in ηK,J with respect to
|∆K |, to factor out the patch size information. This yields

ηK,J = |∆̂K |λ1,Kλ2,K

[
sKrT

1,K

∣∣∣G̃ sym
K,µ (EK(uh),EK(zh))

∣∣r1,K

+s−1
K rT

2,K

∣∣G̃ sym
K,µ (EK(uh),EK(zh))

∣∣r2,K + s
1/2
K rT

1,K

∣∣G̃ sym
K,β (EK(uh), FK(zh))

∣∣r1,K

+s
−1/2
K rT

2,K

∣∣G̃ sym
K,β (EK(uh), FK(zh))

∣∣r2,K +
1

|∆K |
∣∣∣
∫

∆K

σ FK(uh)FK(zh) dx
∣∣∣
]
,

where G̃ sym
K,µ (·, ·) = G sym

K,µ (·, ·)/|∆K |, and likewise for G̃ sym
K,β (·, ·). Then, we mini-

mize the expression in square brackets with respect to the pair {sK , r1,K} subject
to the constraints sK ≥ 1 and r1,K · r2,K = 0, with ‖r1,K‖ = ‖r2,K‖ = 1. For
this purpose, we set r1,K = [cos θ, sin θ]T and r2,K = [− sin θ, cos θ]T , for a certain
0 ≤ θ < π, and let F = F (sK , θ) be the quantity in brackets. For this minimiza-
tion we use the Matlab function fmincon. Moreover, in a predictive fashion, the
matrices and the area |∆K | are computed on the actual mesh, where both uh and
zh are obtained. This yields the minimum F ∗ = F (s∗K , θ∗) for the optimal values,
{s∗K , θ∗}, and consequently r∗1,K = [cos θ∗, sin θ∗]T .
To get the optimal values λ∗

1,K and λ∗
2,K , we enforce the equidistribution of the

error, i.e., ηK,J = TOLL/#Th, where #Th is the mesh cardinality and TOLL is the

accuracy demanded on J(eh). This yields λ∗
1,Kλ∗

2,K = TOLL/(#Th|∆̂K |F ∗). To
split the values λ∗

1,K , λ∗
2,K we finally exploit the identity s∗K = λ∗

1,K/λ∗
2,K .

The optimal metric is formed by the optimal values λ∗
1,K , λ∗

2,K , r∗1,K .
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Figure 2: Solution u (left) and convergence history for the H1-seminorm (center)
and for J = J1 (right)

3.2 The “arrow” test case

We consider (1), choosing µ = σ = 10−2, β = [1, 1]T on Ω = (0, 1)2. The exact
solution is tailor-made so that it exhibits one internal layer along the SW-NE
diagonal and two boundary layers along the top and right sides of Ω (see Fig. 2
(left)):

u(x, y) =
[
α(x, y) + ρ(x) ρ(y)

]
δ(x)δ(y),

with α(x, y) = e−(y−x)2/0.01, ρ(ζ) = ζ −
(
e(ζ−1)/ε − e−1/ε

)
/
(
1 − e−1/ε

)
, δ(ζ) =

1 − e−ζ/ε + e−1/ε − e−(1−ζ)/ε, and ε = 10−2. The source term is computed as
f = −µ∆u + β · ∇u + σ u.

On this test case we assess the performance of both the estimators defined
by ηK, H1 and ηK,J . Let us start from the H1-seminorm control. In Fig. 3 (left)
we show the adapted grid for the tolerance TOLL = 10−2/2: it consists of 3887
elements which perfectly capture all the internal and boundary layers. The max-
imum stretching factor over the mesh elements is smax

K = 129.1. The convergence
history for this estimator is summarized in Fig. 2 (center) as a function of #Th:
the rate of convergence turns out to be about 1/2, accordingly to the a priori
analysis.

Moving to the goal-oriented setting, we consider two different goal-functionals:
we control the mean value of u on Ω via J1 and the energy norm a(u, u) via
J2. The grids associated with these two choices are quite different (see Fig. 3,
(center) and (right)): in the case of J1 we can appreciate the strong influence
of the dual problem through the boundary layers on the left and bottom sides
of Ω; this is not the case for J2 since the control of the energy norm leads to
identifying z with u. Moreover, the directions of the anisotropic features on the
top and right sides are skew and parallel to these layers for J = J1 and J = J2,
respectively. These differences confirm the sensitivity of the adapted mesh to the
goal functional. The maximum stretching factor and the cardinality of Th are
smax
K = 29.9, #Th = 7061, and smax

K = 38.4, #Th = 2103 in the two cases, for
TOLL = 10−2/4 and TOLL = 10−1/2, respectively.
Figure 2 (right) displays the convergence history for the functional error J1(eh)
which exhibits an O(1/#Th) order of convergence.
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Figure 3: Adapted grids for the H1-seminorm (left), J = J1 (center) and J = J2

(right) control

Prompted us by the above promising results, we are now extending the ap-
proach proposed in this paper to the more challenging shallow water system.
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