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Abstract

In this paper we deal with the inverse problem of the shape reconstruction of cavities
and inclusions embedded in a linear elastic isotropic medium from boundary displace-
ment’s measurements. For, we consider a constrained minimization problem involving
a boundary quadratic misfit functional with a regularization term that penalizes the
perimeter of the cavity or inclusion to be identified. Then using a phase field approach
we derive a robust algorithm for the reconstruction of elastic inclusions and of cavities
modelled as inclusions with a very small elasticity tensor.

1 Introduction

The focus of this paper is the reconstruction of cavities and inclusions embedded in an
elastic isotropic medium occupying the region Ω ⊂ Rd, with d = 2, 3, by means of tractions
and displacements measurements on the boundary of the domain. Identification of defects
from boundary measurements plays an important role in non-destructive testing for damage
assessment of mechanical specimens, which are possibly defective due to the presence of
interior voids or cavities appearing during the manufacturing process, see, for instance,
[29, 42, 50, 54] for possible applications to 3D-printing and additive manufacturing.

Here, we consider the boundary value problem based on the linear elasticity in an inho-
mogenenous isotropic medium. Let ∂Ω = ΣD ∪ ΣN , with ΣD closed, we take into account
the following boundary value problem in the variable u denoting the elastic displacement:

div(C0∇̂u) = 0 in Ω \ C,
(C0∇̂u)n = 0 on ∂C,

(C0∇̂u)ν = g on ΣN ,

u = 0 on ΣD,

(1.1)

where C b Ω is a cavity with Lipschitz boundary, and ∇̂u is the symmetric gradient. C0 is
a fourth-order isotropic elastic tensor, uniformly bounded and strongly convex, and n and
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ν are the outer unit normal vector to ∂C and ΣN , respectively. The Neumann boundary
datum g is assumed to be in L2(ΣN ).

The forward problem consists in finding the elastic displacement u in the elastic body
occupying the region Ω induced by the tractions on ΣN , given the cavity C. The inverse
problem deals with the determination of the cavity C from partial observations of u on the
boundary. More precisely, given measurements of the displacement, i.e. umeas ∈ L2(ΣN ),
find C, simply connected and compactly contained in Ω, such that ubΣN

= umeas, where
u ∈ H1

ΣD
(Ω \ C) is the solution to the forward problem.

It is well known that this problem is severely ill-posed and only a very weak logarithmic
conditional stability holds, assuming a-priori C1,α regularity of the unknown cavities, [48].
A similar stability result holds true also in the case of the determination of elastic inclusions,
see for example [49]. Hence, in general the reconstruction of cavities and inclusions turns
out to be a challenging issue. To solve our problem we follow a similar strategy as the
one considered in [11, 26] and in [10] for the reconstruction of conductivity inclusions and
cavities respectively. Specifically, we consider the problem of minimizing the functional

J(C) =
1

2

∫
ΣN

|u(C)− umeas|2 dσ(x) + αPer(C), (1.2)

over a suitable set of cavities of finite perimeter and where u(C) is the solution of (1.1) for
a given cavity C, Per(C) indicates the perimeter of C, and α is a positive regularization
parameter.

We first investigate the continuity properties of solutions to (1.1) with respect to per-
turbations of the cavity C in the Hausdorff distance topology and prove it using the Mosco
convergence, see [17, 18, 32]. Similarly as in [10], continuity then allows us to prove existence
of minima of the functional J(C), stability with respect to noisy data and convergence of
the minimizers as α→ 0 to the solution of the inverse problem.

In the second part of the paper, we use a suitable phase-field relaxation of the functional
J in order to overcome issues arising from non-convexity and non-differentiability. To be
more precise, we employ the idea adopted, for example, by Bourdin and Chambolle [15]
in topology optimization of filling the cavity with a fictitious elastic material described
by an elastic tensor C1 := δC0, where δ is a small positive parameter and C0 has been
extended to the whole domain Ω. In this way, we transform the original inverse problem
of detection of a cavity to the one of reconstructing an elastic inclusion. As far as we
know, the implementation of a phase-field approach is new in this context. The phase-field
approach delivers an efficient method to solve the inverse boundary problem where boundary
of the region filled by the material is unknown (cf. [26]). Phase-field topology optimization
penalizes an approximation of the interface perimeter in such a way that, by choosing a
very small positive penalty term, one can approximate a sharp interface region separating
areas with different elastic properties (cf. [12]). The phase-field approach to structural
optimization problems has been recently used by different authors (cf., e.g., [9, 12, 21]), the
main advantage being the fact that it allows to handle topology changes as well as nucleation
of new holes. More in detail, a binary (i.e., either 0 or 1) phase parameter v would call for
sharp interfaces between regions with two different materials and since problems with sharp
interfaces are in general difficult to numerically treat and solve, as classically done, we
consider the phase parameter v as a H1 scalar field, taking values in the interval [0, 1].
Then, we approximate the functional J in (1.2) by means of the so-called Ginzburg-Landau
type functional (cf. [47])

Jδ,ε(v) :=
1

2

∫
ΣN

|uδ(v)− umeas|2 dσ(x) +
4α

π

∫
Ω

(
ε|∇v|2 +

1

ε
v(1− v)

)
dx, (1.3)

where 4
π is a rescaled parameter in the Modica-Mortola relaxation of the perimeter, uδ(v)

denotes the solution of the modified boundary value problem:
div(Cδ(v)∇̂uδ(v)) = 0 in Ω,

(Cδ(v)∇̂uδ(v))ν = g on ΣN ,

uδ(v) = 0 on ΣD,

(1.4)
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where
Cδ(v) = C0 + (C1 − C0)v, with C1 = δC0. (1.5)

Here C0 and C1 are the elasticity tensors in Ω \C and C, respectively. Ideally, the optimal
phase variable v should be close to an ideal binary field, in fact when ε is small the potential
term (

∫
Ω

1
εv(1− v) dx) prevails and the minimum is attained by a phase-field variable which

takes mainly values close to 0 and 1 and the transition occurs in a thin layer of thickness of
order ε. We provide in Section 3.2 first order necessary optimality conditions for the mini-
mization problem associated to Jδ,ε whose discretized version is then employed in Section 4
in order to develop the reconstruction algorithm. Minima of the functional Jδ,ε exist and
turn out to be accurate approximations of minima of J for ε and δ sufficiently small as shown
in the numerical experiments of Section 5. It could be proved rigorously if Γ-convergence
to the functional J holds. This is still an open issue and will be the subject of a future
research. Some attempts along this direction have been done in the scalar case for example
in [10, 51, 52].

The literature on reconstruction algorithms for identification of inclusions and cavities
in elastostatic, viscoelastic and elastic waves systems is very rich and of remarkable interest.
In the case of small elastic inclusions or cavities asymptotic expansions of the perturbed dis-
placement has been used to detect position, size and shape from boundary measurements,
see for example [40] and [7]. The method followed in [5] is based on a shape derivative
approach, both for elastic and thermoelastic problems. A topological gradient method has
been applied in [20], for the detection of an elastic scatterer, and in [45], for identification
of a cavity in time-harmonic wave elastic systems. Ikehata and Itou use the so-called en-
closure method for the reconstruction of polygonal cavities in an elastostatic setting [37]
and of a general cavity in a homogeneous isotropic viscoelastic body [38]. More recently,
Doubova and Fernández–Cara proposed an augmented Lagrangian method to identify rigid
inclusions where the forward problem is based on the elastic waves system [27]. Eberle and
Harrach applied the monotonicity method for the reconstruction of elastic inclusions using
the monotonicity property of the Neumann-to-Dirichlet map [28] and in [41] the authors
use the method of fundamental solutions for the reconstruction of elastic cavities. For other
reconstruction approaches we refer to the review paper [14] and references therein. Identi-
fication of cavities and elastic inclusions could be read as a special case of determination of
Lamé parameters from boundary measurements, see for example [6, 36] and [53].

The plan of the paper is the following. In Section 2 we investigate continuity properties
of the solution to the direct problem with respect to perturbations of the cavity in the
Haussdorff topology and then derive as a consequence the major properties of the misfit
functional J(C). In Section 3 we consider the approximation of the cavity with an inclusion
of small elasticity tensor, the corresponding misfit functional and its properties. We then
introduce its phase-field relaxation and analyze its differentiability properties and derive
necessary optimality conditions related to the phase-field minimization problem. In Section
4 we propose an iterative reconstruction algorithm allowing for the numerical approximation
of the solution and prove its convergence properties. Finally in Section 5 we present some
numerical results showing the efficiency and robustness of the proposed reconstruction.

Notation and geometrical setting

We introduce the principal notation utilized in the paper.
Notation. We denote scalar quantities, points, and vectors in italics, e.g. x, y and u, v,

and fourth-order tensors in blackboard face, e.g. A,B.
The symmetric part of a second-order tensor A is denoted by Â := 1

2

(
A+AT

)
, where

AT is the transpose matrix. In particular, ∇̂u represents the deformation tensor. We utilize
standard notation for inner products, that is, u · v =

∑
i uivi, and A : B =

∑
i,j aijbij (B is

a second-order tensor). |A| denotes the norm induced by the inner product on matrices:

|A| =
√
A : A.

Domains. To represent locally a boundary as a graph of function, we adopt the notation:
∀x ∈ Rd, we set x = (x′, xd), where x′ ∈ Rd−1, xd ∈ R, with d = 2, 3. Given r > 0, we

3



denote by Br(x) ⊂ Rd the set Br(x) := {(x′, xd)/ |x′|2 + x2
d < r2} and by B′r(x

′) ⊂ Rd−1

the set B′r(x
′) := {x′ ∈ Rd−1/ |x′|2 < r2}.

Definition 1.1 (C0,1 regularity).
Let Ω be a bounded domain in Rd. We say that a portion Σ of ∂Ω is of Lipschitz class with
constant r0, L0, if for any p ∈ Σ, there exists a rigid transformation of coordinates under
which we have that p is mapped to the origin and

Ω ∩Br0(0) = {x ∈ Br0(0) : xd > ψ(x′)},

where ψ is a C0,1 function on B′r0(0) ⊂ Rd−1, such that

ψ(0) = 0,

‖ψ‖C0,1(B′
r0

(0)) ≤ L0.

The Hausdorff distance between two sets Ω1 and Ω2 is defined by

dH(Ω1,Ω2) = max{ sup
x∈Ω1

inf
y∈Ω2

dist(x, y), sup
x∈Ω2

inf
y∈Ω1

dist(x, y)}.

Functional setting: Let Ω be a bounded domain. We set

BV (Ω) = {v ∈ L1(Ω) : TV (v) <∞}, (1.6)

where

TV (v) = sup

{∫
Ω

vdiv(ϕ); ϕ ∈ C1
0 (Ω), ‖ϕ‖L∞(Ω) ≤ 1

}
(1.7)

is the total variation of v. The BV space is endowed with the natural norm ‖v‖BV (Ω) =
‖v‖L1(Ω) + TV (v). We recall that the perimeter of Ω is defined as

Per(Ω) = TV (χΩ) (1.8)

where χΩ is the characteristic function of the set Ω.
Setting H1

∂Ω(Ω) := {υ ∈ H1(Ω) : υb∂Ω= 0}, we recall the following inequalities.

Proposition 1.1. Let Ω be a bounded Lipschitz domain. For every υ ∈ H1
∂Ω(Ω), there exists

a positive constant c = c(Ω) such that

(Korn inequality) ‖∇υ‖L2(Ω) ≤ c ‖∇̂υ‖L2(Ω). (1.9)

(Poincaré inequality) ‖υ‖H1(Ω) ≤ c ‖∇υ‖L2(Ω). (1.10)

Estimates (1.9) and (1.10) hold also in the case where υ is zero, in the trace sense, only
on a portion of ∂Ω.

2 Elastic problem - detection of a cavity

The focus of this work is the analysis of the inverse problem of the identification of a cavity
in an elastic body Ω ⊂ Rd, with d = 2, 3, from boundary measurements, using a phase-field
approach. We assume that Ω is a bounded domain and that ∂Ω := ΣN ∪ΣD, with |ΣN | > 0,
|ΣD| > 0, ΣD closed, where ∂Ω is of Lipschitz class with constants r0 and L0. Denoting by
C the cavity, we consider the mixed boundary value problem

div(C0∇̂u) = 0 in Ω \ C,
(C0∇̂u)n = 0 on ∂C,

(C0∇̂u)ν = g on ΣN ,

u = 0 on ΣD,

(2.1)

where n, ν are the outer unit normal vector to ∂C and ∂Ω, respectively.
We make the following assumptions.
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Assumption 2.1. C0 = C0(x) is a fourth-order tensor such that

(C0)ijkh(x) = (C0)jikh(x) = (C0)khij(x), ∀1 ≤ i, j, k, h ≤ d, and x ∈ Ω.

Moreover, C0 is assumed uniformly bounded and uniformly strongly convex, that is, C0

defines a positive-definite quadratic form on symmetric matrices:

C0(x)Â : Â ≥ ξ0|Â|2, a.e in Ω,

for ξ0 > 0.

Remark 2.1. We require that C0 is defined in Ω, and not only in Ω\C, because we employ,
in the second part of the paper, a reconstruction algorithm based on the strategy of filling the
cavity with a fictitious elastic material.

Assumption 2.2.
g ∈ L2(ΣN ). (2.2)

We assume Lipschitz regularity for the cavity, which is a typical requirement to prove
uniqueness of the inverse problem of detecting cavities from boundary measurements, see
[48]. More precisely, we make the following assumption.

Assumption 2.3. Let

C ∈ C:={D ⊂ Ω : compact, simply connected ∂D ∈ C0,1 with constant r0, L0 and
dist(D, ∂Ω) ≥ d0 > 0}.

We define

Ωd0/2 = {x ∈ Ω / dist(x, ∂Ω) ≤ d0

2
}. (2.3)

For the class of admissible sets C, the following result holds.

Remark 2.2. C is compact with respect to the Hausdorff topology [25, 46].

Remark 2.3. From now on, we will denote with c any constant possibly depending on Ω,
r0, L0, d, ξ0, d0, c, and on the uniform bounds of the elasticity tensor.

Well-posedness of (2.1) inH1
ΣD

(Ω\C) is a classical result, see for example [24], and follows
from an application of the Lax-Milgram theorem to the weak formulation of Problem (2.1):

Find u ∈ H1
ΣD

(Ω \ C) solution to∫
Ω\C

C0∇̂u : ∇̂ϕdx =

∫
ΣN

g · ϕdσ(x), ∀ϕ ∈ H1
ΣD

(Ω \ C). (2.4)

Moreover, it holds
‖u‖H1(Ω\C) ≤ c‖g‖L2(ΣN ). (2.5)

Choosing ϕ = u in (2.4), the last inequality follows from the strong convexity of the elasticity
tensor C0 (see Assumption 2.1), from an application of the Korn and Poincaré inequality
to the left-hand side of (2.4) (see Proposition 1.1), and from the use of a Cauchy-Schwarz
inequality to the right-hand side. In fact,∫

Ω\C
C0∇̂u : ∇̂u dx ≥ c‖∇̂u‖2L2(Ω\C) ≥ c‖∇u‖

2
L2(Ω\C) ≥ c‖u‖

2
H1(Ω\C), (2.6)

and ∣∣∣∣∣
∫

ΣN

g · u dσ(x)

∣∣∣∣∣ ≤ ‖g‖L2(ΣN )‖u‖L2(ΣN ) ≤ c‖g‖L2(ΣN )‖u‖H1(Ω\C), (2.7)

and so estimate (2.5) follows by (2.6) and (2.7).
In this paper, we tackle the inverse problem
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Problem 2.1. Under Assumptions 2.1, 2.2, and 2.3, given umeas ∈ L2(ΣN ), find C ∈ C
such that ubΣN

= umeas, where u ∈ H1
ΣD

(Ω \ C) solves (2.1).

It has been proved in [48] (see also [8]) that Problem 2.1 has a unique solution when ∂C
is of Lipschitz class. Logarithmic stability estimates have been proved under the assumption
of C1,σ regularity, 0 < σ ≤ 1, on the cavity C, cf. [48].

For the reconstruction of the solution to the inverse problem, a standard approach based
on the minimization of a quadratic misfit functional, with a Tikhonov regularization penal-
izing the perimeter of C, is utilized. Precisely, we consider

min
C∈C

J(C), where J(C) =
1

2

∫
ΣN

|u(C)− umeas|2 dσ(x) + αPer(C), (2.8)

where α > 0 represents a regularization parameter, Per(C) is the perimeter of the set C, see
(1.8), and u(C) ∈ H1

ΣD
(Ω \ C) is the solution to (2.4).

2.1 Continuity property of solutions with respect to C

In this section, we will show the continuity of the boundary term in (2.8) with respect
to perturbations of the cavity C in the Hausdorff distance, adapting to our case some
known results in literature. Among the vast literature on continuity results for Dirichlet
and Neumann problems, we refer the reader to [22, 19, 17, 32, 44] and references therein.

To this purpose, we recall the definition of Mosco convergence and some of its properties
(see [18, 17, 32, 46]). Let X be a reflexive Banach space, and Gn a sequence of closed
subspaces of X. We define

G′ := {x ∈ X / x = w − lim sup ynk
, ynk

∈ Gnk
, nk → +∞} (2.9)

and
G′′ := {x ∈ X / x = s− lim inf yn , yn ∈ Gn for n large}. (2.10)

G′, G′′ are called the weak-limsup and the strong-liminf of the sequence Gn in the sense of
Mosco.

Definition 2.1. The sequence Gn converges in the sense of Mosco if G′ = G′′ = G. G is
called the Mosco limit of Gn.

In other words, Gn converges in the sense of Mosco to G when there hold:

If unk
∈ Gnk

is such that unk
⇀ u in X, then u ∈ G; (2.11)

∀u ∈ G,∃un ∈ Gn such that un → u in X. (2.12)

Given Ω and Ω \ C, we can identify the Sobolev space H1
ΣD

(Ω \ C) with a closed subspace

of L2(Ω,Rd+d2

) through the map

H1
ΣD

(Ω \ C) ↪→ L2(Ω,Rd+d2

)

u→ (u, ∂jui), ∀i, j = 1, · · · , d
(2.13)

with the convention of extending u and ∇u to zero in C. The same identification holds for
Ω \ Cn, extending un and ∇un to zero in Cn.
Since we are considering the case of uniform Lipschitz domains, we have the following result,
which is an adaptation of Theorem 7.2.7 in [17].

Theorem 2.4. Let us assume that Cn, C ⊂ Ω belong to the class C. If Cn → C in the
Hausdorff metric, then H1

ΣD
(Ω \ Cn) converges to H1

ΣD
(Ω \ C) in the sense of Mosco.

We can now prove the following continuity result.
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Theorem 2.5. Let Cn ∈ C be a sequence of sets converging to C in the Hausdorff metric
(cf. Remark 2.2), and let u(Cn) =: un ∈ H1

ΣD
(Ω\Cn), u(C) =: u ∈ H1

ΣD
(Ω\C) be solutions

of (2.4) in Ω \ Cn, Ω \ C, respectively. Then

lim
n→+∞

∫
ΣN

|un − u|2 dσ(x) = 0. (2.14)

Proof. Thanks to the uniform Lipschitz regularity of ∂(Ω\Cn) (and ∂(Ω\C)), we have that
the Korn and Poincaré inequalities are uniform with respect to n in H1

ΣD
(Ω\Cn), since they

depend only on the Lipschitz constants of the domain ∂(Ω\Cn), see [2, 23]. Therefore, from
(2.4) and (2.5), we have that

‖un‖H1(Ω\Cn) ≤ c, (2.15)

where c is independent of n.
Hence, from the identification (2.13), we get that ‖un‖L2(Ω,Rd+d2 ) is uniformly bounded. Up

to subsequences, there exists u∗ ∈ L2(Ω,Rd+d2

) such that

un ⇀ u∗ in L2(Ω,Rd+d2

).

Thanks to Theorem 2.4 and from the first condition of the Mosco convergence applied to
Gn = H1

ΣD
(Ω \ Cn), G = H1

ΣD
(Ω \ C), and X = L2(Ω,Rd+d2

), see (2.11), we have that
u∗ ∈ H1

ΣD
(Ω \ C).

Moreover, taking ϕ ∈ H1
ΣD

(Ω \ C), there exists ϕn ∈ H1
ΣD

(Ω \ Cn) by (2.12) such that

ϕn → ϕ in L2(Ω,Rd+d2

). (2.16)

Considering the weak formulation for un (see (2.4) specialized to the case with C = Cn and
ϕ = ϕn) ∫

Ω\Cn

C0∇̂un : ∇̂ϕn dx =

∫
ΣN

g · ϕn dσ(x), (2.17)

and since ϕn ∈ H1
ΣD

(Ω \ Cn) and ϕ ∈ H1
ΣD

(Ω \ C), it holds∫
ΣN

g · ϕn dσ(x) =

∫
ΣN

g · (ϕn − ϕ) dσ(x) +

∫
ΣN

g · ϕdσ(x).

Hence, thanks to Assumption 2.3 and (2.16), we have∣∣∣∣∣
∫

ΣN

g · (ϕn − ϕ) dσ(x)

∣∣∣∣∣ ≤ c‖g‖L2(ΣN )‖ϕn − ϕ‖L2(ΣN )

≤ c‖ϕn − ϕ‖H1
ΣD

(Ωd0/2) → 0,

as n→ +∞, where Ωd0/2 is defined as in (2.3). Therefore,∫
ΣN

g · ϕn dσ(x)→
∫

ΣN

g · ϕdσ(x), as n→ +∞. (2.18)

The term on the left-hand side of (2.17) is equal to∫
Ω\Cn

C0∇̂un : ∇̂ϕn dx =

∫
Ω\Cn

C0∇̂un : ∇̂(ϕn − ϕ) dx+

∫
Ω\Cn

C0∇̂un : ∇̂ϕdx. (2.19)

Then, by (2.15) and (2.16), it follows∣∣∣∣∣
∫

Ω\Cn

C0∇̂un : ∇̂(ϕn − ϕ) dx

∣∣∣∣∣ ≤ c‖∇̂un‖L2(Ω\Cn)‖∇̂(ϕn − ϕ)‖L2(Ω\Cn) → 0, (2.20)
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as n→ +∞. Analogously, for the second integral on the right-hand side of (2.19), using the
symmetries of the elasticity tensor, we get∫

Ω\Cn

C0∇̂un : ∇̂ϕdx =

∫
Ω\Cn

∇̂un : C0∇̂ϕdx

→
∫

Ω\C
∇̂u∗ : C0∇̂ϕdx =

∫
Ω\C

C0∇̂u∗ : ∇̂ϕdx,
(2.21)

as n→ +∞. Consequently, using (2.20) and (2.21) in (2.19), we get∫
Ω\Cn

C0∇̂un : ∇̂ϕn dx→
∫

Ω\C
C0∇̂u∗ : ∇̂ϕdx, as n→ +∞. (2.22)

Therefore, we find that∫
Ω\C

C0∇̂u∗ : ∇̂ϕdx =

∫
ΣN

g · ϕdσ(x)

=

∫
Ω\C

C0∇̂u : ∇̂ϕdx, ∀ϕ ∈ H1
ΣD

(Ω \ C),

where the last equality comes from the weak formulation (2.4). Therefore,∫
Ω\C

C0∇̂(u∗ − u) : ∇̂ϕdx = 0, ∀ϕ ∈ H1
ΣD

(Ω \ C),

so that u∗ = u. This conclusion comes from the choice ϕ = u∗−u, and the use of Assumption
2.1 and Korn and Poincarè inequalities (see Proposition 1.1).

Next, we prove that un → u in L2(ΣN ) by showing strong convergence of un to u in
H1-norm in a neighborhood of the boundary of Ω. Consider the weak formulations∫

Ω\Cn

C0∇̂un : ∇̂ϕ1 dx =

∫
ΣN

g · ϕ1 dσ(x), ∀ϕ1 ∈ H1(Ω \ Cn), (2.23)

∫
Ω\C

C0∇̂u : ∇̂ϕ2 dx =

∫
ΣN

g · ϕ2 dσ(x), ∀ϕ2 ∈ H1(Ω \ C). (2.24)

Now, we define Φ = (un − u)χ2, where χ is a smooth cut-off function, χ ∈ [0, 1] in Ω, such
that

χ =

{
1 in Ω

d0/4

0 in Ω \ Ωd0/2.

Then, we choose ϕ1 = ϕ2 = Φ in (2.23) and (2.24), that is∫
Ωd0/2

C0∇̂un : ∇̂
(
(un − u)χ2

)
dx =

∫
ΣN

g · (un − u) dσ(x),

∫
Ωd0/2

C0∇̂u : ∇̂
(
(un − u)χ2

)
dx =

∫
ΣN

g · (un − u) dσ(x).

Subtracting the last two equations, we find∫
Ωd0/2

C0∇̂(un − u) : ∇̂
(
(un − u)χ2

)
dx = 0,

that is,∫
Ωd0/2

χ2C0∇̂(un − u) : ∇̂(un − u) dx

+

∫
Ωd0/2

2χC0∇̂(un − u) : ((un − u)⊗∇χ)̂ dx = 0.

(2.25)

8



On the second integral, we apply the Young’s inequality with a suitable parameter κ > 0,
that is ∫

Ωd0/2

2χC0∇̂(un − u) : ((un − u)⊗∇χ)̂ dx

≤ 4κ

∫
Ωd0/2

χ2C0∇̂(un − u) : ∇̂(un − u)

+
1

κ

∫
Ωd0/2

C0((un − u)⊗∇χ)̂ : ((un − u)⊗∇χ)̂.

Hence, using this last inequality in (2.25), we get

(1− 4κ)

∫
Ωd0/2

χ2C0∇̂(un − u) : ∇̂(un − u) dx

≤ 1

κ

∫
Ωd0/2

C0((un − u)⊗∇χ)̂ : ((un − u)⊗∇χ)̂.

The right-hand side integral goes to zero, noticing that∫
Ωd0/2

C0((un − u)⊗∇χ)̂ : ((un − u)⊗∇χ)̂

≤ c
∫

Ωd0/2

C0|un − u|2|∇χ|2 dx ≤ c
∫

Ωd0/2

|un − u|2 dx −→ 0, asn→ +∞.
(2.26)

The left-hand side can be estimated using the fact that∫
Ωd0/2

χ2C0∇̂(un − u) : ∇̂(un − u) dx ≥
∫

Ωd0/4

C0∇̂(un − u) : ∇̂(un − u) dx

and, then, by means of the Korn inequality∫
Ωd0/4

C0∇̂(un − u) : ∇̂(un − u) dx ≥ c‖∇(un − u)‖2L2(Ωd0/4). (2.27)

From (2.27) and (2.26), and recalling that un is converging strongly in L2-norm to u from
the previous results, we find that

‖un − u‖H1(Ωd0/4) → 0, as n→ +∞. (2.28)

Finally, by the continuity of the trace theorem the proof is concluded.

Remark 2.6. In the previous result, un → u in L2(ΣN ) can be also proved using the follow-
ing arguments: note that the trace operator is a linear continuous operator from H1

ΣD
(Ω\Cn)

to H
1
2 (ΣN ) (and, analogously, from H1

ΣD
(Ω \ C) to H

1
2 (ΣN )), hence is also continuous in

the weak topology, see [16]. Moreover, since H
1
2 (ΣN ) ↪→ L2(ΣN ) is compact, we find that

un → u in L2(ΣN ).

As a consequence of the continuity of the boundary functional, some properties of the
functional J(C) defined in (2.8) follow.

Proposition 2.7. For every α > 0 there exists at least one solution of the minimization
problem (2.8).

Proof. Let {Cn}n≥0 ∈ C be a minimizing sequence. Then there exists a positive constant
M such that

J(Cn) ≤M, ∀n, (2.29)

hence
Per(Cn) ≤M, ∀n.
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By compactness (see Thereom 3.39 in [4]), there exists a set of finite perimeter C0 such that,
possibly up to a subsequence,

|Cn4C0| → 0, n→∞,

where Cn4C0 is the symmetric difference of the two sets. Moreover, thanks to the com-
pactness and equiboundedness of the sets Cn and the fact that Cn ∈ C there exists a further
subsequence which converges in the Hausdorff metric to C0 ∈ C, thanks to [34, Theorem
2.4.10]. Moreover, by the lower semicontinuity of the perimeter functional (see Section 5.2.1,
Theorem 1, in [30]) it follows that

Per(C0) ≤ lim inf
n→∞

Per(Cn).

Using the continuity of the boundary functional, see (2.14), we also have∫
ΣN

(u(Cn)− umeas)2 dσ(x)→
∫

ΣN

(u(C0)− umeas)2 dσ(x), as n→∞.

In conclusion, we find that

J(C0) ≤ lim inf
n→∞

J(Cn) = lim
n→∞

J(Cn) = inf
C∈C

J(C),

and the claim follows.

We also prove stability with respect to the measured data.

Proposition 2.8. Solutions of (2.8) are stable with respect to perturbations of the data
umeas, i.e., if un → umeas in L2(ΣN ) as n→∞ then the solutions Cn of (2.8) with datum
un are such that, up to subsequences,

dH(Cn, C̃)→ 0, as n→∞,

where C̃ ∈ C is a solution of (2.8), with datum umeas.

Proof. Using (2.8), we have that, for any n, Cn satisfies

1

2

∫
ΣN

(u(Cn)− un)2 dσ(x) + αPer(Cn) ≤ 1

2

∫
ΣN

(u(C)− un)2dσ(x) + αPer(C),

for all C ∈ C. Therefore, Per(Cn) ≤M and hence, possibly up to subsequences,

dH(Cn, C̃)→ 0, n→∞,

for some C̃ ∈ C, and
Per(C̃) ≤ lim inf

n→∞
Per(Cn).

Moreover, by the continuity of the solution of (2.4) with respect to C, see Theorem 2.5, we
get

J(C̃) ≤ lim inf
n→∞

1

2

∫
ΣN

(u(Cn)− un)2dσ(x) + αPer(Cn)

≤ lim
n→∞

1

2

∫
ΣN

(u(C)− un)2dσ(x) + αPer(C)

=
1

2

∫
ΣN

(u(C)− umeas)2dσ(x) + αPer(C),

for all C ∈ C. Summarizing, C̃ ∈ C and it is a minimizer of the functional, hence the
assertion follows.

Finally, we can prove that the solution of the minimization problem (2.8) converges to
the unique solution of the inverse problem when the regularization parameter tends to zero.
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Proposition 2.9. Let us assume that there exists a solution C] ∈ C of the inverse problem
corresponding to datum umeas. Moreover, for any η > 0 let (α(η))η>0 be such that α(η) =

o(1) and η2

α(η) is bounded as η → 0.

Furthermore, let Cη be a solution to the minimization problem (2.8) with α = α(η) and
datum uη ∈ L2(ΣN ) satisfying ‖umeas − uη‖L2(ΣN ) ≤ η. Then

Cη → C]

in the Hausdorff metric, as η → 0.

Proof. From the definition of Cη, it immediately follows that

1

2

∫
ΣN

(u(Cη)− uη)2dσ(x) + αPer(Cη) ≤ 1

2

∫
ΣN

(u(C])− uη)2dσ + αPer(C])

=
1

2

∫
ΣN

(umeas − uη)2dσ + αPer(C])

≤ η2 + αPer(C]).

(2.30)

Straightforwardly, we find that

Per(Cη) ≤ η2

α
+ Per(C]) ≤M. (2.31)

Hence, up to subsequences, arguing as in Proposition 2.8, we get

dH(Cη, C0)→ 0, as η → 0,

for some C0 ∈ C. From (2.30) and (2.31), as η → 0, we find∫
ΣN

(u(Cη)− uη)2dσ → 0,

hence, also∫
ΣN

(u(Cη)− umeas)2dσ(x) ≤
∫

ΣN

(u(Cη)− uη)2dσ(x) +

∫
ΣN

(umeas − uη)2dσ(x)→ 0.

By the continuity result in Theorem 2.5 and using the last relation, we find that

u(C0) = umeas, on ΣN .

Therefore, thanks to the uniqueness result of the inverse problem in Lipschitz domains, cf.
[48], we get C0 = C].

3 Reconstruction of cavities - filling the void

From the numerical point of view, the minimization of the functional (2.8) is complicated due
to its non-differentiability. A usual approach to overcome this issue is to consider a further
regularization of the functional, where the perimeter is approximated by a Ginzburg-Landau
type functional, see for example [15]. This approach is well-known in the literature and it
has been applied in different contexts, see for example [3, 9, 11, 12, 13, 15, 21, 26, 31, 39, 43].

First, we note that Problem (2.8) is equivalent to the following formulation

min
v∈X0,1

J(v), where J(v) =
1

2

∫
ΣN

|u(v)− umeas|2 dσ(x) + αTV (v), (3.1)

where X0,1 := {v ∈ BV (Ω) : v = χC a.e. in Ω, C ∈ C}, TV (v) is defined in (1.7), and
χC is the indicator function of C. Note that the space X0,1 is endowed with the norm
‖v‖BV (Ω) = ‖v‖L1(Ω) + TV (v).
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Remark 3.1. By compactness properties of BV (Ω) (see, e.g., [4], Theorem 3.23), any
uniformly bounded sequence in X0,1 admits a subsequence converging in L1(Ω) to an element
in X0,1. In fact, let vn a sequence uniformly bounded in X0,1, there exists, possibly up to a
subsequence, v ∈ BV (Ω) such that

vn → v in L1(Ω)⇒ vn → v a.e. in Ω.

Since vn attains values 0 and 1 only, it follows that v ∈ X0,1.

Following the approach proposed in [15], we fill the cavity with a fictitious material with
elastic properties that are different from the background. Specifically, we take an elasticity
tensor C1 := δC0, where δ > 0 is sufficiently small. Therefore, the boundary value problem
(2.1) is modified into 

div(Cδ(v)∇̂uδ(v)) = 0 in Ω,

(Cδ(v)∇̂uδ(v))ν = g on ΣN ,

uδ(v) = 0 on ΣD,

(3.2)

where
Cδ(v) = C0 + (C1 − C0)v, with C1 = δC0. (3.3)

Here C0 and C1 are the elasticity tensors in Ω \ C and C, respectively.

Remark 3.2. Thanks to Assumption 2.1, the fact that δ > 0, and by (3.3), the elasticity
tensor Cδ(v) is strongly convex.

Remark 3.3. The following analysis can be generalized to the case of a generic fourth-
order elasticity tensor C1 which is strongly convex and uniformly bounded with the further
hypothesis that

C1Â : Â ≤ C0Â : Â or C0Â : Â ≤ C1Â : Â.

Remark 3.4. When dealing with sequences, we will often use the simplified notation un :=
uδ(vn), u := uδ(v), Cn := Cδ(vn), C := Cδ(v).

The elastic problem (3.2) has the following weak formulation:

Find uδ(v) ∈ H1
ΣD

(Ω) solution to∫
Ω

Cδ(v)∇̂uδ(v) : ∇̂ϕdx =

∫
ΣN

g · ϕdσ(x), ∀ϕ ∈ H1
ΣD

(Ω). (3.4)

Well-posedness of Problem (3.2) in H1
ΣD

(Ω) follows in the same way as for Problem (2.1),
and, in addition

‖uδ(v)‖H1(Ω) ≤ c‖g‖L2
ΣN
.

We now approximate Problem (3.1) with the following one

min
v∈X0,1

Jδ(v), where Jδ(v) =
1

2

∫
ΣN

|uδ(v)− umeas|2 dσ(x) + αTV (v), (3.5)

where uδ(v) ∈ H1
ΣD

(Ω) is the solution of Problem (3.2).
We prove the existence of minima of Jδ(v) in X0,1, on account of the ideas contained in [11].
The proof is consequence of the following property.

Proposition 3.5. Let {vn} ⊂ X0,1 be strongly convergent in L1(Ω) to v ∈ X0,1. Then
{uδ(vn)bΣN

} strongly converges in L2(ΣN ) to uδ(v)bΣN
, i.e., the map F : v → uδ(v)bΣN

is
continuous from X0,1 to L2(ΣN ) in the L1 topology.

Proof. Consider the weak formulation (3.4) associated to v and vn, respectively∫
Ω

Cδ(v)∇̂uδ(v) : ∇̂ϕ =

∫
ΣN

g · ϕ, ∀ϕ ∈ H1
ΣD

(Ω),
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∫
Ω

Cδ(vn)∇̂uδ(vn) : ∇̂ϕ =

∫
ΣN

g · ϕ, ∀ϕ ∈ H1
ΣD

(Ω).

Subtracting the two equations and setting un := uδ(vn), u := uδ(v), Cn := Cδ(vn), C :=
Cδ(v), we get∫

Ω

Cn∇̂(un − u) : ∇̂ϕ+

∫
Ω

(Cn − C)∇̂u : ∇̂ϕ = 0, ∀ϕ ∈ H1
ΣD

(Ω).

Thus, making the choice ϕ = un−u and proceeding similarly as in (2.5) to get H1-estimates,
we find

‖un − u‖2H1(Ω) ≤ c‖(Cn − C)∇̂u‖L2(Ω)‖∇̂(un − u)‖L2(Ω),

and then, by Cn − C = (C1 − C0)(vn − v) and the uniform bound on the elasticity tensor,
see Assumption 2.1, we derive

‖un − u‖H1(Ω) ≤ c‖(∇̂u)(vn − v)‖L2(Ω).

Observe now that vn − v → 0 in L1(Ω) as n → +∞ so that, possibly up to a subsequence,
vn − v → 0, a.e. in Ω. Moreover, by the fact that vn and v are bounded and u ∈ H1(Ω), we
deduce, by dominated convergence theorem, that

‖un − u‖H1(Ω) → 0, as n→ +∞.

Finally, the trace theorem implies

‖un − u‖L2(ΣN ) → 0, as n→ +∞.

Proposition 3.6. Jδ(v) admits a minimum v ∈ X0,1.

Proof. Observe that Jδ(v) is bounded from below, by definition. Moreover, Jδ(v) 6= +∞,
for v ∈ X0,1. So, let {vn} ⊂ X0,1 be a minimizing sequence of Jδ(v), that is

Jδ(vn)→ inf
v∈X0,1

Jδ(v) = M, as n→ +∞.

Then
0 ≤ Jδ(vn) ≤ 2M and 0 ≤ αTV (vn) ≤ 2M.

Hence, there exists a positive constant c, independent on n, such that

‖vn‖BV (Ω) = ‖vn‖L1(Ω) + TV (vn) ≤ c. (3.6)

This implies that vn is uniformly bounded in X0,1. Therefore, thanks to Remark 3.1, there
exists v ∈ X0,1 such that vn → v in L1(Ω). Due to the lower semicontinuity of TV (v) with
respect to the L1-convergence, we have

TV (v) ≤ lim inf
n→+∞

TV (vn)

and, using Proposition 3.5, we get

Jδ(v) =
1

2

∫
ΣN

|uδ(v)− umeas|2 + αTV (v)

≤ lim inf
n→+∞

(
1

2

∫
ΣN

|uδ(vn)− umeas|2 + αTV (vn)

)
= lim
n→+∞

Jδ(vn) = M.

(3.7)
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3.1 Phase-field relaxation

Proceeding as in [26, 11], we now consider a phase-field relaxation of the optimization
problem (3.5). More precisely, we define a minimization problem for a differentiable cost
functional on a convex subspace of H1(Ω), namely

K = {v ∈ H1(Ω) : 0 ≤ v(x) ≤ 1 a.e. in Ω, v(x) = 0 a.e. in Ωd0/2},

where Ωd0/2 has been defined in (2.3), and, for every ε > 0, we replace the total variation
term with the following Modica-Mortola functional.

Problem 3.1. Given umeas ∈ L2(ΣN ), and ε, δ > 0, find

min
v∈K

Jδ,ε(v), Jδ,ε(v) :=
1

2
‖uδ(v)− umeas‖2L2(ΣN ) + α̃

∫
Ω

(
ε|∇v|2 +

1

ε
v(1− v)

)
, (3.8)

uδ(v) ∈ H1
ΣD

(Ω) being the solution to (3.2), for v ∈ K, and α̃ = 4
πα, where 4/π =

(2
∫ 1

0

√
v(1− v) dv)−1 is a rescaling parameter, see [1].

Remark 3.7. We expect Γ-convergence of the functional Jδ,ε to J , given in (3.1). However,
this analysis is involved in the elastic context and is still open issue that needs a specific
accurate study.

The following result holds

Proposition 3.8. For any ε > 0, Problem (3.8) admits a solution v = vδ,ε ∈ K.

Proof. Let us fix ε > 0 and consider a minimizing sequence {vn} ⊂ K for Jδ,ε(v) (we omit
the dependence of vn on δ and ε). We have

Jδ,ε(vn)→ inf
v∈K

Jδ,ε(v) = M.

Hence, by definition of minimizing sequence, 0 ≤ Jδ,ε(vn) ≤ 2M independently of n, which
implies that also ‖∇vn‖2L2(Ω) is bounded. Moreover, recalling that vn ∈ K and 0 ≤ vn(x) ≤ 1

a.e. in Ω, we deduce that ‖vn‖L2(Ω) ≤M1, with M1 independent of n and hence ‖vn‖H1(Ω) ≤
M2, with M2 independent of n. Due to the weak compactness of H1(Ω), there exists
v ∈ H1(Ω) such that, possibly up to a subsequence, vn ⇀ v in H1(Ω). Hence, vn → v
strongly in L2(Ω) and vn → v a.e. in Ω. Since vn(1−vn) ≤ 1/4, by means of the Lebesgue’s
dominated convergence theorem, we get∫

Ω

vn(1− vn)→
∫

Ω

v(1− v).

Moreover, by the lower semicontinuity of the H1(Ω) norm with respect to the weak conver-
gence, we obtain

‖v‖2H1(Ω) ≤ lim inf
n→+∞

‖vn‖2H1(Ω),

‖v‖2L2(Ω) + ‖∇v‖2L2(Ω) ≤ lim
n→+∞

‖vn‖2L2(Ω) + lim inf
n→+∞

‖∇vn‖2L2(Ω)

= ‖v‖2L2(Ω) + lim inf
n→+∞

‖∇vn‖2L2(Ω),

‖∇v‖2L2(Ω) ≤ lim inf
n→+∞

‖∇vn‖2L2(Ω).

By last inequality, the convergence of vn to v a.e., Proposition 3.5, and the fact that vn is
a minimizing sequence, we have

Jδ,ε(v) =
1

2
‖uδ(v)− umeas‖2L2(ΣN ) + α̃

∫
Ω

(
ε|∇v|2 +

1

ε
v(1− v)

)
≤ lim inf

n→+∞

(
1

2
‖uδ(vn)− umeas‖2L2(ΣN ) + α̃

∫
Ω

(
ε|∇vn|2 +

1

ε
vn(1− vn)

))
= lim
n→+∞

Jδ,ε(vn) = M.

Finally, by pointwise convergence, we know that 0 ≤ v ≤ 1 a.e. in Ω and v = 0 a.e. in
Ωd0/2. Hence, v is a minimum of Jδ,ε in K.
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3.2 Necessary optimality conditions

In this section we provide an expression for the first order necessary optimality condition
associated with the minimization problem (3.8), formulated as a variational inequality in-
volving the Fréchet derivative of Jδ,ε.

Proposition 3.9. Define the map F : K → H1(Ω), F (v) = uδ(v), uδ(v) solution to (3.2).
Then the operators F and Jδ,ε (for every ε > 0) are Fréchet-differentiable on K ⊂ L∞(Ω)∩
H1(Ω).

Moreover, any minimizer vε of Jδ,ε satisfies the variational inequality

J ′δ,ε(vε)[ω − vε] ≥ 0, ∀ω ∈ K, (3.9)

where

J ′δ,ε(v)[ϑ] =

∫
Ω

ϑ(C0 − C1)∇̂uδ(v) : ∇̂pδ + 2α̃ε

∫
Ω

∇̂v : ∇̂ϑ+
α̃

ε

∫
Ω

(1− 2v)ϑ. (3.10)

Here ϑ ∈ K− v = {z s.t. z+ v ∈ K} and pδ ∈ H1
ΣD

(Ω) is the solution to the adjoint problem∫
Ω

Cδ(v)∇̂pδ : ∇̂ψ =

∫
ΣN

(uδ(v)− umeas)ψ, ∀ψ ∈ H1
ΣD

(Ω). (3.11)

Proof. First we prove that F is Fréchet differentiable in L∞(Ω). More precisely,

F ′(v)[ϑ] = u](v), for ϑ ∈ L∞(Ω) ∩ (K − v),

where u](v) is the solution in H1
ΣD

(Ω) of∫
Ω

Cδ(v)∇̂u](v) : ∇̂ϕ =

∫
Ω

ϑ(C0 − C1)∇̂uδ(v) : ∇̂ϕ, ∀ϕ ∈ H1
ΣD

(Ω), (3.12)

namely,
‖F (v + ϑ)− F (v)− u](v)‖H1(Ω) = o(‖ϑ‖L∞(Ω)). (3.13)

To this aim, we first show that

‖uδ(v + ϑ)− uδ(v)‖H1(Ω) ≤ c‖ϑ‖L∞(Ω), for ϑ ∈ L∞(Ω) ∩ (K − v).

Indeed, the difference uδ(v + ϑ)− uδ(v) satisfies∫
Ω

Cδ(v + ϑ)∇̂(uδ(v + ϑ)− uδ(v)) : ∇̂ϕ

+

∫
Ω

(Cδ(v + ϑ)− Cδ(v))∇̂uδ(v) : ∇̂ϕ = 0, ∀ϕ ∈ H1
ΣD

(Ω).

(3.14)

Taking ϕ = uδ(v+ϑ)− uδ(v) and recalling that Cδ(v+ϑ)−Cδ(v) = (C1−C0)ϑ, we obtain∫
Ω

Cδ(v + ϑ)∇̂(uδ(v + ϑ)− uδ(v)) : ∇̂(uδ(v + ϑ)− uδ(v))

= −
∫

Ω

ϑ(C1 − C0)∇̂uδ(v) : ∇̂(uδ(v + ϑ)− uδ(v)).

(3.15)

Hence, by using the assumptions on the elasticity tensors, Korn and Poincaré inequalities,
and the fact that v + ϑ ∈ K, we obtain

‖uδ(v + ϑ)− uδ(v)‖H1(Ω) ≤ c‖ϑ‖L∞(Ω)‖∇̂uδ(v)‖L2(Ω)

≤ c‖ϑ‖L∞(Ω)‖uδ(v)‖H1(Ω) ≤ c‖ϑ‖L∞(Ω)‖g‖L2(ΣN ) ≤ c‖ϑ‖L∞(Ω).
(3.16)

We now estimate uδ(v + ϑ) − uδ(v) − u](v). Subtracting (3.12) from (3.14) and setting
ω = uδ(v + ϑ)− uδ(v), then it holds∫

Ω

Cδ(v + ϑ)∇̂ω : ∇̂ϕ−
∫

Ω

Cδ(v)∇̂u](v) : ∇̂ϕ = 0, (3.17)
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from which ∫
Ω

Cδ(v)∇̂(ω − u](v)) : ∇̂ϕ = −
∫

Ω

(Cδ(v + ϑ)− Cδ(v))∇̂ω : ∇̂ϕ

=

∫
Ω

ϑ(C0 − C1)∇̂ω : ∇̂ϕ.
(3.18)

Choosing now ϕ = ω − u](v), we get∫
Ω

Cδ(v)∇̂(ω − u](v)) : ∇̂(ω − u](v)) =

∫
Ω

(C0 − C1)ϑ∇̂ω : ∇̂(ω − u](v)), (3.19)

and again by using the boundedness of the elasticity tensors, Korn and Poincaré inequalities
it follows

‖ω − u](v)‖H1(Ω) = ‖u(v + ϑ)− uδ(v)− u](v)‖H1(Ω) ≤ c‖ϑ‖2L∞(Ω), (3.20)

so that F ′(v)[θ] = u](v).
We now prove that Jδ,ε is Fréchet differentiable. By means of the chain rule and the

Frechét differentiability of F , we compute the expression of J ′δ,ε(v), i.e.,

J ′δ,ε(v)[ϑ] =

∫
ΣN

(F (v)− umeas)F ′(v)[ϑ] + α̃

∫
Ω

(
2ε∇v : ∇ϑ+

1

ε
(1− 2v)ϑ

)
(3.21)

where, with abuse of notation, F (v) and F ′(v)[ϑ] denote the trace of F (v) and F ′(v)[ϑ] on
ΣN respectively. By the definition of the adjoint problem and of u](v), we get∫

ΣN

(F (v)− umeas)F ′(v)[ϑ] =

∫
ΣN

(F (v)− umeas)u](v) =

=

∫
Ω

(C0 − C1)ϑ∇̂F (v) : ∇̂pδ
(3.22)

and hence

J ′δ,ε(v)[ϑ] =

∫
Ω

(C0 − C1)ϑ∇̂F (v) : ∇̂pδ + α̃

∫
Ω

(
2ε∇v · ∇ϑ+

1

ε
(1− 2v)ϑ

)
.

Finally, by standard arguments, since Jδ,ε is a continuous and Frechét differentiable func-
tional on a convex subset K of the Banach space H1(Ω), the optimality conditions for the
optimization problem (3.8) are expressed in terms of the variational inequality (3.9).

4 Discretization and reconstruction algorithm

4.1 Convergence analysis

Here we assume that Ω is a polygonal (d = 2) or polyhedral (d = 3) domain. Again, for
simplifying the notation, we denote u := uδ and p := pδ.

Let (Th)0<h≤h0
be a regular triangulation of Ω and define

Vh := {vh ∈ C(Ω) : vh|T ∈ P1(T ), ∀ T ∈ Th}, (4.1)

where P1(T ) is the set of polynomials of first degree on T , and

Kh := Vh ∩ K, Vh,ΣD
:= Vh ∩H1

ΣD
(Ω). (4.2)

For every h > 0, we set uh := (uδ)h : K → Vh,ΣD
where uh is solution to∫

Ω

Cδ(v)∇̂uh(v) : ∇̂ϕh =

∫
ΣN

gh · ϕh, ∀ϕh ∈ Vh,ΣD
(4.3)
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where gh is a piecewise linear, continuous approximation of g, such that gh → g in L2(ΣN )
as h→ 0.

As in [26], one can show that for every v ∈ K there exists a sequence vh ∈ Kh such that
vh → v in H1(Ω). Most of the following results are an adaptation of those presented in [26]
for a scalar equation to the elasticity case, hence we do not provide the proofs for some of
them.

The following lemma is a consequence of the continuity and coercivity of the bilinear
form on the left-hand side of (4.3) and Céa’s Lemma (see, e.g., [11]).

Lemma 4.1. Let g ∈ L2(ΣN ). Then, ∀ v ∈ K, uh(v)→ u(v) strongly in H1(Ω).

Next we state a result concerning the continuity of uh in the space Vh,ΣD
.

Proposition 4.2. Let hk, vhk
be two sequences such that lim

k→+∞
hk = 0 and vhk

∈ Khk
with

vhk
→ v in L1(Ω). Then uhk

(vhk
)→ u(v) in H1

ΣD
(Ω) for k → +∞.

Proof. The proof can be obtained reasoning similarly as in Lemma 3.1 of [26].

Let Jδ,ε,h : Kh → R be the approximation to Jδ,ε defined as follows

Jδ,ε,h :=
1

2
‖uh(vh)− umeas,h‖2L2(ΣN ) + α̃

∫
Ω

ε|∇vh|2 +
1

ε
vh(1− vh), (4.4)

where we assume that umeas,h → umeas, as h → 0. Similarly as in Theorem 3.2 of [26], we
can show the following result.

Theorem 4.3. There exists vh ∈ Kh such that Jδ,ε,h(vh) = minηh∈Kh
Jδ,ε,h(ηh). Moreover,

let hk be such that limk→+∞ hk = 0. Then every sequence vhk
has a subsequence converging

strongly in H1(Ω) and a.e. in Ω to a minimum of Jδ,ε.

In the design of the numerical algorithm to approximately solve (3.8) we opt for looking
for an admissible point vh ∈ Kh that satisfies the first order necessary condition

J ′δ,ε,h(vh)[ωh − vh] ≥ 0, ∀ωh ∈ Kh, (4.5)

rather than trying to locate a global minimum of Jδ,ε,h. To this aim, we consider the discrete
adjoint problem: find ph := (pδ)h ∈ Vh,ΣD

such that∫
Ω

Cδ(vh)∇̂ph : ∇̂ψh =

∫
ΣN

(uh(vh)− umeas,h)ψh, ∀ψh ∈ Vh,ΣD
. (4.6)

Then using vh ∈ Kh, one can prove the discrete version of Proposition 3.9, where the discrete
variational inequality reads as:∫

Ω

(C0 − C1)(ωh − vh)∇̂u(vh) : ∇̂ph + 2α̃ε

∫
Ω

∇vh · ∇(ωh − vh)

+
α̃

ε

∫
Ω

(1− 2vh)(ωh − vh) ≥ 0, ∀ωh ∈ Kh. (4.7)

Then, we can prove the following theorem:

Theorem 4.4. Let hk be such that limk→+∞ hk = 0 and vhk
be a sequence satisfying (4.5).

Then there exists a subsequence of vhk
that converges strongly in H1(Ω) and a.e. in Ω to a

solution v of (3.9).

Proof. We set vk := vhk
, uk := uhk

(vhk
) and pk := phk

. Testing (4.6) with ψh = pk we get∫
Ω

Cδ(vk)∇̂pk : ∇̂pk =

∫
ΣN

(uk − umeas,k) · pk,

17



which yields, arguing as in (2.5) to get H1-estimates,

c‖pk‖2H1(Ω) ≤ ‖uk − umeas,k‖L2(ΣN )‖pk‖L2(ΣN ).

As the problem for uk is well-posed with uk ∈ H1
ΣD

(Ω) and umeas,k → umeas (implying that
‖umeas,k‖L2(ΣN ) is uniformly bounded with respect to k), we get

‖pk‖H1(Ω) ≤ c.

A similar result holds for ‖uk‖H1(Ω). Therefore

‖pk‖H1(Ω) + ‖uk‖H1(Ω) ≤ c, uniformly in k. (4.8)

From (4.7), employing (1− 2vk)(wk − vk) ≤ wk + 2v2
k and testing with wk = 0 ∈ Kh, we get

2α̃ε

∫
Ω

|∇vk|2 ≤ c‖∇̂uk‖L2(Ω)‖∇̂pk‖L2(Ω) +
2α̃

ε
|Ω| ≤ cε, (4.9)

where we employed (4.8). Therefore, vk is bounded in H1(Ω), hence there exists a subse-
quence (still denoted by vk) and v ∈ K such that

vk ⇀ v in H1(Ω), vk → v in L2(Ω) (and in L1(Ω)),

vk → v a.e. in Ω.

Thanks to Proposition 4.2 we have

uk(vk)→ u(v) in H1
ΣD

(Ω). (4.10)

Now, let p ∈ H1
ΣD

(Ω) be the solution of the continuous adjoint problem and let p̂k ∈ Vhk,ΣD

be such that p̂k → p in H1
ΣD

(Ω). Taking the difference of the problems solved by p and pk,
after some standard manipulation we get∫

Ω

Cδ(vk)∇̂(pk − p̂k) : ∇̂ψ

=

∫
Ω

Cδ(vk)∇̂(p− p̂k) : ∇̂ψ +

∫
Ω

(Cδ(v)− Cδ(vk))∇̂p : ∇̂ψ

+

∫
ΣN

(uh(vk)− uδ(v)) · ψ +

∫
ΣN

(umeas − umeas,k) · ψ,

for all ψ ∈ Vhk,ΣD
. Taking ψ = pk − p̂k, we get

‖pk − p̂k‖H1(Ω) ≤ c
(
‖∇̂(p− p̂k)‖L2(Ω) +

∫
Ω

|v − vk|2|∇̂p|2

+‖uk(vk)− uδ(v)‖L2(ΣN ) + ‖umeas − umeas,k‖L2(ΣN )

)
. (4.11)

By hypothesis, we have ‖umeas − umeas,k‖L2(ΣN ) → 0 and ‖p− p̂k‖H1(Ω) → 0 for k → +∞.

Hence, invoking Proposition 4.2 and observing that
∫

Ω
|v − vk|2|∇̂p|2 → 0 for k → +∞, we

deduce pk → p in H1(Ω).
Next, we have to show that v satisfies the variational inequality (3.9). Given ω ∈ K,

there exists a sequence ω̂k ∈ Khk
such that ω̂k → ω in H1(Ω) and a.e. in Ω. Then, from the

discrete variational inequality (4.7) we have for vk that∫
Ω

(C0 − C1)(ω̂k − vk)∇̂uk(vk) : ∇̂pk + 2α̃ε

∫
Ω

∇vk · ∇(ω̂k − vk)

+
α̃

ε

∫
Ω

(1− 2vk)(ω̂k − vk) ≥ 0. (4.12)
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Now, observe that∫
Ω

(C0 − C1)(ω̂k − vk)∇̂uk(vk) : ∇̂pk −
∫

Ω

(C0 − C1)(ω − v)∇̂u : ∇̂p

=

∫
Ω

(C0 − C1)(ω̂k − vk)[∇̂(uk(vk)− uδ(v)) : ∇̂pk + ∇̂uδ(v) : ∇̂(pk − p)]

+

∫
Ω

(C0 − C1)[(ω̂k − ω)− (vk − v)]∇̂uδ(v) : ∇̂p. (4.13)

The first integral on the right hand side converges to zero by (4.10) and pk → p in H1(Ω). To
show that also the second integral converges to zero, we invoke the dominated convergence
theorem. Hence, from (4.13), we obtain∫

Ω

(C0 − C1)(ω̂k − vk)∇̂uk(vk) : ∇̂pk −
∫

Ω

(C0 − C1)(ω − v)∇̂u : ∇̂p→ 0, (4.14)

as k → +∞. Then, utilizing (4.14) into (4.12), together with the fact that vk ⇀ v in H1(Ω),
and the use of the lower semicontinuity of the norm

‖∇v‖2L2(Ω) ≤ lim inf
k→+∞

‖∇vk‖2L2(Ω),

and noticing that
∫

Ω
vkω̂k →

∫
Ω
vω for k → +∞, we get∫

Ω

(C0 − C1)(ω − v)∇̂u : ∇̂p+ 2α̃ε

∫
Ω

∇v · ∇(ω − v)

+
α̃

ε

∫
Ω

(1− 2v)(ω − v)

≥ lim inf
k→+∞

{∫
Ω

(C0 − C1)(ω̂k − vk)∇̂uk(vk) : ∇̂pk

+2α̃ε

∫
Ω

∇vk · ∇(ω̂k − vk) +
α̃

ε

∫
Ω

(1− 2vk)(ω̂k − vk)
}
≥ 0. (4.15)

Finally, it remains to show that vk → v strongly in H1(Ω). We choose a sequence v̂k ∈ Khk

such that v̂k → v in H1(Ω). Using the discrete variational inequality (4.7) with ωhk
= v̂k,

we easily get ∇vk → ∇v in L2(Ω), implying the result.

4.2 Reconstruction Algorithm

We follow the method in [11] in order to search for a solution of optimization problems in a
phase field approach. As in [26], the method is based on a parabolic inequality. If the limit
as t → +∞ of its solution v(·, t) is equal to an asymptotic state v∞, then it should satisfy
the continuous optimality conditions (3.9).

Let ε > 0 be fixed and v be the solution to∫
Ω

∂tv(ω − v) + J ′δ,ε(v)[ω − v] ≥ 0, ∀ω ∈ K, t ∈ (0 +∞),

v(·, 0) = v0 ∈ K.

We now discretize the above problem by employing a semi-implicit time discretization
scheme. We denote by {vnh}n∈N ⊂ Kh the sequence of approximations vnh ' v(·, tn) ob-
tained as follows:

v0
h = v0 ∈ Kh

vn+1
h ∈ Kh :

1

τn

∫
Ω

(vn+1
h − vnh)(ωh − vn+1

h )

+

∫
Ω

(C0 − C1)(ωh − vn+1
h )∇̂unh : ∇̂pnh + 2α̃ε

∫
Ω

∇vn+1
h · ∇(ωh − vn+1

h )

+
α̃

ε

∫
Ω

(1− 2vnh)(ωh − vn+1
h ) ≥ 0, ∀ωh ∈ Kh, n ≥ 0, (4.16)
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where τn is the time step, and unh, pnh ∈ Vh,ΣD
are the discrete solutions of the forward prob-

lem (4.3) and adjoint problem (4.6), respectively, for vh = vnh . We now prove a monotonicity
property of the method.

Lemma 4.5. For each n ∈ N, there exists a constant cn > 0 such that, if τn ≤ (1 + cn)−1,
then

‖vn+1
h − vnh‖2L2(Ω) + Jδ,ε,h(vn+1

h ) ≤ Jδ,ε,h(vnh), (4.17)

where cn = cn(Ω, δ, ξ0, h, ‖C0 − C1‖L∞(Ω), ‖pnh‖W 1,∞(Ω), ‖unh‖W 1,∞(Ω)).

Proof. Choosing ωh = vnh in (4.16), after some simple manipulations we obtain

1

τn
‖vn+1
h − vnh‖2L2(Ω) + α̃ε‖∇(vn+1

h − vnh)‖2L2(Ω)

+
α̃

ε
‖vn+1
h − vnh‖2L2(Ω) + α̃

∫
Ω

(
ε|∇vn+1

h |2 − 1

ε
vn+1
h (1− vn+1

h )

)
−α̃

∫
Ω

(
ε|∇vnh |2 −

1

ε
vnh(1 + vnh)

)
≤
∫

Ω

(C0 − C1)(vnh − vn+1
h )∇̂unh : ∇̂pnh.

Adding and subtracting 1
2‖u

n+1
h − umeas,h‖2L2(ΣN ) and 1

2‖u
n
h − umeas,h‖2L2(ΣN ), we get

1

τn
‖vn+1
h − vnh‖2L2(Ω) + α̃ε‖∇(vn+1

h − vnh)‖2L2(Ω) +
α̃

ε
‖vn+1
h − vnh‖2L2(Ω)

+Jδ,ε,h(vn+1
h )− 1

2
‖un+1

h − umeas,h‖2L2(ΣN ) − Jδ,ε,h(vnh)

+
1

2
‖unh − umeas,h‖2L2(ΣN ) ≤

∫
Ω

(C0 − C1)(vnh − vn+1
h )∇̂unh : ∇̂pnh,

which implies

1

τn
‖vn+1
h − vnh‖2L2(Ω) + α̃ε‖∇(vn+1

h − vnh)‖2L2(Ω) +
α̃

ε
‖vn+1
h − vnh‖2L2(Ω)

+Jδ,ε,h(vn+1
h )− Jδ,ε,h(vnh)

≤
∫

Ω

(vnh − vn+1
h )(C0 − C1)∇̂unh : ∇̂pnh +

1

2
‖un+1

h − unh‖2L2(ΣN )

+

∫
ΣN

(un+1
h − unh) · (unh − umeas,h)

=

∫
Ω

(vnh − vn+1
h )(C0 − C1)∇̂unh : ∇̂pnh +

1

2
‖un+1

h − unh‖2L2(ΣN )

+

∫
Ω

Cδ(vnh)∇̂pnh : ∇̂(un+1
h − unh)

=

∫
Ω

(Cδ(vn+1
h )− Cδ(vnh))∇̂u(vnh) : ∇̂pnh +

1

2
‖un+1

h − unh‖2L2(ΣN )

+

∫
Ω

Cδ(vnh)∇̂pnh : ∇̂(un+1
h − unh), (4.18)

where in the last step we employed

Cδ(vn+1
h )− Cδ(vnh) = (C0 − C1)(vnh − vn+1

h ).
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It is easy to verify that it holds∫
Ω

(Cδ(vn+1
h )− Cδ(vnh))∇̂unh : ∇̂pnh +

1

2
‖un+1

h − unh‖2L2(ΣN )

+

∫
Ω

Cδ(vnh)∇̂pnh : ∇̂(un+1
h − unh)

=

∫
Ω

(Cδ(vnh)− Cδ(vn+1
h ))∇̂(un+1

h − unh) : ∇̂pnh +
1

2
‖un+1

h − unh‖2L2(ΣN )

+

∫
Ω

Cδ(vn+1
h )∇̂un+1

h : ∇̂pnh −
∫

Ω

Cδ(vnh)∇̂unh : ∇̂pnh

=

∫
Ω

(Cδ(vnh)− Cδ(vn+1
h ))∇̂(un+1

h − unh) : ∇̂pnh +
1

2
‖un+1

h − unh‖2L2(ΣN )

=: I1,

where the last step follows from the definition of the discrete adjoint problem.
Then, using the Cauchy-Schwarz inequality, the trace theorem and the fact that in finite

dimensional spaces all norms are equivalent, we have

|I1| ≤ cn0‖C1 − C0‖L∞(Ω)‖∇̂pnh‖L∞(Ω)‖vnh − vn+1
h ‖L2(Ω)‖∇̂(un+1

h − unh)‖L2(Ω)

+
1

2
‖un+1

h − unh‖2L2(ΣN )

≤ cn1‖vnh − vn+1
h ‖L2(Ω)‖un+1

h − unh‖H1(Ω) +
cn2
2
‖un+1

h − unh‖2H1(Ω) (4.19)

where cn0 = cn0 (Ω, h), cn1 = cn1 (‖C1 − C0‖L∞(Ω), ‖∇̂pnh‖L∞(Ω),Ω, h) and cn2 is the constant in
the trace theorem.

In the sequel we bound ‖un+1
h − unh‖H1(Ω) by means of the term ‖vnh − v

n+1
h ‖L2(Ω). To

this aim, we subtract the equations for un+1
h and unh (cf. (4.3)) and employ ϕ = un+1

h − unh
as a test function. A standard manipulation yields

‖un+1
h − unh‖H1(Ω) ≤ cn3‖vnh − vn+1

h ‖L2(Ω), (4.20)

with cn3 = cn3 (Ω, δ, ξ0, h, ‖C1 − C0‖L∞(Ω), ‖∇̂pnh‖L∞(Ω)). Employing (4.20) into (4.19), we
obtain

|I1| ≤ cn4‖vn+1
h − vnh‖2L2(Ω) (4.21)

where cn4 = cn4 (Ω, δ, ξ0, h, ‖(C1 − C0‖L∞(Ω), ‖∇̂pnh‖L∞(Ω), c
n
2 ).

Using (4.21) into (4.18), we deduce

1

τn
‖vn+1
h − vnh‖2L2(Ω) + α̃ε‖∇(vn+1

h − vnh)‖2L2(Ω) +
α̃

ε
‖vn+1
h − vnh‖2L2(Ω)

+Jδ,ε,h(vn+1
h ) ≤ Jδ,ε,h(vnh) + cn4‖vn+1

h − vnh‖2L2(Ω). (4.22)

Now, since

1

τn
‖vn+1
h − vnh‖2L2(Ω) + α̃ε‖∇(vn+1

h − vnh)‖2L2(Ω) +
α̃

ε
‖vn+1
h − vnh‖2L2(Ω)

≥ 1

τn
‖vn+1
h − vnh‖2L2(Ω), (4.23)

we get (
1

τn
− cn4

)
‖vn+1
h − vnh‖2L2(Ω) + Jδ,ε,h(vn+1

h ) ≤ Jδ,ε,h(vnh). (4.24)

Finally, choosing τn ≤ 1
1+cn4

, the assertion of the lemma follows, just setting cn := cn4 .

We are now ready to state a convergence result for our numerical scheme.

21



Theorem 4.6. Let v0
h ∈ Kh be an initial guess. Then there exists a collection of timesteps

τn such that 0 < γ ≤ τn ≤ (1 + cn)−1, ∀n > 0, where cn is the constant appearing in Lemma
4.5, and γ depends on the data and possibly on h. The corresponding sequence vnh generated
by (4.16) has a convergence subsequence (still denoted by vnh) in W 1,∞ such that

vnh → vh, n→ +∞,

where vh ∈ Kh satisfies the discrete optimality condition

J ′δ,ε,h(vh)[ωh − vh] ≥ 0, ∀ωh ∈ Kh.

Proof. Consider a collection of timesteps bounded by (1 + cn)−1, for all n > 0. Employing
Lemma 4.5, we have

+∞∑
n=0

‖vnh − vn+1
h ‖2L2(Ω) ≤ Jδ,ε,h(v0

h), (4.25)

sup
n∈N

Jδ,ε,h(vnh) ≤ Jδ,ε,h(v0
h). (4.26)

Hence, the sequence vnh is bounded in H1
0 (Ω) and it holds

lim
n→+∞

‖vnh − vn+1
h ‖2L2(Ω) = 0. (4.27)

From the weak formulation of the forward and adjoint problems, the previous relations give
that unh and pnh are bounded in H1(Ω), hence in W 1,∞(Ω) as we are in finite dimensional
spaces. Therefore, thanks to the definition of the constant cn, reported in the last part of the
proof of Lemma 4.5, this gives that there exists a constant M > 0 such that cn < M , and
equivalently there exists a positive constant γ > 0, independent of n such that γ ≤ (1+cn)−1.
Hence, there exists a subsequence of (vnh , u

n
h, p

n
h) (still denoted by the same symbol) such

that
(vnh , u

n
h, p

n
h)→ (vh, uh, ph) in W 1,∞(Ω),

and in particular
unh → uh a.e. in Ω, pnh → ph a.e. in Ω.

Hence, uh is the solution of the discrete forward problem and ph is the solution of the discrete
adjoint problem. Finally, from (4.16) and τn ≥ γ we get∫

Ω

(C0 − C1)(ωh − vn+1
h )∇̂unh : ∇̂pnh + 2α̃ε

∫
Ω

∇̂vn+1
h · ∇̂(ωh − vn+1

h )

+
α̃

ε

∫
Ω

(1− 2vnh)(ωh − vn+1
h ) ≥ −C

γ
‖vn+1
h − vnh‖L2(Ω)‖ωh − vn+1

h ‖L2(Ω).

From (4.27) we deduce that vh (recall that vnh → vh) satisfies the discrete optimality condi-
tion (4.5).

5 Numerical Examples

In this section we show the numerical results which are obtained from an application of the
Primal Dual Active Set Method (PDASM) to the variational inequality (4.16). This method
has been presented in [35] and later applied for the detection of conductivity inclusions in
[26] and [11] for a linear and a semilinear elliptic equation, respectively. Primal dual active
set methods are a very good choice in the engineering applications thanks to its effectiveness
and robustness (cf., e.g., [33]). Here, we show that choosing the parameter δ sufficiently small
we are able to reconstruct elastic cavities of different shapes. Given a tolerance tol > 0, the
reconstruction algorithm is based on the following steps.
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Algorithm 1 Discrete Parabolic Obstacle Problem

Set n = 0 and v0
h = v0, the initial guess for the inclusion

while ‖vnh − v
n−1
h ‖ > tol do

find solution of the forward problem (4.3) with v = vnh
find solution of the adjoint problem (4.6) with v = vnh
find vn+1 solving (4.16) via PDASM algorithm
update n = n+ 1;

end while

In the implementation of Algorithm 1, the numerical experiments are performed for
d = 2 in the domain Ω = [−1, 1]2, using a tessellation Th of Ω in triangles. As boundary
measurements, we use synthetic data. They are obtained by solving via the Finite Element
method the forward problem (2.1), with boundary conditions prescribed as in Figure 2a on

the square, with one or more cavities of given geometries. We use a tessellation T refh which
is more refined than Th on the common part outside the cavities (see Figure 1 for an example
of the two tessellations) in order not to commit inverse crime. Once extracting the values
of the solution of the forward problem on the boundary of the domain Ω obtained by the
mesh T refh , we interpolate these values on the mesh Th. Therefore, by umeas we denote the

(a) Mesh T refh : forward problem. (b) Mesh Th: inverse problem.

Figure 1: Example of the meshes adopted.

resulting boundary datum on the mesh Th. We also mention that the triangular mesh is
adaptively refined during the reconstruction procedure with respect to the gradient of the
phase-field variable vh after a-priori fixed number of iterations which depend on the specific
numerical example. See, as example, Figure 2b related to the reconstruction of a circular
cavity.

In the reconstruction procedure, i.e. for the implementation of the Algorithm 1, we
assume to know two different boundary measurements. In fact, in the inverse problems
context, it is common to use Ng different boundary measurements uimeas, for i = 1, . . . , Ng,
in order to improve the numerical results. Thus, we have a slight modification of the orig-
inal optimization problem (3.8), that is assuming the knowledge of Ng different Neumann
boundary data gi, for i = 1, . . . , Ng, we consider

min
v∈K

Jsumδ,ε (v),

Jsumδ,ε (v) :=
1

Ng

Ng∑
i=1

(
1

2
‖uiδ(v)− uimeas‖2L2(ΣN )

)
+ α̃

∫
Ω

(
ε|∇v|2 +

1

ε
v(1− v)

)
,

(5.1)

where uiδ(v) ∈ H1
ΣD

(Ω) is the solution to (3.2) with g = gi and for v ∈ K. The necessary
optimality condition related to (5.1) can be equivalently obtained reasoning similarly as we
did to derive (3.10).
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(a) Boundary condition in numerical ex-
periments: Neumann boundary condi-
tions are assigned on the red part. Ho-
mogeneous Dirichlet conditions are as-
signed on the blue part.

(b) Refinement of the mesh around the
reconstructed domain. This is the mesh
at the final iteration of the experiment
in Figure 4b.

Figure 2: Geometrical setting and refinement of the mesh.

The following table contains some of the parameters utilized in most numerical tests.
Possible changes in these values are highlighted in the text related to each specific experi-
ment. Finally, all the numerical experiments are performed choosing as initial guess for the

tol α̃ τn ε δ

10−5 10−2 10−3 1
16π or 1

8π 10−2

Table 1: Values of some parameters utilized in Algorithm 1.

phase-field variable v0 = 0.

Numerical experiments with Ng = 2 and without noise in the measurements.

Test 1: reconstruction of a circular cavity. The elastic medium is described by the
Lamé parameters µ = 0.2 and λ = 1. The Neumann boundary conditions are g1(x, y) =
(0, 1

10 −
3
10y) and g2(x, y) = (− 1

2x
2, y2). We set the parameter ε = 1

16π . The mesh is refined
with respect to the gradient of the phase-field variable every 1000 iterations. The algorithm
stops after n = 3544 iterations. In Figure 3 we show the numerical results at three different
time steps.

Test 2: reconstruction of a circular cavity - changing boundary conditions
and Lamé parameters. We propose the same numerical experiments of Test 1, showing
how the results change using different Neumann boundary conditions and Lamé parameters.
Chosen parameters and data, and also the number of time steps needed for reaching the
tolerance are reported in the captions of Figure 4. Note that the three experiments consider
different values for the Poisson coefficient ν := λ

2(λ+µ) , that is ν = 1
4 , ν = 1

3 , and ν = − 1
18 ,

respectively. In the three numerical examples of Figure 4, the refinement of the mesh happens
every 1500, 1000, 2000 iterations, respectively.

Test 3: reconstruction of a Lipschitz domain. This experiment aims at recon-
structing a square-shaped cavity. We show several numerical tests, choosing different values
for ε, different boundary conditions and different values of the number of iterations for the
refinement of the mesh. We have already shown results based on different choices for the
values of the Lamé parameters in the previous numerical tests, so we fix the values of Lamé
coefficients to be µ = 0.5 and λ = 1. In fact, recalling that the range of the Poisson coef-
ficient is −1 < ν < 1

2 (ν = 1
2 represents the incompressible case), we have considered four
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(a) At n = 20 (b) At n = 200

(c) At n = 1000 (d) At n = 2000 (e) n = 3544, final step

Figure 3: Test 1. Reconstruction of a circular cavity. Dotted line represents the target
cavity.

(a) (µ, λ) = (1, 1);

g1(x, y) = (2, 0);

g2(x, y) = (− 1
2
x2, y2);

n = 4308.

(b) (µ, λ) = (0.5, 1);

g1(x, y) = (x, y);

g2(x, y) = (−y,−x);

n = 5375.

(c) (µ, λ) = (2,−0.2);

g1(x, y) = (5x, 4y);

g2(x, y) = (−3y,−3x);

n = 3362.

Figure 4: Test 2. Reconstruction of a circular cavity using several parameters and data. For
each experiment, we report the configuration at the final step n. Dotted line represents the
target cavity.

relevant cases for the Poisson coefficient: one test on an elastic material close to incom-
pressible case (ν = 5

12 in Figure 3e), two tests on elastic coefficients of common materials
(ν = 1

4 and ν = 1
3 in Figures 4a and 4b, respectively), and one test on auxetic materials,

that is materials with negative Poisson ratio (ν = − 1
18 in Figure 4c). In the results of Figure

5, the refinement of the mesh happens every 6000 for the first two experiments and every
3000 iterations for the last one. The second numerical result, see Figure 5b, has the same
parameters of the numerical example of Figure 5a except α̃ which is chosen α̃ = 5× 10−2.

Test 4: reconstruction of two cavities. This test provides results when two cavities,
one square and one circle, have to be reconstructed. Neumann boundary conditions are given
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(a) ε = 1
8π

;

g1(x, y) = ( 1
10
, 0);

g2(x, y) = (− 1
2
x2, y2);

n = 7957.

(b) ε = 1
8π

; α̃ = 5× 10−2;

g1(x, y) = (0.1, 0);

g2(x, y) = (−0.5x2, y2);

n = 16346.

(c) ε = 1
16π

;

g1(x, y) = (0, 2
5
x− 3

10
y);

g2(x, y) = (− 1
2
x2, y2);

n = 10931.

Figure 5: Test 3. Reconstruction of a square-shaped cavity. Dotted line represents the
target cavity.

by g1(x, y) = (x, y) and g2(x, y) = (−y,−x). We propose two numerical reconstruction
procedures, see Figure 6. In Figure 6a, we report the results obtained by the standard
algorithm, while in Figure 6b we employ a variant of the Algorithm 1 where the parameter
ε is initially set ε = 1

4π but after a fixed and a-priori chosen number of iterations (8000
iterations) is updated and set ε = ε/4. In both cases the mesh is refined after 5000 iterations.
It is worth noting that the variant of Algorithm 1 does not produce the visible oscillations
of test in Figure 6a.
Note that we also change a little bit the value of δ. We have observed that δ cannot be
chosen too small otherwise numerical instability can appear. Numerically we have seen that,
in order to overcome this issue, τn has to be chosen always smaller than δ. However, choosing
τ too small increases the number of necessary iterations to satisfy the stopping criterium.

(a) ε = 1
16π

; δ = 10−2;n = 8531. (b) ε = 1
4π

for n ≤ 7999;

ε = 1
16π

for n ≥ 8000;

δ = 7.5× 10−2; n = 10852.

Figure 6: Test 4. Reconstruction of two cavities. Dotted line represents the target cavity.

Test 5: reconstruction of a non-convex domain. We finally propose the recon-
struction of a cavity which is not convex, see Figure 7. We use g1(x, y) = (x, y) and
g2(x, y) = (−y,−x) as Neumann boundary conditions and µ = 0.5 and λ = 1. Parameters
have the following values: ε = 1

16π , and τn = 5×10−4. Mesh is refined every 5000 iterations.
The stopping criterium is satisfied after n = 6825 iterations.
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Figure 7: Test 5. Reconstruction of a non-convex domain. It seems that the algorithm tends
to reconstruct a convex domain. Dotted line represents the target cavity.

Numerical experiments with Ng = 2 and noise in the measurements.

Test 6: reconstruction of cavities of different shapes using noisy measurements.
We run here some of the numerical tests showed in the previous section, adding to the
boundary measurements a normal distributed noise with zero mean and variance equal to
one. We choose two different noise levels: 2% and 5%. The results are reported in Figure 8.
For the the test in Figure 8a and Figure 8b, we use values of parameters as in Test 1 and
refine the mesh every 2000 and 2500 iterations, respectively. The reconstruction of a square-
shaped cavity, that is Figure 8c and Figure 8d, are obtained by means of parameters of Test
3 - Figure 5c, refining the mesh every 3000 and 10000 iterations. Lastly, to get the results
in Figure 8e and Figure 8f we use the same parameters of Test 4 - Figure 6b. The mesh is
refined every 5000 and 8000 iterations, while the value of the parameter ε is adapted after
8000 and 10000 iterations, respectively. In the captions of the single figures, we specify the
values that are changed with respect to the ones proposed in the Tests 1, 3, and 4.
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(a) (µ, λ) = (0.2, 1), τn = 5× 10−4.

n = 11071. Noise level 2%.

(b) (µ, λ) = (0.2, 1), τn = 5× 10−4.

α̃ = 5× 10−2, n = 14361.

Noise level 5%.

(c) (µ, λ) = (0.5, 1), τn = 5× 10−4.

n = 23652. Noise level 2%.

(d) (µ, λ) = (0.5, 1), τn = 5× 10−4.

n = 15854. Noise level 5%.

(e) (µ, λ) = (0.5, 1).

n = 11776. Noise level 2%.

(f) (µ, λ) = (0.5, 1), τn = 5× 10−4.

n = 25480. Noise level 5%.

Figure 8: Test 6. Reconstruction of cavities by means of noisy measurements. Dotted line
represents the target cavity.

28



Acknowledgments

The authors deeply thank Dorin Bucur and Alessandro Giacomini for suggesting relevant
literature and for useful discussions that lead us to improve some of the results in this work.
Andrea Aspri, Cecilia Cavaterra and Elisabetta Rocca are members of GNAMPA (Gruppo
Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto
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