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Abstract

Mathematical modelling of the human heart and its function can expand our understanding of various cardiac
diseases, which remain the most common cause of death in the developed world. Like other physiological
systems, the heart can be understood as a complex multiscale system involving interacting phenomena at
the molecular, cellular, tissue, and organ levels. This article addresses the numerical modelling of many
aspects of heart function, including the interaction of the cardiac electrophysiology system with contractile
muscle tissue, the sub-cellular activation-contraction mechanisms, as well as the haemodynamics inside
the heart chambers. Resolution of each of these sub-systems requires separate mathematical analysis and
specially developed numerical algorithms, which we review in detail. By using specific sub-systems as
examples, we also look at systemic stability, and explain for example how physiological concepts such as
microscopic force generation in cardiac muscle cells, translate to coupled systems of differential equations,
and how their stability properties influence the choice of numerical coupling algorithms. Several numerical
examples illustrate three fundamental challenges of developing multiphysics and multiscale numerical models
for simulating heart function, namely: (i) the correct upscaling from single-cell models to the entire cardiac
muscle, (ii) the proper coupling of electrophysiology and tissue mechanics to simulate electromechanical
feedback, and (iii) the stable simulation of ventricular haemodynamics during rapid valve opening and
closure.
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Electrophysiology, Nonlinear elasticity, Navier-Stokes equations, Reaction-diffusion systems, Finite element
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1. Introduction

Cardiac diseases represent one of the most important problems in public health, affecting millions of
people each year. Advancing the experimental, theoretical, and computational understanding of the main
processes of cardiac function can be of great help in the development and improvement of novel therapies
and prognostic methods. However, many aspects of modelling cardiac function are of extreme complexity
and a number of difficulties (including e.g. the mismatch of model parameters and spatio-temporal scales)
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arise when trying to simulate their joint behavior as a coupled multiphysics and multiscale problem. Recent
progress in the fields of experimental and theoretical biology, physics, mathematics and computer science
contributes to an increasing level of detail available for modelling and simulating cardiac processes to the
extent that a comprehensive description at the full level of detail is practically impossible. At the mo-
ment, many cardiac modelling studies at the whole heart level are still restricted to simulating particular
components, such as, e.g., the electrophysiology or the electromechanics.

Nevertheless, there is increasing interest in multiphysics modelling of more complete cardiac processes,
including also the effect of fluid dynamics and the blood-pumping function. A number of fully coupled
electro-mechano-fluidic ventricle models [227, 234] that incorporate highly detailed mechanical contraction
models [154], crossbridge dynamics, and the interaction between the ventricles and the atria [206], have sur-
faced in recent years. While many of these “heart simulators” are constructed for the purposes of training
cardiologists rather than performing clinically relevant studies, full-heart models are increasingly being tar-
geted at patient-specific simulations by adding several degrees of personalization [138, 191, 213]. A coupled
multiphysics model for total heart function could for example be used to study how a pathology in the elec-
trical conduction system of the heart, e.g. a left bundle branch block, delays the mechanical contraction of
the ventricles and influences the ejection pattern of blood. In order to realize this goal, more efficient parallel
algorithms and solvers are constantly being developed, but also the issue of stable and efficient multiphysics
coupling needs to be addressed.

The physiological function of the heart can be summarized as follows: an electrical potential propagates
across the membrane of the heart muscle cells (cardiomyocytes) and induces complex biochemical reactions
inside the cytosol that release calcium from the sarcoplasmic reticulum, resulting in the generation of force
within the sarcomeres (the basic contractile units within cardiac muscle cells), and finally causing the indi-
vidual cells to contract and the muscle to deform. The contraction of the muscle yields a rapid increase of
pressure inside the ventricular cavities, which allows the heart valves to open and close in careful sequence
and induces the periodic filling and ejection of blood from the ventricles and the atria. This physiological
process is intrinsically of multiscale nature and so are the equations that govern each sub-mechanism. As a
matter of fact, models describing ion channels on the cell membrane and the excitation-contraction mecha-
nism are typically systems of ODEs to be solved for each individual cell (length scales of µm) and can have
time scales of 10−4 ms. Fluid dynamics and solid mechanics of the tissue at the organ level (length scales
of cm) are nonlinear partial-differential equations of either parabolic or parabolic-hyperbolic type with time
scales of 0.1 ms.

Not only the different scales involved but also the type of coupling (strong vs. weak) that exists be-
tween the different subsystems drives the choice of the best computational algorithm. A common choice for
multiphysics coupling is to use loosely coupled algorithms, where each subsystem is simulated individually
with its own internal time-step using a solver strategy specialized for that particular sub-problem. Then,
information is exchanged through the coupling conditions at the interface, and the algorithm proceeds to
the next time step. This approach can be computationally and implementationally attractive, but often
suffers from instabilities when the subsystems are strongly coupled. Its counterpart is the tightly coupled
approach, where the sequential solutions of the subsystems are iterated until sufficient coupling tolerance
is achieved. This leads to the most stable algorithms in strongly coupled multiphysics problems, but the
number of subiterations needed tends to make the parallelization of such algorithms inefficient. Finally, in
the monolithic approach one attempts to solve the entire coupled system using Newton-type algorithms,
but then considerable complexities arise when trying to implement the Jacobian computation for realistic
models or when the subproblems exhibit widely varying time scales. Despite the growing literature devoted
to experimental and computational research of the different subsystems of heart function (see e.g. the review
papers [121, 154, 219]), there do not currently exist many computational simulators of total heart function
that are able to incorporate together all the features (electrophysiology, tissue mechanics, fluid mechanics).
We believe the aforementioned reasons are behind this.

The aim of this work is to present an integrated heart model to study the interaction between four
basic fields related to the heart function: the ion-cell-muscle electrophysiological behavior, the subcellular
activation mechanism, the deformation of the tissue, and the ventricular fluid mechanics. In order to tackle
this problem with reasonable computational cost, several simplifying assumptions will be applied to each
component of the coupled model, whilst still being able to draw some conclusions related to the dominant
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features of the problem. Most of the models used to describe the various subsystems are not new; the reader
is also provided an extensive list of references to past literature on the models used.

Outline

We have attempted to make our presentation useful for both the lay-mathematician without a background
in cardiac physiology as well as the bio-engineer without an extensive background in numerical analysis. With
that in mind, we have made the sections somewhat self-contained to allow the reader to skip certain sections
whose content they are already familiar with, or which go too deep for their interests.

This work is organized as follows: Sect. 2 contains an introduction to concepts of cardiac physiology,
including the basic constituents of the heart tissue and the main aspects of cardiac function. Readers
intimately familiar with the function of the human cardiac physiology may freely skip this section. Sect. 3
describes in detail models used for the different subsystems of the heart that together constitute the full
integrated model. The reader can choose whether to read each subsection or only the ones that are most
relevant to his/her own interests, skimming over the others. In Sect. 4 a brief overview of mathematical
results found in literature concerning well-posedness and existence of the equations for cardiac models are
provided. This section is mainly for the interest of the mathematician and can be skipped by the bio-engineer.
Next, Sect. 5 addresses ways of coupling together the different subsystems to arrive at the coupled cardiac
multiphysics problem, and a review of different algorithmic strategies is presented. Again, the reader with
no interest in implementing his or her own cardiac multiphysics solver may skip this section. In Sect. 6
we provide some illustrative examples to show how the different subproblems are discretized and solved in
practice. These include studying the effect of spatial discretization on the discrete propagation velocity in
electrophysiology, the application of prestress in cardiac mechanics simulations, the definition of rule-based
fiber and sheet directions, the enforcement of isovolumic phases and the effect of increasing the preload
in electromechanics simulations, the modelling of fluid dynamics in the left ventricle (LV) by including a
simplified implementation of valve opening and closure using lumped parameter models, and finally the
electromechanics simulation of the full bivenctricular human heart in a pathological left bundle branch block
-case. All the solvers are implemented in the open source finite element library LifeV (www.lifev.org).
Finally, the key challenges and future trends in whole-heart cardiac modelling are summarized in Sect. 7.

2. Overview of cardiac physiology

The human heart is a four-chambered muscular organ that drives the circulatory system. Its function
is to maintain a constant supply of oxygenated blood through the arteries and into the organs (systemic
circulation), while simultaneously recycling the deoxygenated blood returning through the veins into the
lungs (pulmonary circulation) to be reoxygenated. This task is accomplished efficiently through a complex
regulatory system that varies the cardiac output in response to experienced changes in the physiological
conditions such as stress, physical exercise, illness etc. The regular human heart maintains a pace of roughly
60-100 beats per minute and achieves a cardiac output between 5-6 litres of blood per minute for healthy
adults. The highly specialized muscle tissue of the heart does not grow tired under stress, unlike skeletal
muscle in the limbs, but requires a constant supply of oxygen itself and is easily damaged (infarcted) if the
supply of oxygen is even temporarily reduced. Until recently it was believed that cardiac muscle cells did not
get regrow after tissue damage, but recent studies have shown that some amount of regeneration (roughly
1% of the total volume per year) can take place [24].

The most important components of the human heart are the two main chambers called ventricles and the
two antechambers called the atria. The heart is divided into two sides, left heart and right heart, where the
right heart pumps deoxygenated blood into the pulmonary circulation, while the left heart pumps oxygenated
blood into the systemic circulation. Both sides act in synchronized fashion. Both atria contract almost
simultaneously and are responsible for the complete filling of the ventricles, which contract after a delay of
roughly 120 ms and perform the main pumping function necessary to circulate the blood through the body.
The ventricles and atria are electrically isolated from each other by the fibrous skeleton that provides some
additional structure and prevents the electrical potential of one set of chambers from entering the other ones
except through the atrioventricular node. In addition to the four chambers, the heart contains the root of the
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Figure 2.1: Schematic representation of the arrangement of cardiomyocytes in the extracellular matrix synthesized by the
fibroblasts. The cardiomyocytes are locally arranged in linear arrays with similar orientation. A network of capillaries perfuses
the cardiomyocytes (adapted from [13]).

aorta (large artery through which blood enters the systemic circulation), two vena cava (large veins through
which blood returns from the systemic circulation), pulmonary arteries and pulmonary veins (through which
the blood enters and exits the pulmonary circulation), four heart valves (pulmonary, tricuspid, mitral, and
aortic) that regulate the flow between the chambers, coronary arteries and coronary veins (responsible for
oxygenating the heart muscle itself), and the pericardium (a double-layered membranous sac that surrounds
the heart and damps its motion relative to the sternum and the other organs).

2.1. Structure and mechanical function of cardiac tissue

The majority of cardiac tissue volume is occupied by cardiomyocytes. These are striated muscle cells
specialized for the function of the heart. The cardiomyocytes are joined to one another in linear arrays
by intercalated discs. Like all muscle cells they are excitable cells. The gap junctions between individual
cardiomyocytes permit an electrical potential to travel on the cellular membranes from cell to cell similarly
if slightly more slowly than in nerve cells. The muscle cells are embedded in a fibrous extracellular matrix
formed mainly of collagen protein that is constantly synthesized by cardiac fibroblast cells. These are the
most numerous cells in the heart tissue and their task is to remodel the extracellular matrix in response
to mechanical strain and external damage. Together they give form to a fiber-reinforced structure where
the cardiomyocytes are arranged in layers of laminar sheetlets. In addition, cardiac tissue contains vascular
smooth muscle cells in the intramyocardial coronary arterioles and venules, Purkinje fibers that deliver the
electrical signal from the heart’s natural pacemaker to the muscle, and endothelial cells on the inner surface
of the heart called the endocardium. A schematic arrangement of the myocardial cells is shown in Fig. 2.1.

We use the word fibers to indicate the organization of the myocardial cells, which can be idealized as
cylindrical objects with radius about a tenth of their longitudinal extension. Their longitudinal shape and
the fact that adjacent cells tend to be oriented in roughly the same direction allows us to define the local
orientation of the cells, the fiber direction. In most computational models individual cells are beyond the
computational resolution, and therefore, in the following, the fibers direction must be understood as the
average myocardial cells orientation in a sufficiently small control volume. As in any muscle, the direction
along which fibers are aligned defines both the passive and active mechanical properties of the tissue.

Although the complex muscular architecture of the ventricles has been studied for centuries, only in the
last fifty years has a comprehensive description of the macroscopic morphological structure of the cardiac
muscle emerged. Torrent-Guasp [216, 217] conjectured that both ventricles are formed by a single band
of fibers, the Ventricular Myocardial Band (VMB), twisted into a helicoidal configuration with two spiral
turns. Measurements of Streeter [203] showed a transmural variation of the fiber direction ranging from
about -70◦ in the short-axis plane at the outer ventricular surface, the epicardium, to approximately +80◦

at the inner part of the wall, the endocardium. Idealizing the LV as a truncated prolate ellipsoid, it is
possible to define analytically a fiber orientation [53, 69]; the angles defined in this way can be optimized
to represent more closely experimental data. Following the hypotheses that fibers follow geodesic paths on
toroidal surfaces within the ventricular wall [203], Peskin defined a mathematical theory in which fibers
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(a) (b)

Figure 2.2: (a) Schematic depiction of the transmural configuration of the muscle fibers and laminar sheets. (b) Rule-based
fiber structure generated on a human biventricular geometry. The three orthogonal directions f0, s0, n0 represent the local
alignment of fibers, sheets and the cross-fiber (or sheet-normal) directions.

orientation is described by approximate geodesics [163]. A different approach has been recently used in [172]
where, following the VMB concept, the LV was described as a set of identical spiral surfaces defined as
mappings of a half disc. The agreement of this rule-based description of the left ventricular anisotropy with
experimental data from Streeter, mathematically supports the VMB theory proposed by Torrent-Guasp.
Due to the fibers’ configuration in the ventricles, a longitudinal (apex-to-base) shortening of about 15% from
the diastolic configuration of the ventricles is experienced during contraction, while the LV wall thickens
more than 30%. Moreover, their architecture greatly influences both the physiological and pathological
electrical properties of the heart as it affects the local electrical conductivities and the excitation patterns.
The importance of such an anisotropy is now well recognized and it is also supported by diffusion-tensor
magnetic resonance imaging (DTMRI) [195].

The description of the ventricles by means of only the fiber orientation is not complete. In the last twenty
years, strong evidence has been reported [122] showing a laminar structure of the myocardium. The muscle
can be seen as an arrangement of myolaminae approximately four cells thick grouped together by perimysial
collagen, as schematically shown in Fig. 2.2(a). In each of these laminae the myocytes are connected with
each other and embedded in a skeleton of endomysial collagen, while cells in different laminae are directly
connected and therefore only loosely coupled. These laminar structures strongly influence the mechanical and
electrical properties of the tissue and can be modelled as a locally orthotropic material, i.e. as exhibiting two
or three orthogonal axes of rotational symmetry along which different mechanical properties are experienced
in each preferred direction of deformation.

2.2. Electrophysiology and the rhythmic excitation of the heart

Cardiac pacing is driven by the sinoatrial node (located at the right atrium of the heart), a natural
pacemaker that discharges electrical signals into the heart’s conduction system at varying periods of pacing
depending on the level of blood flow required to supply oxygen to the organs. These signals travel through
the atria into the atrioventricular node, where a brief delay permits the atria to contract first before the signal
enters the ventricular fast conduction system through the left and right bundle branches, finally travelling
through the Purkinje network (highly conductive specialized muscle cells) and junctions into the ventricular
muscles. In the cardiac muscle the electrical potential travels more slowly along the cell membranes, opening
voltage-sensitive protein channels (see Fig. 2.3) and allowing positively charged ions to enter the cells, causing
them to become depolarized.

Once the entire muscle has been depolarized from its resting potential a slow process of repolarization
begins, after which the muscle is ready to contract again. The normal sinus rhythm is sketched in Fig. 2.4(a).
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(a) (b)

Figure 2.3: Sketch of cellular membrane surrounded by ionic solution at different concentrations on each side. On the cellular
membrane, specialized proteins act like channels for selected ionic species. The opening of such channel typically depends on
the transmembrane voltage, but it can also depend on other factors, such as mechanical stretching. (a) The channel is closed
and ions cannot pass through the membrane. (b) The channel is open and only specific ions can pass through the membrane.

Since the pumping of the heart is supposed to happen roughly at constant periodic rate, the cardiomy-
ocytes enter a refractory period after the initial rapid depolarization during which no additional excitation
can occur in order to avoid entering into an uncontrolled spurious contraction-relaxation pattern (fibrilla-
tion). Because of that, the action potential duration (the period between the initial depolarization and the
final repolarization) has to depend on the cardiac interval, following the so-called restitution curve that can
be calibrated from experimental data (see Fig. 2.4(b)). Besides the variable-period refractoriness of the cells,
the timing of cardiac contraction is driven by the conduction velocity on the cell membranes and the general
pattern of activation, both of which depend on the microstructure of the cells and the surrounding collagen
matrix. An improper activation pattern can cause inefficient contraction and possibly alter the stability of
the dynamical system by introducing stable quasi-periodic wavefronts or even chaotic fibrillation.

2.3. Subcellular tension generation mechanisms

Muscular contraction is a sub-cellular process initiated by the increase of intracellular calcium due to
the opening of voltage-gated ion channels. Cardiomyocytes have a regular structure made of myofibrils, rod-
like protein structures divided into basic contractile units called sarcomeres (see Fig 2.5). The sarcomeres
consist of two different kinds of long protein filaments, thin and thick filaments, that can attach to each
other at certain binding sites. When a depolarization of the intracellular space increases the concentration of
intracellular calcium, it triggers the release of cytosolic calcium stored in the sarcoplasmic reticulum, leading
to the binding of Ca2+ with troponin-C, and finally the binding of myosin heads to the actin filaments.
This is called the crossbridge mechanism that causes the filaments to slide against each other, leading to
subsequent contraction of the sarcomeres (and consequently the entire cell). The crossbridge kinetics can
be simulated by using a Monte Carlo method where the interaction of only a small number of molecules is
considered [230]. A different approach, first proposed by Huxley [96], consists in writing a partial differential
equation describing the evolution of the binding probabilities. At the organ level, both approaches are too
expensive to be used, and therefore different solutions strategies have been proposed. Typically, the mean-
field hypothesis is added to the Huxley model assuming that the interaction between actin and myosin can
be described by one crossbridge representative of the whole distribution [233, 72, 151, 178]. This assumption
reduces the Huxley model to a set of inexpensive ordinary differential equations. Another method used to
reduce the complexity of the system averages the distribution of crossbridges over a single cell [25].

2.4. Mechanical pumping function and dynamics of blood

The main mechanical function of the heart is the pumping of blood through the ventricles and the atria.
A major role in this is played by the atrioventricular valves that regulate the direction of the blood flow
and allow sufficient blood pressure to build up inside the ventricles during the isovolumic phase in order
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Figure 2.4: (a) Phases of normal sinus rhythm. Activation starts from the sinoatrial node (top left), travels along both atria
and reaches the atrioventricular node (top right), enters into the left and right bundle branches (bottom left) and finally
into the myocardium through the Purkinje network (bottom right). Corresponding phases of the electrocardiogram depicted;
(b) On top: Typical form of the action potential for ventricular cardiac cells. At rest the cellular membrane is polarized,
with a positive ion concentration on the outside. When the signal excite the cell 1), the cell membrane undergoes an abrupt
depolarization, where sodium ions enter the cell. This triggers the opening of some channels such that potassium start moving
to the extracellular space, forming an early repolarization phase 2). Then, a plateau phase 3) takes place, where a complex
Calcium kinetics slows down the repolarization and during which the cardiomyocyte contracts. After contraction 4), a final
repolarization brings back the cellular membrane to its resting condition. Bottom: The typical restitution curve describing the
dependence of action potential duration, that is the time between the initial depolarization and the final repolarization, on the
cycle length of stimulation.

to pump blood all the way to the extremities. Dysfunction of the heart valves (either regurgitation due
to structural damage to the valve, or improper opening of the valve due to calcification of the leaflets)
typically leads to either volume overload or pressure overload in one of the chambers. While the heart can
successfully compensate for deviations from physiological pressure/stress conditions by both pumping harder
and increasing the stiffness of the fibrous extracellular matrix (cardiac hypertrophy), in the long term such
mechanisms can lead to heart failure unless treated.

There is a long-standing discussion on the physiological effects of haemodynamics on cardiac mechanical
function. It is often stated [162] that ventricular contraction optimizes the swirling flow from an energetic
point-of-view, allowing the muscle to perform the minimal work necessary to pump a fixed volume of blood.
However, recent simulation studies have partially disproven this theory by indicating that the dissipation of
the diastolic vortex has a negligible effect on the pumping function of the heart [194, 235].

2.5. Spatial and temporal multiscale aspects of cardiac function

From molecular mechanisms to body functionality, each component of the total heart functionality is
strongly connected with biochemical and mechanical processes lying on highly dispersed spatial and temporal
scales (see Fig. 2.6). A comprehensive understanding of the main multiscale properties of the heart physiology
is therefore essential to achieve a successful modelling of the involved, intrinsically multiscale phenomena.
For instance, over long spatio-temporal scales, classical homogenization techniques have proven very helpful
in describing the dynamics of electrophysiological tissue properties, however over smaller scales, the same
approaches may lead to meaningless information. Other processes (such as heart tissue biomechanics or
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Figure 2.5: Schematic representation of the cardiac cell contractile structure. Each cardiomyocyte is composed by myofibrils,
long tubular structures surrounded by sarcoplasmic reticulum. Each myofibril has a regular structure, made of light and dark
bands. In the A band the thick myosin protein and the thin actin protein overlap and the band looks darker than the I band
where only actin is present. The A band is located at the center of the sarcomere, the cellular contractile unit. Each sarcomere
is delimited by the Z disks on which actin is anchored. Between the thin actin filaments we find the thick myosin filaments.
During electrical excitation, intracellular Calcium concentration increases, triggering the release of more Calcium ions stored
in the sarcoplasmic reticulum. The released Calcium ions bind to Troponin forcing a change of configuration of Tropomyosin
which exposes the binding sites. Then, myosin heads can bind to actin and generate a sliding motion between the two filaments.
This sliding brings the Z disk closer to each other resulting in cellular contraction.

ventricular flow properties) and other multiscale representation approaches (including simple aggregating of
responses from one scale to another or smoothing techniques) will fail if not designed carefully.

Some features of the multiscale nature of the heart function are shared by other related biological systems,
as e.g. tissue growth: one of the main challenges resides in connecting macroscopic tissue level descriptions
with classical subcellular models (in this respect, see the review [99]).

3. Mathematical models for individual cardiac subsystems

In view of setting up appropriate mathematical models for the components of cardiac functionality,
we start by introducing some needed mathematical notation. Our multiphysics problem is set up on three
bounded subdomains of R3: ΩE, ΩS, and ΩF. The region ΩE is the one in which we solve the electrophysiology
subproblem, the solid mechanics problem is solved on ΩS, and the fluid dynamics subproblem on ΩF. We
denote their boundaries by ΓE, ΓS, and ΓF, respectively. In an abstract setting, we make the assumptions
that ΩE ⊂ ΩS (electrical activity takes place at least in some part of the deforming tissue such as ventricular
wall), and that (ΩS ∩ ΩF) ⊂ (ΓS ∩ ΓF) and ΩS ∩ ΩF ̸= ∅ (the fluid and solid domains are disjoint but their
boundaries share a common nonempty part). By ΓI we denote the fluid-solid interface ∂ΩF ∩ ∂ΩS, and by
nF ,nS the outward unit normal direction of the fluid and solid domain boundaries, respectively. Fig. 3.1
provides a sketch of the three domains and their position with respect to the full heart geometry.

All three computational domains are moving during the cardiac cycle, independently of the given frame
of reference. Here either a Lagrangian (for the solid and the electrophysiology) or an arbitrary Lagrangian-
Eulerian (for the fluid) frame of reference can be adopted. Other approaches have also been proposed, for
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Figure 2.6: Spatial scales (horizontal axis) and temporal scales (vertical axis) of mechanisms contributing to heart function.
Some or all of these mechanisms may be coupled together in a total heart function model. Mechanical remodelling provides an
example of a long-term biomechanical response mechanism to excessive loading conditions and occurs at time scales far above
the others.

instance the immersed boundary (IB) method developed in [164] (see also [165]) for the modelling of cardiac
mechanics and ventricular fluid dynamics.

For the sake of clarity, superscripts 0 and t will denote quantities in the reference configuration and
current configuration at time t, respectively. By xt we denote the current position of a material particle of
Ωt that was originally placed at x0 in the reference configuration Ω0 of a given domain. The solid body
motion is defined using the smooth one-to-one map ϕS : Ω0

S → Ωt
S, ϕS(x

0) = x0 +dS(x
0), where dS denotes

the displacement vector dS = xt − x0. We denote by F the deformation gradient tensor associated to the
motion ϕS, whereas C = FTF stands for the right Cauchy-Green strain tensor. By J = detF we denote
the solid volume map and the first isotropic invariant is I1(C) = trC. For a generic unitary vector f0, the
scalar I4,f (C) = f0 · (Cf0) denotes a direction-dependent pseudo-invariant of C representing the stretch of
the solid ΩS along the direction f0.

In the following sections we state the equations governing the different processes of the heart function; the
electrophysiology, the excitation-contraction mechanism, the passive tissue mechanics, and the ventricular
fluid dynamics of blood. Full details on the specific derivations of the models are omitted; the interested
reader is directed to bibliographic references when appropriate. We limit the discussion on physiological and
clinical aspects to the most important physiological features that are relevant when considering the choice
models for individual subsystems (and their coupling). These are summarized in Fig. 3.2.

3.1. Electrophysiology of the heart

Models for the cardiac electrophysiology at the cellular level are typically based on systems of ordinary
differential equations that express conservation of current. Their general form reads [52]





Cm
dv

dt
+ iion(v, w, c) = iapp(t),

iion(v, w, c) =

P∑

k=1

gk(c)

M∏

j=1

w
pjk

j (v − vk(c)) + I0(v, c),

dw

dt
= mw(v, w, c),

dc

dt
= mc(v, w, c).

(3.1)

Here v denotes the local transmembrane potential between the intra- and extra-cellular fluid, Cm is the local
membrane capacitance, iapp is the applied external current; the ionic currents follow a Hodgkin-Huxley -type
description for P different ionic species with vk being the reversal potential of the kth ionic species; finally,
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ΩS ΓI

ΓS,epi

Γin
ΩF

ΩS ΩE∩
Figure 3.1: The three computational domains (fluid domain ΩF, solid mechanics domain ΩS, electrophysiology domain ΩE)
considered in the cardiac multiphysics problem. In this example the electrophysiology problem is only considered in the
ventricles, whereas the solid mechanics problem covers also the atria. Also pictured are the fluid-structure interface ΓI inside
the LV, the epicardial surface ΓS,epi, and the mitral valve inlet surface Γin. See also equations (3.16)-(3.18). In the sketch the
domains ΩE and ΩS overlap within the ventricular part of the heart.

wj are the so-called gating variables taking values in [0, 1] that regulate the transmembrane currents and
the intracellular concentrations ck of the different ionic species. Many detailed membrane models for various
species and types of cells can be found in literature and have been extensively validated in experiments at the
single-cell level. Their suitability for the whole-heart simulation varies wildly. Concerning their numerical
solution, a study on the choice of the time-stepping strategy was performed in [200], where it was found
that most physiologically detailed membrane models are extremely stiff. This makes them difficult to use
in organ-level simulations due to the need for a fully implicit time integration scheme [95, 174]. In general,
the best compromise between computational efficiency and clinical relevance of models has been obtained
by considering simplifications of realistic cell models by first eliminating some internal variables to reduce
the stiffness of the system [119, 214], then treating only the potential v and the gating variables w implicitly
(e.g. the Rush-Larsen scheme [186]).

All membrane models address cell excitation isolated from the rest of the cardiac function. At the
macroscopic tissue level, the spatial counterpart of these models can be written after a homogenization
procedure, like e.g. the classical monodomain system, pulled back to the reference undeformed domain Ω0

E,
that describes the propagation of the membrane depolarization through the muscle:





χ [cm∂tv + iion(v, w, c)− iapp(t)] =
1

J
∇ ·
(
D0∇v) in Ω0

E × (0, T ],

dw

dt
= mw(v, w, c) in Ω0

E × (0, T ],

dc

dt
= mc(v, w, c) in Ω0

E × (0, T ].

(3.2)

Here cm is the membrane capacitance per unit area, χ is the ratio of membrane area per tissue volume and
J is the determinant of the deformation gradient tensor (see Sect. 3.3). The monodomain approximation
relies on the assumptions that cardiac tissue is a continuum and consists only of myocytes and extracellular
space. For a review of other possible modelling assumptions for cardiac electrophysiology we refer to [48].

Supposing that the tissue is electrically isolated from the surrounding matrix, zero-flux boundary condi-
tions are applied on the whole boundary for the transmembrane voltage v:

F−1DF−T∇v · nS = 0 on ∂Ω0
E × (0, T ].

Given that our study focuses on the analysis of muscle contraction and blood ejection, we will restrict
ourselves to the phenomenological model of the human ventricular action potential from Bueno-Orovio et
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Ionic
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Mechanical

activation
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Figure 3.2: Sketch of the proposed cardiac electro-fluid-structure coupling strategy. The references point to the governing
equations of each sub-system.

al. [33]. In this model the ionic currents consist of three general terms without particularization to the ionic
species that carry them

iion(v, w) = ifiion(v, w) + isiion(v, w) + isoion(v, w),

where the adimensional fast inward, slow inward and slow outward currents are respectively given by

χ ifiion(v, w) = −w1H(v − θ1)(v − θ1)(vv − v)/τfi,

χ isiion(v, w) = −H(v − θ2)w2w3/τsi,

χ isoion(v, w) = (v − v0)(1−H(v − θ2))/τo +H(v − θ2)/τso,

and the kinetics of the gating variables w are given by

mw(v, w) =



(1−H(v − θ1))(w1,inf − w1)/τ

−

1 −H(v − θ1)w1/τ
+
1

(1−H(v − θ2))(w2,inf − w2)/τ
−

2 −H(v − θ2)w2/τ
+
2

((1 + tanh(k3(v − v3)))/2− w3)/τ3


 .

Here H is the Heaviside function, and the time constants and infinite values are defined as:

τ−1 = (1−H(v − θ−1 ))τ
−

1,1 +H(v − θ−1 )τ
−

1,2, τ−2 = τ−2,1 + (τ−2,2 − τ−2,1)(1 + tanh(k−2 (v − v−2 )))/2

τso = τso,1 + (τso,2 − τso,1)(1 + tanh(kso(v − vso)))/2

τ3 = ((1−H(v − θ2))τ3,1 +H(v − θ2)τ3,2, τo = ((1−H(v − θ0))τo,1 +H(v − θ0)τo,2

w1,inf =

{
1, v < θ−1
0, u ≥ θ−1

, w2,inf = ((1−H(v − θ0))(1− v/τ2,∞) +H(v − θ0)w
∗
2,∞.

Model parameters were chosen in [33] to reproduce action potential (AP) shapes similar to that of the popular
ten Tusscher-Panfilov model [214]. The flexibility of this “minimal model” is such that it can also be fitted
to reproduce the reported AP shape changes in pathological conduction scenarios, such as ischemia [120].
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The main limitations of this model are that it produces action potential durations slightly longer than
physiological (∼330 ms), and that it does not explicitly model the calcium dynamics that drives the generation
of force by the crossbridges inside the sarcomeres. It is, however, mildly stiff, enabling time steps up to 0.01
ms to be used. As was done in [181], we use the variable w3 as a surrogate for the intracellular calcium
concentration.

3.2. Microscopic force generation in the sarcomeres

Our goal is to capture the essential aspects that drive the contraction of the cardiac muscle starting from
the sarcomere level. We focus in the phenomenological excitation-contraction model introduced in [181],
which does not specifically describes the kinetics of the crossbridges, but does include sarcomere length-
dependency which is key for reproducing the well-known Frank-Starling effect of increased force generation
under increased preloading (see e.g. [102]). In our model the active contraction of individual cells depends
on the ionic concentrations c and on the local deformation gradient invariant I4,f in the myofiber direction
(see Sect. 3.3 for its definition):

∂tγf − a(c, γf , I4,f ) = 0 in Ω0
S × (0, T ]. (3.3)

The variable γf represents the strain in the myofiber direction induced by the contraction of single cardiomy-
ocytes, that is, we consider an active strain formulation. More specifically, we assume the following form for
(3.3): 




∂tγf =
1

ηA

[(
∂WA

∂IE1
+
∂WA

∂IE4,f

)(
FA(c, I4,f )−

2I4,f

(1 + γf )
3

)
− ∂WA

∂FA
: f0 ⊗ f0

]

FA(c, I4,f ) = α f(c)RF-L(I4,f )

, (3.4)

where theWA is the active component of the free energy. In fact, (3.4) can be derived by imposing irreversibil-
ity of the mechanical contraction by means of the second law of thermodynamics, under the assumption that
the free energy can be decomposed into passive and active contributions: W = WP +WA. In the following,
we will assume the purely passive contribution to be negligible, setting WP = 0, and therefore make no
distinction between WA and W (see Sect. 3.3 for additional details). The force FA represents the active ten-
sion generated within the sarcomeres, and it drives the macroscopic muscular contraction. While FA should
be defined by some cross-bridge model, we assume an empirical form for this force such that it depends on
some ionic concentration (typically calcium) through the function f(c). We also introduce the relationship
between the generated force and the sarcomere elongation through the function RF-L, as defined in [185].
Derivation details of this formulation are provided in [181].

3.3. Passive hyperelastic material models for cardiac tissue

In addition to the active force generation by the excitation-contraction model, we need to consider also
the passive mechanical response of the tissue. The equations of motion for the cardiac tissue read

ρS∂tuS −∇ · σS = 0, in ΩS × (0, T ], (3.5)

where boundary and initial conditions must be specified. Here ρS is deformation-dependent density of the
tissue, uS is the velocity and σS is the Cauchy stress tensor. Although experimental studies indicate that
the passive myocardium has viscoelastic effects and exhibits hysteresis even under moderate loads1, the
usual assumption considers only the quasistatic behavior. Therefore, it is possible to describe the tissue as
hyperelastic. By typical thermodynamical considerations, the stress tensor is then obtained by differentiating
a pseudo-strain energy W with respect to strain. Another typical assumption is to consider the myocardium
to be nearly incompressible under physiological loads, whereas in practice the volume of cardiac tissue is
strongly driven by the perfusion of blood from the coronaries and its volume can vary as much as 7%
during systolic contraction [11]. Usually the following simpler quasistatic problem is considered at each time
iteration

−∇ · σS = 0, in ΩS , (3.6)

1Viscoelastic behaviour stems from the fact that the myocardium has roughly 76% of fluid content [136].
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with normal pressure boundary conditions on the epicardium, Robin-type boundary conditions everywhere
else. A commonly used boundary condition constrains the ventricles at the basal cut plane: such conditions
stiffen the ventricular contraction/relaxation and create non-physiological deformation patterns. A more
conservative choice constrains only the normal component of the displacement on the base of the ventricle.

Even though transversely isotropic or even fully isotropic materials have been proposed for modelling the
constitutive behavior of the myocardium [85, 98], it is by now well-accepted that transversely anisotropic
material models need to be incorporated in more realistic mechanical models of cardiac tissue. For the
examples shown in Sect. 6, we employ the orthotropic Holzapfel-Ogden constitutive law [89], which extends
several other nonlinear material models available from the literature. The elastic strain energy function
is formulated in terms of the invariants of the right Cauchy-Green tensor C = FTF and their isochoric
counterparts: 




J = det(F)

I1 = tr(C), I1 = J−2/3I1

I4,f = Cf0 · f0, I4.f = J−2/3I4,f

I4,s = Cs0 · s0, I4,s = J−2/3I4,s

I8,fs = Cf0 · s0, I8,fs = J−2/3I8,fs

and is divided into three parts – the isotropic isochoric part, the isotropic volumetric part, and the orthotropic
part:

W(F) =
a

2b
exp(b[I1 − 3]) +

κ

4
[(J − 1)2 + (ln J)2]

+
∑

i=f,s

ai
2bi

[
exp(bi⟨Ī4,i − 1⟩2)− 1

]
+

afs
2bfs

[
exp(bfsI

2

8,fs)− 1
]
,

(3.7)

where the material parameters a, af , as, afs, b, bf , bs, bfs are experimentally fitted. The parameter κ is the
bulk modulus that penalizes local volume changes in order to enforce incompressibility of the tissue. The
notation ⟨x⟩ = 1

2 (x+ |x|) indicates the positive part of x and is used on the two terms depending on the

orthotropic invariants I4,f and I4,s in order to deactivate their contribution to the strain energy under
compression. This prevents unphysical buckling-type phenomena from creating an ambiguity in the solu-
tion [89]. Decomposition (3.7) for orthotropic fiber-reinforced materials is somewhat controversial as it can
lead to unphysical spherical deformations under pure hydrostatic loads [189] or undesired volume growth
during uniaxial tension [87]. In our experience, this issue can be mitigated by enforcing a large enough bulk
modulus κ.

To derive the total stress tensor including both the passive and active stress contributions, the strain
energy function (3.7) is written in an intermediate virtual configuration Ŵ = W(FE) = W(FF−1

A ) and
by differentiating w.r.t to the strains F the following general form for the Piola-Kirchhoff stress tensor is
obtained:

P = JσSF
−T = W1

∂I
E

1

∂F
+W4,f

∂I
E

4,f

∂F
+W4,s

∂I
E

4,s

∂F
+W8,fs

∂I
E

8,fs

∂F
, (3.8)

where the stored energy contributions to each stress term are given by





W1 =
a

2
exp(b[I

E

1 − 3]),

W4,i = ai⟨ĪE4,i − 1⟩
[
exp(bi⟨ĪE4,i − 1⟩2)− 1

]
,

W8,fs = afsI
E

8,fs

[
exp(bfsI

2

8,fs)− 1
]
,

for i ∈ {s, f}, and the invariants I
E

1 , I
E

4,i, I
E

8,fs on the intermediate configuration depend on the particular
choice of active strain mode (3.12) and need to be explicitly derived by pulling back to the reference con-
figuration and writing them in terms of the original invariants. We refer the reader to [182] for the specific
formulas, but note that in general the first invariant on the intermediate configuration depends not only on
the first invariant on the reference configuration, but on all the others as well

I
E

1 = I
E

1 (I1, I4,f , I4,s, γf ),
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and similarly for all the other invariants. This means that in the orthotropic active strain formulation the
active contribution does not act only in the fiber directions, but also appears in the isotropic and isochoric
part of the stress tensor. This makes its implementation slightly more involved, as existing passive mechanics
solvers cannot be trivially modified by adding the necessary active stress terms.

3.4. Mechano-electric feedback

Like all muscle cells, cardiomyocytes are sensitive to mechanical stretch. Stretching a cell changes the
shape of its membrane as well as the distance of the gap junctions between the cells, leading to changes in
the ion channels and the conductivity of the action potential from cell to cell. This can be modelled in its
simplest form by altering the first equation of (3.2) to become

χcm∂tv −
1

J
∇ ·
(
JF−1DF−T∇v

)
+ χ [iion(v, w, c) + iSAC(v,F)] = χiapp(t) in Ω0

E × (0, T ], (3.9)

where an explicit dependence on the solid deformation tensor F has entered in the conductivity tensor
(accounting for the geometric feedback due to deformation of tissue structure) as well as an additional
ionic current iSAC (stretch-activated channels). The stretch-activated channels induce an additional inward
current that adds to the depolarization in the form

iSAC(v,F) =
(√

I4,f (F)− 1
)
(v − E), (3.10)

where again the term becomes active only when positive strains are observed (I4,f ≥ 1). The effect of stretch-
activated channels on cardiac action potential was studied in [220], where flattening of the restitution curve
and lengthening of the action potential duration were among the effects observed. The importance of the
stretch-activated channels in mechanically induced spiral-wave break-up was highlighted in [105] and was be-
lieved to be mainly due to stretch-induced conduction blocks giving rise to termination of spiral waves. If the
goal is to study e.g. the termination of arrhythmias it is therefore necessary to consider the mechano-electric
feedback, including the stretch-activated channels. In a coupled electromechanics model the conductivity
tensor D0 depends on the current material configuration through the transformation D0 = J F−1DF−T ,
where D represents the spatial conductivity tensor. In computational models of cardiac electrophysiology
where the domain is fixed, the spatial conductivity tensor takes the form D = σtI+ (σℓ − σt)f0 ⊗ f0, where
σℓ, σt are the conductivities in the directions longitudinal and transversal to the mean myofiber direction f0.
Therefore, using this definition in (3.2), the conduction velocity will remain constant in the current material
configuration (and will decrease in the reference configuration), and consequently the observed activation
times will tend to increase when the ventricle expands under increased volume loading.

To further clarify this point consider the following example: a single cylindrical fiber of length L0 is pulled
uniformly in its longitudinal direction to reach the length L, so that the associated deformation gradient
tensor reads

F =
1√
λ
I+

(
λ− 1√

λ

)
f0 ⊗ f0.

The pull back of the conductivity tensor D leads to

D0 = λσtI+

(
σℓ

λ2
− λσℓ

)
f0 ⊗ f0.

The conduction velocity in the longitudinal direction vℓ0 in the reference configuration will be proportional
to the inverse of the stretch λ. Therefore the measured longitudinal velocity does not depend on the stretch:

vℓ =
L

t
=
L0

t
λ = vℓ0λ ∝

√
σℓ. On the other hand if the conductivity tensor is evaluated in the reference

configuration, such that
D0 = σtI+

(
σℓ − σℓ

)
f0 ⊗ f0,

then the conduction velocity in material coordinates is proportional to
√
σℓ, while the measured conduction

velocity vℓ ∝ λ
√
σℓ increases with the stretch.

There is a long-standing debate about the behavior of the conduction velocity when cardiac tissue is
mechanically stretched. Some experimental studies indicate an increase in the conduction velocity on cardiac
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Purkinje cells [63], while others report a decreased conduction velocity due to increased stretch in the
epicardial cells [210], atrial cells [114], and myocardial cells [139]. The latter study attributed the altered
conduction velocity to a reduction of inter-cellular resistance with a concurrent increase of effective membrane
capacitance. It is also known that sufficiently large tissue stretch will lead to a total conduction block.

3.5. Excitation-contraction coupling

The main factor behind the ability of the heart to adapt itself to different physiological operating condi-
tions is the Frank-Starling law: increasing the ventricular pre-load will increase the amount of force generated
by the cardiac muscle. This provides a direct link between macroscopic stretch and the amount of micro-
scopic force generated by the binding of crossbridges in the form of a force-length relationship. In our specific
model (3.4) the microscopic active tension takes the form

FA(c, I4,f ) = α f(c)RF-L(I4,f ),

where the function RF-L(I4,f ) represents the force-length relationship of intact cardiac cells (it is generally
fitted from experimental data, e.g. from [204]) and f(c) specifies the amount of force generated by the
crossbridges in response to intracellular calcium release.

In addition to the force-length relationship, any muscle cell should follow Hill’s relation [88]

(FA(t) + a) (ν(t) + b) = constant, (3.11)

where FA(t) is the instantaneous force generated and ν(t) the velocity of contraction. The force-velocity
relation was originally derived for isotonic macroscopic muscle contraction. Nevertheless, it is equally valid for
microscopic muscle fibers and the macroscopic contraction velocity ν(t) becomes the relative sliding velocity
of the two filaments inside the sarcomere. In this case (of microscopic fibers), a constitutive relation linking
the macroscopic strain and the microscopic sarcomere sliding velocity needs to be specified for example by
assuming that the sarcomere rate-of-strain depends on the macroscopic strain, ν = ν(I4,f ), through some
additional constitutive model, e.g. the Hill-Maxwell rheological model [188].

The incorporation of these microscopic processes into the structural properties at the tissue level is a
key aspect in the multiscale framework of the cardiac function. Here we adopt an active strain approach
following [6, 148, 153], where one assumes a multiplicative decomposition of the solid deformation gradient
as F = FEFA, where FA is the active deformation induced by the contraction of the myofibrils in the
reference configuration, and FE is the passive elastic deformation of the tissue in the fictitious intermediate
configuration. Assuming incompressibility of the total deformation, detF = 1, and that of the passive elastic
deformation, detFE = 1, one can define a macroscopic active deformation using three scalar fields γf , γs,
γn that characterize locally the deformations along the three orthogonal directions f0, s0, n0 representing
the local alignment of fibers, fiber sheets and the cross-fiber (or sheet-normal) directions. This yields a local
active deformation gradient written in the general form

FA = I+ γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0, (3.12)

for which our assumptions lead to local incompressibility also at the level of the active deformations, that is
detFA = 1.

Moreover, we recall that the cell-level evolution law (3.3) for γf controls the rate of activation and
relaxation of local strains and it uses calcium to link different scales (see also [26]). These kinetics need to be
combined with additional constitutive relations to account for the cross-fiber deformation γn, whereas the
sheet deformation γs can be determined, for instance, after the incompressibility relation (1+γs)(1+γf )(1+
γn) = 1. Experimental strain measurements on in vivo animals have shown that cardiac tissue contracts also
in the cross-fiber direction, whereas large positive strains (thickening) are observed only in the transmural
direction of the fiber sheets [177]. These considerations suggest that the active cross-fiber strains can be
assumed proportional to the active fiber strains, γn = κγf , where κ > 0 is a factor to be fitted according to
experimental strain measurements.
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3.6. Ventricular fluid-structure interaction

Within the physiological regime, blood behaves as a mildly non-Newtonian fluid in the ventricles. Ventric-
ular flow is indeed laminar but strongly vortical for large parts of the cardiac cycle, except during peak dias-
tolic filling when transition to turbulence can occur as Reynolds numbers in the range 1500–2500 are reached.
This explains why the Navier-Stokes equations (NSE) in a moving domain represent the most popular mathe-
matical model used to describe ventricular haemodynamics. Since in the context of ventricular fluid-structure
interaction neither small displacement nor thin-wall assumptions hold, the only feasible formulations of the
problem fall roughly in two categories: ones using a moving mesh approach with an Arbitrary Lagrangian-
Eulerian (ALE) formulation to account for the domain velocity in the NSE [44, 45, 75, 154, 205, 213, 234],
and those using the immersed boundary (IB) method [110, 227] or related level-set based approaches [138].
The latter two approaches are known to be more convenient in that the moving ventricular wall does not need
to be explicitly tracked and no remeshing needs to be performed even in the case of large displacements. In
the seminal work of Peskin [164, 165], a Cartesian mesh not necessarily conforming with the muscle geometry
was used and the fluid patterns can be described as an effect of the motion of the immersed boundary and
involving both Eulerian and Lagrangian variables coupled via a regular approximation of the Dirac delta
function. In contrast, the ALE approach is more traditional and thus easier to implement, but requires
dealing with large mesh deformations that are especially problematic if the motion of the valve leaflets needs
to be captured.

In some computational studies the mutual interaction of the haemodynamics with the myocardial solid
mechanics is also taken into account. This typically leads to considering a coupled fluid-structure interaction
formulation. Tissue mechanics can play two roles in the fluid-structure interaction formulation. They
can be considered in the passive sense only, in order to capture the physiological pressure-volume (PV)
relation [44, 232] to estimate the passive stresses experienced by the myocardium during diastolic filling.
Alternatively, the full cycle of contraction and relaxation can be modelled by including an activated mechanics
model for the myocardium [154, 213].

The quantities solved for in a typical ventricular FSI model are the fluid velocity uF, the fluid pressure
pF, and the displacement of the solid dS. The fluid problem consists in the Navier-Stokes equations written
in ALE formulation:

ρF
(
∂tuF|x0 + (uF −wF) · ∇uF

)
−∇ · σF = 0 in Ωt

F × (0, T ],

∇ · uF = 0 in Ωt
F × (0, T ],

uF = uF in Ωt
F, t = 0.

(3.13)

Here σF = 2µFε(uF) is the fluid Cauchy stress tensor, where ε(v) = 1
2 (∇v +∇vT ) is the symmetric part

of the gradient of a vector field v, µF , ρF are the fluid viscosity and density, respectively, uF is the initial
velocity of the fluid, and wF is the fluid domain velocity determined by an ALE map ϕF : Ω0

F → Ωt
F,

x0 7→ ϕF(x
0) = x0 + dF(x

0), satisfying Ωt
F = ϕF(Ω

0
F).

The elastodynamic problem in the Lagrangian reference configuration can be written as

ρS∂ttdS −∇ · σS = 0 in Ω0
S × (0, T ],

dS = dS in Ω0
S, t = 0,

∂tdS = uS in Ω0
S, t = 0,

(3.14)

where ρS is the solid density, σS is the solid Cauchy stress and dS,uS are the initial solid displacement and
velocity, respectively. The motion of the fluid domain dF is recovered via the harmonic extension of dS to
the interior of Ω0

F, that is,

−∆dF = 0 in Ω0
F,

dF = dS on Γ0
I ,

∇dF · nF = 0 on ∂Ω0
F \ Γ0

I .

(3.15)

Notice that the specific way σS relates with deformation and strain energy is characterized by σS = PFT ,
where P is given in the constitutive relation (3.8). Also a dependence on the pressure of the solid can be
established in case of incompressible materials. See e.g. [75] for further details on this coupled system.
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3.7. Fluid-structure coupling and external tissue support

In addition to the geometric adherence condition (3.15)2 that the fluid and solid domains must be
conforming at the interface (equivalent to saying that the ventricles are at all times totally immersed with
blood and that the blood does not penetrate into the tissue), the typical coupling conditions for FSI are the
no-slip condition on the wall and the continuity of normal stresses:

uF ◦ ϕF − ∂tdS = 0 on Γ0
I × (0, T ],

σSnS − JF−T (σF ◦ ϕF)nS = 0 on Γ0
I × (0, T ].

(3.16)

The latter arises from the conservation of momentum across the interface, while the former is an extension
of the physical no-slip condition of viscous fluids extended to moving walls. The introduction of the time
derivative of displacement ∂tdS necessitates the use of inertial terms in the solid mechanics formulation, which
turns the (quasi-)static elliptic tangent problem of solid mechanics into the time-dependent hyperbolic system
(3.14).

During diastolic filling, when rapid inflow of blood with density ρF similar to the density of the solid ρS
causes a sudden expansion of the ventricular chamber(s), the inertial forces may excite the modes correspond-
ing to purely imaginary eigenvalues of the solid and lead to unphysiological vibration of the ventricle(s). A
possible cure is to add some viscous damping either in the solid formulation, say to replace (3.14)1 with

ρS∂ttdS + η∂tdS = ∇ · σS, in Ω0
S × (0, T ], (3.17)

for a suitable positive coefficient η, or in the external boundary conditions in the form of a Robin term with
viscous contribution (β > 0):

αdS + βḋS = pextnS , on Γ0
S,epi. (3.18)

A final aspect of the fluid-solid mechanics coupling that is needed in order to recover the correct global
motion of the heart is the incorporation of external tissue support in the model. The real heart is immersed
in fluid and loosely supported by a flexible double-layered membrane called the pericardium. This means
that enforcement of pointwise constraints and the elimination of rigid modes in the mathematical model will
lead to unphysiological deformation modes. The correct physiological motion of the heart includes motion
of the atrioventricular plane downwards during systolic contraction accompanied by significant long-axis
shortening. Consequently, heart mechanics simulations reported in literature that resort to excessively rigid
boundary conditions, such as fixing the atrioventricular plane, cannot recover the physiological contraction
pattern of the heart. Spring-like external support enforced e.g. by Robin-type boundary conditions [142]
can be tuned to mimic the global motion of the heart, but does not permit sliding contact between the heart
and the pericardium. Explicitly solving a pericardium-heart contact problem has also been proposed [78].

3.8. From orifice flow to detailed valve dynamics models

Cardiac flow is controlled by four valves with stiff but compliant leaflets that prevent backflow between
the chambers. They dictate both the fluid dynamics and the duration of the two isovolumic phases, and
thus need to be considered in any ventricular fluid dynamics model. The mechanism driving the opening
of a valve is the existence of a positive pressure difference between two of the chambers. For example, the
mitral valve opens when the ventricular myocardium begins to relax during diastole and leads to a rapidly
decreasing pressure inside the LV and a positive pressure gradient across the valve itself. The resulting
volumetric flow rate Q(t) through the valve can be modelled in the first approximation using the Bernoulli

equation for orifice flow:

Qmv|Qmv| =
CA2

ρF
δP, (3.19)

where C is a dimensionless constant, A(t) is the effective orifice area that depends on the configuration of the
valve leaflets at any given time t, and δP (t) is the pressure difference across the mitral valve. It remains to
provide a suitable model for the orifice area A(t) to describe the dynamics of the valve leaflets. We identify
three basic strategies with which the leaflet opening dynamics can be modelled:
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Model A: The classical model for cardiac valves is the ideal diode model, which offers no resistance to the
blood flow and opens and closes instantaneously in response to the changing of the pressure gradient sign
and flow direction:

Qmv =





Ppv − Plv

Rla
, if Ppv > Plv

0, if Ppv ≤ Plv

, (3.20)

where Ppv and Plv are the pulmonary and LV pressure respectively. This assumption is not entirely un-
reasonable, given that the biological valves open very rapidly within the time frame of a few milliseconds.
Unfortunately, this simple model doesn’t distinguish between healthy and pathological valves. Since this is
insufficient to provide a complete set of Dirichlet data for the fluid equations inside the LV, (3.20) is in fact
a defective boundary condition [73]. As such, condition (3.20) is imposed using Lagrange multipliers, which
has the benefit that no explicit velocity profile needs to be imposed at the inflow, see [176]. In order to
stabilize the velocity at the mitral valve due to flow reversal effects, the tangential component of the velocity
field at the inlet, Γin has to be further constrained to zero (see [140] and the discussion therein), leading to
the inflow boundary condition:

∫

Γin

uF · nF dΓ = 0, (I− nFn
T
F )u = 0 on Γin. (3.21)

Model B: Is an extension of Model A that incorporates regurgitation and inertial effects of the valve on the
fluid dynamics. In this model the flow rate is given by the Bernoulli’s equation for flow through an orifice:

Ppv − Plv = RlaQmv +BQmv|Qmv|+ L
dQmv

dt
(3.22)

where B = ρ/(2A2
eff) is the Bernoulli resistance of the valve and L = ρℓeff/Aeff the blood inertance. This

equation replaces (3.19). The coefficients L and B are determined by the effective orifice area Aeff that
switches between open and closed valve configurations similarly to the ideal diode case:

Aeff =

{
Amax, if Ppv > Plv

Amin, if Ppv ≤ Plv

. (3.23)

For Amin > 0 the model allows regurgitation to take place. A numerically stable time discretization is
obtained for (3.22) by using the semi-implicit scheme

Qn,k
mv =

Qn−1
mv + ∆t

L

(
Pn,k−1
pv − Pn,k−1

lv

)

1 + ∆tB/L |Qn−1
mv | , k ≥ 1, (3.24)

where ∆t is the timestep and the superscript n refers to the time level tn = n∆t, n ≥ 0. In this model
the pressure Plv is imposed as a normal stress boundary condition on the LV fluid problem along with the
aforementioned tangential velocity stabilization condition, which now reads

(σF + PlvI)nF = 0 on Γin, (I− nFn
T
F )u = 0 on Γin. (3.25)

Model C: To model more precisely the valve opening dynamics the lumped parameter model proposed
in [145] can be used. It prescribes simple and smooth opening and closing dynamics for Aeff without
explicitly modeling the valve leaflets. In this approach the flow rate through the mitral valve is again given
by Bernoulli’s equation (3.22) for flow through an orifice, which in turn depends on an internal variable
ζ ∈ [0, 1] according to

Aeff(t) = [Amax −Amin] ζ(t) +Amin, (3.26)

where, in turn, the internal variable evolves according to the rate equation

dζ

dt
=

{
(1− ζ)Kvo (Pla − Plv) , if Pla ≥ Plv

ζKvc (Pla − Plv) , if Pla ≤ Plv

. (3.27)

18



Multiscale and multiphysics models for the cardiac function Quarteroni et al.

This model captures the valve opening dynamics and represents mitral insufficiency, but does not model the
effect of the leaflets on the local flow pattern. The boundary conditions applied on the LV fluid problem are
identical to (3.25).

More involved models for valve opening dynamics take into account the time-dependent shape of the
aperture of each valve, and they can impose either velocity profiles [154], pressure profiles [147, 191, 213], or
both [126], at the inlet and the outlet. Again the mathematical stability requirements should drive in the
selection of the appropriate boundary condition. For example, when modelling the mitral valve as an inflow
condition on the LV, using a pressure boundary condition on the Navier-Stokes equations (3.13) may lead to
numerical instability if flow reversal is allowed and vortical flow develops at the inlet/outlet [140]. Similar
instabilities may develop if the defective boundary conditions described in [73] are used to impose the inflow
rate.

If an inflow boundary condition is not sufficient to capture the complex flow pattern inside the ventricles,
e.g. in the case of pathological valves, it may be necessary to model the shape and dynamics of the valve
leaflets explicitly. The level of detail for this model greatly influences the flow pattern inside the heart [17].
The valve leaflets are typically modelled either as immersed resistive surfaces [12, 45, 128, 138] or by fully
coupled fluid-valve interaction [2, 32, 91, 101, 229]. A dynamical 3-D simulation of the mechanics of the valve
leaflets (including contact, coaptation, and chordae tendineae plus papillary muscles for the mitral/tricuspid
valves) interacting with the fluid is still very challenging even for industrial-strength commercial solvers.

3.9. Ventricular afterload and coupling with the systemic circulation

Since the function of the heart is greatly influenced by the mechanical load under which it has to operate
(according to the Frank-Starling law, see Sect. 3.5), it is necessary to complete the previously described
mechano-fluidic models by prescribing physiological preload and afterload conditions to the heart. In the
simplest case this can be achieved with lumped parameter models or “0-D models” that account for the
characteristic arterial impedance and consist of coupled subsystems of resistive, inductive and capacitive
elements in accordance to the analogy between fluid networks and electrical circuits, see [176]. The stan-
dard approximation for the afterload produced by the systemic circulation is the three-element windkessel
model [236]

dQ

dt
=

1

RaRpCa

[
RpCa

d

dt
(Pin − Pout) + (Pin − Pout)− (Rp +Ra)Q

]
, (3.28)

where the two resistive components and the capacitive element correspond to different parts of the systemic
circulation: Ra is the peripheral resistance mainly due to small arteries and arterioles, Ca the elastic com-
pliance mainly due to the aorta and other large arteries, and Ra the characteristic resistance of the aorta.
Equation (3.28) is coupled to the heart model through the variables (Pin,Q) corresponding to the aortic
pressure and flow rate respectively, whereas the venous pressure Pout is usually taken as constant parame-
ter. This simple model is nevertheless able to produce reasonably accurate aortic pressure profiles for the
simulation of an isolated heart, and can be improved by adding an impedance element in parallel with the
aortic resistive element [202].

While lumped parameter models provide good predictions on aortic pressure and flow rates, they cannot
represent the pressure wave propagation along the arterial tree nor the back-reflection of waves at bifurcations
and junctions. For that, a description of the topology of the arterial tree as well as the major individual
arteries is required; this includes measuring the length, radius, wall thickness, tapering etc. of each artery and
prescribing a coupled model to each arterial segment. In typical models the arteries are assumed to be straight
1-D segments and the flow velocity and pressure profiles are assumed to be radially symmetric. This leads,
after averaging over each cross-section and applying a thin-wall assumption, to systems of 1-D hyperbolic
equations to be used to model the pulse-wave propagation in large and medium-sized arteries [197]. Such
models can readily be coupled to heart models for more accurate predictions of arterial haemodynamics than
those offered by lumped parameter models. There has been much interest in recent years in constructing
extremely detailed models of the human arterial tree (see [3, 27, 28, 74, 84] and the references therein)
including aspects such as physiological vessel tapering, viscoelasticity, baroreflex autoregulation, and many
others.

The issue of personalizing such detailed models of the arterial tree to be patient-specific is still open, but
typical approaches include some type of global rescaling of vessel length/diameter and/or distal resistances to
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account for size and age of the person. It should be remarked that even the 1-D assumption of axisymmetric
flow may fail in (i) large, strongly curved arteries such as the aorta; in (ii) non-tubular arteries, for example
near a saccular aneurysm; or (iii) arteries that undergo external motion, especially the coronary arteries that
experience the full motion of the heart. While advancements in constructing fully 3-D flow simulations in the
arterial tree have recently been made [239], nevertheless considerable difficulties arise in the personalization
and calibration of such highly detailed models of patient-specific vasculature. The three models (3-D, 1-D
and lumped 0-D), however, can very effectively interplay to form the so-called geometrical multiscale models
(see [75, 74, 76, 176]).

4. Overview on mathematical analysis of sub-models

The mathematical analysis of macroscopic cardiac models has been mainly restricted to the study of
solvability and regularity of the monodomain and bidomain equations (generalization of the monodomain
model, based on a multicontinuum approach, see e.g. [54, 55]) and related formulations concerning the
electrophysiology of cardiac tissue. Depending on the complexity of (3.1) and on the nonlinearities and
discontinuities of the reaction and/or source terms, it can be quite difficult to derive global existence of
solutions using energy methods. Results are available for 3-D cable equations coupled to FitzHugh-Nagumo,
Mitchell-Schaeffer, Rogers-McCulloch, Aliev-Panfilov, Hodgkin-Huxley, and Luo-Rudy I ionic models (see
[23, 29, 31, 55, 134, 208, 224] and the references therein), whereas the analysis of more recent ionic models
is still beyond reach with current analytical tools.

On the other hand, existence theorems of general nonlinear elasticity [66, 124] are typically based on
classical arguments of polyconvexity of the strain energy and the implicit function theorems from [15],
whereas applications of that theory to the particular case of hyperelastic materials and passive cardiac
mechanics and their discretizations can be found in [16, 89, 112, 149, 182, 209]. Apart from these isolated
contributions, rigorous studies about solvability and stability of solutions for cardiac electromechanics are
still not well established. Up to our knowledge, the only available existence results devoted specifically to
cardiac electromechanics are to those by Pathmanathan et al. [158, 161], who analyzed a general model where
the activation depends on the local stretch rate, and the one by Andreianov et al. [7], where an active strain
electromechanical model with linearized elasticity and truncated updated conductivity tensors is studied. In
the latter, existence of weak solutions was derived by means of the Faedo-Galerkin method and compactness
arguments, and uniqueness in a weak-strong comparison setting. Somewhat similar contributions, but more
oriented to the study of travelling wave solutions for reaction-diffusion systems coupled with elasticity, can
be found in [90, 167].

An introduction to techniques used in existence proofs for fluid-structure interaction problems is provided
in [131]. The Faedo-Galerkin method was originally applied to the FSI problem in [125], where a fixed-point
theorem proving the existence of solutions in the finite-dimensional spaces was combined with a compactness
argument to reach the continuous limit. A considerable technical difficulty arises since available compactness
results require some conditions on the a priori unknown shape of the fluid domain. In [40] the existence of
weak solutions for a three-dimensional viscous incompressible fluid interacting with a flexible elastic plate
were proven in the case that an additional viscoelastic term was added to the structure. While the viscoelastic
term is rarely added to the model in practice, it is physically motivated as real biological tissue is perfused
with blood and other fluids and thus experiences strong viscoelastic effects. Instabilities due to insufficient
viscous damping may also manifest themselves in numerical solution algorithms in the form of divergence
of classical fixed-point algorithms [83]. Continuous and discrete fully mixed formulations of steady FSI
problems have been recently analyzed in terms of extensions to the Babuška-Brezzi theory [79, 80], and the
existence of solutions to a transient simplified variational fluid – shell-structure model with transpiration
boundary conditions was derived in [38]. Essentially all of these FSI-based studies rely on the assumption
of infinitesimal strains, which suggest that non-standard theoretical techniques would be required in order
to address solvability and regularity issues even for simplified electro-mechano-fluidic coupled problems.
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5. Computational strategies for heart integration models

Apart from the intrinsic difficulties associated to the mathematical coupling of different functions of the
heart (compatibility of model parameters, merging of different spatio-temporal scales, integrating multi-
modal information into the same frame of reference, solvability and regularity concerns, etc), the numerical
discretization of such a coupling entails several challenges in its own. Although if the integration of multi-
physics solvers is usually done employing already existing building blocks, at some point the missing pieces
need to be implemented, and sooner or later, close attention needs to be paid to the discretization features
of a particular system, including for instance stability of time integrators, discrete inf-sup conditions for
multi-field models, spatial convergence, or scalability performance. Even if all these issues are successfully
tackled for each subsystem, it is evident that the mere gluing of these elements together will not necessarily
result in a coupled system with the same stability properties as its building blocks.

The aim of this section is twofold: firstly, we present in detail some of the typical discretization schemes
applied to each main subsystem of the total heart function, and secondly, to discuss both qualitatively
and quantitatively the suitability of popular coupling strategies in the simulation of multiphysics problems,
focusing on heart integration.

5.1. Spatial and temporal discretization schemes for electrophysiology

The system of nonlinear reaction-diffusion equations (3.2) features travelling wave solutions. Once a
sufficiently large external stimulus current is applied, the ionic currents cause the transmembrane potential
to rapidly increase from its resting potential to a depolarized plateau state. This action potential travels as
a front across the tissue until the entire heart has been depolarized, followed by a slow repolarization phase
where the potential recovers to its resting value (see Fig. 2.4(a)). In homogeneous tissue the solutions of
the continuous equation are such that the wavefront travels at constant velocity that does not depend e.g.
on the conductivity coefficient D0. However, very different behavior is observed in a spatially discretized
system. For instance, a standard second order finite difference method leads to a semi-discrete system whose
front propagation velocity depends explicitly on the discretization parameter h. For large enough h the
semi-discrete system exhibits standing wave solutions, which translates to total propagation failure [103].
Even if convergence of the propagation velocity is obtained as h → 0, the discrete propagation velocity
may be far from the physiological limit value unless h is chosen extremely small2. Since the accuracy of
the propagation velocity is tied to the accuracy of the front approximation this issue can be somewhat
remedied by mesh adaptivity near the front, but since the front is moving the region of adaptation has to
be constantly updated, leading to large overhead and complications in developing dynamic mesh adaptation
algorithms [22, 50, 199]. A typical remedy when only computations on coarse meshes are available is to
increase the conductivity values until correct activation times are achieved. If the interest is in the modelling
of physiological monotone activation patterns, but not pathological re-entrant phenomena, then this may
represent a valid compromise.

In a standard finite element approximation of (3.2) the computational domain Ω0
E,h is obtained by a

partition Th of Ω0
E consisting in tetrahedral elements, and each component of the solution at every fixed time

t (that we here denote by the generic scalar quantity v) is approximated as

vh(x, t) =
∑

i

vi(t)ψi(x),

where the fields ψi are continuous and piecewise polynomial nodal basis functions and vi are the nodal values
of the the finite element solution that comprise the unknowns of the discrete problem. By testing against
the jth test function ψj and integrating by parts we get the semi-discrete formulation of the first equation

2In a physiological full-heart simulation the generally accepted spatial accuracy of h = 0.2 mm leads to systems of 200
million and above degrees of freedom if uniform refinement is applied everywhere
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of (3.2): to find (vh, wh, ch) ∈ Xh × Yh × Yh such that





cm

∫

Ω0

E,h

v̇hψj dx+

∫

Ω0

E,h

D0(x)∇vh · ∇ψj dx+ χ

∫

Ω0

E,h

iion(vh, wh, ch)ψj dx = 0, ∀ j = 1, . . . , N

∫

Ω0

E,h

ẇhψj dx−
∫

Ω0

E,h

mw(vh, wh, ch)ψj dx = 0, ∀ j = 1, . . . , N

∫

Ω0

E,h

ċhψj dx−
∫

Ω0

E,h

mc(vh, wh, ch)ψj dx = 0, ∀ j = 1, . . . , N

or, in matrix form, 



cmMV̇h + AVh + χIh(Vh,Wh, Ch) = 0

MẆh −mw(Vh,Wh, Ch) = 0

MĊh −mc(Vh,Wh, Ch) = 0

where v̇h, V̇h stand for ∂tvh, ∂tVh, respectively, [A]j,i =
∫
Ω0

E,h

D0(x)∇ψi · ∇ψj dx are the elements of the

anisotropic stiffness matrix, and [M]j,i =
∫
Ω0

E,h

ψiψj dx are the elements of the mass matrix. The ionic

currents in the discrete problem are obtained by using integration over all elements K ∈ T as:

[Ih]j =

∫

Ω0

E,h

iion(vh(x), wh(x), ch(x))ψj(x) dx =
∑

K∈Th

∫

K

iion(vh(x), wh(x), ch(x))ψj(x) dx. (5.1)

A quadrature approximation of (5.1) can proceed in three standard ways [113]: State-Variable Interpolation
(SVI), Ionic Current Interpolation (ICI), and Lumped Ionic Current Interpolation (L-ICI):

[ISVI
h ]j =

∑

K∈T

Q∑

p=1

ωpiion

(
N∑

i=1

viψi(qp,K),

N∑

i=1

wiψi(qp,K),

N∑

i=1

ciψi(qp,K)

)
ψj(qp,K) (SVI)

[IICI
h ]j =

∑

K∈T

Q∑

p=1

ωp

(
N∑

i=1

iion (vi, wi, ci)ψi(qp,K)

)
ψj(qp,K) =

N∑

i=1

[M]j,i iion (vi, wi, ci) (ICI)

[IL-ICI
h ]j =

∑

K∈T

Q∑

p=1

ωp

(
iion(vj , wj , cj)

N∑

i=1

ψi(qp,K)
)
ψj(qp,K) =

(
N∑

i=1

[M]j,i

)
iion (vj , wj , cj) (L-ICI)

where qp,K is the pth quadrature node in the element K, and ωp its corresponding quadrature weight. The
major difference between these approximations is that in SVI the ODE system for (wi, ci) given by the
membrane model has to be solved at each quadrature point qp,K , whereas in ICI the ODE system is only
solved at the nodal points. The L-ICI method is equivalent to first-order operator splitting, where a reaction
step is taken first and followed by a diffusion step:

Step 1:

{
Ẇh −mw(V

n
h ,Wh, Ch) = 0, Wn

h = Cn
h , t ∈ (tn, tn+1)

Ċh −mc(V
n
h ,Wh, Ch) = 0, Cn

h =Wn
h , W ∗

h =Wn+1
h , C∗

h = Cn+1
h ,

Step 2: cmMV̇h + AVh + χIh(Vh,W
∗
h , C

∗
h) = 0, Vh(tn) = Cn

h , t ∈ (tn, tn+1).

Numerical studies [113, 152, 160] have investigated the stability and accuracy properties of first-order finite
element approximations of the monodomain equations and the effects of operator splitting, various types of
mass lumping, and several approaches for the computation of ionic currents. The outcome is that on coarse
meshes, SVI gives conduction velocities that are too fast, whereas those of ICI/L-ICI are too slow. The
case of L-ICI especially suffers from large errors on the speed of propagation on very coarse meshes, and
is generally considered inaccurate. It should be noted that for higher-order polynomial approximations the
situation may not be so clear and the convergence may not be monotone in the front velocity [156].

Maintaining the positivity of solutions of the reaction-diffusion equation (3.1) is important for preserving
numerical stability and avoiding excessive over- and undershoots near the sharp AP front. The form of
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the reaction part of (3.1) is such that positivity is usually preserved for the gating variables and the ionic
concentrations for reasonable time-integration schemes. Thus a violation of the principle of positivity of
solutions can only come from solving the diffusive term with a method that does not satisfy a Discrete
Maximum Principle (DMP). In the case of isotropic diffusion and linear finite elements, the DMP is only
satisfied if mass lumping is used, all the angles in the mesh are strictly acute, and a severe time-step
restriction is imposed [95]. For unstructured meshes that are often used for whole heart simulations, this is
hardly feasible. In the case of anisotropic diffusion things get even worse, as the diffusion tensor may have
negative off-diagonal elements depending on the local orientation of the fibers with respect to the principal
coordinate axes, and so there is little hope of satisfying the DMP without modifying locally the FEM [116].
The use of mass lumping for the diffusive term is, nevertheless, recommended as it helps at least to reduce
the violation of the DMP and the resulting undershoots near the potential front.

5.2. Discretization schemes for solid mechanics

The elastic response of soft tissues is highly nonlinear. Their deformations under working (internal)
loads are intrinsically large, so that linear elasticity theory and the associated numerical techniques are, in
principle, hardly applicable. Numerical methods commonly used for (3.5) are constructed on the basis of the
principle of virtual work, which entails the minimization of a total potential energy. At equilibrium, such
energy can be written as the difference between internal and external (body and boundary) contributions
in either Lagrangian or Eulerian form. Related possibilities include the three-fields Hu-Washizu formulation
(employed for cardiac mechanics in [82]), the Lagrange multipliers and augmented formulations (applied to
computational models of the heart in e.g. [86, 184]), or approaches based on discrete descriptions of motion
(see for instance [100]).

For sake of conciseness of the presentation, we will restrict ourselves to the case of a quasi (or nearly)-
incompressible formulation for the strain energy function (3.7). For a given mechanical model, its quasi-
incompressible counterpart can be derived from splitting both the strain energy and the deformation gra-
dient into an isochoric and a pure volumetric contributions F = FisoFvol, with Fvol = J1/3I and W(F) =
Wiso(Fiso) +Wvol(Fvol), where Wiso assumes the form of the Holzapfel-Ogden strain energy. The decom-
position implies that the isochoric Cauchy-Green tensors are

C = J− 2

3C = I− 1

3

3 C, B = J− 2

3B = I− 1

3

3 B

where we used the fact that I3 = J2. Therefore, the first isochoric invariant is

I1 = tr C = J− 2

3 I1.

As suggested in [189], the main features of the decomposition can still be captured if the isochoric-
volumetric decomposition is applied only to the isotropic terms. In such a case, the relevant part of the first
Piola stress reads

Piso = 2

[
1− γn(γn + 2)

(γn + 1)2

]
WE

1 J
− 2

3

(
F− I1

3
F−T

)

+ 2

{[
γn

γn + 2

(γn + 1)2
− γf

γf + 2

(γf + 1)2

]
WE

1 +
1

(γf + 1)
2WE

4,f

}
f ⊗ f0

+ 2

{[
γn

γn + 2

(γn + 1)2
− γs

γs + 2

(γs + 1)2

]
WE

1 +
1

(γs + 1)
2WE

4,s

}
s⊗ s0

+
1

(γf + 1) (γs + 1)
WE

8,fs (f ⊗ s0 + s⊗ f0) .

The volumetric part of the energy can be specified in many ways, here we consider the case

Wvol (I3) = Wvol (J) =
κ

4

[
(J − 1)

2
+ ln2 J

]
, (5.2)

which gives the following expression for the volumetric part of the stress

Pvol =
κ

2
[J (J − 1) + ln J ]F−T ,
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for a bulk modulus κ.

A variational principle can then be formulated using W, and, in turn, the Euler-Lagrange equations in
weak form read: find dS ∈ D such that

∫

Ω0

S

P(dS) : ∇v dX =

∫

ΓS

t · v ds ∀v ∈ D = H1
0(Ω

0
S). (5.3)

Notice that this nonlinear problem is written in material coordinates. The same development can be applied
using the current deformed state (as done e.g. in [166]). We next proceed to linearize (5.3) around a generic

state d̂S. Applying Gâteaux derivatives to the solution operator defining problem (5.3) gives a problem
written in terms of the displacement increments: find δdS ∈ D such that

D(δdS,v) = F (v)−RdS
(d̂S,v) ∀v ∈ D, (5.4)

where the involved bilinear and linear forms read

D(δdS,v) =

∫

Ω0

S

[
P

F
(d̂S) : ∇δdS

]
: ∇v dX, F (v) =

∫

ΓS

t · v ds, RdS
(d̂S,v) =

∫

Ω0

S

P(d̂S) : ∇v dX.

Recalling that the particular form assumed by the first Piola stress tensor depends on Wiso (which in turn
depends on a number of invariants) and Wvol:

P =
∑

i

∂Wi

∂F
, i ∈ {1, (4, f), (4, s), (8, fs), vol}, (5.5)

implies that the stress, for instance due to the isotropic contributions in Wiso, can be written as

Piso =
∂W1

∂ĨE
1

∂ĨE
1

∂F
=
∂W1

∂ĨE
1

(
J11

∂I1

∂F
+ J12

∂I4,f
∂F

+ J13
∂I4,s
∂F

)
,

where ĨE
1 = J11I1 + J12I4,f + J13I4,s and

I =

∣∣∣∣∣∣∣∣∣

1− γn(γn+2)
(γn+1)2 γn

γn+2
(γn+1)2 − γf

γf+2
(γf+1)2 γn

γn+2
(γn+1)2 − γs

γs+2
(γs+1)2 0

0 1
(γf+1)2

0 0

0 0 1
(γs+1)2

0

0 0 0 1
(γf+1)(γs+1)

∣∣∣∣∣∣∣∣∣
.

Hence we obtain

∂P1

∂F
: ∇0δu =

∂2W1

∂
(
ĨE
1

)2
[(

J11
∂I1

∂F
+ J12

∂I4,f
∂F

+ J13
∂I4,s
∂F

)
: ∇0δu

]

×
(
J11

∂I1

∂F
+ J12

∂I4,f
∂F

+ J13
∂I4,s
∂F

)

+
∂W1

∂ĨE
1

[(
J11

∂2I1

∂F∂F
+ J12

∂2I4,f
∂F∂F

+ J13
∂2I4,s
∂F∂F

)
: ∇0δdS

]
.

In addition, recalling that for a Holzapfel-Ogden strain energy one has

W1 =
a

2b
eb(Ĩ

E
1
−3),

∂W1

∂ĨE
1

=
a

2
eb(Ĩ

E
1
−3),

∂2W1

∂
(
ĨE
1

)2 =
ab

2
eb(Ĩ

E
1
−3),

∂I1

∂F
= 2J− 2

3

(
F− I1

3
F−T

)
,

readily gives

∂2I1

∂F∂F
: ∇δdS = 2

∂

∂F

[
J− 2

3

(
F− I1

3
F−T

)]
: ∇δdS
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= 2

(
−2

3
J− 2

3F−T : ∇δdS

)(
F− I1

3
F−T

)

+2J− 2

3

(
∇0u− 2

3
(F : ∇δdS)F

−T +
I1
3
F−T (∇δdS)

T
F−T

)
.

On the other hand, the term involving the volumetric part of the energy assumes the expression

∂2Wvol

∂F∂F
: ∇δu =

∂

∂F

[
JW ′

volF
−T
]
: ∇0δdS

= JW ′
vol

(
F−T : ∇δdS

)
F−T + J2W ′′

vol

[
F−T : ∇δdS

]
F−T − JW ′

volF
−T (∇δdS)

T
F−T ,

where

W ′
vol = 2

(
J − 1 +

ln J

J

)
, W ′′

vol =
2

J2
(1− ln J) .

Notice that D(δdS,v) can be regarded as a purely constitutive contribution. In contrast, the analysis
under spatial coordinates adds a term coming from residual geometrical contributions.

The solvability of the linearized problem (5.4) hinges on the positivity (uniformly with respect to dis-
placements) of the quadratic functional

H (dS) =

∫

Ω0

S

(
∂2Wvol

∂F∂F
:∇dS

)
: ∇dS dX.

A proof along with more details on the derivation above can be found in [180]. Even if (5.4) is uniquely
solvable, it is often the case that initial guesses in the Newton algorithm are far from the actual solution. In
these circumstances the Newton iterates require combination with continuation methods (see e.g. [5]). For
instance, for pure contraction tests of activated cardiac tissue, a common strategy consists in applying incre-
mental loads determined by the increments of the active strain, in order to ensure that the next incremental
step will remain within the so-called region of attraction (cf. [182]).

Discretization of the linearized mechanical system. Consider a finite dimensional subspace Dh ⊂
D where discrete displacements will be sought. A Galerkin finite element approximation of the tangent
problem (5.4) is: find δdSh ∈ Dh such that

D(δdSh,vh) = F (vh) ∀vh ∈ Dh. (5.6)

Once a basis {ϕi}Ni=1 for Dh has been defined, with N = dimDh, we can expand the solution as

δdSh(X) =

N∑

i=1

δdiShϕi(X),

where the coefficients δdiSh form a vector δDS of unknowns which is determined from the linear algebraic
system

DδDS = F, (5.7)

with
Fi = F (ϕi)−RdS

(d̂S,ϕi), Dij = D(ϕj ,ϕi), 1 ≤ i, j ≤ N.

Now, let Th denote a partition of Ω0
S into regular tetrahedrons K of maximum size h. Notice that some

simulation packages targeted for biomechanics employ hexahedral grids and isoparametric elements (one of
these examples is Chaste [168]). However we restrict ourselves to Lagrangian finite elements defined on
tetrahedral meshes, which can be more commonly found in general-purpose simulation environments. A
suitable choice for the basis functions will correspond to continuous element-wise polynomials of maximal
degree l defined on the mesh Th:

Dh = {vh ∈ C0(Ω0
S) : vh|K ∈ Pl, ∀K ∈ Th}, l = 1, 2.
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Fréchet derivatives of the solution operator can be computed explicitly, yielding a precise form of the tan-
gent problem to be solved at each Newton-Raphson iteration. In many practical situations, the derivation of
the exact Jacobian can be cumbersome and viable alternatives are to use automatic symbolic differentiation,
or numerical differentiation providing inexact Jacobian block matrices requiring smart preconditioners (see
the review [109]). Another idea typically applied in combination with linearization procedures, is the reuti-
lization of Jacobian blocks over a number of Newton steps (strategy a.k.a. Shamanskii’s method [190]), or
matrix-updating schemes based on Jacobian rank-one block updating. The approach we follow corresponds
to a Newton-Krylov method for which the computational cost of the solution of the linear system is reduced
(see also [67]). The solution δDS of (5.7) is replaced by the approximate solution S such that

∥rk∥ = ∥DkS− Fk∥ ≤ ηk ∥Fk∥ , (5.8)

where the forcing parameter ηk measures how far the approximation S is from δDS . When the solution
of (5.6) is obtained via Krylov iterative methods, the stopping criterion typically corresponds to fixing ηk.
The key idea in Newton-Krylov methods is to use a small tolerance for the Krylov iterations only when
sufficiently close to the solution of the nonlinear problem. Following [67] a sequence of tolerances {ηk} is
defined by

ηk+1 = min

[
η0, max

(
ηsafek+1, 0.5ε

∥rk∥2

∥rk−1∥2

)]
, k ≥ 1,

with

ηsafek+1 =





η0 k = 0

max
(
min

(ηk
2
, ηRes

k+1

)
, ηmin

)
k > 0, γη2k ≤ 0.1,

min
[ηk
2
,max

(
ηRes
k+1, γη

2
k

)]
k > 0. γη2k > 0.1,

ηRes
k+1 = γ

∥rk∥2

∥rk−1∥2
,

where γ ∈ (0, 1] and ηmin are algorithmic parameters.

The phenomenon of numerical volumetric locking has been observed in many studies using incompressible
and quasi-incompressible formulations with low order elements, also in the particular application to cardiac
biomechanics [16]. Classical remedies include the use of high order elements, non-conforming methods,
stabilized mixed formulations [94, 193] or reformulations of the governing equations into three-field models
[118], also related to Lagrange multiplier-based methods [86], or less invasive ones such as selective reduced
integration, which imply that the main structure of the discrete problem remains unchanged. The amount
of compressibility consider here is such that the locking phenomena cannot be appreciated when using linear
finite elements. Further complications arise in case that large deformations are localized in particular regions.
Classical methods will therefore suffer from severe mesh distortion and an intermediate step of remeshing or
re-generation of the connectivity map may be needed, especially in case of FSI couplings.

5.3. Spatial and temporal discretization schemes for fluid dynamics

Fully developed turbulent blood flow is rarely observed in healthy humans [127]. Nevertheless, the flow
in the aortic root can be in the transitional regime between laminar and turbulent flow, especially during the
deceleration phase where flow instabilities occur. However, the deceleration period is not sufficiently long to
enable a turbulent flow to develop [198]. Characteristic figures for maximum Reynolds number are: 2000 for
pulmonary veins, 5000 for mitral valve and 5300 for the aortic valve. These ranges of Reynolds numbers and
the pulsatile nature of the inlet flow clearly indicate that this complex cyclic flow may well be transitional.
Modern imaging tools have shown that physiological blood flow has a spiral laminar behavior in the
aorta [202], where it is believed that the spiral structure helps to protect the endoluminal surface of the
aortic wall from damage by reducing the laterally directed forces [201].

For a numerical approximation standpoint, because of the transitional nature of the flow, Reynolds
Averaged Navier-Stokes (RANS) approaches for modelling turbulence (e.g. κ−ε, κ−ω models, etc.) are not
appropriate, as they are based on the assumption that the turbulence is fully developed and ergodic. When
used to handle transition, they require the user to prescribe the transition location in advance. Generally
speaking, Large Eddy Simulation (LES) approaches are more appropriate to handle transitional flow regimes.
With LES, only the smallest scales (scales smaller than the mesh size) are modelled, while the large scales
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evolution is recovered by solving a filtered version of Navier–Stokes equations [141, 170, 187]. A subgrid
scale model will account for the effect of the unresolved scales on the dynamics of the resolved ones. This
coarse-fine-coarse interaction is realized owing to the Variational Multiscale Method (VMS) that we briefly
describe below.

VMS [92] additively separates the scales of interest in a predetermined number of groups, usually two,
coarse (resolved) and fine (unresolved) scales, yielding two coupled equations that govern the dynamics of the
coarse and fine scales. Coarse scales are typically identified with those resolved by the computational mesh,
while fine unresolved (i.e., subgrid) scales are not properly captured by the mesh, but their effect on the coarse
scales needs to be accounted for. The problems that govern the unresolved scales are approximated with
local problems that are linearized about the coarse scales and solved utilizing the concept of the “fine-scale
Green’s function” (see [93]).

The approach that is presented here is the so-called residual-based VMS modeling approach proposed
in [20, 144]. Rather than emanating from fluid dynamics concepts, it exploits the mathematical structure
of the Navier–Stokes equations and a multiscale decomposition of the space of its admissible solutions.
When regarded under this perspective, VMS is potentially apt at solving all flow regimes governed by the
Navier–Stokes problem.

For the sake of simplicity, we start by sketching the main steps of the residual-based VMS method on the
Eulerian, conservative formulation of the Navier–Stokes equations in a non deformable domain ΩF. Instead
of (3.13) we therefore consider

ρF
(
∂tuF + div(uF ⊗ uF)

)
− divσF = 0 in ΩF × (0, T ],

divuF = 0 in ΩF × (0, T ].
(5.9)

After writing (5.9) under variational form we find the weak formulation of Navier–Stokes equations (for ease
of notation we assume uF to vanish on the whole boundary ∂ΩF of ΩF):

for all t > 0 find uF = uF(t) ∈ V = (H1
0 (ΩF))

d, pF = pF(t) ∈ Q = L2
0(ΩF) = {q ∈ L2(ΩF) :

∫
ΩF

q = 0},
such that, if U = (uF, pF),

A(U,W) = 0 ∀ W = (wF, qF) ∈ V ×Q, (5.10)

with

A(U,W) = ρF (∂tuF,wF)− ρF (uF ⊗ uF,∇wF) + (divuF, qF)− (divwF, pF) + (2µFε(uF), ε(wF)),

where (·, ·) denotes the L2(ΩF)−inner product.

By setting V = V ×Q and introducing a direct sum decomposition V = Vh ⊕ V
′ into coarse-scale and

fine-scale subspaces, respectively, being Vh a finite dimensional space – typically, the Cartesian product of
the finite element spaces Vh and Qh for velocity and pressure approximation – problem (5.10) breaks into
the set of equations:

A(Uh +U′,Wh) = 0 ∀ Wh ∈ Vh, (5.11)

A(Uh +U′,W′) = 0 ∀ W′ ∈ V
′, (5.12)

where Uh = (uFh, pFh) ∈ Vh and U′ = (u′
F, p

′
F) ∈ V

′ represent the coarse (resolved) scale and the fine
(unresolved) scale components of the solution, respectively. Equation (5.11) yields

A(Uh,Wh) + ρF (∂tu
′
F,wFh)− ρF (uFh ⊗ u′

F,∇wFh)− ρF (u
′
F ⊗ uFh,∇wFh)

−ρF (u′
F ⊗ u′

F,∇wFh) + (divu′
F, qFh)− (∇wFh, p

′
F) + 2µ(ε(u′

F), ε(wFh)) = 0.
(5.13)

The first term in (5.13) is called the Galerkin contribution. The second one is set to zero as u′
F is often

assumed to be time-independent (see however [49] for a dynamical model for the fluctuation velocity). The
third and fourth terms represent the turbulent cross-stress while the fifth term is the turbulent Reynolds
stress. The last term is also set to zero, because of the orthogonality of u′

F to the coarse-scale velocity
in the H1−seminorm. See [20] for a detailed derivation and for a comparative analysis with stabilized
approximations (such as SUPG and GLS) of Navier–Stokes equations.
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As of the fine-scale equation (5.12), it becomes

A(Uh,W
′) + ρF (∂tu

′
F,w

′
F)− ρF (uFh ⊗ u′

F,∇w′
F)− ρF (u

′
F ⊗ uFh,∇w′

F)

−ρF (u′
F ⊗ u′

F,∇w′
F) + (divu′

F, q
′
F)− (∇w′

F, p
′
F) + 2µ(ε(u′

F), ε(w
′
F)) = 0.

After some algebraic manipulation we obtain

(
LuFh

u′
F + ρF (u

′
F · ∇(uFh + u′

F)) + rmom,w
′
F

)

+ρf (divuFh(uFh + u′
F),w

′
F) + (divu′

F + rcont, q
′
F)− (divw′

F, p
′
F) = 0,

(5.14)

where we have set

LuFh
u′
F = ρF∂tu

′
F + ρF (uFh · ∇u′

F + divuFhu
′
F)− div[2µε(u′

F)],

(and still we can assume that ∂tu
′
F = 0),

rmom(uFh, pFh) = ρF (∂tuFh + uFh · ∇uFh) +∇pFh − µ∆uFh,

(residual of the coarse-scale momentum equation in non-divergence form), and

rcont(uFh) = divuFh,

(residual of the coarse-scale continuity equation).

To further simplify (5.14) it is assumed that divu′
F ≈ 0 and divw′

F ≈ 0, yielding

(
LuFh

u′
F + ρFu

′
F · ∇(uFh + u′

F) + rmom,w
′
F

)
= 0, (5.15)

which highlights the fact that the time scales are evolving according to the residual of the coarse-scale
momentum equation.

Note that since divuF = 0 and divu′
F ≈ 0, this gives divuFh ≈ 0, which explains why the term (rcont, qF)

has disappeared when going from (5.14) to (5.15). At this stage, the fine scales are modeled as

U′ ≈ −τR(Uh),

where R(Uh) = {rTmom(uFh, pFh), rcont(uFh)}T is a 4 × 1 vector and τ = {τMI3×3, τC} is a 4 × 4 block-
diagonal matrix where τM , τC are two constants that depend on uFh, the time step, the deformation gradient
of the transformation between physical and parametric element coordinates and several other constants
depending on the piecewise polynomial degree of the finite element velocity field (see [144]).

To sum-up, the final form of the VMS approximate problem writes:

for all t ∈ (0, T ], find Uh = Uh(t) ∈ Vh such that ∀Wh ∈ Vh,

B(Uh,Wh) +
(
ρFuFh · ∇wFh +∇qFh, τMrmom

)
+ (divwFh, τCrcont)

+
(
ρfuFh · (∇wFh)

T , τMrmom

)
− (∇wFh, τMrmom ⊗ τMrmom) = 0.

(5.16)

The first term in (5.16) is the Galerkin contribution, the next two terms correspond to classical stabilization
terms (as in SUPG and GLS, see e.g. [173]), the last two terms are peculiar to the VMS method.

These equations are typically advanced in time by the generalized−α method, see [46, 97]. The extension
of the VMS method to the NS problem in ALE formulation (3.13) is made by following the same setting
and similar simplifying assumptions. For sake of space, we will not report it here. The reader is however
referred to e.g. [21, Sect. 5.2].

5.4. Insights on stability of coupling algorithms using simplified models

Due to the extraordinary complexity of the coupled cardiac multiphysics problem, many simplified models
have been proposed and analyzed in literature in order to derive qualitative insight into the features of the
system as well as to aid in the calibration of more complicated models [36]. With this aim, we will briefly
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present a system of seven PDEs in one spatial dimension that contains all of the essential ingredients
presented in Sects.3.1–3.3 and Sects. 3.4–3.5. Our goal is to provide some insight on the various coupling
and solution strategies that can be applied to the fully coupled cardiac multiphysics problem. Our simplified
model deliberately omits to address the fluid dynamical aspects, mainly because the difficulty of representing
inherently three-dimensional phenomena in just one spatial dimension, but also because in our 3-D problem
the fluid and solid mechanics are treated as one monolithic block.

The variables of our simplified model are: v, the transmembrane potential; r, the recovery variable; k,
the average crossbridge stiffness; σ, the average crossbridge tension; H, the macroscopic active stress; u, the
displacement from reference configuration in the fiber direction and u̇ its velocity. The resulting model reads
as follows (see [61]):





∂tv =
∂

∂x

(
D(u)

∂v

∂x

)
− kv(v − a)(v − 1)− vr + iapp − iSAC(v, u), (x, t) ∈ I × (t0, tf )

∂tr = ε(v, r)(−r − kv(v − a− 1)) (x, t) ∈ I × (t0, tf )

v(x, t0) = v0(x), r(x, t0) = r0(x)

(5.17)





∂tk = −
(
|c(v)|+

∣∣∣∣
∂u̇

∂x

∣∣∣∣
)
k + k0c(v)

+ (x, t) ∈ I × (t0, tf )

∂tσ = −
(
|c(v)|+

∣∣∣∣
∂u̇

∂x

∣∣∣∣
)
σ + σ0

c(v)+

2
+
σ0
k0

∂u̇

∂x
k (x, t) ∈ I × (t0, tf )

k(x, t0) = k0(x), σ(x, t0) = σ0(x)

(5.18)





∂tH =
ν

α
σ − 1

2

σmax

α
H

(
1 +

∂u

∂x

)2

(x, t) ∈ I × (t0, tf )

H(x, t0) = H0(x)

(5.19)





∂tu = u̇ (x, t) ∈ I × (t0, tf )

∂tu̇ =
1

ρ0

∂

∂x

(
S(H,u)

(
1 +

∂u

∂x

))
(x, t) ∈ I × (t0, tf )

u(x, t0) = u0(x), u̇(x, t0) = u̇0(x),

(5.20)

completed with the mechano-electric feedback and recovery terms

D(u) =
µ

(
1 + ∂u

∂x

)2 , iSAC(v, u) = Gs

[
∂u

∂x

]+
(v − Es), ε(v, r) = ε0 + µ1r/(v + µ2), (5.21)

the piecewise linear chemical reaction term

c(v) =





−krs if v < va1

−krs +
katp + krs
va2 − va1

(v − va1) if va1 ≤ v < va2

katp if v ≥ va2

, (5.22)

and the total macroscopic stress term

S(H,u) = 2c1

[
1− 1

(
1 + ∂u

∂x

)3 + σmaxH
2

]
. (5.23)

The system (5.17)–(5.23) is a coupled multiphysics system that consists of the two-equation electrophysiology
model of Aliev-Panfilov [4] equipped with the mechano-electric coupling terms from [150], the cross-bridge
force generation mechanism based on the distribution moment model from [25], an active stress model similar
to those that were derived on thermodynamical principles in [181], and an isotropic Neo-Hookean passive
material simplified to one-dimensional strains and stresses. For details and derivation of the sub-systems we
refer to those works. Suggested parameters for the model (5.17)–(5.23) are given in Table 5.1.
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Table 5.1: Parameters of the simplified multiphysics model (5.17)–(5.23).

µ 0.001 k0 0.6 g cm−1 ms−2

k 8 σ0 0.7 g cm−1 ms−2

a 0.15 krs 0.02 ms−1

Gs 0.5 katp 0.009 ms−1

Es 1 va1 0.8
ε0 0.002 va2 0.95
µ1 0.2 σmax 0.5 g cm−1 ms−2

µ2 0.3 c1 0.02 g cm−1 ms−2

ρ0 1 g cm−3

While extremely simplified, this model captures: (i) the force-velocity relationship (3.11), (ii) the force-
length relationship, and (iii) the restitution curve and also demonstrates the effects of mechano-electric
feedback, which becomes evident when the system equipped with periodic boundary conditions. In the
periodic case the system exhibits two different types of travelling pulses – solutions where one pulse travels
to the left and another pulse to the right until they meet (bidirectional solutions), and solutions where
one pulse travels in only one direction (monodirectional solutions). If the system is periodically excited
and forced to enter a monodirectional solution by artificially eliminating one of the travelling pulses, it will
remain in this solution branch no matter how the stimulus period is chosen. However, if a sufficiently large
external stretch is applied, the mechano-electric feedback term iSAC(v, u) will lead to a termination of the
unidirectional pulse and during the next pacing cycle the solution will return to the natural (bidirectional)
solution branch.

For the sake of synthesis and notation simplification, let

Ẋ = F(X), (5.24)

denote the system obtained after spatial discretization of the equations (5.17)–(5.23) as described in Sect. 5.1–
5.2. This nonlinear ODE system can be discretized in time using e.g. the standard θ-method

Xn−1 −Xn−1 = θ∆tF(Xn) + (1− θ)∆tF(Xn−1), n = 1, 2, . . .

and solved at each time step with a Newton-like solution procedure: given Xn−1, the solution at time tn−1,
and the initial guess X0

n = Xn−1, solve Xk
n for each k = 1, 2, . . ., such that

[
I − θ∆t ∂XF(Xk−1

n )
] (

Xk
n −Xk−1

n

)
= Xn−1 −Xk−1

n +∆t(θF(Xk−1
n ) + (1− θ)F(Xn−1)) (5.25)

or in short to iterate Xk
n = Xk−1

n + δXk−1
n computed by solving

(
I− J

k
n

)
δXk−1

n = −R(Xk−1
n ,Xn),

where Jkn = θ∆t ∂XF(Xk−1
n ), until an adequate convergence criterion has been reached, where

Xn = [vn, rn, kn, σn, Hn, un, u̇n] is the global solution vector at time tn and ∂XF denotes the Jacobian of F.

5.5. Semi-implicit time-stepping algorithms for coupled problems

In practice, a fully implicit solution of the tangent problem (5.28) is rarely performed for more realistic
models. The derivation, computation and assembly of all the terms in the full Jacobian of the membrane
model can be extremely time-consuming as the membrane model is a system of ODEs up to dozens of
complex nonlinear equations with transcendental functions etc.3

3It is for this reason that the Rush-Larsen scheme [186] applies exponential integrators only on the (linear) differential
equations for the gating variables while using explicit methods to update the other variables. This approach requires that the
stiffness of the system is present in the gating variables [133], but can be generalized by applying exponential integrators on
the entire diagonal of the membrane model equations [207].
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In a semi-implicit solution method some of the Jacobian terms are not recomputed at each Newton
iteration and instead take their values (extrapolated) from the previous time step [10]. We assume an
additive splitting of the system F(X) = F1(X) + F2(X) and replace the evaluation of the nonlinear right-
hand side with an implicit-explicit splitting

F(Xk−1
n ) ≈ F1(X

k−1
n ) + F2(Xn−1), (5.26)

where F1 is the part of the system that is treated implicitly (stiff component) and F2 is the part of the
system that is treated explicitly (nonstiff component). For the purposes of constructing block-aware semi-
implicit methods we assume the splitting is such that the Jacobian of the implicit part ∂XF1 has strictly
fewer nonzero blocks than the full Jacobian ∂XF.

The semi-implicit method obtained by substituting (5.26) into (5.25) is: given Xn−1 the solution at time
tn−1 and the initial guess X0

n = Xn−1, solve Xk
n for each k = 1, 2, . . ., s.t.

[
I − θ∆t ∂XF1(X

k−1
n )

] (
Xk

n −Xk−1
n

)

= Xn−1 −Xk−1
n +∆t

[
(1− θ)F(Xn) + θ(F1(X

k−1
n ) + F2(Xn−1))

]
.

(5.27)

In a fully implicit solution scheme for (5.17)–(5.23), the Jacobian Jkn in the tangent problem will have
the following structure:

J
k
n =




J11 J12 J16
J21 J22
J31 J33 J37
J41 J43 J44 J47

J54 J55 J56
J66 J67

J75 J76 J77




, (5.28)

where we have divided the matrix into sub-blocks according to the different subsystems. Solving the fully
implicit system with time step ∆t = 1 ms leads to a convergent Newton method at each time step throughout
the cardiac cycle and a stable implicit time-stepping scheme using both the implicit midpoint (θ = 1/2) and
the implicit Euler’s (θ = 1) method.

As an example of the stability issues that can appear with semi-implicit time-stepping algorithms are
used for some of the coupling terms, we consider a splitting such that

∂XF1 =




J11 J12 J16
J21 J22
J31 J33 J37
J41 J43 J44

J55 J56
J66 J67
J76 J77




, ∂XF2 =




J47
J54

J75




(5.29)

that corresponds to the explicit treatment of the coupling terms J47, J54, J75 corresponding to the effect of
the strain velocity on the average crossbridge tension, the effect of the crossbridge tension on the macroscopic
active stress, and the effect of the macroscopic active stress on the rate-of-strain. This represents only a
partial decoupling of the crossbridge model from the solid mechanics, as the coupling blocks J16, J37, J56
are still updated at each Newton iteration. The numerical solution behavior of this partially decoupled
approximation are presented in Fig. 5.1 for both the implicit midpoint (θ = 1/2) and the implicit Euler’s
(θ = 1) method. Numerical instabilities clearly manifest when using the implicit midpoint method. The
inherent lack of damping for θ = 1/2 means that oscillations start to appear in the crossbridge stress variable
σ when the system enters the depolarization phase. After decreasing ∆t to 0.1 ms both methods converge
and their solutions are nearly identical to the one computed by solving the fully implicit problem (5.25).

5.6. Block-preconditioners from algebraic splitting methods

The standard strategy for solving the tangent problem (5.25) (or its relaxation version (5.27)) relies on
using an iterative method plus an efficient preconditioner P that exploits the block structure of the system.
Two main strategies for constructing block-aware preconditioners can be identified:
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Figure 5.1: Numerical solution of the system (5.17)–(5.20) using the semi-implicit scheme (5.27) based on the additive split-
ting(5.29). The implicit Euler’s method (θ = 1) retains its stability, whereas the implicit midpoint method (θ = 1/2) suffers
from catastrophic instability.

1. (Approximate) block factorizations, e.g. of the form (I− J) ≈ LU, where L and U are block lower- and
upper-triangular respectively, relatively easily invertible so that they may be used as preconditioners
in the following way:





1. LY = −R(Xk−1
n ,Xn−1) (by block forward substitution)

2. UZ = Y (by block backward substitution)

3. U
−1

L
−1(I− J)Xk

n = Z (by an iterative method)

Approximate factorization preconditioners have been extensively studied in recent years in the case
N = 2 for the Navier-Stokes equations [68, 175], and in the case N = 3 for fluid-structure interaction
equations [18, 59, 135] and in general for domain decomposition methods [41, 218]. For general multi-
physics problems with N ≥ 4 suitable block factorizations may become rather involved due to filling
in of the blocks, requiring either the inversion of many subproblems or the approximation of many
Schur-complement-like blocks.

2. Algebraic splitting methods, where the preconditioner is obtained by a regular splitting of the matrix,
A = P + (A − P), where P is an invertible matrix with block structure inherited from the original
problem. In this case the iterative method is

PXk
n = (P− A)Xk−1

n − Res(Xk−1
n ),

typically with some sort of relaxation applied to improve the convergence. These methods can be
regarded as the block versions of classical iterative methods such as SOR, Gauss-Seidel, Jacobi, etc.
[14, 174, 222].

We focus on the second class of block-preconditioners. Let α ∈ Z
N×N
2 be a binary matrix that determines

the block structure of the preconditioner, and define a corresponding iterative scheme with preconditioner
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P(α) as 


I + α11A1 α12C12 . . . α1NC1N

α21C21 I + α22A2 α2NC2N

...
. . .

...
αN1CN1 αN2CN2 . . . I + αNNAN







Xk
1

Xk
2
...

Xk
N




=




(α11 − 1)A1 (α12 − 1)C12 . . . (α1N − 1)C1N

(α21 − 1)C21 (α22 − 1)A2 (α2N − 1)C2N

...
. . .

...
(αN1 − 1)CN1 (αN2 − 1)CN2 . . . (αNN − 1)AN







Xk−1
1

Xk−1
2
...

Xk−1
N


−




R1

R2

...
RN




(5.30)

In general, for a problem of N blocks we can have up to 2O(N) different choices of such block-preconditioners
P(α). This rather simple choice of the block-preconditioner nevertheless covers a large number of classical
iterative methods:

1. For the choice α = I, the algorithm corresponds to a block Jacobi iteration or parallel loosely cou-

pled scheme, where each subsystem is solved independently and in parallel, solution information is
exchanged, and the algorithm is iterated until convergence. This algorithm is the most parallel one,
but it only works if the effects of all the coupling blocks are weak compared to the diagonal blocks.
To our knowledge there exists no successful block Jacobi implementation of the coupled multiphysics
problem of cardiac electromechanics.

2. For the choice α = LowerDiag(1), the algorithm corresponds to a block Gauss-Seidel iteration or
serial loosely coupled scheme, where each subsystem is solved sequentially and the solution is used to
initialize the next subsystem until all the subsystems have been solved, and the algorithm is iterated
until convergence. This algorithm can work if all the couplings in the upper-diagonal part of the matrix
are weak: this includes the stretch-activated currents, the mechanoelectric feedback, the enforcement
of a force-length relationship, and the effect of the ventricular pressure on the solid deformation.

3. For the choice α = 1, the algorithm corresponds to direct solution of the global Newton tangent
problem or monolithic coupling scheme. Practical algorithms for monolithic solution algorithms often
rely on partitioned preconditioners, approximate solves, the omission of some coupling blocks or other
techniques that reduce the effective amount of information that needs to be computed and transferred
between parallel processes. This is the most stable approach for strongly coupled multiphysics prob-
lems. The price to pay is that existing solvers for the subproblems cannot be used directly, but must
be adapted to the particular strategy chosen.

The block Gauss-Seidel iteration has the benefit that the application of the preconditioner P can be performed
by back block substitution, which means that only solvers for individual subproblems (the actions of the
inverses A−1

n ) are needed. Naturally, applying the block Gauss-Seidel iteration to the standard form of the
system is not the only option – for different row-column permutations of the equation system (5.30) we find
different block Gauss-Seidel iterations. A possible approach is then to search for α s.t. the left-hand side of
the system (5.30) can be permuted to a block-triangular form among all those α that satisfy the necessary
and sufficient contractility criterion for the preconditioned iterative method depending on the spectral radius
of the iteration matrix:

ρ
(
I− P

−1(α)A
)
< 1,

ρ being the spectral radius matrix function. This motivates the following definition (see also [107]):

Definition 5.1: The problem AX = −R contains a strongly coupled subsystem if there exists no reducible
N×N matrix4 α s.t. ρ

(
I− P−1(α)A

)
< 1. A system that contains no strongly coupled subsystems is called

weakly coupled.

If the system (5.30) contains no purely algebraic equations (e.g. no quasi-static approximation for the
solid mechanics is applied) then for sufficiently small timestep ∆t the system is block-diagonally dominant
and consequently weakly coupled.

4A matrix X is reducible if there exists a permutation matrix P s.t. PXPT = U , where U is an upper-triangular matrix. If
a matrix is not reducible, it is irreducible.
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For weakly coupled systems we can therefore find at least one simultaneous row and column permutation
of the system A s.t. the preconditioner matrix P(α) of the permuted system can be applied by back block
substitution in a serial loosely coupled way. In theory, for linear problems with small N the possible choices
of α can be enumerated and the corresponding spectral radii can be checked to first eliminate all the non-
convergent algorithms (ρ ≥ 1), after which the iteration matrix with the least spectral radius provided an
optimal choice of the solution method. This becomes unfeasible for N > 3 if all the coupling blocks are
active, but can still be used for N = 4 provided that at most O(N) coupling blocks are nonzero. For coupled
systems with N ≥ 5 and for nonlinear coupled systems where the matrix A is changing at each Newton
iteration such enumeration schemes are not feasible.

In practice, most implementations of coupling algorithms for cardiac electromechanics opt for some
compromise between the three aforementioned approaches: strongly coupled subsystems are grouped together
in one block and solved monolithically while the remaining terms are loosely coupled. It is also known that,
as far as fluid mechanics inside the ventricle are considered, monolithic schemes are superior in performance
to serial tightly coupled schemes due to the large deformations and the large added mass effect (see e.g.
[37, 115]).

6. Numerical results

This section is devoted to the presentation of several numerical tests serving as validation of the mathe-
matical models that have been proposed for the different cardiac sub-systems, as well as verification of the
associated numerical methods. We start with the issue of reconstructing fibers and sheets of collagen of the
myocardium.

For idealized LV shapes one can rely on an analytical description of the fiber fields based on Streeter’s
famous description of fiber orientations, on bi-ventricular domains a reconstruction algorithm has to be
suitably devised. This is the purpose of Sect. 6.1. In Sect. 6.2 we test the activation time computed by
our monodomain model on a benchmark problem set up in a slab of myocardial tissue that is electrically
excited in a corner. Because of the anisotropic propagation of the electrical signal, the use of anisotropic
conductivity tensors is mandatory. Sect. 6.3 deals with the issue of how to recover the natural, stress-free
configuration, that is typically unknown in actual computations. We recall that the natural configuration of
the cardiac tissue represents the starting point which the constitutive law (3.8) applies to and from which the
deformation is computed. The algorithm that we propose is tested on a three-dimensional cubic slab under
traction. The electromechanics coupled model is first tested on a three-dimensional slab in Sect. 6.4 and
then on an idealized ventricle in Sect. 6.5, all along the four phases of ventricular contraction, ventricular
blood ejection, ventricular relaxation, and ventricular blood filling. In Sect. 6.6 the bi-ventricular geometry
of a real human heart is considered. The electromechanics model is used to simulate both a physiological and
a pathological electrical field propagation. The latter refers to the so-called LBBB (left bundle branch block)
conduction defect that leads to delays in the electrical activation of the LV. The last Sect. 6.7 addresses the
case of a patient specific fluid dynamics valve insufficiency simulation in the LV. The ventricular deformation
is imposed by an external law, while valves are modelled using three different approaches. The scope of this
test is to detect potential numerical instabilities due to flow reversal and the fast valve dynamics.

6.1. Rule-based fiber and sheet reconstruction

As discussed in Sect. 2.1, the configuration of the fiber and sheet fields in the ventricles plays an important
role in the mechanical response during both relaxation and contraction. While on idealized representation
of the LV an analytical description of the fiber field can be given [85, 172], on biventricular patient-specific
domains one needs to employ a reconstruction algorithm. To this aim, several algorithms have been pro-
posed [19, 238, 146], and the one we employ herein, originally proposed in [181], is presented below. Myocar-
dial fiber orientations can in principle be recovered in vivo from diffusion magnetic resonance imaging by
identifying the dominant direction of diffusion as that of the mean fiber direction. However, cardiac motion
artefacts mean that the recovered fiber fields are very noisy and therefore the subject-specific imaging-based
fiber fields typically need to be smoothed and/or augmented by some synthetic rule-based description.
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In order to define the local frame of reference, representing the direction of anisotropy, the core idea is
to compute numerically the transmural distance. Such distance has two important purposes: 1) its gradient
is directly associated with the direction of the collagen sheets; 2) it allows to define the transmural angle of
rotation of the fiber field.

The first step is to define a pseudo-distance ϕ by solving a simple Laplace problem with the proper
boundary conditions:

∆ϕ = 0 in ΩS ,

ϕ = g on ΓD, (6.1)

∂ϕ

∂n
= h on ΓN .

On a left ventricular model, usually one sets h = 0 on ΓN , the ventricular base, while we set g = 0 and g = 1
on the endocardial and epicardial surfaces respectively. On a biventricular, patient-specific domain, the
specification of the boundary conditions may not be so simple. The idea is to maintain the same boundary
conditions for the LV, while adjusting the one for the RV accordingly. In practice, we can still set g = 0 on
the left endocardial surface and g = 1 on the epicardial surface, but we need to define two separate regions
on the right endocardial surface such that on g = 1 on the right septum and g = 0 elsewhere. It’s easier
to understand such configuration, by looking at Fig. 6.1, where we show the solution of problem (6.1) for a
biventricular domain and the reconstructed fiber filed.

Once the pseudo-distance ϕ(X) is known, a local frame of reference can be built in each element, or
node, of the mesh. We make the assumption that the sheet field direction can be approximated by using the
following relation

s0 =
∇ϕ

||∇ϕ|| ,

that is the sheets are aligned with the transmural direction. This approximation is effective as our activation
model assumes that wall thickening takes place in the “radial” direction.

For each element, we can find the plane orthogonal to the sheet direction and we can form a local
orthogonal frame of reference by picking two orthogonal vectors in this plane. Our choice is to define an
initial “flat” fiber field f̃0, such that it’s everywhere orthogonal to the centerline of the LV. With this goal, let
us define k, the vector parallel to the left ventricular centerline pointing apex-to-base. Then its projection
kp on the plane orthogonal to s0 is given by

kp = k− (k · s0) s0
and the initial “flat” fiber field is found by

f̃0 = s0 × (kp/∥kp∥).

Finally, we can define the fiber direction f0 by rotating f̃0 with respect to the s0 axis

f0 = Rs0
(θ)f̃0. (6.2)

We have introduced the rotation matrix Rs0
(θ) assuming a one-to-one correspondence between the rotation

angle θ and the pseudo-distance ϕ
θ = (θepi − θendo)ϕ+ θendo, (6.3)

where θendo and θepi are the endocardial and epicardial angle of rotation in the sense of Streeter. The
rotation matrix is computed using Rodrigues’ rotation formula

Rs0
(θ) = I+ sin(θ) [s0]× + 2 sin2(θ/2) [s0 ⊗ s0 − I] ,

where [s0]× is the cross-product matrix defined as

[s0]× =




0 −s0,z s0,y
s0,z 0 −s0,x
−s0,y s0,x 0


 .

The above procedure creates a rule-based fiber field that can be used on any geometry. An example of
the computed sheet and fiber fields is shown in Fig. 6.1 for a biventricular domain.
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Figure 6.1: Sheet and fiber field reconstruction on a biventricular geometry. First row, from left to right: Solution of problem
(6.1), sheet field, projection of the LV centerline. Second row: views of the fiber field with and −45◦/+75◦ fiber angles – colors
represent the variation of the z-component.

6.2. Electrophysiology – numerical effects of front propagation velocity

Figure 6.2: Initial condition for the electrophysiological benchmark on the coarsest mesh with h1 = 0.5 mm.

A benchmark test for the approximation of the transversely isotropic monodomain model was proposed
in in [152]. This benchmark highlights the strong dependence of the accuracy of the conduction velocity on
the spatial discretization. The initial settings of the benchmark problem consider a slab of myocardial tissue
electrically excited in a corner, as shown in Fig. 6.2. The arrival times at which the tissue is electrically
activated is registered in the whole domain and the conduction velocity can therefore be measured. In the
benchmark, the slab of myocardial tissue has size 20 mm× 7 mm× 3 mm size and it is electrically stimulated
in a region with dimensions 1.5 mm× 1.5 mm× 1.5 mm. In [152], eleven different implementations were
tested to evaluate the activation times measured using different codes and spatial discretizations. For such
simulations, the authors used the monodomain model coupled with the Ten Tusscher ionic model [214].
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Three mesh sizes were used: h1 = 0.5 mm, h2 = 0.2 mm and h3 = 0.1 mm. While the conduction velocity
was found to converge in all implementations as the mesh size h was decreased, for h = h1, nine out of
eleven codes underestimated the conduction velocity by about 30%. Thanks to the results shown in [159],
it is simple to recognize the different numerical methods used by the finite element codes. As described in
Sect. 5.1, the methods used are: state variable interpolation (SVI); ionic current interpolation (ICI); lumped
ionic current interpolation (L-ICI) and operator splitting. Since first order operator splitting and L-ICI
methods can be shown to be equivalent, we will describe results only for the L-ICI method. In [159, 113],
the use of the ICI method was presented as a trade-off between computational cost and accuracy. In fact, at
already h = h1, this method seems to be able to reproduce conduction velocities better than L-ICI and SVI.
On the other hand, at coarser mesh sizes the method suffers the same shortcomings as the L-ICI method,
the presence of conduction failure. As our experience indicates, the choice of the method depends on the
solution strategy used for considering the appropriate spatial resolution. For example, as the following
convergence test demonstrates, on coarse meshes the SVI and ICI methods cannot give good approximations
of the conduction velocities, not even when using effective conductivity coefficients. Moreover, to prove that
the same results hold for other ionic models, we shall substitute the ionic model with the simplified minimal
model for human tissue [33].

In Fig. 6.4 we show the activation times using the different schemes presented in Sect. 5.1. As in
the original work [152], L-ICI underestimates conduction velocities for coarse meshes, while SVI and ICI
overestimate them. In Fig. 6.3 we show the evolution of the wavefronts in the different cases. In the L-ICI
case, for h = h1, the anisotropy is greatly increased as the wave front describes a slow plane wave in the
cross-fiber direction. Mesh refinement cures this numerical artifact. On the other hand, in the ICI and SVI
cases we experienced the opposite behavior, so that the anisotropy is largely reduced.

The anisotropic propagation of the electrical signal requires the use of anisotropic conductivity ten-
sors. As reported in several studies [35], the ratio in the conductivity coefficients is about 4:2:1 in the
fiber:sheet:normal directions, respectively. Ventricular activation is initiated effectively from a series of point
sources (Purkinje-muscle junctions in the sub-endocardium [225]) and will locally resemble an ellipsoidal
front with axes equal to the directions of anisotropy until it reaches the other point source wave fronts to
form the main propagation front (moving apex-to-base and endo-to-epi in direction of the fibers). Therefore,
in physiological conditions the activation pattern can travel in all possible directions, not simply the mean
fiber direction, and will experience varying velocities of propagation between the upper and lower bounds
given by the longitudinal and transversal conduction velocities. Even more importantly, the correct spatial
resolution must be used when studying pathological cases, such as myocardial infarction and subsequent scar-
ring. The conduction velocity in some regions may be a fraction of the physiological one [231], necessitating
further mesh refinement.

According to [169, 219], a spatial resolution of approximately 0.25 to 0.3 mm is appropriate for linear
finite element approximations of human ventricular electrophysiology under a monodomain description.
Although, such an estimate seems to be in accordance with the results shown in the benchmark test, a simple
convergence test shows that it is an optimistic estimate. In order to represent physiological conduction
velocities with an error smaller than 5% in the sheet and cross-fiber directions, the mesh size should be
decreased of at least an order of magnitude. In fact, in the benchmark problem, the domain has the largest
size in the fibers direction and, therefore, we are mainly focusing on the convergence of the conduction
velocity restricted to this direction. At h = h3, the approximation of the signal propagation in the direction
orthogonal to the fibers is still inaccurate. In Fig. 6.5 we show the spatial convergence of the conduction
velocity for L-ICI, ICI and SVI. The SVI and ICI methods converge to the true conduction velocity from
above while L-ICI converges from below. Moreover, we show in Fig. 6.5 that while the conduction velocity in
the fibers direction is well approximated at h = h3, in the transversal direction it’s not, since the conductivity
coefficient is smaller. We stopped the refinement process when the relative difference of conduction velocities
between two mesh sizes was under 5%. In the transverse direction this is achieved at h = 0.01 mm, while in
the fibers direction this condition was met at h = 0.05 mm.

Such spatial resolution, for a human ventricular geometry of about 150 cm3, is usually too expensive to
be used. If a uniform mesh is used, a simple calculation leads to the following estimates: for a mesh size
h = 0.25 mm, the ventricle is discretized using about 100K elements; for h = 0.1 mm, about 1M elements
are needed; for h = 0.05 mm, about 10M elements are needed; for h = 0.01 mm, about 1 billion elements
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h = 0.5mm

h = 0.1mm

L-ICI ICI SVI

Figure 6.3: Activation times using Lumped ICI, ICI and SVI for mesh sizes h1 = 0.5 mm and h1 = 0.1 mm.

are required.

In order to reduce the computational cost needed for such resolutions, the following strategies can be
used: 1) anisotropic meshes, 2) adaptive mesh refinements, 3) higher-order spatial discretizations, or 4)
modifying the effective conductivity coefficients to correct the conduction velocities to mesh size effects.
While anisotropic meshes are difficult to obtain for a complex organ as the heart, adaptive mesh refinement
has been successfully used by some authors [50, 62]. Although not really as robust as mesh adaptivity,
the modification of effective conductivity coefficients according to mesh size is usually the preferred choice
(however it is often not explicitly mentioned in the literature).

From the point of view of temporal discretization, the largest usable timestep is usually dictated by
stability conditions, as typical for a stiff system of equations. As noted in [237], the relative difference in
conduction velocity using ∆t = 0.02 ms and ∆t = 0.0001 ms is smaller than 5%.

The results of this convergence test give us several indications about the method to choose. The SVI
method is not suitable on coarse meshes, as it would greatly overestimate the conduction velocity. Moreover,
due to the increased computational cost, the method has limited practical use, even for sufficiently fine
meshes. On the other hand, artificially increasing the conductivity coefficient in the L-ICI method could
easily solve the problem of slow conduction velocities for coarse meshes. The ICI method instead is a
combination of the SVI and L-ICI methods: although it generally overestimates the conduction velocities,
for sufficiently large mesh sizes the conduction velocity goes to zero. Practically, the ICI method add some
numerical diffusion to the L-ICI method. Since this contribution is due to a consistent mass matrix on the
right hand side of the equation, it cannot capture the underlying anisotropy.

In conclusion, only for the L-ICI method (or operator splitting methods) we can conveniently modify the
conductivity coefficients, capturing in this way a more accurate approximation of the conductivity velocities.
We show in Fig. 6.6 the values of the effective conductivity coefficients corresponding to the physical
coefficients σ0

f = 1.3342 mS/cm and σ0
s = 0.17606 mS/cm.
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Figure 6.4: Activation times along the diagonal of the slab using the different methods at fixed mesh size of h2 = 0.5mm (left)
and h3 = 0.1mm (right plot).

Figure 6.5: Comparison of the convergence test in the simplified 1D-like domain with different ionic current interpolations.
Mesh refinement were stopped when the difference between the predicted conduction velocities differ less than 5%.

6.3. Cardiac mechanics - Recovery of the natural configuration

The constitutive law (3.8) describes the stress-strain relationship from the natural configuration to the
deformed one. In actual applications, on the other hand, the stress free configuration is usually unknown and
the computational domains derived fromMRI data or other imaging techniques cannot predict experimentally
observed and in-vivo deformations. It is therefore important to determine the natural configuration of the
tissue in order to use the definition (3.8) and to numerically compute physiological deformations. This
procedure can be carried out with several techniques such as the so-called inverse design (ID) analysis [192, 39]
or the modified updated Lagrangian formulation (MULF) [129]. A discussion on the two approaches can
be found in [130]. It is clear that, to find out the natural configuration, the stresses acting on the material
must be known. Generally, in cardiac mechanics, prestresses are not usually known, and under normal
physiological conditions one can try to guess the preload pressure which may range between 4-20 mmHg
[69].

Here, we develop an iterative scheme alternative to ID and MULF. Although the simple method shown
here has been developed independently, we have found that the same approach was already used in [157],
without any considerations, however, on the convergence of the algorithm.

Consider the deformed domain ΩS . Then the deformation map ϕS from the natural reference configura-
tion and the prestressed configuration is given by

xt = ϕ
(
x0
)
= x0 + dS

(
x0
)
, (6.4)
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Figure 6.6: Effective conductivity coefficients in order to keep conduction velocity constant in the L-ICI method.

where the displacement field ds

(
x0
)
is the solution of the elastostatic problem





−∇ · σS = 0, in ΩS ,

σSnS = ℓ, on ΓN ,

dS = 0, on ΓD,

σSnS + αdS = 0, on ΓR,

(6.5)

with ∂ΩS = ΓD ∪ ΓN ∪ ΓR, and ΓD, ΓN and ΓR mutually disjoint. We have assumed the presence of
possible homogeneous Robin boundary conditions and homogeneous Dirichlet boundary conditions. The
boundary load ℓ represents the preload acting on the material.

We identify the stress free domain ΩR and the prestressed domain ΩS with the coordinates of their
material points x0 and x, respectively. To evaluate x0 it is possible to directly use (6.4), such that

x0 = g
(
x0
)
= xt − dS

(
x0
)
. (6.6)

In (6.6), we stress the fact that x0 is a fixed point of the map g. Assuming the existence of at least one
displacement field dS solution of (6.5), the fixed point iteration scheme x0

k+1 = g
(
x0
k

)
is convergent if

∥∥∇g
(
x0
)∥∥

∞
< 1. (6.7)

Since the known deformed configuration is a data of the problem, it is straightforward to show that condition
(6.7) holds if ∥∥∇

(
xt − dS

)∥∥
∞

= ∥∇dS∥∞ < 1. (6.8)

The convergence of the fixed point scheme (6.6) depends on the amount of deformations the material has
undergone. Although inequality (6.8) is a restriction on deformations, we note that it covers large deforma-
tions. By definition, condition (6.8) holds in the linear elasticity regime (where one assumes ∥∇dS∥∞ ≪ 1).
Moreover, (6.8) is valid for stretches and shears up to 100%. In physiological conditions, cardiac fiber stretch
less than 30% during end diastole and wall thickening is typically smaller than 50% during systole.

Since the nonlinearity of the constitutive material law, solution of (6.5) must be carried out with
incremental preload steps. Therefore we propose the following algorithm: given a tolerance ε, a preload ℓ

with a ramp sequence {ℓm}Mm=0, with ℓm+1 > ℓm and ℓM = ℓ, and initial condition x0 = xt, that is d0
S = 0

for all m

1. set the initial guess d0
S,m = dS,m−1.

2. While
∥∥xt − x0,k+1

m

∥∥ < ε
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Prestress: compressive dead load in the fiber direction

Prestress: compressive dead load in the sheet direction

Prestress: compressive dead load in the cross-fiber direction

Figure 6.7: Natural configurations corresponding to compressive dead loads of 2, 4, 6 mmHg (left to right) in the fiber (top),
sheet (center), cross-fiber (bottom) directions. The shadowed cubic domain is the prestressed configuration. Note that during
compression the anisotropic contribution is switched off: a compressive load in the fiber direction tests the stiffness of the sheets;
a compressive load in the sheet direction tests the stiffness of the fibers; a compressive load in the cross-fiber direction tests the
stiffness of both fibers and sheets;

(a) find the solution dk+1
S,m from

∇ · σS

(
uk+1
S,m

)
= 0, in Ωm,k,

σSnS = ℓm, on ΓN,m,

uk+1
m = 0, on ΓD,m,

σSnS + αdk+1
S,m = 0, on ΓR,m,
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with a Newton-Krylov iterative scheme;
(b) update the computational domain to find Ωm,k+1 by setting

x0,k+1
m = xt − dk+1

S,m.

We test the above algorithm on three dimensional traction cases starting from the deformed cubic domain
ΩS = (0, 1)3, as shown in Fig. 6.7. We consider loads of magnitude 2, 4 and 8 mmHg applied in the fiber,
sheet and cross fiber direction, respectively. In all cases, condition (6.8) was always strictly satisfied, as it
can be seen in Fig. 6.7.

6.4. Electromechanics - a simple benchmark test

In this section we apply the electrophysiology benchmark from Sect. 6.2 to the orthotropic electromechan-
ical model. In order to better identify the deformations in the orthogonal direction, we increase the domain
size to consider a slab of 20× 16× 12mm3. In particular we aim at evaluating the effects of considering the
term JF−1DmF−T in the diffusion operator, on the electrical activation times. If JF−1DmF−T = D0

m, that
is Dm is the push forward from the reference to the deformed configuration of D0

m, then this term has no
influence on the electromechanical system. On the other hand, if we consider JF−1DmF−T = JF−1D0

mF−T ,
then a one way electromechanical coupling may give different results than those from a two way coupling.
Since the behavior of the traveling pulses under deformation is still controversial [210], we focus our atten-
tion on the possible acceleration of the wave during mechanical deformations, which is clearly driven by the
evolution of the mechanical activation. A sharp and sudden contraction would greatly influence conduction
velocities. In our model, the tissue reaches maximum mechanical activation after 160-200 ms from electrical
excitation. Since the considered slab is fully electrically excited in less than 40 ms, the active deformations
are still small and therefore F = FEFA ≈ FE . This implies that under normal conditions conduction veloc-
ities are almost constant, and mainly depend on passive deformations. We recall that we are neglecting the
action of stretch activated currents. Snapshots of the electromechanical benchmark on a 3M elements mesh
are shown in Fig. 6.8.

In cardiac electromechanics it is usual to consider one spatial discretization for the electrophysiology and
a different one for the mechanics because the mechanical system, which is solved quasi-statically, undergoes
less mesh size restrictions than those typically associated with computational electrophysiology. In the left
column of Fig. 6.9 we show the evolution of the active strain when the same mesh is used for all fields. On the
center and right columns, different meshes have been used for the mechanics and for the electrophysiology
problems. Since the evolution equation of the active strain directly depends on the calcium-like variable
in the minimal model which is moderately stiff, we solve at each timestep the evolution equation on the
electrophysiology mesh to avoid the mesh transfer operations at each time step. On the other hand we
employ a recently developed RBF interpolation method [60] that allows increased accuracy as well as good
parallel performances. Using different meshes, the active strain is computed on the fine electrophysiological
mesh and then transferred to the coarse mechanical mesh. Additionally, the displacement field computed
in the coarse mesh must be transferred to the fine mesh to be coupled with the monodomain and to the
active strain equations. The evolution of the active strain depends on a nonlinear function of the fiber
stretch, namely the force-length relationship, which therefore depends on the gradient of the displacement.
When the gradient is computed after interpolation, it leads to instabilities, as displayed in Fig. 6.9. In
particular, we show in the center and right columns the computed active strain in the fine and coarse
meshes, respectively. Notably, even in presence of these instabilities, the overall deformations do not greatly
differ when using different meshes from the ones computed on the same mesh. In particular, denoting with ds

the displacement solution of the electromechanical system using the same mesh and with dd the displacement
solution obtained with different meshes we found that the norm of the difference of the two solutions satisfies
∥us − ud∥L2(Ω) < 10−5 at every timestep.

6.5. Electromechanics - idealized ventricular contraction

During a cardiac cycle four ventricular phases are recognized: 1) Isovolumetric ventricular contraction;
2) Ventricular ejection; 3) Isovolumetric ventricular relaxation; and 4) Ventricular filling.
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Figure 6.8: Snapshots of the electromechanical benchmark from different views: transmembrane potential over deformed con-
figurations. Top two rows) fiber direction view (fibers vertical/sheets horizontal); Middle rows) sheet direction view (sheets
vertical/cross-fiber horizontal). Bottom rows) isometric view: the fiber direction corresponds to the direction of faster propaga-
tion of the transmembrane potential. The largest contraction takes place in the cross-fiber direction, while the block expands
in the sheet direction.
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Figure 6.9: Snapshots of the active strain in the electromechanical benchmark at time 80 ms, using different meshes. Left panel:
activation field γf using the same mesh for all fields; center: activation field γf computed on the electrophysiology mesh with
displacement evaluated on a coarser mesh; right plot: activation field γf evaluated with RBF on the coarse mechanical mesh.

In the first phase the ventricle starts contracting while both the mitral and aortic valves stay closed,
hence the volume of blood contained in the ventricle in this phase is constant. When the ventricular pressure
becomes higher than the aortic pressure, the aortic valve opens and the second phase starts. The volume
decreases until the pressure decreases below the aortic valve pressure. At this point the aortic valve closes
again and the muscle starts to relax. Again, in the third phase, both valves are closed, and muscle relaxation
takes place at constant ventricular blood volume. When ventricular pressure decreases below atrial pressure
the mitral valve opens and the blood starts filling the ventricle increasing the ventricular pressure. This
fourth phase ends when the ventricular pressure becomes once again higher than atrial pressure so that the
mitral valve closes and the cycle starts again.

To introduce the above relations in the ventricular simulations we follow the algorithm proposed in [221]
and successfully applied in [69]. The endocardial boundary conditions are always set such that

σnS = −pnS , on Γendo,

where p is the ventricular pressure. Note that the pressure is imposed in the actual configuration, introducing
in this way a nonlinear boundary condition. We can pull back to the reference configuration the above
condition to obtain

Pn0
S = −pJF−Tn0

S , on Γ0,endo, (6.9)

where n0
S is the the normal on the reference configuration and P is defined as in (5.5). This condition can

be further simplified using the approximation

Pn0
S = −pn0

S , on Γ0,endo. (6.10)

The error introduced using (6.10) instead of (6.9) is usually smaller than the modelling errors present in the
system. For this reason, in the following we restrict ourselves to (6.10). In any case, (6.9) does not pose any
particular difficulty and the algorithm discussed below can be coupled with such boundary condition in the
same way.

The value of p at each timestep is unknown and the algorithm below will be used in order to find its
approximation.

Consider a given value pp of the preload pressure and fixed value pa of the aortic pressure. Before applying
the electrical stimulus, we preload the ventricle using an incremental step method until the actual pressure
p attains the value pp and the ventricular volume V reaches Vp. Then we apply the electrical stimulus on
the full endocardium to initiate ventricular contraction.

During isovolumetric contraction, the ventricular volume remains constant while pressure increases. In
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Figure 6.10: Snapshots of the configurations taken during idealized ventricular contraction with pressure-volume relation on
the endocardial surface. From 0 ms to 60 ms isovolumetric contraction; from 80 ms to 200 ms ejection phase; from 220 to 260
ms isovolumetric relaxation; from 280 ms to 300 ms ventricular filling. For visualization we shifted the deformed configuration
such that the apex is fixed.

practice, we will relax this constraint assuming the condition

|V − Vp|
Vp

≤ ε, (6.11)

to be a reasonably good approximation of volume conservation. Still, when mechanical contraction starts
ventricular volume decreases and we therefore need to relate ventricular pressure with ventricular volume.
Let the superscript k identify the temporal level. At fixed k, pk0 = pk−1, with p00 = pp, and we consider a
fixed point scheme, as proposed in [221, 69] from time-varying elastance models. We solve for every n the
quasi-static nonlinear elastic problem

∇ ·P (dn
S) = 0, in Ω0,

P(dn
S)n

0
S = −pknn0

S , on Γ0,endo,

dn
S · n0

S = 0, on Γ0,base,

P(dn
S)n

0
S + αdn

S = 0, on Γ0,epi,

and
pkn+1 = pkn − ς (Vn − Vp) , (6.12)

where ς > 0 is a penalization parameter; until condition (6.11) is satisfied and we set pk = pkn, from which
Vn is computed. The fixed point scheme (6.12) is convergent if

∣∣∣∣1− ς
∂V

∂p

∣∣∣∣ < 1,

which leads to the conditions
∂V

∂p
> 0 and ς < 2/

∂V

∂p
. Since

∂V

∂p
is classically defined as the ventricular

compliance Cv, which is always positive [155], we find that ς < 2/Cv. Moreover the value of ς is also
constrained by the Newton’s scheme used to solve the nonlinear elasticity problem. In fact, if from (6.12)
we obtain a new approximation for the endocardial load much bigger than the one at the previous iteration,
we may need an additional incremental step method in order to ensure convergence. From [221], we set the
left ventricular compliance to 11 ml kPa−1, from which we find ς < 0.18 kPa ml−1. This estimate for the
penalty parameter is far too large and therefore we replace it with ς ≈ 2/ (3Cv) ≈ 0.06.

To evaluate (6.12) we also need to compute the inner volume of the ventricle, which is outside the
computational domain. To this end, we note that,

V =

∫

Ωendo

dV =

∫

Ωendo

∇ · [(X · e1) e1] dV =

∫

Γendo

(X · e1) (e1 · nS) dA, (6.13)

45



Multiscale and multiphysics models for the cardiac function Quarteroni et al.

0 50 100 150 200
0

20

40

60

80

100

120

Volume [cm
3
]

P
re

s
s
u
re

 [
m

m
H

g
]

 

 

5 mmHg

10 mmHg

15 mmHg

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
60

80

100

120

140

160

180

200

γ
f

V
o
lu

m
e
 [
c
m

3
]

 

 

5 mmHg

10 mmHg

15 mmHg

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

Time [ms]

P
re

s
s
u
re

 [
m

m
H

g
]

 

 

5 mmHg

10 mmHg

15 mmHg

0 50 100 150 200 250 300 350 400
60

80

100

120

140

160

180

200

Time [ms]

V
o

lu
m

e
 [

c
m

3
]

 

 

5 mmHg

10 mmHg

15 mmHg

Figure 6.11: Ventricular cycle on the idealized LV for three preload values: 5 mm Hg, 10 mm Hg and 15 mm Hg, corresponding
to about 51%, 55% and 58% of ejection fraction, respectively. Pressure-volume loops (top left), volume-activation loops (top
right) and time evolution of the ventricular pressure (bottom left) and volume (bottom right).

where we assumed Ωendo to be constrained by a flat lid at the base such that e1 ·nS = 0, with e1 = (1, 0, 0).
Pulling back to the reference configuration we obtain

V =

∫

Γ0,endo

Jx1 · F−TnS dA, (6.14)

with x1 = (X · e1) e1. Formula (6.14) provides a direct and easy to implement method to evaluate the
volume of the LV.

When pkn ≥ pa, the aortic valve opens and the volume is allowed to decrease. To model ejection we use
a simple two element windkessel model [104, 69] such that

Cṗ = −V̇ − p

R
.

Amore detailed description of the overall blood circulation can be obtained taking into account more elements
as in [188, 233, 106].

When the muscle starts to relax, ventricular volume starts to increase. Therefore, when V̇ > 0, we
start the isovolumetric relaxation phase. To keep the volume constant we use the same scheme used for
the isovolumetric contraction phase (6.12) until the pressure reaches the preload value p = pp. We do not
take into account the ventricular filling and we just let the volume recover its preloaded initial value Vp
while keeping constant pressure, that is p = pp. When a new electrical stimulus is applied to the ventricle

the volume starts to decrease, that is V̇ < 0, and we start the cycle again considering the isovolumetric
contraction phase. Since in this case the ventricular pressure is increased at each timestep, the Robin
boundary conditions on the epicardium are not sufficient to remove rigid motion. Since the coefficient α is
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HEALTHY

LBBB

Figure 6.12: Electrical activation times in the healthy case (top) and under LBBB (bottom). The isolines are plotted at 5 ms
of distance.

unknown and its tuning is difficult we preferred in this case to set to zero the normal displacement at the
base.

The pressure-volume loops with the above procedure are shown in Fig. 6.11 for three different preload
values. The ejection fraction obtained was about 51%, 55% and 58% for 5 mmHg, 10 mmHg and 15 mmHg
preload, respectively. As expected in normal conditions the end systolic volume is relatively insensitive to
the change in the preload. The initial increase in pressure is slower than expected, since blood volume
during isovolumetric contraction is not perfectly conserved. Some snapshots of the configurations assumed
by the ventricle during the phases of a cardiac cycle are shown in Fig. 6.10. A more detailed study on the
pressure-volume loops could be carried out to better assess the results of the present active strain model
under both physiological and pathological conditions.

6.6. Electromechanics - Left Bundle Branch Block

In this test case, we consider electromechanics simulation in a full biventricular model of the human
heart. Our objective is to show that the proposed models are applicable also in more realistic setting and
are able to reproduce some observed changes under cardiac conduction abnormalities.

A biventricular geometry segmented from CT scan data and a tetrahedral mesh consisting of 250k vertices
and 1M elements [183] was modified to handle elasticity boundary value problems. On the final mesh
consisting of 750k elements we employed the algorithm proposed in Sect. 6.1 to construct rule-based sheet
and fiber fields (see other techniques in e.g. [69, 70, 123]).
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HEALTHY LBBB

Figure 6.13: In the simulation here reported, the left and right ventricles have been preloaded with a pressure of 8 mm Hg and
15 mm Hg, respectively, for both normal conditions (left columns) and LBBB (right columns). Snapshots of cardiac contraction:
lateral views: evolution of the transmembrane potential over the deformed configuration and longitudinal shortening; top views;
displacement field with respect to the preloaded configuration and wall thickening.
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We consider both a healthy and a pathological case. In the first case, the initial electrical stimulus has
been applied in the apical region of the RV endocardium and in a central region of the LV endocardium.
For the pathological case, we consider left bundle branch block (LBBB) which is an irreversible conduction
defect that leads to delays in the electrical activation of the left ventricle [240]. LBBB is usually associated
with a deterioration of LV function and an overall reduction in global ejection fraction. Several types of
LBBB may exist and the mechanical effects may depend upon the site of block. Many computational studies
are arising to study LBBB and to optimize cardiac resynchronization therapy (CRT) [57, 171]. In simulating
LBBB, our interest is exclusively in understanding if the proposed mechanical activation model could also
be used to study pathological processes. We refer the interested reader to [240] for more information on
LBBB and CRT. For our purposes LBBB will be modeled by stimulating only the RV in the same way as in
the healthy case.

The electrical activation times in the two cases are shown in Fig. 6.12. While in the normal case the LV
is fully activated in less than 100 ms, under LBBB conditions the signal propagates slowly from the right
to the LV and the full electrical activation takes about 230 ms. For the elasticity problem, we set Robin
boundary conditions on the epicardium, σSnS + kdS = 0, with k = 3.75 mmHg cm−1, and constant preload
pressure conditions on the endocardium, σSnS = −pnS . In particular we preloaded with 15 mmHg the
LV and 8 mmHg the RV. This endocardial boundary conditions are not physiological, as discussed in the
previous test. On the other hand two main difficulties arise when considering the domain shown in Fig. 6.12:
the computation of the right ventricular volume, which has now two disconnected boundary regions which
are neither equally oriented nor part of the computational domain, and the distinction of the epicardial and
endocardial boundaries. Therefore, for our current purposes, we neglect pressure-volume relationships.

We show in Fig. 6.13 the result of the full electromechanical coupling on the human heart for the healthy
case (left) and for LBBB (right). Without change in the parameters, for both healthy and pathological
cases, the model was able to recover roughly 40% of wall thickening and 13% of longitudinal shortening in
the healthy case and uneven contraction pattern as well as a slightly reduced longitudinal shortening of 11%.
Even if a fine tuning of the parameters as well as precise information about the fiber and sheet fields would
be necessary to represent patient-specific cardiac cycles, this biventricular test case proves the potential of
the present model.

6.7. Fluid dynamics in the LV – modelling of valve insufficiency

In what follows we provide an example of a patient-specific fluid dynamics simulation in the LV for
a scenario of chronic mitral valve insufficiency that is modelled using the three different valve models of
Sect. 3.8: Model A, Model B, and Model C. The scope is to show how potential numerical instabilities due
to flow reversal and rapid local flow dynamics during valve opening/closure can be numerically avoided,
and to show that simple lumped parameter models can correctly describe phenomena such as mitral valve
regurgitation. The model used is that of Navier-Stokes equations in a moving domain – the motion of the
LV is recovered from 4-D (space and time) images and, for purposes of numerical regularisation, imposed
on a thin elastic solid surrounding the LV rather than directly on the fluid domain. This is therefore a
fluid-structure simulation. However, the structure deformation is known a priori and needs not be recovered
from solving (3.14) in the present setting.

Imaging data were obtained from a 65-year-old female patient who had a hibernating myocardium and
volume overload due to mitral regurgitation; the septal side of the LV was severely akinetic. Using a 1.5 T
whole-body Siemens Avantoa MRI scanner, equipped with a commercial cardiac coil, electrocardiogram-
gated breath-hold cine images of the LV were acquired in multiple short axes using steady state free procession
sequences (20 time frames/cardiac cycle, reconstruction matrix 256× 256 pixels, in plane resolution 1.719×
1.719 mm2, slice thickness 8 mm, gap 1.6 mm).

A model-based approach for constructing a computational LV geometry was used. The LV intracavitary
volume mesh was obtained by morphing an idealized tetrahedral mesh representing the general LV shape
by means of nonrigid deformations to fit the short-axis landmark points in the end-diastolic configuration.
To represent the LV we used a truncated ellipsoid with short extruded sections extending from both valves,
which were modelled as ellipsoidal surfaces. By an extrusion procedure a thin fictitious elastic structure
around the endocardium was generated for the purpose of imposing the motion of the LV. The mitral valve
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Figure 6.14: Fluid dynamics of the LV under mitral valve insufficiency. Comparison of vortex jets for Models A, B and C. Top
row: early diastolic velocity (t = 550 ms). Middle row: late diastolic velocity (t = 750 ms). Bottom row: early systolic velocity
(t = 800 ms). Color bar ranges between 0− 40 cm/s.
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Figure 6.15: Comparison of mitral valve characteristics for the valve Models A, B and C. The absence of mitral regurgitation
in Model A leads to an increase of 19% in the prediction of systolic pressure peak pressure. The difference between the simple
regurgitant valve (Model B) and the dynamic regurgitant valve (Model C) is negligible in terms of pressure and flow rate.

annulus was approximated by an ellipsoid with major axis 3.5 cm and minor axis 2.6 cm at peak systole,
whereas the aortic valve was approximated by a circle of diameter 1.8 cm.

The idealized LV was aligned and resized to match the position of the landmarks at end-diastolic con-
figuration of the anatomically correct LV reconstructed from MRI. After alignment and resizing, the ideal
LV geometry was nonrigidly deformed to fit the landmark points. This deformed configuration was then
taken as the initial end-diastolic configuration. After the nonrigid deformation was applied to obtain the
end-diastolic configuration that matched the position of the landmarks at the end-diastolic instant, the mo-
tion of the landmark points was extrapolated and used to drive the motion of the thin elastic structure of
the LV in space and time to perform finite element simulations of the ventricular haemodynamics.

For mitral preload we imposed a constant pulmonary pressure of ppv = 10 mmHg. For the ventricular
afterload we used the standard three-element windkessel model (3.28). The venous pressure pve was fixed at
5 mmHg. Valve Model A was used for the aortic valve in all three cases.

The LV FSI simulation was initialized at rest with zero velocity and pressure and driven for a few heart-
beats at 75 bpm until pressure conditions stabilized into periodicity. The pulmonary pressure was ramped to
10 mmHg in the course of the first 100 ms of the simulation to provide an impulse-free initialization, then kept
constant for the rest of the run. No further initializations or regularizations needed to be performed. A fixed
time step of 1 ms was used for the solution of the FSI problem with second-order backward differentiation
formula in time. The finite element problem was discretized using 124 942 tetrahedral elements in the fluid
domain and piecewise linear basis functions for both velocity and pressure approximation. Well-posedness
of the problem was guaranteed by convective and pressure stabilization performed with the interior penalty
method, see [34]. The peak Reynolds number inside the LV during the diastolic phase was around 2 000,
indicating transitional but not fully turbulent flow, and therefore no turbulence modelling was set up.

The velocity field and the diastolic jet for each of the three different valve models A, B and C is presented
in Fig. 6.14 for three different time instances: early diastole, late diastole and early systole. In all three cases
the diastolic jet is strongly driven towards the lateral wall and generates a large vortex near the aortic root
that expands to fill the entire LV during the late diastolic A-wave. These features are independent of the
inflow boundary condition applied (flow rate in Model A and pressure in Models B and C) and the opening
dynamics of the mitral valve (MV). All three models exhibited vortical flow at the mitral inlet during early
systole, but the numerical simulation remained stable and convergent throughout, indicating a successful
stabilization of the inlet boundary condition during flow reversal. Failure to constrain the tangential velocity
component according to (3.21) led to divergent solutions after a few heartbeats during either the opening or
closing of the valve.

The mitral valve opening ratio, LV pressure and LV volume in time for the three different valve Models
A, B and C are presented in Fig. 6.15. Model A stands apart from the other two due to the absence of
mitral regurgitation, leading to larger systolic pressure and delayed opening of the MV by about 10 ms. The
MV inflow is strongly bimodal and the A-wave is considerably stronger than the E-wave, which is consistent
with clinical findings of chronic or compensated mitral regurgitation when the left atrium has to compensate
for the diminished filling of the LV. Again, very little quantitative difference between Models B and C can
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Table 6.1: Global indicators of mitral regurgitation as predicted by the different models

Model Regurgitant Regurgitant Ejection Peak viscous
volume [ml] fraction [%] fraction [%] dissipation [mW]

A 0.00 0.0% 28.9% 5.46 (s) / 0.666 (d)
B 8.02 19.7% 29.0% 4.21 (s) / 0.657 (d)
C 8.73 21.5% 28.9% 4.21 (s) / 0.659 (d)

be observed in terms of pressure and flow rate. This can be explained by the fact that the inflow/outflow
volumetric flow rates are largely constrained by the imposed motion of fictitious elastic structure that follows
from the 4-D reconstruction. During valve closure each of the three models experienced severe local pressure
oscillation.

Table 6.1 shows the regurgitant volume and its fraction of the total systolic outflow, the ejection fraction
and the viscous dissipation. The predicted regurgitant volume is 9% higher in Model C, mainly due to the
slower closure of the mitral valve. Peak viscous dissipation (PVD) is a quantity that can be used to measure
the flow disturbance inside the LV. On the other hand, PVD during systole was slightly higher in Model A
without regurgitation, but almost identical across all three models during diastole. The prediction of viscous
dissipation depends on whether or not regurgitation is considered, but not on the specific opening/closing
dynamics of the leaflets.

7. Discussion

In this article we have introduced some of the most basic components of what can be regarded as a
mathematical model for the numerical simulation of heart functionality.

After a short description of the quantitative aspects of heart physiology we have first discussed the stand-
alone mathematical models that are apt to represent the cardiac subsystems: the propagation of the electric
potential, the ionic current models for the action potential, the active contraction of individual cells for the
generation of microscopic forces in the sarcomeres, the model that describes the passive mechanical response
of the cardiac tissue, the fluid-structure interaction in the LV, and the mitral and aortic valve dynamics.

Integrating all these models together is essential to correctly describe the entire heart functionality.
From a mathematical standpoint, the integration requires the set-up of suitable coupling conditions that can
regulate the mechano-electrical feedback, the excitation-contraction process, the ventricular afterload, and
the coupling with the systemic circulation.

The global coupled system is tremendously challenging to be analyzed mathematically and solved nu-
merically. After recalling the most noticeable contributions to the mathematical analysis of the model
components, we have proposed several instances of approximation methods and discussed their properties of
stability and accuracy. In order to take advantage of the distinguishing features of each subcomponent, we
have addressed a possible strategy to design block preconditioners.

Finally, we have spanned a broad range of numerical simulations with the aim of verifying the numerical
properties of the proposed algorithms and validating the suitability of our models to address situations of
clinical relevance, both for physiological and pathological regimes.

We can readily identify several limitations of the models reviewed here, mainly in terms of physiological
relevance. However our primary intention was to introduce a prototype framework that could be progressively
refined when required by a particular application. In this regard we first list some of the straightforward
extensions to the model compartments we have been already studied in previous contributions [153, 182,
185]. Some specific aspects of modelling cardiac function that have not been covered include the fast
conduction system (Purkinje network [226] and Purkinje-muscle junctions), cardiac perfusion [42] and its
coupling with coronary flow [58, 137], autoregulation aspects of heart rate [108], myocardial tissue damage
and remodelling [81], the modelling of the atria [43, 56, 215], the heart-torso coupling that is needed for the
simulation of an ECG [30, 47, 65], fluid dynamics in idealized ventricles [77, 211, 212], and many others.

The current and future directions in computational modelling of total heart function are focused along
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several parallel tracks. Several groups around the world [111, 179, 206, 223] are using massively parallel
computing and especially graphics processing units to speed up the computations in realistic heart geometries
using highly-detailed physiological electrophysiology models, with the ultimate goal of providing near real-
time simulations. At the same time, high-order spatial approximations are actively studied [8, 9, 228] as
an alternative to the low-order finite-element discretizations that lead to problem sizes in the hundreds of
millions, and naturally provide a unified spatial approximation framework for electromechanics simulations.

If the challenge of computational complexity can be addressed, this would open new opportunities in the
personalization of models to answer clinical questions. Current ways of performing personalization include
estimation of fiber directions from imaging modalities such as diffusion MRI [146], as well as data assimilation
of cardiac motion from imaging into electromechanics simulations through unscented Kalman filters [132,
196]. Meanwhile, in the cardiac fluid dynamics community more and more advanced patient-specific valve
models incorporating fluid-structure interaction are being developed [1, 64, 45, 71, 117, 143, 229], and may
in the future be incorporated into full-heart computational models to study the joint effect of valve function
and cardiac mechanics.
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[77] D. Forti and L. Dedè, Semi-implicit BDF time discretization of the Navier-Stokes equations with VMS-LES modelling
in a high performance computing framework, Comput. Fluids (2015), 117:168–182.

[78] T. Fritz, C. Wieners, G. Seemann, H. Steen, and O. Dössel, Simulation of the contraction of the ventricles in a
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