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ABSTRACT
The aorta is the artery that undergoes the most deformation during the heartbeat. This
is associated with the strong Fluid-Structure Interaction (FSI) occurring between the
blood flow and the aortic wall. Moreover, also the dynamics of the aortic valve is the
result of a FSI process. In this work, we describe the mathematical formulation of both
vascular and valve FSI problems and we review the most recent numerical strategies
for their solution. Concerning vascular FSI, we consider a moving-domain approach
encompassing an arbitrary Lagrangian-Eulerian formulation of the fluid equations, which
is the most employed framework in hemodynamics applications. In this context, we
provide a systematic description and comparison of different algorithms for the coupling
between the fluid and the structure model. In terms of valve FSI, we report a survey
on the different numerical methods for the treatment of surfaces immersed and moving
in a fluid, with particular focus on unfitted methods, which are the most established for
cardiac valve modeling, and the more recent promising family of Cut Finite Elements
methods. Aiming to point out the main difficulties specifically related to aortic FSI
simulation in a patient-specific context, we also review strategies for the imposition of
boundary conditions, the recovery of a zero-pressure configuration of the vessel wall, and
the calibration and validation of computational models against clinical data.
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1 INTRODUCTION & MOTIVATIONS
The aorta is the most deformable vessel among the arteries, experiencing a
change of cross-section area of up to about 30%, corresponding to a change of
radius of up to about 15% [5]. This is due to the large amount of elastin and to
the high blood pressure, and its ultimate goal is to store about 50% of incoming
blood during systole. This blood supply is then released during diastole thanks to
the vessel wall elastic response (Windkessel effect), ensuring an almost constant
exchange of oxygen with the tissues [190]. In what follows, we will refer to this
Fluid-Structure Interaction (FSI) mechanism arising between blood and vessel
wall as vascular FSI.

For the reasons above, a FSI modeling is required to describe the mechanics of
the aorta, whenever the attention is on structural quantities (such as Von Mises
stresses) to assess, e.g., plaque and aneurysm rupture risk, or on local blood
dynamics features that could be heavily influenced by FSI and wall movement,
such as in presence of dissections or when a Thoracic Endovascular Aortic Repair
(TEVAR) procedure is performed.

This is in accordance with the great amount of aortic studies that considered
FSI in the last decade. We mention for example works on: the blood dynamics
in the ascending aorta in presence of a Transcatheter Aortic Valve Replace-
ment/Implantation (TAVR/TAVI) [132], the effect of hemodynamics on TEVAR
implant [151, 156, 18, 2, 146], the influence of blood flow on stress in thoracic
aneurysms [43], the hemodynamics in presence of aortic dissection [157, 19,
49].

We are interested here in describing also another FSI mechanism occurring
in the aorta, namely the interaction between blood and aortic valve leaflets.
The valve is an immersed thin structure experiencing large displacements during
closure-opening phases (up to 100% of the leaflet dimension) and contact among
leaflets. We will refer to this mechanism as valve FSI.

The requirement of a FSI modeling (although in general different from the
vascular case) is here mandatory in order to well describe the large valve dis-
placements [137]. Recent works on this topic carry out investigations on valvular
pathologies – such as bicuspid aortic valve [62] or aortic valve stenosis [131,
117] – and treatments – e.g., surgical repairment [64] or transcatheter aortic
valve implantation [132, 197, 85, 20].

A representative example of aortic blood velocity obtained with both vascular
and valve FSI is reported in Fig. 1.

2 THE MATHEMATICAL PROBLEM FOR VASCULAR FSI
The most standard and used formulation for vascular FSI is based on an Arbi-
trary Lagrangian-Eulerian (ALE) description of fluid equations [100, 60], in
combination with a Lagrangian description1 of the structure problem. The ALE

1. Quantities referred to a Lagrangian description will be indicated with ̂
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FIGURE 1 Blood velocity field of a TAVR/TAVI patient on a slice of the ascending aorta, at systolic
peak (left) and in the systolic deceleration phase (right). Vascular FSI is solved by an ALE-based
monolithic method (see Section 3) and coupled with the valve leaflets via the RIIS method (see
Section 4.3). Code: lifex - https://lifex.gitlab.io. Credits: A. Castorio & B. Loretoni.

formulation consists in extending the physical displacement at the fluid-structure
interface in the whole fluid domain, associating a virtual fluid domain displace-
ment 𝒅 𝑓 , and in writing the Navier-Stokes equations in a frame of reference
which moves according to such displacement. To this aim, the Reynolds trans-
port formula is used to express the ALE material time derivative 𝛿

𝛿𝑡
of a vectorial

function 𝒗 in terms of the Eulerian one:

𝛿𝒗

𝛿𝑡
=
𝜕𝒗

𝜕𝑡
+ 𝒖 𝑓 · ∇𝒗,

where 𝒖 𝑓 =
𝜕𝒅 𝑓

𝜕𝑡
is the fluid domain velocity.

To obtain the virtual fluid domain displacement 𝒅 𝑓 an extra problem is
solved, usually a harmonic extension2 of the FS interface displacement. The
fluid domain displacement 𝒅 𝑓 is then used to move the points of the fluid mesh
accordingly, obtaining the new computational fluid domain3.

Thus, the FSI problem reads:
Find the fluid velocity 𝒖, the fluid pressure 𝑝, the fluid domain displacement 𝒅 𝑓 ,

2. Other choices considered so far are linear elasticity [175], biharmonic extension [199], and
incremental extensions [171]. In all the cases, the aim is to improve regularity of the fluid mesh
motion avoiding distortion of the elements

3. Usually, the extension problem is solved in a Lagrangian framework, thus the update of the fluid
domain is performed with respect to the reference position: 𝒙(𝑡 ) = �̂� + �̂� 𝑓 (𝑡 , �̂�)
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FIGURE 2 Domains and boundaries of the FSI problem: in blue the fluid domain and in red the
structure domain. Left: reference configuration; right: current configuration at time 𝑡 .

and the structure displacement 𝒅, such that

𝜌 𝑓

(
𝛿𝒖

𝛿𝑡
+ (𝒖 − 𝒖 𝑓 ) · ∇𝒖

)
− ∇ · 𝑻 𝑓 (𝒖, 𝑝) = 0 in Ω𝑡𝑓 , (1a)

∇ · 𝒖 = 0 in Ω𝑡𝑓 , (1b)

𝒖 =
𝜕𝒅

𝜕𝑡
on Σ𝑡 , (1c)

𝑻𝑠 (𝒅)𝒏 = 𝑻 𝑓 (𝒖, 𝑝)𝒏 on Σ𝑡 , (1d)

𝜌𝑠
𝜕2 �̂�

𝜕𝑡2
− ∇ · 𝑻𝑠

(
�̂�
)
= 0 in Ω̂𝑠 , (1e)

�̂� 𝑓 = �̂� on Σ̂, (1f)

− △ �̂� 𝑓 = 0 in Ω̂ 𝑓 , (1g)

where Ω𝑡
𝑓

and Ω𝑠 are the fluid and structure domains represented in Fig. 2, 𝜌 𝑓
and 𝜌𝑠 the densities, 𝑻 𝑓 = −𝑝𝑰 + 𝜇

(
∇𝒖 + (∇𝒖)𝑇

)
the fluid Cauchy stress tensor

with 𝜇 the viscosity4, and 𝑻𝑠 is the first Piola-Kirchhoff tensor corresponding
to a constitutive law based on Finite Elasticity, suitable for the arterial vessel,
see [101]. Conditions (1c)-(1d) represent the no-slip and third Newton law
continuity interface conditions, referred to as kinematic and dynamic conditions,
respectively. Condition (1f) represents the geometric condition, which in fact
couples the fluid and the structure also from the geometric point of view. System

4. For the aorta, often a Newtonian model is considered. However, what follows could be applied
to the non-Newtonian case as well [157]
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(1) needs to be supplemented with suitable initial conditions for 𝒖, 𝒅, ¤𝒅 and
boundary conditions on 𝜕Ω 𝑗 \Σ, 𝑗 = 𝑓 , 𝑠. Finally, notice the zero forcing terms
both for the fluid and the structure problems, due to the negligible action of
gravity and other external forces on the aorta system.

An alternative strategy, not detailed here, is the fully Eulerian formulation
proposed in [162] where both the fluid and structure subproblems are written in
an Eulerian framework, allowing to avoid artificial fluid domain mapping as in
the ALE formulation.

3 NUMERICAL APPROACHES FOR VASCULAR FSI

3.1 Preliminaries
The aim of this section is to review recent numerical techniques for the solution
of vascular FSI in hemodynamics, with specific attention to the case of the aorta.
Since the aorta is characterized by the largest wall thickness, we mainly focused
on numerical methods designed and effective for thick structures. The interested
reader may refer, e.g., to [158] and references therein for the case of a membrane
structure.

In order to make this discussion concise and easily readable, our choice
has focused on some relevant techniques developed in the last years. This
choice implies that the reader is familiar with standard numerical issues and
terminology concerning FSI for hemodynamics, which are briefly summarized
in what follows (for a general overview, see, e.g., [158]):
- Space discretization for ALE formulation: The harmonic extension (1f)-(1g)

is solved in practice on the computational mesh, so that the update of the fluid
domain has to be intended for the mesh points.
The choice of the ALE formulation is particularly suited when a Finite Element
(FE) space discretization is used. Indeed, given the vectorial basis function
𝝓 𝑗 = 𝝓 𝑗 (𝒙(𝑡)) in the node 𝒙 𝑗 = 𝒙 𝑗 (𝑡) 5, the (material) time derivative of a FE
function 𝒗ℎ =

∑
𝑗 𝑣 𝑗𝝓 𝑗 reads

𝛿(𝒗ℎ (𝑡, 𝒙))
𝛿𝑡

=
𝛿

𝛿𝑡

(∑︁
𝑗

𝑣 𝑗 (𝑡)𝝓 𝑗 (𝒙(𝑡))
)
=

∑︁
𝑗

𝑑𝑣 𝑗 (𝑡)
𝑑𝑡

𝝓 𝑗 (𝒙(𝑡)),

where we have exploited that the time variation of the basis functions with
respect to the moving fluid domain is zero. This makes the computation of
the fluid velocity very easy on the nodes of the fluid mesh; see, e.g., [147].

- Monolithic solution: The non-linear system arising from the FSI problem after
time discretization (e.g. with a FE approximation) could be solved monolith-
ically through linearization methods, such as Newton or quasi-Newton, and
then a suitable monolithic preconditioner is used to efficiently solve the re-
sulting linear system [97];

5. Note that the generic mesh point 𝒙, and in particular node 𝒙 𝑗 , moves in time according to 𝒅 𝑓



6

- Partitioned strongly-coupled algorithms: The FSI problem is solved by ex-
ploiting separate fluid and structure solvers which exchange the two continuity
interface conditions until convergence. In the standard case, the exchange of
interface information is based on a Dirichlet condition for the fluid (obtained
from the no-slip interface condition (1c)) and a Neumann condition for the
structure (obtained from the third Newton interface law (1d)) (Dirichlet-
Neumann (DN) scheme). These algorithms are often referred to as implicit
schemes, since they correspond to the use of implicit time discretizations;

- Robin interface condition: To accelerate the convergence of strongly-coupled
schemes, Robin interface conditions are built for the fluid and/or structure
subproblems as a linear combination of continuity conditions, through the
introduction of suitable interface parameters. This leads to the family of
Robin-Robin (RR) strongly-coupled schemes [14, 11];

- Partitioned loosely-coupled algorithms: The FSI problem is solved by ex-
ploiting separate fluid and structure solvers which are solved exchanging
continuity interface conditions only once per time step. These algorithms are
often referred to as explicit schemes;

- Added mass effect: It happens (or in other words, we say that added mass
is relevant) when fluid and structure densities are similar, as it occurs for
hemodynamics. The main implication of the added mass effect is in general
a slow convergence of strongly-coupled schemes and (absolute) stability is-
sues of loosely-coupled schemes. For example, the explicit DN scheme is
unconditionally unstable for relevant added mass [45], whereas the implicit
DN scheme requires a small relaxation parameter to converge, often estimated
by the Aitken procedure [45, 73, 118];

- Semi-implicit algorithms: Only the fluid pressure is strongly-coupled with the
structure displacement, whereas the geometric and the kinematic couplings
are treated explicitly. This leads in general to CFL-like bounds on Δ𝑡 which
guarantee stability even for high added mass [68, 17].
A variant of such methods is provided by strongly coupling both fluid ve-
locity and pressure to the structure quantities, and by treating explicitly the
geometric coupling. This strategy has been seen to be accurate and stable in
the hemodynamics regime [17, 149].
For the time discretization of (1), a common choice is to discretize the fluid

and the vessel wall problems with two schemes of equal order, e.g., BDF2 or
Crank-Nicolson for the fluid and the Newmark scheme for the vessel problem
[158]. In general, we will write:

𝜕𝒗(𝑡𝑛)
𝜕𝑡

≃ 𝛼𝒗(𝑡𝑛)
Δ𝑡

+ 𝒇 𝑛,
𝜕2𝒗(𝑡𝑛)
𝜕𝑡2

≃ 𝛽𝒗(𝑡𝑛)
Δ𝑡2

+ 𝒈𝑛,

for suitable constants 𝛼 and 𝛽 and functions 𝒇 𝑛 and 𝒈𝑛, and where 𝑡𝑛 = 𝑛Δ𝑡 for
𝑛 = 0, 1, . . . , Δ𝑡 being the time step.

For the sake of simplicity, if not otherwise specified, in the schemes detailed
below for the vascular FSI problem, we consider an explicit treatment of the
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geometric coupling as well as a semi-implicit treatment of the convective term6.
In particular, for a generic function or domain 𝑣(𝑡), we introduce the approxima-
tions 𝑣𝑛 ≃ 𝑣(𝑡𝑛) and the extrapolation 𝑣∗ from previous time steps of the same
order of the time discretization.

3.2 Strongly-coupled partitioned algorithms
We start with a review of recent improvements in fully coupled schemes. Given
the interface parameters 𝜎 𝑓 and 𝜎𝑠 , a general scheme is given by the following:
Implicit Robin-Robin scheme. For 𝑛 ≥ 1, 𝑘 ≥ 1, at time step 𝑡𝑛/iteration 𝑘:
1. Solve the Oseen problem with a Robin condition at the FS interface:

𝜌 𝑓 𝛼

Δ𝑡
𝒖𝑛(𝑘 ) + 𝜌 𝑓 (𝒖

∗ − 𝒖∗
𝑓 ) · ∇𝒖

𝑛
(𝑘 ) − ∇ · 𝑻 𝑓 (𝒖𝑛(𝑘 ) , 𝑝

𝑛
(𝑘 ) ) = 𝒈𝑛𝑓 in Ω∗

𝑓 ,

(2a)
∇ · 𝒖𝑛(𝑘 ) = 0 in Ω∗

𝑓 ,

(2b)

𝜎 𝑓 𝒖
𝑛
(𝑘 ) + 𝑻 𝑓

(
𝒖𝑛(𝑘 ) , 𝑝

𝑛
(𝑘 )

)
𝒏∗ = 𝜎 𝑓

( 𝛼
Δ𝑡

𝒅𝑛(𝑘−1) + 𝒇 𝑛
)
+ 𝑻𝑠

(
𝒅𝑛(𝑘−1)

)
𝒏∗ on Σ∗;

(2c)

2. Solve the (non-linear) vessel wall problem with a Robin condition at the FS
interface:
𝜌𝑠𝛽

Δ𝑡2
�̂�
𝑛

(𝑘 ) − ∇ · 𝑻𝑠
(
�̂�
𝑛

(𝑘 )

)
= �̂�𝑠

𝑛 in Ω̂𝑠 ,

(3a)
𝜎𝑠𝛼

Δ𝑡
�̂�
𝑛

(𝑘 ) + 𝑻𝑠
(
�̂�
𝑛

(𝑘 )

)
�̂� = 𝜎𝑠 �̂�

𝑛
(𝑘 ) + 𝑻 𝑓

(
�̂�𝑛(𝑘 ) , 𝑝

𝑛
(𝑘 )

)
�̂� − 𝜎𝑠 �̂�

𝑛
on Σ̂;

(3b)

3. If the stopping criterion

𝜎 𝑓

𝒖𝑛(𝑘 ) − 𝛼

Δ𝑡

(
𝒅𝑛(𝑘 ) + 𝒇 𝑛

)
𝐻1/2 (Σ)

+
𝑇 𝑓 (

𝒖𝑛(𝑘 ) , 𝑝
𝑛
(𝑘 )

)
− 𝑇𝑠

(
𝒅𝑛(𝑘 )

)
𝐻−1/2 (Σ)

< 𝜀

is satisfied, then 𝑛→ 𝑛 + 1. Otherwise, 𝑘 → 𝑘 + 1.
In the previous algorithm, 𝒏 is the outward unit normal to Σ, 𝜀 a suitable
tolerance, and 𝒈𝑛

𝑓
, 𝒈𝑛𝑠 represent terms coming from time discretization.

A recent analysis has been performed in [58] for the DN scheme (𝜎 𝑓 → ∞,
𝜎𝑠 = 0). In particular, the authors proposed to use a relaxation for both the
interface conditions: given a single relaxation parameter 𝜔, the fluid problem
(2a)-(2b) is equipped with

𝒖𝑛(𝑘 ) =
𝛼

Δ𝑡

(
𝜔𝑑𝑛(𝑘−1) + (1 − 𝜔)𝑑𝑛(𝑘−2)

)
+ 𝒇 𝑛 on Σ∗,

6. This leads to a bound on Δ𝑡 which is however mild with respect to accuracy requirements [159]
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whereas the structure problem (3a) with

𝑻𝑠
(
�̂�
𝑛

(𝑘 )

)
�̂� = 𝜔𝑻 𝑓

(
�̂�𝑛(𝑘 ) , 𝑝

𝑛
(𝑘 )

)
�̂� + (1 − 𝜔)𝑻 𝑓

(
�̂�𝑛(𝑘−1) , 𝑝

𝑛
(𝑘−1)

)
�̂� on Σ̂.

From the analysis of a model problem (2D potential flow coupled with a 1D
membrane, see [45]), the authors found the optimal choice

𝜔𝑜𝑝𝑡 =
2
√
𝜉

1 +
√
𝜉
,

for a first order time discretization, where 𝜉 = min𝑘 𝜌𝑠𝐻𝑠

𝜌𝑠𝐻𝑠+𝜌 𝑓 𝜇𝑖
, 𝐻𝑠 is the structure

thickness, and 𝜌 𝑓 𝜇𝑖 is the added mass corresponding to frequency 𝑖 (see [58] for
further details). This method provides improvements in the convergence with
respect to standard DN iterations, while preserving non-intrusion in available
codes.

In [67] the authors showed that, extending the arguments reported in [150]
for the membrane case, the monolithic FSI problem is equivalent to an implicit
splitting where, at the continuous level, the structure is equipped with the Neu-
mann condition coming from the dynamic continuity condition, whereas on the
fluid the following generalized Robin condition is imposed:

𝜌𝑠𝑩ℎ
𝜕𝒖

𝜕𝑡
+ 𝑻 𝑓 (𝒖, 𝑝) 𝒏 = 𝜌𝑠𝑩ℎ

𝜕2𝒅

𝜕𝑡2
+ 𝑻𝑠 (𝒅) 𝒏 on Σ, (4)

where 𝑩ℎ is an interface operator built on the lumped-mass inner product, thus
diagonal with respect to the interface Finite Element basis. At the discrete level,
in particular for a first-order time discretization, this leads to iterations (2)-(3)
with

𝜎 𝑓 =
𝜌𝑠

Δ𝑡
𝑩ℎ 𝜎𝑠 = 0,

where 𝜎 𝑓 should be here thought as an interface operator7. The authors proved
the convergence of such iterations and showed their suitability for numerical
simulations in 3D simplified geometries in the hemodynamic regime. In par-
ticular, convergence is improved with respect to other standard choices of the
Robin parameters obtained by analyses based on flat interface, see, e.g., [82].

Other recent works tried to optimize the interface parameters 𝜎 𝑓 and 𝜎𝑠
through analyses performed in non-flat scenarios, in order to account for the
vascular shape and to improve the convergence of iterations (2)-(3). Starting
from the model problem proposed in [45], extended to the case of a cylindrical
geometry (see also [200]), in [88] the authors used the Optimized Schwarz
Method [77, 86] to find suitable Robin interface parameters. The inclusion
of the curvature in the analysis, by means of the cylindrical geometry, made

7. At the algebraic level, the matrix counterpart of 𝑩ℎ is nothing but the diagonal lumped mass
matrix referred to the interface degrees of freedom
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it possible to account for the specific shape of blood vessels and to improve
convergence with respect to 2D/flat analyses8. In particular, set

𝐴(𝑚, 𝑖) = −
𝜆Δ𝑡𝛽

(
𝐾 ′
𝑚 (𝛽 𝑅) − 𝜒 𝐼 ′𝑚 (𝛽 𝑅)

)
𝐾𝑚 (𝛽 𝑅) − 𝜒 𝐼𝑚 (𝛽 𝑅)

, 𝐵(𝑚, 𝑖) = −
𝜌 𝑓 𝐼𝑚 (𝑖𝑅)
Δ𝑡 𝑖 𝐼 ′𝑚 (𝑖𝑅)

,

𝛽(𝑖) =
√︂
𝑖2 + 𝜌𝑠

𝜆Δ𝑡2
, 𝜒(𝑚, 𝑖) = 𝐾 ′

𝑚 (𝛽(𝑅 + 𝐻))
𝐼 ′𝑚 (𝛽(𝑅 + 𝐻)) ,

𝐵 := max
(𝑚,𝑖) ∈𝐾

𝐵 (𝑚, 𝑖) , 𝐴 := min
(𝑚,𝑖) ∈𝐾

𝐴 (𝑚, 𝑖) , 𝑀 =
1
2

(
𝐴 + 𝐵

)
,

𝐷 (𝑚, 𝑖) = 1
2
(𝐴 (𝑚, 𝑖) − 𝐵 (𝑚, 𝑖)) , 𝑀 (𝑚, 𝑖) = 1

2
(𝐴 (𝑚, 𝑖) + 𝐵 (𝑚, 𝑖)) ,

𝑄 (𝑚, 𝑖) = |𝑀 (𝑚, 𝑖) − 𝑀 |
𝐷 (𝑚, 𝑖) , 𝑄 = sup

(𝑚,𝑖) ∈𝐾
𝑄 (𝑚, 𝑖) , 𝑁 =

inf (𝑚,𝑖) ∈𝐾 𝐷 (𝑚, 𝑖)
sup(𝑚,𝑖) ∈𝐾 𝐷 (𝑚, 𝑖) ,

𝜌0 = max


(

1 −
√
𝑁

1 +
√
𝑁

)2

;
©«

1 −
√︃

1 −𝑄2

𝑄

ª®®¬
2 ,

where: 𝑖 ≥ 0 and 𝑚 = 0, 1, 2, . . . are the frequencies related to the axial and
circumferential coordinates, respectively, and which belong to the set 𝐾 , 𝑅 is the
radius of the lumen, 𝐻 is the structure thickness, 𝜆 is a surrogate elastic structure
parameter, and 𝐼𝑚 and 𝐾𝑚 are the modified Bessel functions. In particular,
optimal choices for interface parameters are of the form

𝜎 𝑓 = 𝑝 𝜎𝑠 = −𝑝 + 2𝑀, (6)

where 𝑝 ∈ [𝑝− , 𝑝+] with

𝑝− = 𝑀 + sup
(𝑚,𝑖)

{
1 + 𝜌0

1 − 𝜌0
𝐷 (𝑚, 𝑖) −

√︄(
𝑀 − 𝑀 (𝑚, 𝑖)

)2
+ 4𝜌0

(1 − 𝜌0)2𝐷
2 (𝑚, 𝑖)

}
,

𝑝+ = 𝑀 + inf
(𝑚,𝑖)

{
1 + 𝜌0

1 − 𝜌0
𝐷 (𝑚, 𝑖) +

√︄(
𝑀 − 𝑀 (𝑚, 𝑖)

)2
+ 4𝜌0

(1 − 𝜌0)2𝐷
2 (𝑚, 𝑖)

}
.

The previous result guarantees fast convergence for any frequencies (𝑚, 𝑖) ∈
𝐾 . Moreover, this range contains the optimal value which could be easily
found numerically. Numerical experiments in real vascular geometries in the
hemodynamic regime highlighted that the previous choice made it possible to
halve the number of iterations with respect to the Aitken-DN scheme. An

8. The analysis performed in a cylindrical geometry to find optimal interface Robin parameters to
be used for real vessels does not introduce any error per se, the solution at convergence of (2)-(3)
being "exact" (up to tolerances). However, the greater the deviation from the ideal case, the
slower the convergence velocity
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extension to the case of spherical geometries with an application to Abdominal
Aortic Aneurysms (AAA) has been provided in [87].

The delicate issue of selecting the Robin interface parameters in order to have
a good convergence is partially overcome by the Robin-Neumann/Quasi-Newton
scheme proposed in [174]. For the Neumann condition for the structure (𝜎𝑠 = 0),
it is proposed to "relax" the fluid traction by mean of an Interface Quasi-Newton
method, firstly introduced in the context of FSI in [55]. In particular, for a given
time instant, at iteration 𝑘 , let 𝑊𝑘 be the rectangular matrix whose 𝑘 columns
are the increments of the Finite Element (non-relaxed) fluid traction vectors
�̃� (𝑘 ) between two consecutive iterations and let 𝑉𝑘 be the same built on the
discrepancies between two consecutive residuals, where the latter is defined as
the difference between the relaxed and non-relaxed tractions: 𝑹𝑖 = �̃� (𝑖) − 𝒉 (𝑖) .
Then, the relaxation step reads

𝒉 (𝑘+1) = �̃� (𝑘 ) +𝑊𝑘𝜶𝑘 𝜶𝑘 = argmin𝜷∈R𝑘 ∥𝑉𝑘𝜷 + 𝑹𝑘 ∥2.

A more efficient variant is obtained by including information also at previous
time steps in 𝑉𝑘 and 𝑊𝑘 . Regarding the latter case, the authors showed 3D
numerical results with high added mass effect, highlighting the excellent con-
vergence properties of the method, which are independent of the value of 𝜎 𝑓 in
a wide range of values. A further improvement has been performed in [173],
where the authors proposed a way to avoid any explicit Jacobian approximation,
so that the multi-vector update is realized with linear complexity.

In [36], the authors proposed an adaptive time step strategy, which works
well in case of relevant added mass effect. The idea is to select 𝜃 ∈ [0.5, 1],
introduce the intermediate unknowns, e.g.

𝒖𝑛+𝜃(0) = (1 + 𝜃)𝒖𝑛 − 𝜃𝒖𝑛−1,

a similar expression for 𝒅, and

𝑝𝑛+𝜃(0) = (1 + Δ𝑡𝑛)𝑝𝑛−1+𝜃 − Δ𝑡𝑛−1𝑝𝑛−2+𝜃 ,

and then solve iterations (2)-(3) with a first-order time discretization for 𝒖𝑛+𝜃 , 𝑝𝑛+𝜃 , 𝒅𝑛+𝜃
until convergence with the case 𝛼 𝑓 = 𝛼𝑠 suitably chosen. Then, with such solu-
tions, perform an explicit step:

𝒖𝑛+1 =
1
𝜃
𝒖𝑛+𝜃 − 1 − 𝜃

𝜃
𝒖𝑛

(a similar expression for 𝒅 holds true), and compute the new time step

Δ𝑡𝑛+1 = Δ𝑡𝑛 min

{
𝑟1,max

{
𝑟2, 𝑠

(
𝛿

∥𝑇𝑛+1∥

)1/3
}}

,

where 𝑟1, 𝑟2, 𝛿, 𝑠 are chosen parameters and 𝑇𝑛+1 is the local truncation error
(see [36] for its estimation), and set 𝑡𝑛+2 = 𝑡𝑛+1 + 𝜃Δ𝑡𝑛+1. If ∥𝑇𝑛+1∥ ≥ 𝛿 repeat
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time step 𝑛 with the new time step. Numerical experiments in the hemodynamic
regime showed that this method is accurate with respect to the case of fixed
(small) Δ𝑡, allowing a significant saving in the computational effort.

3.3 Semi-implicit partitioned algorithms
In the framework of semi-implicit algorithms, a quite recent development has
been provided in [11], where the use of Robin interface conditions has been
proposed as follows:
For 𝑛 ≥ 1, at time step 𝑡𝑛:
1. Solve the pressure-structure coupling: At iteration 𝑘 ≥ 1 until convergence

• Solve the (non-viscous) fluid problem with a Dirichlet condition at the FS
interface:

𝜌 𝑓 𝛼

Δ𝑡

(
𝒖𝑛(𝑘 ) − �̃�𝑛

)
+ ∇𝑝𝑛(𝑘 ) = 0 in Ω∗

𝑓 ,

∇ · 𝒖𝑛(𝑘 ) = 0 in Ω∗
𝑓 ,

𝒖𝑛(𝑘 ) =
𝛼

Δ𝑡
𝒅𝑛(𝑘−1) + 𝒇 𝑛 on Σ∗;

• Solve the (non-linear) vessel wall problem with a Robin condition at the
FS interface:
𝜌𝑠𝛽

Δ𝑡2
�̂�
𝑛

(𝑘 ) − ∇ · 𝑻𝑠
(
�̂�
𝑛

(𝑘 )

)
= �̂�𝑛𝑠 in Ω̂𝑠 ,

𝛾𝜇

ℎ

𝛼

Δ𝑡
�̂�
𝑛

(𝑘 ) + 𝑻𝑠
(
�̂�
𝑛

(𝑘 )

)
�̂� =

𝛾𝜇

ℎ
�̂�𝑛(𝑘 ) + 𝑻 𝑓

(
�̂�𝑛(𝑘 ) , 𝑝

𝑛
(𝑘 )

)
�̂� − 𝛾𝜇

ℎ
�̂�
𝑛

on Σ̂,

2. Solve the explicit viscous-structure coupling:

𝜌 𝑓 𝛼

Δ𝑡
�̃�𝑛 + 𝜌 𝑓 (�̃�∗ − 𝒖∗

𝑓 ) · ∇�̃�
𝑛 − ∇ ·

(
∇�̃�𝑛 +

(
∇𝒖𝑛

)𝑇 )
= 𝒈𝑛𝑓 in Ω∗

𝑓 ,

∇ · �̃�𝑛 = 0 in Ω∗
𝑓 ,

𝛾𝜇

ℎ
�̃�𝑛 +

(
∇�̃�𝑛 +

(
∇�̃�𝑛

)𝑇 )
𝒏∗ =

𝛾𝜇

ℎ

( 𝛼
Δ𝑡

𝒅𝑛 + 𝒇 𝑛
)
+

(
∇�̃�𝑛−1 +

(
∇�̃�𝑛−1

)𝑇 )
𝒏∗ on Σ∗,

where 𝛾 is a stabilization parameter and ℎ the mesh size. Notice the use of
Robin interface conditions for the structure and the viscous problems, with
𝜎 𝑓 = 𝜎𝑠 =

𝛾𝜇

ℎ
. This choice comes from a Discontinuous Galerkin (DG)

approach used to "glue" the solutions at the interface (see Section 3.4).
The authors showed that, for a model problem with a first-order time dis-

cretization, the previous algorithm is absolutely stable provided that

𝛾 > 2𝐶𝑡 𝛾𝜇Δ𝑡 = 𝑂 (ℎ),

where 𝐶𝑡 is the constant of the standard discrete trace-inverse inequality. We
observe that, unlike the standard DN-based semi-implicit schemes, the stability



12

conditions do not depend on the fluid-solid density ratio. Numerical experiments
confirmed that the method is robust with respect to the added mass effect and it
is able to handle meshes which are non-conforming at the interface.

3.4 Loosely-coupled algorithms
One the most important achievement made in the last years in the field of the
numerical solution of the FSI problem in the hemodynamic regime is given by
the design of stable loosely-coupled schemes. For the sake of brevity and due to
the aims of this book, we focus here only on those methods, designed for a thick
structure, which were tested in 3D numerical experiments.

In general, the idea of a loosely-coupled scheme could be thought as per-
forming just one iteration over 𝑘 in (2)-(3), where the two interface conditions
become:

(𝐹) 𝜎 𝑓 𝒖
𝑛 + 𝑻 𝑓 (𝒖𝑛, 𝑝𝑛) 𝒏∗ = 𝜎 𝑓

( 𝛼
Δ𝑡

𝒅∗ + 𝒇 ∗
)
+ 𝑻𝑠 (𝒅∗) 𝒏∗ on Σ∗;

(𝑆) 𝜎𝑠𝛼

Δ𝑡
�̂�
𝑛
+ 𝑻𝑠

(
�̂�
𝑛
)
�̂� = 𝜎𝑠 �̂�

𝑛 + 𝑻 𝑓
(
�̂�𝑛, 𝑝𝑛

)
�̂� − 𝜎𝑠 �̂�

𝑛
on Σ̂,

(10)
where we point out the use of the extrapolation 𝒅∗ in the fluid interface condition9.

One of the first loosely-coupled schemes for hemodynamics has been pro-
posed in [41], where a Nitsche method based on a DG mortaring has been used
to handle the continuity interface conditions. Given the stabilization parameter
𝛾 and denoting by ℎ the characteristic mesh size, the method, proposed in weak
form, corresponds to (10) with 𝜎𝑠 = 𝛾𝜇

ℎ
and 𝜎 𝑓 = +∞ (i.e. a Dirichlet condition

for the fluid), where however the fluid condition is treated by means of the Nitsche
method. The authors proved that, with this strategy, spurious oscillations of the
fluid pressure at the interface arise. To overcome this limitation, they proposed
to add a stabilization term for the fluid problem, which in weak form reads

𝛾0ℎ

𝛾𝜇

∫
Σ

(
𝑝𝑛ℎ − 𝑝

𝑛−1
ℎ

)
𝑞ℎ,

𝑞ℎ being the pressure test functions. It has been shown that, for a first-order time
discretization, stability is now achieved, provided that

𝛾 ≥ 256𝐶𝑡 𝛾Δ𝑡 ≤ 𝐶ℎ 𝛾0 ≥ 8.

Also, the authors proved that by performing a correction step, corresponding
to two strongly-coupled iterations instead of one, a global first order in time is
recovered.

Another proposal was derived in [67] where, starting from the identity (4),
the authors proposed, for a first-order time discretization, iterations (10) with the

9. The order of the two subproblems could be exchanged, using extrapolated variables 𝒖∗, 𝑝∗ for
the structure interface condition
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choice
𝜎 𝑓 =

𝜌𝑠

Δ𝑡
𝑩ℎ 𝜎𝑠 = 0,

and 𝒅∗ = 2𝒅𝑛−1 − 𝒅𝑛−2. The authors proved unconditional stability of this
method, which is also independent of the added mass, confirmed by some
numerical results in 3D simplified geometries. Works on this topic can also be
found in [40, 39].

Another recent work that used values of the interface Robin parameters
proposed for the strongly-coupled case is reported in [89]. Here the authors used
the optimized values (6) as reasonable values to achieve stable results in the
case of the loosely-coupled case for arterial vessels. This idea followed from the
stability results of the loosely-coupled Robin-Neumann (RN) scheme obtained
in [90] for the model problem proposed in [45]. In particular, the authors found
that the loosely-coupled RN scheme is:
- unstable if the added mass effect is relevant and 𝜎 𝑓 is large enough (𝜎 𝑓 > �̄�,
with �̄� decreasing for increasing added mass);
- stable if Δ𝑡 is small enough (Δ𝑡 < Δ̄ ℎ, with Δ̄ decreasing for increasing values
of 𝜎 𝑓 and increasing added mass effect).
3D numerical experiments obtained in [89] in an abdominal aorta in presence of
an aneurysm showed the reliability of this proposal.

We also mention other loosely-coupled algorithms given by an operator
splitting procedure, where the fluid problem is equipped with a part of the
structure one [35, 168], as well as the method and analysis provided in [170].

3.5 Monolithic strategies
We start by reviewing a class of works that considered a membrane assumption
for the structure. Despite the significant thickness of the aortic vessel wall, this
assumption could be reasonable when the attention is on blood dynamics. In
this case, a smart way to write the monolithic system is to embed the structure
membrane problem into the fluid as a proper (in general non-local) boundary
condition, see [70] where the authors successfully applied this idea to the aorta.
Under the assumption of no shear stresses acting on the membrane, in [150] a
monolithic formulation has been derived consisting in the fluid problem equipped
by the following boundary condition for the normal component at the interface
(for the sake of simplicity, reported under the assumption of fixed fluid domain
and no prestress):(
𝜌𝑠𝐻𝑠

Δ𝑡
+ 𝛽Δ𝑡

)
𝑢𝑛⊥ + 𝑻 𝑓 (𝒖𝑛, 𝑝𝑛) 𝒏 · 𝒏 =

(
𝜌𝑠𝐻𝑠

Δ𝑡
+ 𝛽Δ𝑡

)
𝑑𝑛⊥ − 𝜌𝑠𝐻𝑠

Δ𝑡
𝑑𝑛−1
⊥ on Σ,

where 𝑢𝑛⊥ and 𝑑𝑛⊥ are the normal fluid velocity and structure displacement, and
𝛽 is a coefficient that includes the structure information, i.e.:

𝛽 =
𝐻𝑠𝐸

1 − 𝜈2

(
4𝜌2

1 − 2(1 − 𝜈)𝜌2

)
,
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where 𝜈 is the Poisson ratio, 𝐸 the Young modulus, 𝜌1 = 𝜌1 (𝑡, 𝒙) is the mean
curvature at point 𝒙 of the membrane and 𝜌2 = 𝜌2 (𝑡, 𝒙) the Gaussian curvature.
This approach has been applied to aortic simulations in [51], where a comparison
with a full 3D-3D FSI model showed discrepancies of the displacements below
8% and comparable Wall Shear Stresses (WSS) when the same treatment of the
geometric coupling is used.

Coming back to the case of a thick structure, in general, monolithic proce-
dures are based on building the non-linear system of equations 𝑭(𝒙) = 0 arising
from space discretization (e.g. the Finite Element method) of the FSI problem,
including the geometric coupling. Then, the Newton method is applied:

𝐽 (𝒙 (𝑘 ) )𝛿𝒙 (𝑘 ) = −𝑭(𝒙 (𝑘 ) ) 𝒙 (𝑘+1) = 𝒙 (𝑘 ) + 𝛿𝒙 (𝑘 ) . (11)

Here 𝒙 collects the fluid, structure and fluid mesh unknowns, whereas 𝐽 is
the Jacobian matrix. A well-established strategy consists in introducing a block
preconditioner for the linearized FSI system (11), exploiting the separate solution
of the three subproblems (fluid, structure, fluid geometry) [97].

In this respect, a recent method to efficiently solve the previous Newton iter-
ation has been proposed in [56], where the authors introduce a Lagrange mul-
tiplier 𝝀 to enforce the no-slip interface condition and then solve (11) (adapted
to the case of this further unknown and reordering the unknowns as follows:
𝒅, 𝒅 𝑓 , (𝒖 𝑓 , 𝑝), 𝝀) with a right-preconditioned GMRES, where the block pre-
conditioner for 𝐽 (𝒙 (𝑘 ) ) is built by:
- neglecting the Lagrange multiplier block −𝐼𝑇

Σ
in the structure equation (i.e.

the term in position 1,4):

©«
𝑆 0 0 0

−𝐼Σ 𝐺 0 0
0 𝐷 𝐹 𝐼𝑇

Σ

− 𝜁

Δ𝑡
𝐼Σ 0 𝐼Σ 0

ª®®®®¬
,

where 𝑆, 𝐺, 𝐹 are the linearized structure, geometry and fluid problems, 𝐷 the
shape derivatives, coming from the derivative of the fluid problem with respect
to the fluid mesh displacement, and 𝜁 accounts for the time discretization of
𝜕𝒅
𝜕𝑡

in the no-slip condition (fourth row);
- approximating 𝑆 and 𝐺 by suitable ad-hoc preconditioners (e.g. 1-level alge-

braic additive Schwarz preconditioners);
- eliminating from the fluid problem row the unknowns of the fluid interface

velocity and of the Lagrange multiplier, by static condensation;
- applying the SIMPLE preconditioner [61] for the resulting fluid problem.
Numerical results in realistic 3D hemodynamic problems of this algorithm
showed scalability up to thousands of cores with about 150 millions of degrees
of freedom, featuring also robustness with respect to mesh size.

A variant of this method has been proposed in [80], where the interface
variables are removed directly from the set of unknowns of the FSI problem
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and not at the preconditioner level, multigrid solvers are used for the three
subproblems, and the boundary condition atΣ for the fluid and structure problems
are inverted (Dirichlet for the structure and Neumann for the fluid). The major
drawback of this approach is that the coupling is realized only on the finest
meshes of multigrid algorithms. To overcome this limitation, in [80] the authors
proposed to switch the role of multigrid approach and preconditioner, using the
former approach in a global sense directly to (11) and the latter as smoothing.
This method was successfully applied to a realistic case of AAA.

Inexact-Newton strategies were often preferred to the Newton one, despite the
loss of second-order convergence, since the increase in the number of iterations
is well compensated by the simplification in the construction of the approximate
Jacobian 𝐽𝑘 . In this respect, a Domain Decomposition-based approach has been
proposed in [198], where the authors introduced a “right preconditioner”:

𝐽𝑘 = 𝐽 (𝒙 (𝑘 ) )𝑀−1
𝑘 𝑀𝑘 ,

with 𝑀−1
𝑘

being a restricted additive Schwarz preconditioner, to be solved with
GMRES. The partition of the mesh in overlapped subdomains is completely
independent of the physical variables, so that a subdomain may contain both
fluid and structure elements. In particular, the preconditioned residual 𝑀−1

(𝑘 ) 𝒓 at
each GMRES iteration is computed as follows:

𝐵ℓ 𝒛ℓ = 𝑅ℓ 𝒓 𝑀−1
𝑘 𝒓 =

𝑁∑︁
ℓ=1

(
𝑅0
ℓ

)𝑇
𝒛ℓ , (12)

where 𝑁 is the number of subdomains, 𝐵ℓ = 𝑅ℓ𝐽 (𝒙 (𝑘 ) )𝑅𝑇ℓ , with 𝑅ℓ mapping
the global vector of unknowns to those belonging to the ℓ-th overlapping subdo-
main, and 𝑅0

ℓ
is the restriction of the degrees of freedom to the non-overlapped

counterpart of the ℓ-th subdomain. The linear systems in (12) are solved with an
ILU factorization procedure. 3D numerical results showed the strong scalability
of the method even for realistic vascular geometries and with about ten million
unknowns.

Another type of inexact-Newton method for FSI has been introduced, where
the Jacobian matrix is obtained by neglecting the shape derivatives [180]. This
approach reduces the complexity of assembling the Jacobian matrix by prevent-
ing the solution of extra differential problems to compute the shape derivatives
entries. This simplification has been shown to be robust in terms of conver-
gence of the Newton loop, allowing to obtain efficient and significant results for
realistic aortic simulations, see [52, 148]. In the latter work, a strategy based
on two nested loops was also proposed: the external one (inexact-Newton) to
manage the geometric coupling and the inner one to handle the kinematic and
dynamic conditions, e.g., by means of a Robin-Robin preconditioner. In this
respect, it is enough to set the tolerance of the RR iterations proportional to the
external inexact-Newton residual without affecting the accuracy [113]. This ap-
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proximately halves the number of RR iterations (e.g. passing from, on average,
7.7 to 3.0 iterations for the case of the aorta).

3.6 Methods based on the interface equation
From the Domain Decomposition (DD) theory, it is known that the algebraic
interface equation (e.g. coming from the Finite Element discretization after appli-
cation of the Newton method), corresponding to a block Gaussian elimination of
the internal unknowns, is better conditioned than the monolithic system. Starting
from this, in [69] the interface equation

𝑆−1
𝑠

(
𝑆 𝑓 (𝝀)

)
− 𝝀 = 0,

corresponding to the FSI monolithic problem has been derived and successfully
solved with the Newton method in 3D blood flow simulations. Here, 𝑆 𝑓 and
𝑆𝑠 represent the non-linear maps that, taken an interface displacement 𝝀, return
the interface traction associated to the fluid problem (together with the fluid
geometric one) and the structure problem, respectively.

Starting from this, in [57] the authors studied different standard DD precon-
ditioners (adapted to the non-linear case) and verified their suitability to solve
realistic 3D hemodynamic problems. This was done by considering the precon-
ditioned Richardson method over the Steklov-Poincaré (Schur complement at
the algebraic level) equation:

𝑃

(
𝝀 (𝑘+1) − 𝝀 (𝑘 )

)
= 𝜔𝑘

(
−𝑆 𝑓

(
𝝀 (𝑘 )

)
− 𝑆𝑠

(
𝝀 (𝑘 )

))
,

with 𝜔𝑘 an acceleration parameter and 𝑃 the preconditioner, i.e.‘𝑆′𝑠 (𝝀 (𝑘 ) )
(Dirichlet-Neumann preconditioner) and

(
𝛼𝑘
𝑓
𝑆′
𝑓
(𝝀 (𝑘 ) )−1 + 𝛼𝑘𝑠 𝑆′𝑠 (𝝀 (𝑘 ) )−1

)−1
(with

𝛼𝑘
𝑓
+ 𝛼𝑘𝑠 = 1, Neumann-Neumann preconditioner), and where by ′ we indicate

the tangent problem.
An improvement in this direction has been performed in [16] where the

authors proposed to use the DN preconditioner in combination with GMRES
instead of Richardson to solve the Schur complement equation. Test on realistic
3D hemodynamic problems showed that this method allowed to improve con-
vergence but not to overcome the limitations due to the added mass effect. This
has been solved in [15] where a Robin-Robin interface preconditioner

𝑃𝑅𝑅 =
1

𝜎 𝑓 + 𝜎𝑠

(
𝑆′𝑓 (𝝀

(𝑘 ) ) + 𝜎 𝑓 𝐼Σ
)
𝐼−1
Σ

(
𝑆′𝑠 (𝝀 (𝑘 ) ) + 𝜎𝑠 𝐼Σ

)
has been used with GMRES for the Schur complement interface equation, 𝐼Σ
being the identity operator at the interface (or, equivalently, the interface mass
matrix for the Finite Element method). Numerical results for 3D blood flow prob-
lems revealed very good convergence properties, which are quite independent of
the added mass and on the choice of 𝜎 𝑓 , 𝜎𝑠 .
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4 NUMERICAL APPROACHES FOR AORTIC VALVE FSI
In the case of FSI model arising between blood flow and Aortic Valve (AV), a
different perspective is in general needed with respect to the vascular case, since:
- the structure is now immersed in the fluid and
- the structure displacement reaches up to 100% of its dimension.
A broad spectrum of numerical methods has been proposed in the literature for
this problem, from the ALE method to several body-fitted and unfitted methods.
This section aims at reviewing those of such methods that have most recently
been developed or applied to the AV. More general reviews on valve modeling,
considering also other cardiac valves, can be found, e.g., in [191, 137, 1].

To simplify the discussion, in this section we neglect the motion of the aortic
wall, and we consider the AV as the only structure moving and interacting with
the blood flow. The generalization to the case of concurring vascular FSI and
valve FSI adds up to a combination of methods presented in different sections.
Examples can be found in the very same references that we will present in this
section.

Since the focus of this book is on FSI, we also point out that no structure-
structure interaction will be discussed, being it either the (self-)contact between
different structures or the insertion of the valve leaflets into the aortic annulus.
The interested reader may refer to, e.g., [13, 140, 136, 138, 31, 103, 98, 197].

4.1 Preliminaries
As mentioned in Section 1, the valve leaflets undergo very large displacement,
and their opening and closing induces topological changes in the fluid domain
Ω𝑡
𝑓
. For this reason, a wide range of mathematical models and numerical

methods have been introduced and employed for valve modeling. Moreover,
most models were born to address specific issues raised by the Finite Element
discretization of the valve FSI problem, therefore they are strongly connected
with the numerical method employed to solve the equations. Different kinds
of classifications can be used to categorize these models: in this section, we
combine different perspectives to systematize the description, and we adopt the
following naming conventions.

- 2D vs. 3D valve modeling: Aortic valve leaflets are much thinner than the
aortic wall, having a typical physiological thickness of less than a millimeter
[164, 91]. Therefore, many valve FSI models consider the valve as a 2D
surface Σ𝑣 moving in the bloodpool, with a dynamics that is described by
shell, membrane or other surface elasticity models [197, 124, 183, 107].
These models have proven to be accurate and efficient in representing the
valve dynamics and also the effects of valve tissue fibers or calcifications [115,
195]. However, when a very detailed geometrical description of the leaflets
is required, and the cross-thickness heterogeneity of physical properties and
internal stresses is of interest, a 3D mechanical description of the valve is
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needed: the valve occupies a region Ω𝑣 and the actual fluid-structure interface
is its boundary 𝜕Ω𝑣. The numerical simulation of these models typically
requires a high computational cost, due to the high mesh fineness required to
accurately capture the dynamics of the thin leaflets.

- Body-fitted mesh, unfitted mesh, and Cut Finite Element methods:
In methods with a body-fitted mesh, the mesh is conforming to the fluid-valve
interface, as in the case of ALE methods [119, 144, 112, 194] and the Space-
Time Finite Element method [104, 179, 178, 99]. These methods are very
accurate in capturing the interface velocity and exchanged stresses, but their
application to cardiac valves entails a large distortion of the mesh elements
and typically a frequent remeshing. Because of that, they are very difficult to
employ in clinical applications, and we refer the reader to [191, 137, 1] for
their discussion.
Unfitted-mesh methods have a completely different approach: the fluid mesh
is fixed, the moving structure mesh is completely independent, and the in-
teraction between the two is modeled by a modification of the momentum
equations, with the introduction of additional terms. This is the case of the
Immersed Boundary (IB) and Fictitious Domain (FD) methods, discussed in
Section 4.2, and the Resistive and other kinematic methods of Section 4.3.
A somehow in-between approach is that of Cut Finite Element (CFE) methods.
Again, the fluid mesh is fixed and a separate moving mesh is considered for
the structure. However, instead of modifying the momentum equations, the
interface conditions are imposed directly at the intersection between the two
meshes, thanks to proper cutting and integration over the elements crossed by
the interface. Different methods pertain to the CFE class, and they are going
to be reviewed in Section 4.4.

It is worth to point out that the separation between body-fitted, unfitted, and
CFE methods above is not airtight: variants and hybrid methods have been
proposed in the literature, such as the fixed-mesh ALE approach [50, 208] or the
hybrid immersed-boundary/body-fitted-grid method [192].

We notice that CFE methods seem promising for the accurate treatment of
both surface and bulk structures, however nowadays their applications to FSI in
the hemodynamic regime are almost all still in 2D geometries (see [185] for an
idealized 3D AV case). Therefore, their use in realistic AV modeling is not yet
as mature as it is for the consolidated IB/FD methods and (to a lesser extent) for
the relatively recent resistive approach.

4.2 An update on Immersed Boundary & Fictitious Domain strate-
gies

A large portion of the fixed-mesh methods for the modeling of cardiac valves
belongs to the classes of IB and FD methods. In the present section, we focus on
recent advancements in such methods aimed at the application to AV modeling.
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FIGURE 3 Domain for valve FSI with the IB and FD methods, in the case Ω ≡ Ω 𝑓 : reference (left)
and current (right) configuration of the valve modeled as a bulk body (above) or a surface (below).

For a broader discussion of these methods, encompassing also other types of
applications, we refer the reader to [141, 172, 116, 186].

The IB and FD classes are strictly intertwined, and several hybrid strategies
have been adopted, making sometimes difficult to distinguish between the two.
In this review we adopt the most accepted perspective, shared, e.g., by [95,
28, 185]: in IB methods, the fluid momentum equation is modified with the
addition of a forcing term related to the residual of the structure problem, while
FD methods keep separate formulations for the fluid and solid problem and then
couple them by Lagrange multipliers 10.

To set up a common framework for the discussion of different approaches,
we introduce some notation, depicted in Fig. 3. In general, we use the same
structure quantities of previous sections, with the subscript 𝑣 instead of 𝑠. Since
both 2D and 3D valve modeling are employed in different works, we denote by
B̂𝑣 ⊂ R𝑑𝑣 (with 𝑑𝑣 = 2, 3) the valve reference domain, that can either represent a
surface Σ̂𝑣 for 𝑑𝑣 = 2 or a bulk region Ω̂𝑣 for 𝑑𝑣 = 3. The corresponding current
configuration is B𝑡𝑣 , that is the image of the map A𝑡

𝑣 : B̂𝑣 → R𝑑𝑣 encoding the
positions A𝑡

𝑣 (�̂�) = �̂� + �̂�(𝑡, �̂�) ∈ B𝑡𝑣 of the structure particles �̂� ∈ B̂𝑣 at each
time 𝑡. With slight abuse of notation, we extend A𝑡

𝑣 to B̂𝑣 where needed, so
that it is defined also on 𝜕B̂𝑣. The current configurations Ω 𝑓 11,B𝑡𝑣 of the fluid
and the valve are both subsets of a background domain Ω (possibly larger than

10.In several works considering the case of thick structures, Distributed Lagrange Multipliers (DLM)
were employed, and the corresponding FD methods are sometimes called DLM methods [95, 28]

11.We remind the reader that in this valve FSI section, Ω 𝑓 is considered as fixed. However, the
whole discussion can be easily extended to a moving domain Ω𝑡

𝑓
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Ω 𝑓 ∪ B𝑡𝑣). A single Eulerian velocity field 𝒖 is defined over the whole domain
Ω, representing both the fluid and the solid velocity. Moreover, for the sake of
exposition, we assume ∇ ·𝒖 = 0 to hold in the whole Ω, that is that also the valve
tissue is incompressible. This is a very common assumption in IB methods for
the aortic valve and more in general in the valve modeling literature.

In these settings, the FSI system corresponding to a general IB method reads
as follows 12:

𝜌 𝑓

(
𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇𝒖

)
− ∇ · 𝑻 𝑓 (𝒖, 𝑝) = 𝑭 + 𝑭𝜕 in Ω, (13a)

∇ · 𝒖 = 0 in Ω, (13b)∫
Ω

𝒖(𝑡, 𝒙)𝛿(𝒙 − A𝑡
𝑣 (�̂�)) 𝑑𝒙 =

𝜕 �̂�

𝜕𝑡
(𝑡, �̂�) for �̂� ∈ B̂𝑣, (13c)

𝑭(𝑡, 𝒙) =
∫
B̂𝑣

𝑓𝑣 (𝑡, �̂�)𝛿(𝒙 − A𝑡
𝑣 (�̂�)) 𝑑�̂� for 𝒙 ∈ Ω, (13d)

𝑭𝜕 (𝑡, 𝒙) =
∫
𝜕B̂𝑣

𝑓𝑣,𝜕 (𝑡, �̂�)𝛿(𝒙 − A𝑡
𝑣 (�̂�)) 𝑑�̂� for 𝒙 ∈ Ω, (13e)

where 𝑓𝑣, 𝑓𝑣,𝜕 are suitable force densities, modeling the dynamics of the valve
and its boundary, and thus taking different expressions according to the specific
IB method of choice. Equation (13c) corresponds to the kinematic condition
(1c) presented for vascular FSI, while (13d)-(13e) encode at the same time the
structure problem (1e) and the dynamic condition (1d). We notice from (13a)
that the momentum equation of the fluid problem is extended from Ω 𝑓 to the
background domain Ω: indeed, in the IB framework the fluid and the structure
“coexist” in each point of Ω.

The original IB method was introduced in [154] for valve modeling in the
Finite Differences framework. In the same framework, it has been enhanced and
employed in several FSI studies of the AV, both in the case of bulk (𝑑𝑣 = 3) [129,
125] and surface (𝑑𝑣 = 2) [94, 93, 188, 169, 204] valves, and the structuredness of
a Cartesian background mesh has been exploited for GPU-based parallelization
[189]. More recent developments of this method have been introduced to address
some of the drawbacks of the Finite Difference IB formulation, such as possibly
poor conservation properties, a difficult reconstruction of a suitable approximated
𝛿 function, strong fineness requirements on the structure mesh [26], and the
difficulty of managing non-uniform meshes. However, so far, most of these

12.The convolution with the Dirac measure 𝛿 (𝒙 − A𝑡
𝑣 ( �̂�) ) corresponds to the composition with the

map A𝑡
𝑣: for any functions 𝑔1 : Ω → R, 𝑔2 : B̂𝑣 → R, it holds:∫

Ω

𝑔1 (𝒙) 𝛿 (𝒙 − A𝑡
𝑣 ( �̂�) ) 𝑑𝒙 = 𝑔1 (A𝑡

𝑣 ( �̂�) ) ,∫
B̂𝑣

𝑔2 ( �̂�) 𝛿 (𝒙 − A𝑡
𝑣 ( �̂�) ) 𝑑 �̂� = 𝑔2 ( (A𝑡

𝑣 )−1 (𝒙) )



Novel Approaches for the Numerical Solution of Fluid-Structure Interaction in the Aorta 21

enhanced methods have been either employed on simplified geometries or applied
to other fields than cardiac valve modeling. For example, an 𝐿2-projection
operator between the fluid and solid grid was proposed in [145] to improve
mass conservation, and tested on benchmark FSI problems, while [193] use the
Reproducing Kernel Particle Method (RKPM) to approximate the 𝛿 function and
enforce the FSI coupling conditions 13.

To address the issue of geometric accuracy on a fixed grid, the Curvilinear
Immersed Boundary (CURVIB) method has been introduced in [78, 32]. The
method employs a curvilinear description of the immersed surface, and it has
been applied to the simulation of prosthetic valves [121, 10].

The extension of the IB method to Finite Element schemes, introduced in
[25, 26, 27], provides a more flexible framework to account simultaneously for
immersed surfaces and thick structures. Its variational formulation allows to
treat the Dirac 𝛿 directly, possibly without the need for a smooth approximation.
Moreover, it naturally allows a quantification of the possible non-conservation
errors introduced by the numerical discretization. In these settings, the force
density 𝑓𝑣 modeling the valve dynamics is related to the residual of the structure
problem, namely 14

𝑓𝑣 = −(𝜌𝑣 − 𝜌 𝑓 )
𝜕2 �̂�

𝜕𝑡2
+ ∇ · 𝑻𝑣 in B̂𝑣, (14)

while the boundary force density 𝑓𝑣,𝜕 models the transmission force:

𝑓𝑣,𝜕 = −𝑻𝑣𝒏 on 𝜕B̂𝑣. (15)

In definition (14), we highlight that the difference 𝜌𝑣−𝜌 𝑓 of the densities appears
in the inertial term: this represents a correction to remove the artificial effect
of considering the fluid to be coexisting with the solid in B𝑡𝑣 . In many cases,
the densities of the valve and the blood are assumed to be equal, therefore (14)
reduces to 𝑓𝑣 = ∇ · 𝑻𝑣.

A similar IB method, combining the variational Finite Element setting with
the RKPM for the enforcement of the interface conditions, was introduced in
[202, 201].

We now introduce a general formulation for the FD methods, using the same
notation as for the IB methods. A significant difference is that, instead of
considering the fluid and the valve to be coexisting in B𝑡𝑣 , we consider the two

13.We deem all the works mentioned in this paragraph as pertaining to the Finite Differences
framework, although a Finite Element discretization of the sole structure problem is sometimes
considered. Indeed, all of them rely on a Finite Difference scheme for the fluid problem and (most
importantly for the purpose of this review) for the enforcement of the FSI coupling conditions

14.As mentioned in Section 4.1, in the case of surface modeling of the valve, shell, membrane
or other mechanical models are considered: up to a consistent modification of the definitions
(14)-(15) of the force densities, the whole present discussion still holds
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phases separately:

𝒖 =

{
𝒖 𝑓 in Ω \ B𝑡𝑣 ,
𝒖𝑣 in B𝑡𝑣 ,

𝑝 =

{
𝑝 𝑓 in Ω \ B𝑡𝑣 ,
𝑝𝑣 in B𝑡𝑣 .

The general formulation of FD methods can be naturally represented in weak
form, with suitable definitions of test and trial spaces that may depend on the
dimension 𝑑𝑣 and on the specific method of choice. We refer the reader to [28, 13]
for examples of rigorous mathematical formulations. For simplicity, we denote
by 𝑉,𝑄,𝑊 the spaces for 𝒖, 𝑝, �̂�𝑣, being 𝑉,𝑄 subspaces of 𝐻1 (Ω), 𝐿2 (Ω) and
𝑊 a subspace of 𝐻1 (B̂𝑣), and we assume the test spaces to be the same 15. We
introduce also an additional space Λ̂ for the Lagrange multipliers, which is either
a subspace of 𝐻−1/2 (𝜕B̂𝑣) (if 𝑑𝑣 = 3) or a subspace of 𝐻−1/2 (B̂𝑣) (if 𝑑𝑣 = 2).
16. The weak form of a FD method reads as follows:
For all 𝑡 > 0, find 𝒖 ∈ 𝑉, 𝑝 ∈ 𝑄, �̂�𝑣 ∈ 𝑊, �̂� ∈ Λ̂ such that(

𝜌 𝑓

(
𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇𝒖

)
, 𝒗

)
+

(
𝑻 𝑓 (𝒖, 𝑝),∇𝒗

)
+ 𝑐(�̂�, 𝒗 ◦ A𝑡

𝑣) = 0
∀𝒗 ∈ 𝑉, (16a)

(∇ · 𝒖, 𝑞) = 0 ∀𝑞 ∈ 𝑄, (16b)

𝑐

(
�̂�, 𝒖 ◦ A𝑡

𝑣 −
𝜕 �̂�

𝜕𝑡

)
= 0 ∀�̂� ∈ Λ̂, (16c)(

(𝜌𝑣 − 𝜌 𝑓 )
𝜕2 �̂�

𝜕𝑡2
,𝒘

)
B̂𝑣

+
(
𝑻𝑠 (𝒖, 𝑝),∇𝒘

)
B̂𝑣

− 𝑐(�̂�,𝒘) = 0

∀𝒘 ∈ 𝑊, (16d)

where (·, ·) and (·, ·)B̂𝑣
are the 𝐿2-products over Ω and B̂𝑣, respectively. The

bilinear form 𝑐 : Λ̂ × 𝑊 → R is such that the kinematic condition (1c) is
enforced by (16c): it can be the inner product either in 𝐿2 or 𝐻1, or in general it
can represent the duality between 𝐻−1/2 and 𝐻1/2 over the interface.

The Lagrange multiplier 𝝀 represents the stress exchanged between the blood
and the moving immersed valve. In this, the class of FD methods bears some
similarities with the IB class. Indeed, in [28] a classical Finite Element IB method
is reformulated using Lagrange multiplier to enforce the interface conditions, and
thus reinterpreted as a FD method.

The FD method originated in a different context than valve modeling [92],
but it has been applied to the FSI of the AV and other cardiac valves by several
groups in the past [176, 130, 13].

15.The generalization to the Petrov-Galerkin case would just require some additional notation
16.In much of the literature for FSI with bulk structures (𝑑𝑣 = 3), the space of Lagrange multipliers

was defined over the interface. However, several works in the FD framework employed distributed
Lagrange multipliers (see also note 10): in this case, Λ̂ is a subspace of 𝐻1 ( B̂𝑣 )
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A more recent development of the FD method takes the name of Immersoge-
ometric method [109] and it consists in the formal replacement of the Lagrange
multipliers by a Nitsche method. This method significantly reduces the com-
plexity of the overall FSI problem, but it needs a very fine background mesh in
the area spanned by the moving structure. Applications to the case of AV FSI
can be found in [109, 102, 197].

The main advantage of both IB and FD methods with respect to methods with
a body-fitted mesh lays in the independence between the fluid and the structure
meshes. This entails that the meshes can be generated independently and that
the large deformations of the valve leaflets do not induce mesh degeneration
or topology changes (and thus no remeshing is ever needed). Moreover, the
variational formulation of the methods circumvents the possible accuracy and
stability issues associated to the interpolation of velocity and stresses between
different meshes. Comparing the IB and FD strategy, an advantage of the FD
formulation is that all the coupling is accounted for by the Lagrange multiplier
terms, therefore, independent off-the-shelf fluid and structural solvers can be
used – in principle without modifications – in a FSI iterative solution algorithm,
as done in [13]. On the other hand, the introduction of Lagrange multipliers
itself yields additional complexity to the overall FSI problem, related to the
saddle-point nature of (16).

4.3 Resistive and other kinematic models
Another class of models modifies the momentum equation of the fluid problem
by introducing an additional term, but instead of explicitly exchanging stress
as done in the IB and FD approaches described above, the fluid kinematics in
the neighborhood of the valve leaflets is imposed by a penalty term. This class
is made of resistive and Brinkmann-based models, for which the fluid problem
reads as follows:

𝜌 𝑓

(
𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇𝒖

)
− ∇ · 𝑻 𝑓 (𝒖, 𝑝) + R(𝒖, 𝒖𝑣)D𝑣 = 0 in Ω 𝑓 ,

∇ · 𝒖 = 0 in Ω 𝑓 ,

with BC and IC,

(17)

where R(𝒖, 𝒖𝑣) is the penalty terms encoding the kinematic condition that the
fluid velocity 𝒖 has to be equal to the valve velocity 𝒖𝑣, while D𝑣 is a function
whose role is to switch on this term only at the valve.

The original inspiration for these models comes from the representation of
porous media immersed in the blood flow (see, e.g. [65, 7]), but then were applied
to valve modeling under the assumption that very low porosity can reproduce the
effects of a solid obstacle. A general classification of these models can be made
in terms on whether the valve leaflets are considered as surfaces or bulk bodies:
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- In resistive models, the thin valve leaflets are represented as surfaces and the
function D𝑣 is a Dirac delta, that can be sharp or smeared, thus leading to
a further distinction between models. The Resistive Implicit Surface (RIS)
model was devised to model a porous cerebral stent in [65] and then applied
to cardiac valves in [42, 12, 181]. In this model, R(𝒖, 𝒖𝑣) = 𝑅(𝒖−𝒖𝑣), where
𝑅 is a penalty constant named resistance, and D𝑣 = 𝛿Σ𝑣

is a sharp Dirac delta
distribution concentrated on the surface Σ𝑣 of the valve 17. To account for
this delta in the Finite Element discretization of problem (17), it is required
to have a valve-conforming mesh and to manage the assembling of the mass
matrix on a surface Σ𝑣 that is internal to the domain. On the other hand,
this formulation allows sharp jumps of pressure across Σ𝑣, for example by
doubling the degrees of freedom on the surface Σ𝑣 as done, e.g., in [182].
To prevent the need for a valve-conforming mesh, the Resistive Immersed
Implicit Surface (RIIS) model was introduced in [63] and then applied to
several clinical applications [75, 76, 205, 34, 21]. In the RIIS model, the valve
surface is represented implicitly as the zero-level set of a distance function
𝜑Σ𝑣

, and D𝑣 = 𝛿Σ𝑣 , 𝜀 (𝜑Σ𝑣
) is a smeared Dirac delta function that goes to zero

where |𝜑 | > 𝜀. In terms of resistance, dimensional considerations lead to
define R(𝒖, 𝒖𝑣) = 𝑅

𝜀
(𝒖−𝒖𝑣), so that the resistance coefficient goes to infinity

for 𝜀 → 0. Leveraging the implicit level-set representation, this model does
not need a valve-conforming mesh, the assembling of the Finite Element
discretization is all carried out in 3D, and the fluid quantities vary smoothly
(albeit with high gradients) in a 𝜀-neighborhood of Σ𝑣.

- In Brinkmann models, the valve is represented as a 3D object occupying a
region Ω𝑣 and D𝑣 is the binary characteristic function of Ω𝑣. The name of
these models comes directly from the Navier-Stokes-Brinkmann equations
for porous media, and the resistance coefficient is expressed as R(𝒖, 𝒖𝑣) =
𝜇

𝐾
(𝒖 − 𝒖𝑣) in terms of a porosity coefficient 𝐾 [74, 111]. A similar model,

with an additional higher-order term w.r.t. 1
𝐾
(𝒖 − 𝒖𝑣) in R(𝒖, 𝒖𝑣), is used in

[53, 33]. In the context of valve modeling, the Finite Element approximation
of these models shares with the RIIS model the non-conformity between the
mesh and valve leaflets, with the boundary 𝜕Ω𝑣 of the valve region treated by
the volume-of-fluid method: in each mesh element, the porosity coefficient 𝐾
is inversely proportional to the fraction of the element volume that is occupied
by the valve.

As pointed out above, both the resistive and the Brinkmann models are purely
kinematic models, prescribing the blood velocity by penalization. On the other
hand, the valve dynamics may either be reconstructed based on clinical imaging
or modeled by a structural problem and coupled with the fluid problem by, e.g.,
a Dirichlet-Neumann strategy (cf. Sect. 3.2).

17.More rigorously, a Hausdorff measure of co-dimension 1
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4.4 The family of Cut-FEM strategies
CFE methods aim to combine the geometric and physical accuracy of body-fitted
methods with the flexibility of unfitted-mesh methods in treating meshes that are
generated independently. To describe them, we use a similar geometric notation
to that of Section 4.2: a background domain Ω is considered, containing both the
fixed fluid domain Ω𝑡

𝑓
and the moving valve B𝑡𝑣 = A𝑡

𝑣 (B̂𝑣), with corresponding
meshes Tℎ,T 𝑡

ℎ, 𝑓
, and T 𝑡

ℎ,𝑣
= A𝑡

𝑣 (T̂ℎ,𝑣). The FS interface conditions are defined
over Σ𝑡𝑣, which denotes either the boundary 𝜕B𝑡𝑣 of the valve, in the case of
a 3D description, or the whole valve if a 2D surface modeling is considered.
Examples of CFE methods with 2D surfaces can be found in [96, 6, 108] and for
a broader discussion on CFE methods in general we refer the reader to [185].
Remark 1 (Fixed mesh). Although the notation Ω𝑡

𝑓
could lead to thinking that

the fluid mesh is moving during the time evolution, we do not need to set the
fluid problem in a moving-mesh framework (as in the ALE approach). Indeed,
the background elements of Tℎ are fixed through time, and the time dependence
is only due to the fact that B𝑡𝑣 is moving, and thus the domain Ω𝑡

𝑓
is made of the

following union

Ω𝑡𝑓 =
©«

⋃
𝐾∈◦Tℎ, 𝑓

𝐾
ª®¬ ∪

©«
⋃

𝑆∈S𝑡
ℎ, 𝑓

𝑆
ª®®¬ ,

where (see Fig. 4)

◦
Tℎ, 𝑓 = {𝐾 ∈ Tℎ : 𝐾 ∩ B𝑡𝑣 = ∅}

S𝑡ℎ, 𝑓 = {𝑆 = 𝐾 \ B𝑡𝑣 : 𝐾 ∈ Tℎ and 𝐾 ∩ Σ𝑡𝑣 ≠ ∅}.

In what follows, we call split elements the background elements crossed by Σ𝑡𝑣:

S𝑡ℎ = {𝐾 ∈ Tℎ : 𝐾 ∩ Σ𝑡𝑣 ≠ ∅}.

At the continuous level, the equations of the problem are similar to (1a)-(1e)
of the vascular FSI case, though not in the ALE framework (see Remark 1) and
with B̂𝑣 in the place of Ω̂𝑠 . At the discrete level, however, the background mesh
does not conform with the valve, and the CFE family can be classified into a
diverse set of methods. The main differences between the methods concern:
1. the discretization of the fluid on the elements of the background mesh that

are crossed by the fluid-solid interface;
2. the imposition of the FSI interface conditions.

Regarding the first point, the difficulty lies in that S𝑡
ℎ, 𝑓

is made of polyhedra
with a generic number of faces, as shown in the pink elements of Fig. 4, on
which the classical continuous Finite Element method is hardly applicable. Two
classes of methods address this issue in dual ways:
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FIGURE 4 Meshes of the CFE methods, in the case of a thick (above) and thin (below) structure:

in grey the structure mesh T𝑡
ℎ,𝑠

; in blue the mesh
◦

Tℎ, 𝑓 far from the structure; in pink the fluid portion
S𝑡
ℎ, 𝑓

of the split elements.

- The Polygonal/Polyhedral Discontinuous Galerkin (PolyDG) method [126,
9], first applied to 2D FSI problems in [8, 206], is based on function spaces
generated by modal basis functions based on bounding boxes of the mesh
elements [44]. Therefore, the computational mesh is allowed to contain
polygonal/polyhedral elements with arbitrary numbers of edges/faces. In this
method, each portion of the split elements is a valid element on its own,

therefore T 𝑡
ℎ, 𝑓 , 𝑝𝐷𝐺

=
◦

T 𝑡
ℎ, 𝑓

∪ S𝑡
ℎ, 𝑓

is a valid mesh and the continuity of the
solution in all Ω𝑡

𝑓
is enforced weakly with standard DG terms in the fluid

problem.
- Alternatively, the eXtended Finite Element Method (XFEM) employs a com-

putational mesh T 𝑡
ℎ, 𝑓 ,𝑋𝐹𝐸𝑀

=
◦

T 𝑡
ℎ, 𝑓

∪S𝑡
ℎ

made only of the original tetrahedra
(or hexahedra). The trial and test function spaces are then built by extending

the standard Finite Element spaces over
◦

T 𝑡
ℎ, 𝑓

with additional degrees of free-
dom (dofs) over the split elements S𝑡

ℎ
, with different purposes depending on

the thickness of the structure. In the case of thick structures, namely struc-
tures whose thickness is larger than the size ℎ of the background elements,
the Finite Element basis functions corresponding to the new dofs for each
𝐾 ∈ S𝑡

ℎ
are multiplied by enrichment functions encoding the restriction of

the problem formulation on 𝐾 ∩Ω𝑡
𝑓

(see, e.g., [83, 84, 140, 127]). If, instead,
a thin structure is considered, with a thickness smaller than ℎ – or also if the
structure is a 2D surface immersed in a 3D domain – each split element can
have more than one connected component in Ω𝑡

𝑓
, and all the new dofs are du-

plicated to allow each of these components to have a full set of dofs on which
to assemble the fluid problem (see, e.g., [167, 207, 185, 66]). In this latter
case, additional constraints have to be introduced to enforce the continuity of
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the fluid solution among the split elements on the same side of the structure:
this is typically done by DG-based Nitsche mortaring, which requires the
introduction of additional terms both in the fluid and in the structure solver.

Due to the motion of the valve, the fluid portion of the split elements may be
extremely small. This can undermine the stability of the XFEM, thus ad-hoc
stabilization strategies have to be adopted, such as the ghost penalty stabilization
[37]. On the other hand, the stability of the PolyDG method has been theoretically
proven independently of the size of the elements, under mild assumptions, and
its robustness w.r.t. element anisotropy has been numerically assessed [8].

Concerning the imposition of interface conditions (point 2 above), all the
works mentioned above considered a Nitsche method based on DG mortaring
assembled directly on the faces of the interface Σ𝑡𝑣. A similar strategy was
considered also in the case of other methods, like the Interior-Penalty Finite
Element Method (bearing many similarities with the XFEM) [123, 122, 203]
or the unfitted version of the Hybrid High-Order method (allowing the use of
generic polyhedral elements) [59, 38]. A variation was proposed in [139], where
an additional body-fitted fluid mesh surrounding B𝑡𝑣 was introduced to accurately
capture the boundary layer and compute boundary stresses, in a similar fashion
to Chimera methods; in this case, the mortaring was assembled on the interface
between this additional mesh and the background mesh. Another alternative to
assembling the Nitsche terms on Σ𝑡𝑣 was introduced as the Shifted Boundary
Method [134, 133], where the interface conditions are projected onto the closest
faces of the fluid mesh, thus preventing the need of element cutting. Other
variational approaches employed, instead, Lagrange multipliers on the interface
(similarly to the FD approach of Section 4.2) [83, 110].

5 CRITICAL ISSUES IN AORTIC FSI SIMULATION

In this section, we want to give very short hints about some critical issues arising
when one wants to realize patient-specific FSI numerical simulations in the
aorta. For the sake of exposition, we limit this overview to the vascular case.
We stress that with "patient-specific" we do not mean only the use of geometric
data coming from medical images but also personalized model parameters and
boundary conditions.

5.1 The issue of boundary conditions

We start with the fluid problem. Regarding the inlet Γ𝑡
𝑖𝑛

of the aortic domain,
we can in general recognize the following approaches to prescribe significant
boundary conditions:

- Prescribe data coming from measures, e.g.:
i) Velocity data 𝒈 coming from PC-MRI or 4DFlow acquisitions, allowing to
prescribe a Dirichlet condition 𝒖 = 𝒈 on Γ𝑡

𝑖𝑛
, see, e.g, [47];
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ii) Flow rate data 𝑄(𝑡) coming from EchoColor Doppler or PC-MRI acquisi-
tions. This gives the defective condition∫

Γ𝑡
𝑖𝑛

𝒖 · 𝒏 = 𝑄,

which needs to be completed either with some assumption on the velocity
profile (e.g. flat [142, 30]) or, under the assumption of null tangential stress or
velocity, with some more mathematically sound methods, such as Lagrange
multipliers, optimal control, or Nitsche [71];
iii) Pressure data 𝑃. Owing to the reasonable assumption of constant pressure
over a section orthogonal to the longitudinal axis and the predominance of
pressure over viscous stresses on such a section, often this data is prescribed
by means of the following Neumann condition:

𝑻 𝑓 (𝒖, 𝑝)𝒏 = 𝑃𝒏 on Γ𝑡𝑖𝑛;

- Coupling the aorta FSI model with an electro-mechano-fluid (EMF) model
of the left ventricle [166, 177, 34]. This allows to set proper interface inlet
conditions at the aortic valve plane (continuity of mass and tractions) which,
in case of splitting between the cardiac and the vessel model, provide inlet
boundary conditions on the velocity or pressure18.
Regarding the outlets Γ𝑡𝑜𝑢𝑡 (usually the entrance of the iliac arteries, a section

located at the abdominal level, the supra-aortic arteries), we can in principle
detect three strategies to prescribe proper boundary conditions:
- The coupling with a 1D reduced FSI model representing the distal systemic

circulation (or a part of it), obtained by integrating the FSI equations over a
section 𝑆 and under suitable simplifying hypotheses [152]. This leads to a
hyperbolic system of two equations in the unknowns area 𝐴 = 𝐴(𝑡, 𝑧) of 𝑆
and flow rate 𝑄 = 𝑄(𝑡, 𝑧) over 𝑆, 𝑧 being the axial coordinate. Writing the
interface conditions between the 3D and 1D FSI models, stating the continuity
of mass and tractions, and using a partitioned procedure, one obtains suitable
boundary conditions for the 3D model in terms of flow rate or mean pressure
conditions [160]. This strategy is particularly suited when the outlet is located
at a section at the abdominal level [135] or at the entrance of the iliac arteries
[24];

- The coupling with a Windkessel model, i.e. a lumped parameter (0D) model
accounting in a synthetic way for the overall resistance and compliance of
the distal circulatory system. The most simple Windkessel element is formed
by two resistances and one capacitance [160]. Again, the splitting between
3D and 0D models may provide suitable boundary conditions at the 3D
outlet; sometimes the 0D model has been directly inserted in the 3D model

18.In the case a 0D fluid model is used in the EMF model, the inlet condition will be defective
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as boundary condition [187]. The use of a Windkessel model is suited for the
main aortic outlets [43] and also for the supra-aortic arteries [156];

- It is well known that when pressure data (although coming from the literature)
is prescribed at a FSI outlet, spurious numerical pressure wave reflections may
occur [72]. To overcome this, it has been proposed to use absorbing boundary
conditions obtained by annihilating the incoming characteristic variable of a
"condensed" 1D model [150]. This leads to a resistance boundary condition
(i.e. a linear combination between flow rate and mean traction) for the normal
component, e.g. from [149] we have

1
|Γ𝑡𝑜𝑢𝑡 |

∫
Γ𝑡
𝑜𝑢𝑡

𝑻 𝑓 𝒏 · 𝒏 − 𝑅
∫
Γ𝑡
𝑜𝑢𝑡

𝒖 · 𝒏 = 𝑃𝑒𝑥𝑡 𝑅 =

√︄
𝜌 𝑓 𝐸𝐻𝑠𝜋

2(1 − 𝜈2)𝐴7/4
0

,

with 𝐴0 the section area at time 0 and 𝑃𝑒𝑥𝑡 the external pressure. The flow
rate term could be treated explicitly, leading in fact to a standard Neumann
condition (see point iii above). Although not completely representing the
physiological conditions, since physiological pressure wave reflections are
dumped, this simple strategy allows at least to recover a reasonable solution
without spurious reflections.
As for the structure and fluid mesh problems, one often prescribes either

homogeneous Dirichlet conditions at the inlet/outlets, corresponding to fixing
the geometries, or mixed homogeneous Dirichlet (for the normal direction) and
Neumann (for the tangential directions) conditions, allowing deformation in the
tangential directions. At the external surface Γ𝑡𝑒𝑥𝑡 , it is crucial to set proper
boundary conditions accounting for the surrounding tissue in order to preserve
stability and obtain accurate results. This is usually done by prescribing a Robin
condition surrogating the elastic response of the surrounding tissue by means of
a simple linear local model:

𝛾𝑆𝑇 �̂� + 𝑻𝑠 ( �̂�) = 𝑃𝑒𝑥𝑡 �̂� on Γ̂𝑒𝑥𝑡 ,

where 𝛾𝑆𝑇 = 𝛾𝑆𝑇 (𝒙) represents the elastic properties of the surrounding tissue
[142].

5.2 Recovering the unloaded geometric configuration
Standard medical images usually used to obtain the aortic computational domain
(such as MRI and CT) given an average information of the geometry during the
heartbeat, often corresponding to the diastolic configuration. More advanced
acquisition techniques, such as cineMRI and dynamic CT, allow to have many
geometric configurations (about 20) per heartbeat. In any case, the unloaded
configuration (i.e. the empty one, without blood inside) is unknown, since
the reconstructed geometry refers to a state corresponding to a non-null blood
pressure (𝑃𝑚 ≃ 70 mmHg). The knowledge of the unloaded configuration is
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however necessary when a non-linear material is considered for the vessel wall
mechanics, to work at the right stress/strain point or, in other words, to have the
right prestress in the artery.

To recover the zero-pressure configuration and the in vivo stress tensor field,
in [161] the authors proposed an optimization problem where the unknown
unloaded configuration 𝑿∗ is found as

𝑿∗ = 𝒙𝑚 − 𝜅𝑼,

for a suitable parameter 𝜅, where 𝒙𝑚 is the image-based configuration and𝑼 is the
displacement of a forward simulation applied to the image-based configuration
loaded by 𝑃𝑚. To determine 𝜅, an optimization procedure is performed in the
range 𝜅 ∈ [0.5, 2] with the aim of minimizing the discrepancy between 𝑿∗ and
𝒙𝜅 , where the latter is obtained by loading 𝑿∗ by 𝑃𝑚. This method has been
successfully applied to an AAA configuration. In [29], a fixed-point alternative
has been proposed, where a displacement 𝑼 (𝑘 ) is found at each iteration 𝑘 by
solving a forward structural problem, where the configuration 𝑿 (𝑘−1) found at
iteration 𝑘 − 1 is used as reference and loaded by 𝑃𝑚. Such displacement is then
subtracted from the original image-based configuration to find the new geometry
at iteration 𝑘:

𝑿 (𝑘 ) = 𝒙𝑚 −𝑼 (𝑘 ) .

This method has been applied to the case of an aorta of a mouse. Another
method based on the backward application of computed forward deformations
is reported in [54].

Instead of computing explicitly the zero-pressure configuration as proposed
in the above papers, a different approach is based on computing the in-vivo
prestress to be applied to the reference image-based configuration. This is done
by an iterative procedure in which the external pressure is gradually incremented
up to 𝑃𝑚. Correspondingly, incremental structure problems are solved until
equilibrium, using a multiplicative decomposition of the deformation gradient

𝑭 (𝑘+1) = �̃� (𝑘+1)𝑭 (𝑘 ) ,

where �̃� (𝑘+1) is found by using the previous Jacobian [81, 79]. This strategy
was successfully applied to the case of AAA geometries.

5.3 FSI parameter calibration & validation
Probably, the main challenging issue today related to the numerical solution of
FSI problems for the aorta is given by the calibration of the model parameters,
in order to make the simulation patient-specific. This is crucial for the structure
problem since there is a high inter-subjects and intra-subject variability of the
(healthy and damaged) vessel wall mechanical properties, such as the parameters
describing the compressibility (e.g. the Poisson ratio) and the elastic behavior
(e.g. the Young modulus).
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A first group of works aimed at using physical principles in combination
with medical data in the aorta in order to calibrate the structural parameters. For
example, in [5] the authors proposed to estimate the pulse wave velocity 𝑐 and
then to approximate the Young modulus as

𝐸 =
3𝜌 𝑓 𝑐2√𝐴0

2𝐻𝑠
√
𝜋

.

To estimate 𝑐 it is possible to start from two PC-MRI flow rate acquisitions (a
proximal and a distal one) and to measure the delay of the latter in correspondence
with the transit time of the foot of the flow waveforms. In order to have a non-
uniform in space 𝑐, if also area waveforms are available, an alternative method
relies on estimating 𝑐 at different aortic levels and then to apply a least-square
fitting to find 𝜉 such that 𝑐 = 𝜉𝐷

−1/2
𝑑

, where 𝐷𝑑 is the diastolic diameter [4].
Regarding the three parameters 𝑅1, 𝑅2, 𝐶 of a three-element Windkessel outflow
model, we can estimate first the total peripheral resistance as

𝑅1 + 𝑅2 =

1
𝑇

∫ 𝑇
0 𝑃(𝑡)

1
𝑇

∫ 𝑇
0 𝑄(𝑡)

,

with 𝑃 and 𝑄 available waveforms data of pressure and flow rate, see [163].
Then, the resistance of the large vessels 𝑅1 can be estimated by 𝑅1 =

𝑐𝜌 𝑓

𝐴
[196,

3]. For the compliance 𝐶, see, e.g. [106].
Another group of studies proposed to directly estimate the parameters by

a fitting with available data, using the minimization of a suitable functional;
regarding applications to the aorta with real medical data, see, e.g., [43, 163]
for the estimation of Windkessel parameters, [184] for the elastic properties
calibration, and [143] for the surrounding tissue.

Finally, we refer to works that focused more on the numerical strategy to
efficiently solve the calibration problem, often tested only with synthetic data.
We mention studies that build the adjoint FSI problem to solve an optimization
problem for the calibration of the elastic properties [153] or the Windkessel
parameters [105]; algorithms based on the Kalman filter procedure, adapted to
the non-linear case, see, e.g. [22, 23] for the calibration of elastic properties;
recent methods based on machine learning, see [128] for the elastic properties.

Related to the calibration issue is that of the validation of the FSI model and
corresponding numerical strategies. This could be done in general by comparing
the numerical results with medical image-based data, in terms of blood velocity
and pressure and vessel displacements. In principle, a fair validation should
be obtained by using data for the comparison that have not been already used
for calibration nor for boundary conditions. For validation of blood velocity,
we mention, among the others, [120] for the healthy aorta against PC-MRI
measures, [165, 155] for aortic coarctation and Marfan patients, respectively,
against 4DFlow MRI measures.



Other studies validated their FSI model against in-vitro measures: we men-
tion, e.g., [48] for a validation of blood velocity in idealized aortas with dissection
against ultrasound in vitro measurements, [114] for a validation of vessel dis-
placements in idealized abdominal aortic aneurysms against T-4 ultrasound echo
track measures, and [46] for a validation of a strategy to recover the unloaded
aortic configuration.
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