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Abstract. We analyze a model of electric signalling in biological tissues and
prove that this model admits a travelling wave solution. Our result is based
on a new technique for computing rigorous bounds on the stable and unsta-
ble manifolds at an equilibrium point of a dynamical system depending on a
parameter.

1. Modeling, motivations and main result

The mathematical modelling of electric signalling in biological tissues, and in
the cardiac muscle in particular, is a longstanding problem that has attracted a
number of e�orts. The mathematical structure of a typical model consists of one
reaction�di�usion equation, linear in the di�usion and nonlinear in the reaction
term, coupled with a one or more ordinary di�erential equations (and in some cases
many) [9]. The classical model that incorporates this basic mathematical structure,
while introducing the minimum amount of algebraic complications is given by the
Fitzhugh�Nagumo equations:

∂v

∂t
−∇ · (D∇v) = −Av(v − α)(v − 1) − Aw ,(1.1)

∂w

∂t
= v −

w

τ
,(1.2)

where v(X, t) is the action potential and w(X, t) is the gate variable. In general D
is a symmetric positive de�nite tensor and A ≃ ||D|| ≫ 1, where ‖ · ‖ denotes some
suitable norm.

Recent papers [7,11] have pointed out the role of the contractility of the substra-
tum in real physiological conditions, where the electrical potential actually modu-
lates the contraction of the muscle �bers and consequently the strain of the material.
Equations (1.1,1.2) are therefore to be rewritten in moving coordinates, where the
strain of the domain is driven by the action potential itself. It is convenient to
rewrite the equations in material coordinates, using a mapping between current
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positions and reference ones. Adopting the standard terminology of continuum me-
chanics, we denote by x = x(X, t) the position at time t of the material point that
was at time t = 0 at X. The gradient of deformation is therefore F = ∂x

∂X
and the

eqs. (1.1) and (1.2) rewritten on a contractile substratum in material coordinates
read [7, 11],

∂

∂t
(Jv) − Div

(

JF
−1

DF
−T Grad v

)

= −AJv(v − α)(v − 1) − AJw,(1.3)

∂

∂t
(Jw) = Jv −

Jw

τ
,(1.4)

where J = det(F) and the symbols Div and Grad denote operators with respect
to X.
Our goal in this paper is a rigorous, computer assisted, analysis of the one dimen-
sional counterpart of eqs. (1.3) and (1.4)

∂

∂t
(Jv) −

∂

∂X
D

(

J−1 ∂v

∂X

)

= −AJv(v − α)(v − 1) − AJw,(1.5)

∂

∂t
(Jw) = Jv −

Jw

τ
,(1.6)

where the (scalar) di�usion coe�cient D is taken constant and, simply, J = ∂x/∂X.
To close the problem, we need to introduce a relation between the contraction of
the substrate and the action potential. While this relation in real biological tissues
is quite complicated, we choose the simple linear relation

(1.7)
∂x

∂X
= 1 − βv,

where β ∈ (0, 1) is a constant. The end result is [2]

∂

∂t
((1 − βv)v) − D

∂

∂X

(

1

1 − βv

∂v

∂X

)

= −(1 − βv)v(v − α)(v − 1) − (1 − βv)w,

(1.8)

∂

∂t
((1 − βv)w) = (1 − βv)

(

v −
w

τ

)

.(1.9)

where we have directly taken A = D = ε−1.

In [2] it was found that eqs. (1.8) and (1.9), admit travelling pulse solutions
that travel faster than in the rigid case. Our aim here is to give a proof for the
existence of such a solution. To be more speci�c, we are interested in solutions
of eqs. (1.8) and (1.9) of travelling wave type and �nite energy, that is solutions
v(t, X) = V (X − ct), w(t, X) = W (X − ct), where V and W are homoclinic to 0.
The system becomes

(1.10)











V ′′

1−βV = −εc(1 − 2βV )V ′ − β(V ′)2

(1−βV )2

+(1 − βV )V (V − α)(V − 1) + (1 − βV )W

W ′ = W
cτ − V

c − β
c V 2 ,

Theorem 1. Let α = 0.1, β = 0.3, ε = 0.01, τ = 0.2. There exists c ∈ [c0−δ, c0+δ],
with c0 = 719578791

12160570 ≈ 59 and δ = 2−43, such that the system (1.10) admits a solution
homoclinic to 0.



HOMOCLINIC SOLUTION 3

The proof of Theorem 1 is divided into several parts. In Section 2 we describe
a general method to compute bounds on the invariant manifolds of nonlinear dy-
namical systems. This method is then applied to the system (1.10) as described
in Section 3. It reduces the problem to a number of speci�c estimates that can
be carried out with the aid of a computer. These estimates are described in the
�rst part of Section 4. In the second part we discuss some of the details of our
computer-assisted proof.

2. A parametrization for the invariant manifolds

Consider the nonlinear dynamical system in R
N

(2.1) y′ = Ay + B(y) ,

for a curve y : R → D, where D is some open domain in R
N containing the origin,

A is an invertible linear map on R
N , B : D∗ → C

N (where D∗ is some open
domain in C

N that includes the closure of D) is analytic, B(x) ∈ R
N if x ∈ D

and B(y) = O(|y|2). By de�nition, the unstable manifold at 0 is the set of all
initial conditions y(0) such that limt→−∞ y(t) = 0. In the following, with no loss
of generality, we will only consider the unstable manifold, since the stable manifold
of (2.1) is the unstable manifold of ẏ = −(Ay + B(y)). It is well known that,
under these assumptions, the unstable manifold is tangent in 0 to the eigenspace
of A corresponding to eigenvalues with positive real part. We are interested in
computing a parametrization of the local unstable manifold in a neighborhood of
the origin, with rigorous bounds on the error. This problem was addressed in [8],
where an explicit algorithm was introduced in the case where the matrix A only has
real eigenvalues. Here we extend the approach to the generic case when A can have
complex conjugate eigenvalues, and we also provide a method for carrying out the
computation and controlling the errors. There are many other ways of constructing
invariant manifolds; see e.g. [4�6]. The advantage of the method presented here
is that it is simple and can easily be implemented on a computer, see also [12].
The following theorem addresses the problem of computing the unstable manifold
tangent to a simple real eigenvector.

Theorem 2. If A admits a real, simple, strictly positive eigenvalue λ with corre-
sponding eigenvector v and z : (−1, 1) → R

N satis�es

(2.2) λsz′(s) = Az(s) + B(sv + z(s))

and

(2.3) y(t) = eλtv + z(eλt)

satis�es y(t) ∈ D for all t < 0, then y(t) is a solution of (2.1) for t < 0 and
y(t) = eλtv + O(e2λt) as t → −∞.

Proof. Consider the change of variable

(2.4) s = eλt ,

and write y(t) = ỹ(s) = z(s) + sv. If z satis�es (2.2), then

λs (v + z′(s)) = sλv + Az(s) + B(sv + z(s)) ,

and

(2.5) λsỹ′(s) = Aỹ(s) + B(ỹ(s)) .
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Since y′(t) = λeλtỹ(eλt) = λsỹ′(s), then y(t) = ỹ(eλt) sati�es (2.1). Furthermore,
y(t) = eλtv + O(e2λt) as t → −∞. �

Next, we extend the method to the unstable manifold corresponding to a pair of
complex conjugate eigenvalues. Assume that v and v̄ are eigenvectors of A, with
eigenvalues λ and λ̄ and Imλ 6= 0. If Reλ > 0, then equation (2.1) admits an
unstable manifold at 0 tangent to the span of (Rev, Imv). In order to compute an
explicit expression for such a manifold we use the following theorem:

Theorem 3. Let B1(0) be the unit disk in C centered at 0, assume that

Z : [B1(0)]2 → C
N

satis�es

(2.6) λs1Z1(s1, s2) + λ̄s2Z2(s1, s2) = AZ(s1, s2) + B
(

s1v + s2v̄ + Z(s1, s2)
)

,

where Zk = ∂Z
∂sk

. Then, for all (r1, r2) ∈ [B1(0)]2 and all t ≤ 0 the function

(2.7) y(t) = r1e
λtv + r2e

λ̄tv̄ + Z
(

r1e
λt, r2e

λ̄t
)

is a solution of equation (2.1). If additionally r2 = r̄1, then y(t) ∈ R
N for all t ≤ 0.

Proof. Di�erentiating (2.7) with respect to t we have

y′(t) = r1λeλtv + r2λ̄eλ̄tv̄ + Z1

(

r1e
λt, r2e

λ̄t
)

r1λeλt + Z2

(

r1e
λt, r2e

λ̄t
)

r2λ̄eλ̄t .

We also have

Ay(t) = r1λeλtv + λ̄r2e
λ̄tv̄ + AZ

(

r1e
λt, r2e

λ̄t
)

,

so y(t) is a solution of (2.1) if and only if

Z1

(

r1e
λt, r2e

λ̄t
)

r1λeλt + Z2

(

r1e
λt, r2e

λ̄t
)

r2λ̄eλ̄t =

AZ
(

r1e
λt, r2e

λ̄t
)

+ B
(

r1e
λtv + r2e

λ̄tv̄ + Z
(

r1e
λt, r2e

λ̄t
))

,
(2.8)

which follows from equation (2.6) by choosing s1 = r1e
λt and s2 = r2e

λ̄t. Now set
W (s1, s2) = Z(s2, s1). A direct computation shows that W satis�es

(2.9) λs1W2(s2, s1) + λ̄s2W1(s2, s1) = AW (s2, s1) + B
(

s1v̄ + s2v + W (s2, s1)
)

;

if we take the complex conjugate of (2.9) and set t1 = s̄2 and t2 = s̄1 we get

(2.10) λt1W̄1(t̄1, t̄2) + λ̄t2W̄2(t̄1, t̄2) = AW̄ (t̄1, t̄2) + B̄
(

t̄2v̄ + t̄1v + W (t̄1, t̄2)
)

.

Recalling that B is an analytic function that takes real values for real arguments,
we have

B̄
(

t̄2v̄ + t̄1v + W (t̄1, t̄2)
)

= B
(

t2v + t1v̄ + W̄ (t̄1, t̄2)
)

,

therefore W̄ (t̄1, t̄2) satis�es equation (2.6). Then W̄ (t̄1, t̄2) = Z(t1, t2) = Z̄(t̄2, t̄1),
so Z(s, s̄) = Z̄(s, s̄) and y(t) takes real values when r2 = r̄1. �

It is straightforward to extend Theorem 3 to the case of a manifold of higher
dimension, corresponding to real or complex conjugate eigenvalues.
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3. Analytic framework

We represent the functions z and Z that are needed for Theorems 2 and 3 as
power series. Using the equations (2.2) and (2.6), it is straightforward to determine
the coe�cients of z and Z recursively. Combining the result with an estimate on the
radius of convergence yields the desired parametrization of the invariant manifolds.
However, an exact computation of all these coe�cients is impossible, except in
some very special cases. Besides, the equations involve parameters (eigenvalues
and eigenvectors) that may not be computable exactly, depending on the matrix A.
The goal therefore is to determine approximate values and rigorous error bounds,
�rst for the eigenvalues and eigenvectors, and then for the Taylor coe�cients of
z and Z. As can easily be guessed, this goes far beyond what could be done by
hand. Fortunately, the most tedious part is trivial enough that it can be done with
a computer. But the computer has only a limited number of states and works at a
�nite speed, so we need a �nite (and not too large) dimensional approximation of
the problem, with a precise control on the error involved. In Section 4 we describe
how to handle this task.

We start by introducing a suitable analytic framework. We discuss here the case
of the complex invariant manifold, the other case being simpler. Let X2 be the
space of functions of two complex variables with domain [B1(0)]2, which can be
written as a power series

(3.1) u(s1, s2) =

∞
∑

j,k=0

ujksj
1s

k
2

with ujk ∈ C and such that

‖u‖ :=

∞
∑

j,k=0

|ujk| < +∞ .

The following lemma is straighforward:

Lemma 4. The space X2 is a Banach algebra; in particular, for all u, v ∈ X2 we
have uv ∈ X2 and ||uv|| ≤ ||u||||v||.

In order to compute a function in X2 which satis�es the assumptions of Theorem
3, we de�ne Z as the subalgebra of the functions in X2 with the coe�cients of order
0 and 1 (that is the constant and �rst order terms) equal to 0, then we de�ne ZN

as the Banach space of N -tuples of functions in Z with norm

‖Z‖ =

N
∑

k=1

‖Zk‖

and we write equation (2.6) as

(3.2) Z(s1, s2) = D−1
λ (AZ(s1, s2) + B(s1v + s2v̄ + Z(s1, s2))) ,

where Z ∈ Z3 and D−1
λ is de�ned by

D−1
λ (sj

1s
k
2) =

sj
1s

k
2

jλ + kλ̄
,

(we abuse the notation by calling D−1
λ both the operator acting on sj

1s
k
2 and its

natural extension to a vector of functions). The equation (3.2) that we need to
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solve can be written as Z = C(Z), where

C(Z) = D−1
λ (AZ + B(s1v + s2v̄ + Z)) .

We will restrict our analysis to a small ball Br(Z0) in Z3, centered at an approxi-
mate solution Z0. The map B considered is essentially a polynomial, expect for a
factor [1−L(Z −Z0)]

−1, where L is a continuous linear functional that is bounded
away from 1 in the ball Br(0). Thus, by Lemma 4, the map C : Br → Z3 is analytic.
And its �xed point is the solution of (3.2) that we are looking for.

What is crucial for our computer-assisted proof is the following:

Lemma 5. C is a limit of �nite rank operators.

This follows immediately from the de�nition of X and of D−1
λ , together with the

continuity of the map Z(s1, s2) 7→ (AZ(s1, s2) + B(s1v + s2v̄ + z(s1, s2))).
A common method for solving the �xed point problem for a smooth map like C

is the Newton-like iteration z 7→ C(z) − [D(C(z) − z)]−1(C(z) − z). Thanks to the
above-mentioned property of C, we can replace the the derivative D(C(z) − z) by
a �nite rank approximation. To this end, we consider an m-dimensional subspace
Cm of Z3, obtained via a projection P : Z3 → Cm that truncates high order Taylor
coe�cients. Identifying Cm with C

m, we choose an invertible m × m matrix M
that approximates D(PCP ) − I, where D denotes the Jacobian and I the m × m
identity matrix. Let N : Z3 → Z3 be de�ned by

N (Z) = C(Z) − M−1P (C(Z) − Z) ;

clearly, if M − I is invertible, then �xed points of N correspond to �xed points of
C. A direct consequence of the contraction theorem is the following

Lemma 6. If there exist positive constants ε, r,K and Z0 ∈ Z3 such that

• ‖N (Z0) − Z0‖ < ε,
• ‖DN (Z)‖ ≤ K for all Z ∈ Br(Z0)
• ε + rK < 1,

then there exists a unique �xed point of N in Br(Z0).

4. The computer assisted proof

4.1. The di�erential equation. If we set y = (v, z, w),

(4.1) Ac =





0 1 0
α −cε 1

−1/c 0 1/(cτ)



 and Bc(v, z, w) =





0
b2(v, z, w)
b3(v, z, w)





with

b2(v, z, w) =cεβvz(3 − 2βv) −
βz2

1 − βv
+ (v5β2 − v4αβ2 − v4β2 − 2v4β

+ v3αβ2 + 2v3αβ + 2v3β + v3 − 2v2αβ − v2α − v2) − βvw ,

b3(v, z, w) = −
β

c
v2

(4.2)

then the system (1.10) takes the form

(4.3) y′ = Acy + Bc(y) ,
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so we can apply the technique developed in the previous sections. The �rst step
consists in computing the eigenvalues and eigenvectors of Ac; a direct computation
yields:

Lemma 7. For all c ∈ [c0 − δ, c0 + δ] the matrix Ac admits a real eigenvalue
λ1(c) > 0 and a pair of complex conjugate eigenvalues λ2,3(c) = λR(c)± iλI(c) with
λR(c) < 0.

We compute explicitely such eigenvalues and the corresponding eigenvectors vj .
The following lemmas, whose proof is computer assisted and is described in Section
4, provide a local parametrization of both the stable and the unstable manifold at
0.

Lemma 8. There exist coe�cients zk(c) depending on c and a positive real number
E such that

zc(s) =
100
∑

k=2

zk(c)sk + Ez(s)

with ‖Ez‖ < E is a solution of eq. (2.2) for all c ∈ [c0 − δ, c0 + δ], where the matrix
A is given in (4.1), B is given in (4.2), λ and v are the real eigenvalue/vector of
Ac.

We set y0(c) = zc(1/4), and by Theorem 2 we know that y0(c) belongs to the
unstable manifold at 0 of (4.3). In order to follow the unstable manifold, we solve
the initial value problem

(4.4)

{

y′
c = Acyc + Bc(yc)

yc(0) = y0(c)

in a similar way, that is we de�ne the operator D−1
y by

(D−1
y z)(t) =

∫ t

y

z(s) ds ,

we set C(z) = D−1
y0(c)

(Acz + Bc(z)) and we look for a �xed point of C. In this case,

we do not need a Newton map, since the operator C turns out to be a contraction.

Lemma 9. There exist coe�cients zk(c) depending on c and a positive real number
E such that

zc(s) =

100
∑

k=0

zk(c)sk + Ez(s)

with ‖Ez‖ < E is a solution of (4.4).

We set y1(c) = zc(1) and we apply again Lemma 9 iteratively, until we obtain
y45(c). Then, we do the same again, but with a time step t = 1/16, until we have
ỹ(c) = y50+3/4(c). Clearly, ỹ(c) lies on the unstable manifold.

Finally, we build a local parametrization of the stable manifold:

Lemma 10. There exist coe�cients zjk(c) depending on c as described above, and
a positive real number E such that

Z(s1, s2, c) =

j+k≤30
∑

j,k≥0

zjk(c)sj
1s

k
2 + EZ(s1, s2) ,

‖EZ‖ < E, is a solution of eq. (2.6).
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Once we have accurate bounds on the the local stable and unstable manifolds,
we verify the following estimates.

Lemma 11. Let ỹ(c) be as above, a1 = 0.05, a2 = 0.5 and a3 = 3/128. Let
Z(s1, s2, c) be as in Lemma 10. There exists a coordinate system in R

3 such that,
if Pj is the projection on the j-th coordinate, then

(1) |P1(Z(s, s̄, c))| < a1 for all |s| ≤ a3 and all c.
(2) P1(ỹ(c0 − δ)) < −a1 and P1(ỹ(c0 + δ)) > a1.
(3) |P2(ỹ(c))|2 + |P3(ỹ(c))|2 < a2 for all c.
(4) Let Cc = {x ∈ R

3 : x = Z(s, s̄, c), |s| = a3} and B = {x ∈ R
3 : |P2(x)|2 +

|P3(x)|2 ≤ a2}. For all c we have Cc ∩ B = ∅ and the set Cc is not
contractible to a point in R

3 \ B.

The above lemma imply that there exists c ∈ (c0−δ, c0+δ) and s ∈ C, |s| < 3/128
such that u(c) = Z(s, s̄, c), therefore the manifolds intersect and Theorem 1 follows.

4.2. More on the computer-assisted proof. Here we describe some of the de-
tails of our computer-assisted proof of Lemmas 8, 9, 10 and 11. Given the Taylor
polynomials and the matrices M (obtained from purely numerical computations),
the proofs are clearly a sequence of trivial estimates, assuming that there are no
fundamental obstructions. The sequence is �nite, as one would expect from Lemma
5. But the steps are much too numerous to be carried out by hand, so we enlist
the help of a computer. For the types of operations needed here, the techniques
are quite standard by now. Thus, we will restrict our description mainly to the
problem-speci�c parts.

As with any lengthy task, proper organization is crucial. We start by associating
to a space X a collection Std(X) of subsets of X, that are representable on the
computer. These sets will be referred to as �standard sets� for X. A �bound� on
an element s ∈ X is then a set S ∈ Std(X) containing s. Each collection Std(X)
corresponds to a data type in our programs. Unless stated otherwise, Std(X × Y )
is taken to be the collection of all sets S × T with S ∈ Std(X) and T ∈ Std(Y ).

Our standard sets for R are associated with a type Ball, which consists of pairs
S=(S.C,S.R), where S.C is a representable number (Rep) and S.R a nonnegative
representable number (Radius). The standard set de�ned by a Ball S is the interval
B(S) = {s ∈ R : |s − S.C| ≤ S.R}.

For non-representable system parameters, such as the constants appearing in the
statement of Theorem 1 (with the exception of δ), we use objects of type Ball that
contain the given values.

We represent functions in χ2 as follows:

(4.5) Z(s1, s2) =

j+k≤M
∑

j,k≥0

zjksj
1s

k
2 + EZ ,

where EZ is a function in X2 with all coe�cients of degree less or equal to M equal
to zero. Our standard sets for X2 are represented by a type Taylor2 consisting
of a pair F=(F.C,F.E), where F.C is an array(0..K,0..K) of Ball, and F.E is a
Ball.

For the representable numbers, we choose a data type (renamed to Rep) for
which elementary operations are available with controlled rounding. This makes
it possible to implement a bound Sum on the function (s, t) 7→ s + t on R × R, as
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well as bounds on other elementary functions on R or R
N , including things like the

matrix product.
Here, a bound on a map f : X → Y is a map F : DF → Std(Y ), with domain

DF ⊂ Std(X), such that f(s) ∈ F (S) whenever s ∈ S ∈ DF . Such bounds are
implemented as procedures or functions in our programs. This can be done hierar-
chically. Using e.g. the Sum for the type Ball, it is straightforward to implement a
bound Sum on the map (g, h) 7→ g + h from Z × Z to Z. Similarly for maps like
u 7→ ‖u‖ or D−1. Implementing a bound on the product (g, h) 7→ gh is a bit more
tedious, but straightforward.

In order to estimate ‖DN (h)‖ we use the following fact. If L is a continuous
linear operator on χ2, then

‖L‖ = sup
k

‖Lek‖ , ek = ‖vk‖
−1vk ,

where {vk} is a basis of χ2. This explicit expression for ‖L‖ is our main reason
for working with a weighted ℓ1 norm. For the operator L = DN (h), it is easy
to determine k0 , given c > 0, such that ‖Lek‖ ≤ c whenever k ≥ k0 . Thus,
estimating the norm of DN (h) reduces to a �nite computation. Choosing δ > 0 to
be a representable number, this estimate can be carried out simultaneously for all
functions h ∈ Bδ(0), since Bδ(0) belongs to Std(Z).

A crucial step of the proofs consists in making all computations and estimates
with a parameter that takes values in an interval. This issue is usually addressed
with interval arithmetics; in our setting, we may de�ne the parameter c as a Ball

with center c0 and radius δ. This approach is unfeasible in this proof: if one
attempts to follow the unstable manifold using a parameter of �nite width, however
small, the errors accumulate very rapidly, and the computation gets quickly out of
hand. Even a �ne partition of the interval [c0 − δ, c0 + δ] is not feasible. Therefore,
instead of an interval enclosure for c, we use a type TBall, which is a Taylor of
order 2 with coe�cients of type Ball. So every Scalar is e�ectively a function of c.
We call ξ the parameter normalized to the interval [−1, 1], so that c is represented
by the TBall

c0 + δξ .

By using TBalls as coe�cients for the previously discussed algorithm, we obtain
an explicit expression for a parametrization of the invariant manifolds, depending
on both a geometrical parameter and c.

For a precise and complete description of all de�nitions and estimates, we refer
to the source code and input data of our computer programs [1]. The source code is
written in Ada2005. For the type Rep we use a MPFR �oating point type, with 128
or 256 mantissa bits, depending on the program. MPFR is an open source multiple-
precision �oating-point library that supports controlled rounding. Our programs
were run successfully on a standard desktop machine, using a public version of the
gcc/gnat compiler.
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