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Abstract

Health care expenditures constitute a significant portion of governmental bud-

gets. The percentage of fraud, waste and abuse within that spending has increased

over years. This paper introduces the emerging area of statistical medical fraud as-

sessment, which becomes crucial to handle the increasing size and complexity of the

medical programs. An overview of fraud types and detection is followed by the de-

scription of medical claims data. The utilization of sampling, overpayment estimation

and data mining methods in medical fraud assessment are presented. Recent unsu-

pervised methods are illustrated with real world data. Finally, the paper introduces

potential future research areas such as integrated decision making approaches and

Bayesian methods, and concludes with an overall discussion. The main goal of this

exposition is to increase awareness about this important area among a broader audi-

ence of statisticians.

Keywords: fraud; medical audits; fraud detection; sampling; data mining; fraud analyt-
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1 Introduction

Fraud has been around since the early days of commerce, continuously evolving and

adapting to changing times. The current fraud instances can be seen in a wide range of

domains such as money laundering, e-commerce and insurance. Among these, medical

fraud has recently attracted more attention because of the increases in healthcare spend-

ing and overpayments especially in the developed countries. For instance, total health

care expenditures in the United States reached $ 3.2 trillion which corresponds to $ 9, 990

per person in 2015 (CMS (2017b)). U.S. federal agencies estimate that 3 to 12.7 percent

of this spending is lost to fraud, waste and abuse (Shin et al. (2012), CMS (2015a)). The

European Healthcare Fraud & Corruption Network reviewed fraud studies between 1997

and 2013, and found the range of percentage losses to be between 0.6% and 15.4% with

average losses of 6.19% (Gee and Button (2015)). They report the increasing trend of the

average losses and estimate the total annual global loss as $455 billion. In addition to

the direct cost implications, overpayments also impact the effectiveness of the health care

systems by preventing the delivery of efficient services to deserving patients (Anderson

and Hussey (2001)). For instance, the negative impact of medical overpayments on the

system efficiency is illustrated with Italian hospitals’ data (Berta et al. (2010)). These med-

ical overpayments can be in the form of fraud, waste and abuse. In order to reveal these

overpayments and help medical auditors, a variety of statistical methods are utilized.

This paper serves as an expository venue to introduce this emerging crucial area to more

statisticians, to discuss current statistical applications in medical fraud assessment, and

to provide directions for future research.

1.1 Fraud

The Merriam-Webster dictionary defines fraud as “intentional perversion of truth in order

to induce another to part with something of value or to surrender a legal right" 1. Fraud

occurs in many industries, including but not limited to finance, credit card, telecommu-

nications, insurance and healthcare. Delamaire et al. (2009) provide a review of credit

1https://www.merriam-webster.com/dictionary/fraud
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card fraud types. For instance, user credit card fraud includes falsifying information in a

credit card/account application or bankruptcy declaration. The more common types in-

volve identity theft and misuse of compromised/stolen credit card information. Whereas

telecommunications fraud mostly occurs either in the form of subscription fraud that in-

volves users falsifying information or superimposed fraud where fraudsters take over

legitimate accounts for fraudulent use. Fraud also frequently takes place at various in-

surance programs in the phases of application, eligibility, rating and billing of claims. For

instance, Viaene et al. (2002) discuss the automobile insurance fraud cases of incorrect

claim submissions. Health care insurance programs are not exceptions. However, defin-

ing fraudulent behavior, detecting fraudulent cases and measuring fraud losses in health

care industry are difficult tasks (Sparrow (2000)). Medical fraud broadly corresponds to

the acts of intentional deception or misrepresentation which would result in unautho-

rized benefits within the health care system, while waste and abuse differ by the level of

intention and knowledge. In the following, the term "fraud" will be used while referring

to overpayments, however it should be noted that presented methods are applicable to

detection of waste and abuse as well.

Medical fraud differs from the fraud types in other industries for a number of reasons.

First, health care insurance programs are provided by a variety of specialized organiza-

tions in most countries. Each program has a unique set of fraud patterns. For instance,

U.S. Medicare is federally funded and mostly serves senior citizens. It provided health

insurance to 55 million Americans in 2015 (CMS (2015b)). Whereas, U.S. Medicaid is

a collection of state-funded government insurance programs for people of all ages that

do not have sufficient resources for health care. The size and variety of programs make

administration and overseeing medical expenditures challenging. Therefore, a federal

agency called The Centers for Medicare & Medicaid Services (CMS) was founded to admin-

ister the Medicare program and work with state governments to manage Medicaid and

other health insurance programs. In other countries, there are similar programs such as

Australia Medicare and England National Health Service. The payment structures gener-

ally include fee for service and prospective payment systems. Providers are either reim-

bursed for the incurred costs after the visit or may receive pre-determined payments for
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the admissions with respect to the diagnosis related groups.

Secondly, the objectives of healthcare industry and the billing systems as well as the

involvement of the shareholders in healthcare are different than the other industries. The

emphasis of the billing systems is generally on providing timely payments rather than the

processing accuracy. This pressure may result in lack of through evaluation of payments.

In addition, the shareholders lack incentives to report health care fraud and share feed-

back with the administrators. For example, if a customer’s credit card is compromised;

that customer would be exposed to the direct financial impact through the next monthly

statement. Customers have to pay the bill themselves. However, in health care industry;

statements are complex and not transparent in general. Even if the beneficiaries notice a

fraudulent transaction, the incentives for reporting are not adequate since the insurance

program mostly pays the bill and the fraud reporting process may be found as tedious.

Medical fraud is generally classified into three categories based on who conducts the

fraud; provider (such as hospitals and physicians) fraud, consumer (patient) fraud and

insurer fraud. U.S. law identifies the submission of false claims, the payment or receipt of

kickbacks and self-referrals as provider fraud (Kalb (1999)). In addition, upcoding (over-

charging for a more expensive service) and charging separately for procedures that are

initially part of one procedure are examples of provider fraudulent activities. Consumer

fraud include patients who intentionally falsify documents or misuse their insurance

cards to obtain prescription. Insurer fraud corresponds to the cases of insurers falsify-

ing statements or not providing the insurance they have collected premiums for. Among

these, provider fraud accounts for the largest proportion of the total medical fraud, and

therefore majority of research efforts have focused on that type of fraud (Li et al. (2008)).

Sparrow (2000) presents a detailed discussion of real world cases of medical fraud. Asym-

metry of information between providers and patients, inelastic demand for services, the

presence of third party fees for service payments are the main drivers of the medical

fraud. Studies of medical fraud are becoming more crucial because of the drastic mone-

tary losses and the impact on the wellbeing of all citizens. Next, we present an overview

of fraud assessment methods.
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1.2 Fraud Assessment

The survey of Bolton and Hand (2002) lists major approaches used for fraud detection as

artificial intelligence, distributed and parallel computing, econometrics, expert systems,

fuzzy logic, genetic algorithms, machine learning, neural networks, pattern recognition

and visualization. The methods of practice are not generally discussed in detail and the

data sets generally are not shared with public in order to prevent the criminals getting

valuable information.

One of the widely used methods is based on comparing the transactions with the

benchmark of expected occurrences and flagging the unexpected observations for further

investigations. These type of outlier detection methods also help reveal emerging fraud

schemes. For instance, in telecommunications networks, these benchmark-based rules

are generally employed to detect unusual activities.

Another major set of methods involves computing risk (suspicion) scores for each

transaction based on the outputs of classification or regression models. These are more

successful in domains with known fraud patterns. In particular, financial industry has

made remarkable progress in tackling fraud with supervised methods. The review of

Ngai et al. (2011) concentrates on the application of data mining methods for financial

fraud detection. One of the major advantages for financial fraud methods is the abun-

dance of labeled data. Credit card databases contain information about each transaction;

including merchant code, account number, type of purchase, client name, size and date of

transaction. In addition to having access to this information real time, banks have a vast

number of labeled fraudulent and legitimate past transactions. This enables the use of

supervised methods such as logistic models, neural networks, Bayesian belief networks,

and decision trees for classifying financial transactions. One should still be aware of the

unbalanced class sizes since fraudulent transactions are relatively scarce.

Despite the wide adoption of fraud detection methods in these domains, the level

of attention given to medical fraud assessment has been relatively limited (Phua et al.

(2010)). Some of the aferomentioned methods are applicable for detection of fraudulent

medical claims. Travaille et al. (2011) discuss the applicability of the fraud detection meth-
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ods in other industries such as credit card, telecommunications, and computer security,

to U.S. Medicaid healthcare programs. For instance, medical insurance claims can be ar-

gued to be similar to credit card transactions; in terms of recording the information of the

provider and beneficiary and the details of the transaction.

The complexity and heterogenity of the medical systems and data make the widespread

use of fraud detection methods challenging in healthcare. The nature of medical data is

very different compared to other industries. First, the data in general are not reported on

real time and accurately. Labeling data requires an audit, which makes its retrieval costly

and time-consuming. Meanwhile, fraud patterns are dynamic and adapt to changes in

legislation, billing and medical procedures over time. This dynamic nature coupled with

the lack of labeled data prevents supervised methods to be used as often as other in-

dustries’ fraud detection frameworks (Furlan and Bajec (2008)). On the other hand, out-

lier detection methods are more difficult to employ because of heterogeneity of the data,

pressure of timely processing of claims and the need for medical expertise in evaluation.

For instance, auto insurance industry has tight controls and can stop the payments to

providers that have very different billing characteristics. However, in healthcare timely

payments are important and the unusual provider behavior may be the result of medical

necessity. In addition, the confidentiality of the data is very important, and patient pri-

vacy is preserved by a number of federal acts such as Health Insurance Portability and

Accountability Act (HIPAA).

Overall, increasing budget deficits in developed countries have garnered the attention

of public to health care expenditures. This has increased efforts to decrease the health

care spending by cutting off the unnecessary payments via medical audits and fraud as-

sessment. Pre-payment reviews are conducted more widely especially through identity

checks that can filter fraudulent transactions (Suleiman et al. (2014)). Despite that, most

of the medical audits are conducted after payment. The goal is to identify and recover

improper payments through efficient detection procedures (CMS (2016b)). Each medical

investigation requires the subject domain expertise of licensed professionals that man-

ually audit claims. The investigation costs correspond to the time spent by the expert

as well as the physical resources. The unnecessary audit of claims that have zero over-
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payment (false positives) results in loss of trust to the government and lost opportunity

cost. Whereas the heterogeneous nature of medical claims data and existence of a num-

ber of fraud patterns can increase the estimation error. The trade-off between the audit

costs and accuracy of the extrapolations is one of the main challenges in subsequent re-

source allocation decisions. Identification of the fraudulent activities should ideally be

done by domain experts via comprehensive medical audits. However, that is generally

impractical because of the complex nature and the big size of the medical data. Tools of

descriptive data analysis can help detect obvious patterns and reveal the potential cases

of overpayment. This is mainly used for cases where overpayment can easily be identi-

fied due to irrefutable evidence such as providers billing for beneficiaries for whom it is

impossible to serve. These challenges make the systematic use of statistical approaches

such as sampling and data mining necessary in medical fraud assessment.

1.3 Related Literature and Outline

In the last decade, there have been a number of attempts to provide overviews of differ-

ent aspects of the emerging field of statistical medical fraud assessment. Li et al. (2008)

provide a notable detailed review of the application of data mining methods until 2007.

However, it should be noted that recent data sharing and transparency efforts of govern-

mental health organizations give researchers more access to the medical data and resulted

in more recent publications. This has resulted in a number of overviews in particular as-

pects of medical fraud assessment. Capelleveen (2013) presents an overview about the use

of outlier detection methods in medical fraud assessment. Whereas, Joudaki et al. (2014)

provide a brief review of data mining methods in healthcare fraud detection. Bauder et al.

(2017) present a comprehensive survey on the state of healthcare upcoding fraud analysis

and detection with an emphasis on data mining. All these surveys focus on application

of data mining methods, and none of them discusses the statistical methods such as sam-

pling and overpayment estimation.

This paper aims to provide a comprehensive up to date overview of statistical meth-

ods in medical fraud assessment; including sampling, overpayment estimation and data
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mining approaches. In addition, we present an illustration of recently proposed unsuper-

vised methods using publicly available real world medical claims data. Such unsuper-

vised methods are crucial because of limited availability of labeled data in the medical

fraud context. In addition, potential future research areas are presented with a discussion

of recent advances.

The rest of this paper is structured as follows. Next section describes the medical data.

In Section 3, we present an overview of the use of sampling and overpayment estimation

methods. Section 4 focuses on data mining applications whereas Section 5 illustrates the

use of recent methods using real world medical claims data. Section 6 presents directions

for future research, and Section 7 concludes by discussing the respective challenges.

2 Medical Claims Data

The particular characteristics of medical data vary from program to program. The litera-

ture includes examples from the health insurance programs of various countries. These

include U.S. (Edwards et al. (2003), Travaille et al. (2011), Ekin et al. (2015)), Australia (He

et al. (1997), Shan et al. (2009), Tang et al. (2011)), Taiwan (Chan and Lan (2001), Yang and

Hwang (2006)), Chile (Ortega et al. (2006)), South Korea (Shin et al. (2012), Turkey (Aral

et al. (2012)) and Brazil (Carvalho et al. (2017)). This section aims to provide a high level,

not exhaustive, description of medical data.

In general, the medical data can be classified as practitioners data, clinical instance

data and medical claims data (Liu and Vasarhelyi (2013)). Practitioners data provide a

general description of service providers in a certain time period and summarize provider

related aspects of service cost, usage and quality (Viveros et al. (1996)). Clinical-instance

data consist of a set of activities performed by medical staff in a particular treatment

(Yang and Hwang (2006)). This paper mainly focuses on the medical claims data, since

most raw medical data is in the form of insurance claims. A medical claim involves the

participation of a patient and a service provider and generally contains the attributes of

patients, providers and the claim itself. Attributes of a patient can be gender, age, medical

history whereas the type and the location of facility are among the attributes of a provider.
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The prescription details, monetary amount and the paid amount are among the important

characteristics of the claim.

Fraud data has many unique characteristics. First, fraud is a rare event since the le-

gitimate claims almost always outnumber the fraudulent ones. For instance, more than

80 percent of the papers reviewed in Phua et al. (2010) have skewed data with less than

30 percent fraud. The sparsity of the fraud data can be addressed with methods such as

non-negative matrix factorization, singular value decomposition and principal compo-

nent analysis (Zhu et al. (2011)). Secondly, both legitimate and fraudulent claims have

dynamic patterns due to heavy competition in health care industry and updates in the

policy and legal frameworks. In addition, because of the multiple styles of fraud happen-

ing around the same time, the fraudulent cases are not homogeneous (Fawcett (2003)).

In most industry practices, data pre-processing efforts, such as data cleaning and

transformation, take most of the time of overall fraud detection procedure (See Lin and

Haug (2006) and Sokol et al. (2001) for relevant discussions). For instance, being able to

submit the same claim under the name of the hospital or provider may require the in-

vestigators to define new unique identifiers to analyze the medical data (Musal (2010)).

Another crucial medical data issue is the abundance of missing values. Missing data can

produce problems such as over/under sampling, non-representativeness and potential

bias in inference. Despite that, many papers in literature do not explicitly discuss how

they handle missing data before their data analysis. One of the widely used approaches

is to remove the claim lines with missing information. For instance, Ortega et al. (2006)

discard 35% of these medical claims of a given year because of poor quality in terms

of missing values and low contribution. Yang and Hwang (2006) filter out noisy data

by removing instances that have missing attribute values. Removing the instances can

decrease the statistical power of an analysis, since potentially valuable information in the

other fields is lost. In addition, the pattern of missing values may be systematic and delet-

ing records may create a biased subset. However, there are not any systematic guidelines

to handle missing data. The benefits and drawbacks of handling missing values should

be carefully evaluated by the domain experts. Grzymala-Busse and Hu (2000) present a

comparison of a number of approaches. Such methods include replacing missing values
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with the mode or the mean of the data set, with random values sampled from the un-

derlying distribution or treating missing values as user-defined constants. Imputation,

substitution of a missing value using an estimate retrieved by a statistical analysis such

as regression, can be proposed as another way of dealing with missing values (Li et al.

(2008)). Little and Rubin (2014) provide a detailed discussion of such imputation tech-

niques.

Choosing and transforming the attributes (features) is also a crucial step in data anal-

ysis. Attributes used in fraud studies can be numerical, categorical or binary type of vari-

ables. Different types of variables would require the use of different statistical techniques.

The selected features are rarely revealed in publications due to agreements with the data

sources. The motivation of such confidentiality agreements is to prevent the criminals

from having access to the way how detection systems work. In practice, features are

generally selected by medical domain experts. Domain experts are knowledgeable about

frequent fraud occurrences or the fraud types with the most financial losses. Major and

Riedinger (2002) list the relevant attributes of providers for fraud detection in five main

categories; financial, medical logic, abuse, logistics and identification. Whereas money

amount involved and the paid portion are deemed as important attributes of a claim

from the investigation perspective. Manual feature selection can benefit from statistical

checking of each selected feature‘s relevance and significance (See Dash and Liu (1997)

for an overview of feature selection methods). For instance, checking the relationship be-

tween attributes is generally overlooked in industry practices while selecting attributes

for outlier detection methods. Ortega et al. (2006) is one of the rare studies that utilizes

correlation checks to delete redundant features and to test discriminating power of each

feature.

It is prohibitively time consuming and costly to analyze all (or most) observations.

Therefore, a number of statistical sampling and overpayment estimation methods are

proposed. On the other hand, the heterogenous structure of data and the nature of fraud

result in the widespread use of the data mining methods. Next two sections present

overviews of sampling and data mining methods, respectively.
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3 Sampling and Overpayment estimation

Sampling and overpayment estimation methods help the medical auditors to retrieve the

sample data and make extrapolations. Various techniques such as simple random sam-

pling and stratified sampling, are recommended to draw representative samples from the

population of interest as efficiently as possible. In the U.S., use of probability sampling

methods for medical investigations has been accepted to be part of the legal framework

since 1986. Yancey (2012) provides a comprehensive list about these legal sampling pro-

cedures and the parties involved in U.S. governmental medical insurance programs. In

general, the variables of interest are the payment amounts to providers, the percentage of

overpaid claims and the overpayment amount. There are governmental software pack-

ages which assist the auditors with sampling and analysis. For instance, in U.S., medical

auditors can use RAT-STATS (OIG (2010)) that is offered by the Office of Inspector Gen-

eral, Office of Audit Services. RAT-STATS can perform functions such as determination

of sample size, generating random numbers to select the sample and provide inference.

Woodard (2015) presents a brief overview and a simple application to demonstrate the

use of sampling by the U.S. Medicaid to uncover and reclaim overpayments.

A payment amount associated with a claim can result in one of three outcomes when

audited. A claim can be classified as completely legitimate, completely illegitimate or

partially overpaid. A claims data set where each claim is either a legitimate payment

or a completely illegitimate payment is referred to as “all or nothing". According to the

current U.S. sampling guidelines (CMS (2001)) in most situations the lower limit of a one

sided 90 percent confidence interval for the total over payments should be used as the

recovery amount from the provider under investigation. Using the lower bound allows

for a reasonable and fair recovery without requiring the tight precision to support the

point estimate, sample mean. In other words, the state is protected with a certain de-

gree of confidence from recovering an amount greater than the true value of erroneous

payments. However, this application of Central Limit Theorem (CLT) is based on the

assumption that overpayment population either follows the Normal distribution or that

the sample size of overpayments is reasonably large. Mohr (2005) shows that normality
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based models can work well for cases with one overpayment pattern.

It is very common that medical claims data exhibit skewness and non-normal behav-

ior requiring large sample sizes for the valid application of CLT. Edwards et al. (2003)

show that methods based on the CLT may not perform well for certain kinds of overpay-

ment populations with small sample sizes. They propose the “minimum sum method",

a non-parametric inferential method which makes use of the hyper-geometric distribu-

tion and compute the respective lower bound estimates. These estimates are shown to be

efficient in settings where the claims are essentially “all or nothing", the payment popu-

lation is relatively homogeneous and well separated from zero. A number of extensions

are proposed for the minimum sum method. Ignatova and Edwards (2008) propose a

sequential sampling framework that aims to make inference on the proportion of claims

with overpayments. Gilliland and Feng (2010) provide an adaptation in order to address

cases of varying payments. Gilliland and Edwards (2010) improve its efficiency via ran-

domized lower bounds in which payment amounts are audited in equal sized packets.

Edwards et al. (2003) discuss a simple extension, so called q-adaptation Minimum sum

method, which is based on re-definition of illegitimate payments; so that the payments

are defined as illegitimate if “q” percent of the payment is in error. In order to deal with

partial overpayments as well as “all or nothing" claims, Ekin et al. (2015) propose a zero-

one inflated mixture model that extends Mohr (2005). Musal and Ekin (2017) present a

valid Bayesian mixture model that can be more efficient for claims with partial overpay-

ments. In addition to these, standard stratified expansion and combined ratio estimators

of the total are among proposed estimators.

4 Data Mining Methods

Capabilities of generating, collecting and storing medical data have increased dramati-

cally in the last two decades. In particular, medical databases increase in size with respect

to both instances and variables. For instance, since 2006, U.S. Medicare claims data are

stored in continuously expanding Integrated Data Repository (IDR). The IDR can also be

accessed through the web-based One Program Integrity (One PI) Portal, which provides

12



investigators a comprehensive view of data. This explosive growth in stored or transient

data has generated an urgent need for methods that can intelligently transform the vast

amounts of medical data into useful information and knowledge. Data mining, a step in

the process of Knowledge Discovery in Databases (KDD), is a method of unearthing in-

formation from large data sets. KDD within the medical context can be used to map low

level data into other forms that might be more compact and useful and reduces the high

dimensionality. Built upon statistical analysis, it can analyze massive amounts of data

and provide useful and interesting information about patterns and relationships that ex-

ist within the data that might otherwise be missed.

The commonly used medical fraud detection methods can be classified as supervised,

unsupervised or hybrid, depending on the availability of labeled data (Li et al. (2008)).

In medical fraud assessment context, labeled data mostly correspond to claims that are

found to be fraudulent after investigation by domain experts, and enable the use of super-

vised methods. In the absence of that information, unsupervised methods are proposed,

mostly in order to detect potential deviations from the expected patterns, see the review

of Capelleveen (2013). Hybrid approaches combine unsupervised and supervised meth-

ods for enhanced performance.

These developments urge the federal government to fund CMS for the objective of

exploring the use of analytical methods for medical fraud detection. CMS has used their

Fraud Prevention System (FPS) to identify and prevent more than $1.5 Billion USD in

healthcare fraud, waste and abuse within the Medicare Fee-for-Service program (Bel-

liveau (2016)). FPS consists of rule-based, predictive, anomaly-based and network based

methods. Such comprehensive application of analytical algorithms helps CMS to prevent

improper payments both pre-payment as well as the traditional post-payment “pay and

chase" methods. This section aims to provide an up to date literature overview of these

supervised, unsupervised and hybrid data mining methods.
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4.1 Supervised Algorithms

Supervised methods are based on using labeled fraudulent and non-fraudulent records

in order to classify claims and make predictions. In terms of classification algorithms, Li

et al. (2008) emphasize the extensive use of neural networks and decision trees for fraud

detection. Liou et al. (2008) provide a comparison of decision trees, neural networks and

logistic regression with respect to their correct identification rate of medical fraud.

Sherly (2012) provides a comparison and recommends neural networks for large trans-

action data sets despite the long training times. Neural networks can handle complex,

large data sets and non-linear variable relationships. However, application of neural net-

works generally requires statistical expertise, for instance to tune the parameters. In ad-

dition, Padmaja et al. (2007) point out that classification may display poor performance

and overfitting with skewed data sets. Overfitting of neural networks can be decreased

by adding weight delay terms. Ortega et al. (2006) implement an early stopping tech-

nique, which is based on using one training data set to update the weights and biases,

and another data set to stop training when the network begins to overfit the data. They

also address the issue of having a large prediction variance because of a small sample size

with a large number of features.

In comparison, decision trees have generic rules which are easy to interpret espe-

cially with small number of categories. Decision trees can also handle sparse data, but

may result in overfitting and decreased interpretability of results with increasing size of

data. For instance, Shin et al. (2012) propose a scoring model for likelihood of abuse, and

then classify providers using a decision tree. Ormerod et al. (2003) present a dynamic

Bayesian network of fraud indicators, whose weights are determined by the fraud pre-

diction power of each feature. Bayesian classifiers have relatively shorter training times

and are found to be effective in handling the sparsity of the data. He et al. (1998) use k-

nearest neighbour algorithm to classify practitioners’ practice profiles. As an alternative,

a support vector machine based approach is utilized by Kumar et al. (2010). A number of

the medical detection efforts include combining different supervised methods. Chan and

Lan (2001) combine fuzzy sets theory and a Bayesian classifier to detect suspicious claims
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in Taiwan National Health Insurance. Viveros et al. (1996) recommend a combination of

association rules and a neural segmentation algorithm for fraud detection.

Overall, supervised methods are useful for detecting previously known patterns of

fraud. Since they are based on classified past claims, one should be aware of potential

overestimation issues (Liou et al. (2008)). The unbalanced nature of the claims data can

also lead to overfitting. These models should be regularly updated to deal with new

fraud patterns and changes in the regulations. Inability of supervised methods to detect

dynamic and adaptive fraud has increased the attention on unsupervised methods which

will be discussed next.

4.2 Unsupervised Algorithms

Unsupervised methods are motivated by the unavailability of labeled medical data and

deficiencies of supervised methods. They are mainly used to group the claims and de-

tect the claims with potential deviations from the frequent patterns. Since they do not

require pre-labeled data, unsupervised methods may serve as initial filters that list the

potentially fraudulent claims before the actual audit. This can decrease personnel costs

as less transactions are reviewed (Laleh and Azgomi (2009)). Another advantage of un-

supervised methods is their independence from a particular classified data set, therefore

they can be used to detect changing fraud patterns. Even basic unsupervised approaches

may prove to be beneficial when combined with the expertise regarding discriminating

features (Copeland et al. (2012)). Even with the need of additional assessment of subject

matter experts, unsupervised learning is still deemed as a valuable and promising tool

given the nature of unlabeled medical data (Bauder et al. (2017)).

Clustering is first applied on medical data by Lin et al. (2008) to segment the practice

patterns of general practitioners. Then, Musal (2010) and Liu and Vasarhelyi (2013) use

geo-location data within a clustering-based approach. The Bayesian Bernoulli cocluster-

ing algorithm of Ekin et al. (2013) models dyadic data focusing on the occurrence of visits

among providers and beneficiaries. This can potentially reveal an emerging type of fraud

called “conspiracy fraud” that involves attributes of more than one party of the medical
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system. These clustering algorithms help the investigator group the billings and variable

of interest.

Outlier detection methods are widely used in medical fraud detection. Outliers cor-

respond to observations that lie outside the main grouping of the data as well as the

unexpected observations. A simple way to detect outliers would be to rank observations

with respect to variables of interest, and designate outcomes that are lower or higher

than a pre-determined threshold as outliers. Such threshold can be determined using the

knowledge of the entire data set, or as a certain deviation measure (standard deviation)

away from a central measure (mean, median). Capelleveen (2013) provides an overview

of outlier detection methods along with a number of experiments to assess their effective-

ness. They discuss outlier analysis using linear models, boxplots, peak analysis, multi-

variate clustering and expert evaluation. Shan et al. (2009) propose a local density based

outlier detection method to identify inappropriate billing patterns in Australia Medicare.

Ng et al. (2010) model Australia Medicare spatio-temporal data within an unsupervised

anomaly detection framework. Lu and Boritz (2005) utilize Benford’s Law Distributions

to detect anomalies in claim reimbursements. Tang et al. (2011) present an integrated

approach that combines feature selection, clustering, pattern recognition and outlier de-

tection to detect fraud in Australia Medicare. Carvalho et al. (2017) proposes a two-phase

anomaly detection method to identify fraudulent hospitals in Brazilian public health-

care system. There are also outlier detection studies with prescription data. Aral et al.

(2012) propose a distance based unsupervised algorithm to assess the fraudulent risk of

prescriptions. Iyengar et al. (2014) develop a normalized baseline behavioral model to

identify the anomalies for each prescription area. van Capelleveen et al. (2016) present a

case study for Medicaid dental practice investigations. They discuss the application of a

number of outlier detection methods using different metrics. Bauder and Khoshgoftaar

(2016) present a Bayesian inference based outlier detection model which uses probability

distributions and credibility intervals to assess outliers.

In addition, industry tools based on graph analytics, association and link analysis may

help the investigators to reveal relationships, links and hidden patterns of information

sharing and interactions within potentially fraudulent groups of providers and patients.
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The number and quality of the links between businesses can be analyzed using the sim-

ilarities in their contact information, locations, service providers, assets and associates.

Potential relationships with players that are found to be involved with fraud, may pro-

vide red flags and leads for prospective investigations. These can especially be helpful to

reveal organized, sophisticated and collusive networks of providers and patients.

Unsupervised approaches are generally used to flag potentially fraudulent activities

before bringing the domain experts into the investigation. Therefore, a close cooperation

between physicians, statisticians and people involved in decision making would be very

beneficial during the stages of defining and tuning the model as well as analyzing and

interpreting the results.

4.3 Hybrid Algorithms

Hybrid approaches combine unsupervised and supervised approaches to improve the

performance of medical fraud detection. For instance, unsupervised methods can be used

to choose the number of classes that are used in the classification process (He et al. (1997)).

In their use of the k-nearest neighbor algorithm, the distance metric is optimized by a

genetic algorithm in detecting different types of fraud. Williams and Huang (1997) apply

clustering methods and then labeled these clusters along with a classification algorithm.

Clustering is shown to overcome the deficiencies of decision trees with larger data sets

and many categories.

Use of medical knowledge may improve the classification performance at the expense

of the cost and the complexity of such models. In such an example, Yang and Hwang

(2006) use a pattern discovery algorithm to define the normal behavior before using an

outlier detection method. Major and Riedinger (2002) utilize both rule extraction and

outlier detection in order to compare provider characteristics.
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5 Recent Developments

This section presents an illustration of recently proposed unsupervised data mining meth-

ods with real world CMS claims data. Supervised methods have been emphasized by

a number of authors such as Li et al. (2008), therefore we focus on relatively under-

represented unsupervised methods. Particularly, we illustrate the use of concentration

function (Ekin et al. (2017b)) and Bayesian co-clustering (Ekin et al. (2013)). We use the

publicly available data set, Provider Utilization and Payment Data Physician and Other Sup-

plier Public Use File of The Centers for Medicare & Medicaid Services (CMS (2016a)). It in-

cludes information related to providers, beneficiaries and the claim itself. The variables

of focus are provider national provider id (NPI), medical specialty of the provider, Health-

care Common Procedure Coding System (HCPCS) code of medical procedure or service

(CMS (2017a)), number of distinct Medicare beneficiary per day served by a particular

provider, number of medical procedures per day that are billed by a particular provider

and place of service. We provide the R scripts as part of the online supplementary mate-

rial.

5.1 Concentration function based fraud detection

First, we illustrate the use of concentration function (Cifarelli and Regazzini (1987)) as

a pre-screening tool to aid in medical fraud assessment. The concentration function can

be used as a graphical tool that can describe the discrepancy between a discrete proba-

bility measure and a discrete uniform measure. It helps us graphically summarize and

compare the overall billing patterns of providers for all the prescribed services. In ad-

dition, the likelihood ratios are computed to quantify the potential differences of each

provider compared to the average charges by the population. If the likelihood ratio is

very large compared to a user specified threshold, this indicates potential overcharging

which may warrant an investigation. This paper presents a basic demonstration with real

world claims data, see Ekin et al. (2017b) for a more detailed discussion.

We rearrange the data and focus on a subset that includes billings from the optometrists

in the state of Texas who provide services in a facility. We assume that the billing behavior
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of all 141 optometrists in Texas is relatively homogenous. Three optometrists who billed

more than 10 unique procedures are selected for demonstration. The billing of these 3

providers for 17 procedures is compared with the overall billing behavior of optometrists

in Texas. Table 1 lists the billing percentages for each ith procedure, pMD1
i , pMD2

i and pMD3
i

where i = 1, ..., 17. The average billing percentage for the population for each ith proce-

dure is also listed as qi. For each optometrist, the likelihood ratios of each ith procedure

billing are computed as LRi = pi/qi. The likelihood ratios can reveal outlier billings per-

formed by each provider with respect to a procedure. For instance a likelihood ratio more

than 5 indicates that the percentage of charges for the related service prescribed by an

MD is at least five times larger than the average charge for that service. Such likelihood

ratios, LR that are greater than 5 are highlighted in Table 1.

Index Procedure pMD1
i pMD2

i pMD3
i qi LRMD1

i LRMD2
i LRMD3

i
i=1 67820 0 0.0124 0 0.0021 0 5.840 0
i=2 92002 0.0134 0 0 0.0065 2.062 0 0
i=3 92004 0.2002 0.2831 0.0722 0.1921 1.042 1.473 0.376
i=4 92012 0.0403 0 0 0.0254 1.587 0 0
i=5 92014 0.2918 0.0479 0.2586 0.1427 2.045 0.336 1.812
i=6 92082 0.0171 0 0 0.0038 4.5 0 0
i=7 92083 0.0781 0.0328 0.0268 0.0232 3.366 1.415 1.156
i=8 92133 0.0452 0.0319 0.0351 0.0287 1.575 1.113 1.222
i=9 92134 0.0134 0.047 0.0254 0.0121 1.107 3.887 2.103
i=10 92250 0 0.0293 0 0.0140 0 2.096 0
i=11 99202 0.0134 0.0319 0.0124 0.0054 2.481 5.915 2.293
i=12 99203 0.0269 0.0289 0.0289 0.0137 1.964 2.108 2.108
i=13 99204 0.0256 0.0834 0.0928 0.0274 0.934 3.044 3.389
i=14 99212 0.1636 0 0.0103 0.0224 7.304 0 0.461
i=15 99213 0.0366 0.1047 0.1018 0.0572 0.64 1.83 1.78
i=16 99214 0.0342 0.2422 0.3356 0.1660 0.206 1.457 2.019
i=17 99215 0 0.0231 0 0.0092 0 2.508 0

Table 1: Billing percentages of each procedure for MD1, MD2, MD3, and population q;
and likelihood ratios of each procedure for MD1, MD2, MD3

These three providers (MDs) are assumed to bill similarly to the population of op-

tometrists. In order to check that assumption, using the billing percentages in Table 1, we

compare the probability measures of each provider, PMD1, PMD2 PMD3 and the overall
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Figure 1: Concentration function for MD 1 (blue straight line), MD 2 (green dashed) and
MD 3 (red dotted) versus the population (bold 45◦ line).

population,Q. Particularly, we order each procedure with respect to the ascending order

of their likelihood ratios, LRi. In other words, the outcomes are ordered starting from the

less billed procedures towards the more frequently billed. The concentration function is

constructed by cumulatively adding the probabilities of these ordered billings. The plot

of these ordered probabilities and respective procedure codes, between the points of (0, 0)

and (1, 1) gives the concentration function of PMD1, PMD2 and PMD3 versusQ. Figure 1

presents the concentration functions for all three medical doctors. It can be seen that MD1

differs more from the population since its corresponding line is further from the straight

line. This indicates that the overall billing of MD1 is different than his/her peers.

Investigation of billing for specific procedures may reveal more specific outlier activ-

ities. For instance, Table 1 shows that the first medical doctor is found to charge more

than 7 times more than the average for the procedure code of 99212. Whereas the sec-

ond medical doctor overcharges for procedure codes of 67820 and 99202 compared to the

population. Concentration function based fraud detection is very simple and scalable to

generate leads even in the presence of massive data. It does not require iterative com-

putations or convergence to generate leads. However, these leads still require further

investigations by medical auditors in order to assess the legitimitacy of such billings.
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5.2 Bayesian co-clustering for fraud detection

Next, the use of Bayesian co-clustering is demonstrated. Ekin et al. (2013) address the

issue of conspiracy fraud by such a co-clustering model for the provider-patient pairs. In

this paper, we present an illustration to describe the dyadic relationships among providers

and procedure codes.

Bayesian co-clustering allows mixed membership for both K clusters of providers and

L clusters of procedures; so called soft-clustering. Let’s assume that we have I health-care

providers who bill for J unique procedures. Let Xij be binary representing if the provider

i bill for procedure code j. X = {Xij; i = 1, . . . , I, j = 1, . . . , J} is a data matrix of size

I × J. Membership probabilities are denoted by π1k; k = 1, . . . , K for row clusters and by

π2l; l = 1, . . . , L for column clusters such that

K

∑
k=1

π1k =
L

∑
l=1

π2l = 1.

The latent variables Z1i and Z2j, i = 1, . . . , I, j = 1, . . . , J, denote membership to the

row (provider) and column (procedure) clusters such that Z1i ∈ {1, . . . , K} and Z2j ∈

{1, . . . , L}. Given π1 = (π1k; k = 1, . . . , K) and π2 = (π2l; l = 1, . . . , L), Z1i and Z2j are

independent discrete random variables.

The generative function can be described as

(Xij|Z1i = k, Z2j = l, θkl) ∼ Ber(θkl) (5.1)

where θkl denotes the probability of billing of a procedure from lth cluster by a provider in

kth cluster. The co-clustering problem involves assignment of each Xij to a co-cluster de-

fined by the latent pair (Z1i, Z2j). The Bayesian model involves specification of priors for

the unknown parameters π1, π2 and θ = (θkl; k = 1, . . . , K, l = 1, . . . , L). We can assume

independent Dirichlet priors for π1 and π2 and independent Beta priors for elements of
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θ. Particularly, we have

π1 ∼ Dir(α1k; k = 1, . . . , K),

π2 ∼ Dir(α2l; l = 1, . . . , L),

θkl ∼ B(akl, bkl), k = 1, . . . , K, l = 1, . . . , L.

Given data matrix X = {Xij; i = 1, . . . , I, j = 1, . . . , J}, the posterior analysis can

be developed by using a standard Gibbs sampler. The full conditionals for θkl’s, k =

1, . . . , K, l = 1, . . . , L, can be obtained as (conditionally) independent Beta densities

θkl|Z1, Z2, X ∼ B
(

akl +∑
i,j

XijI(Z1i = k, Z2j = l),

bkl +∑
i,j
(1− Xij)I(Z1i = k, Z2j = l)

)

whereZ1 = {Z1i; i = 1, . . . , I},Z2 = {Z2j; j = 1, . . . , J} and I(•) is the indicator function. The

full conditionals of π1 and π2 are (conditionally) independent Dirichlet distributions

given by

π1|Z1 ∼ Dir
(

α1k + ∑
i,j
I(Z1i = k); k = 1, . . . , K

)
,

π2|Z2 ∼ Dir
(

α2l + ∑
i,j
I(Z2j = l); l = 1, . . . , L

)
.

Finally, the full conditionals of (Z1i, Z2j) can be obtained as

p(Z1i = k,Z2j = l|π1,π2,θ, Xij) =
θ

Xij
kl (1− θkl)

1−Xij π1k π2l

∑K
r=1 ∑L

c=1 θ
Xij
rc (1− θrc)

1−Xij π1r π2c

. (5.2)

This algorithm provides a co-cluster of providers and procedures to reveal the common

billing patterns. The inference carried out observing the posterior conditional distribu-

tion of θ enables the user to describe the expected billing pattern of a given provider.

Next, the discrepancies between the expected behavior and the actual behavior of a given

provider can provide investigative leads. For a given billing; if the provider does not
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Figure 2: Posterior distributions of the memberships for Provider 100 and Procedure
64941

behave similar to his co-cluster; this may reveal a potential fraudulent behavior.

For demonstration, we rearrange the publicly available CMS data and focus on billings

from the anesthesiologists in the state of Texas who provide services in a facility. We ex-

amine the providers that have billed for at least 10 unique procedures and the procedures

that are billed by at least 20 unique providers. This results in a binary billing matrix that

lists whether each of 94 procedures are billed by 376 providers.

The number of clusters are assumed as K = 3 and L = 2. The algorithm is run

for 20, 000 iterations, and 2, 000 samples are used for posterior analysis within a Markov

chain Monte Carlo simulation framework. The most frequent occurrences between this

provider-procedure pair are found to be in co-cluster (3, 1). Let’s assume we assess the

billing of Procedure 64941 that corresponds to facet joint injection by Provider with ID

100. The posterior distributions of their memberships are shown in Figure 2. The poste-

rior modes are Z1,100 = 3 and Z2,64941 = 1. This points out to the co-cluster that has the

highest association with a billing. Therefore, we can argue that this is more likely to be

a legitimate billing. However, if the Procedure 64941 was billed by provider i with the

posterior mode Z1,i = 2, that could have been argued to be less likely and a potential

candidate for investigation.

The assumptions of this model can easily be relaxed. For instance, the numbers of

clusters K and L are assumed to be known. Estimation of K and L can be considered as a
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model selection problem and comparison of the marginal likelihoods, p(X |K, L) for dif-

ferent models where each model is defined by the specific values (K, L) can help with the

choice of K and L. However, in many problems marginal likelihood is not available in

an analytical form and its evaluation using posterior Monte Carlo samples is not a trivial

task. In cases where all full conditional distributions are known, it is possible to approxi-

mate the marginal likelihoods from the posterior samples as outlined in Chib (1995). Ekin

et al. (2017a) illustrate such an extension for the Bayesian co-clustering model.

Another natural extension is to introduce covariates to model the probabilities θ, which

can be accomplished by using a logit or probit transformation on components of θ. More

specifically, let Y ij denote the m-dimensional covariate vector associated with the char-

acteristics of the provider i, procedure j as well as their common characteristics. Since

elements of θ are now functions of Y ij’s we denote them by θkl(Y ij) = θ
ij
kl. Ekin et al.

(2017a) discuss the probit case:

θ
ij
kl = Φ(Y ij βkl)

where Φ is the standard normal distribution function. This probit model also enables to

use a full Gibbs sampler without a Metropolis step (Albert and Chib (1993)) to draw the

parameter vector, βkl.

In terms of computational requirements, it should be noted that Bayesian co-clustering

generally requires data pre-processing. The medical claims data are mostly provided in

the form of rows of claims that include the HCPCS and NPI codes. Therefore, the user

needs to check if there is a billing between each provider-procedure pair in the attempt of

constructing a binary provider-procedure matrix. Finally, practical Markov chain Monte

Carlo simulation convergence needs to be attained in order to draw from the distributions

that are not analytically available. This can especially be computationally challenging

in very heterogenous and sparse data sets. As a potential remedy, methods based on

variational inference can be utilized for approximation of integrals. Overall, Bayesian

co-clustering may be helpful to reveal relationships between dyadic data pairs which

would otherwise remain hidden. However, in the presence of big data, one should be
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aware of potential issues such as identifiability of parameters and computational time for

convergence.

6 Directions for Future Research

The use of statistical methods such as sampling and data mining have been extensively

explored in the domain of medical fraud assessment. However, the complex nature of

claims data and heterogenity of medical systems would still benefit from new methods.

The integration of statistical methods within decision making frameworks is one such

area. We also believe Bayesian approaches have the potential to be beneficial in a number

of ways. Models for causality and dyadic medical data are also understudied compared

to the fraud detection efforts in other fields. This section provides directions for future

research.

6.1 Integrated Medical Audit Decision Making

Fraud detection and the respective audit activities are typically costly and they can benefit

from integrated approaches to utilize the limited resources efficiently. U.S. Governmental

Accountability Office (GAO (2012)) highlights the need for measures to determine the

effectiveness of the medical assessment methods. However, the integration of statistical

methods and actual decision making by experts is a challenging and understudied step

in the overall fraud assessment procedure.

The results of supervised methods can be used for prediction directly, and there are

a number of performance evaluation methods available despite the limited number of

integrated studies. Ortega et al. (2006) provide a discussion about incorporation of their

method to the decision flow. Their method assigns fraud probabilities to each form act-

ing like a pre-screen filter. Then, they utilize a Receiver Operating Characteristic (ROC)

curve based approach to consider cost structures such as personnel salaries and false

alarms. Shin et al. (2012) propose a scoring and segmentation model. Capelleveen (2013)

recommend the use of outlier based methods as decision supportive technologies for re-
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source allocation of medical audits. Cost performance, percentage of false positives and

false negatives (sensitivity and specificity of the method), historical predictive power of

the model, deviation from the average are recommended to be considered while incor-

porating the statistical outputs to the decision support system (Capelleveen (2013)). The

use of clinical pathways in an attempt to standardize the medical decision making (Yang

and Hwang (2006)) can be important especially for well-established domains. Other than

these studies, evaluation of fraud detection algorithms and their use in decision making

procedures have not been given enough consideration. As pointed out by Rashidian et al.

(2012), there is a lack of evidence on the effectiveness of the health care fraud intervention

strategies. Especially in the case of unsupervised methods, the requirement of another

level of investigation and domain expertise to determine the legitimacy of the claims is

not formalized. Such a recent attempt is the Analytical Hierchary Process based method

of Hillerman et al. (2017) which can be used to rank the providers and determine outliers.

This can help prioritize the leads that are retrieved from the unsupervised method.

Even a simple decision analysis setup can be useful for evaluation of medical fraud

detection tools and utilization of their output. Fraud detection tools can be compared

with respect to their expected utilities and costs. Decision theoretic approaches have been

considered in evaluation of fraud detection algorithms in the fields of financial and auto

insurance. For example, Phua et al. (2010) provide a discussion of performance measures

for different fraud detection algorithms using examples from auto insurance fraud. In

addition to the evaluation of accuracy with error based methods, cost based metrics such

as ROC analysis are also considered in performance evaluation. ROC analysis plots the

costs of different true positive (correct identification of fraud) and false positive (incor-

rect identification of fraud) rates. In a review of financial fraud detection methods, Ngai

et al. (2011) point out that the cost of false negatives (misclassifying a fraudulent case as

normal) can be higher than the cost of false positives. These false negatives result in op-

portunity costs and construction of more complex policies against fraud. Decision anal-

ysis tools have been considered in Ulvila and Gaffney Jr (2004) for evaluating computer

intrusion detection systems. The authors present an integration of ROC analysis and cost

analysis to develop an expected cost metric. In so doing, they also demonstrate how
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decision trees can be used to combine these two tools. A decision theoretic approach is

considered in Torgo and Lopes (2011) which addresses the prioritization of investigation

leads to audit first for potential fraud given limited resources. A utility based fraud detec-

tion model is proposed, providing rankings ordered by decreasing expected outcome of

inspecting the potentially fraudulent cases. Their outcome is affected by the likelihood of

fraud, inspection costs and expected payoff. This idea may be extended to medical fraud

assessment as auditors similarly rank the claims with respect to the payment amounts

and may generally not be interested in the claims with low payments considering the

potential low savings. A more formal expected utility based approach is introduced by

Dionne et al. (2009) for optimal auditing in auto insurance fraud cases.

These decision-theoretic approaches or their extensions are applicable to medical fraud

assessment. For instance, a typical fraud detection algorithm may provide the probability

of fraud or risk score of a claim. Let P(DF) denote the probability of the event DF that the

detection tool predicts fraud. Its complement DF denotes the event that the tool predicts

no fraud and has probability (1− P(DF)). Prior to the prediction by the detection tool, the

decision maker has prior probability P(F) for the case being fraudulent, F. The decision

maker’s probabilities of the case being fraudulent (F) or not (F) are conditional on the

detection tool’s prediction. Thus, once prediction is provided by the tool, this probability

can be revised accordingly to the posterior probabilities via the Bayes’ rule

P(F|DF) =
P(DF|F)P(F)

P(DF)
.

In the above P(DF) can be simply written as

P(DF) = P(DF|F)P(F) + P(DF|F)P(F)

where P(DF|F) is referred to as the sensitivity of the tool and P(DF|F) is referred to as the

probability of false positive. Similarly in evaluating P(DF) we have

P(DF) = P(DF|F)P(F) + P(DF|F)P(F)
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where P(DF|F) is called the specificity of the tool and P(DF|F) is the probability of false

negative. These error probabilities P(DF|F) and P(DF|F) are also used in ROC analysis.

Given the prediction of the detection tool, the action chosen by the decision maker and

outcome of the case collectively define the consequence. Let’s denote the actions of audit

and no audit by A and A respectively. For instance, if the detection tool prediction is

fraud and the decision maker chooses to audit then the consequence depends on whether

the case is fraudulent or not. We can denote these consequences with the utility terms

u(DF, A, F) and u(DF, A, F). The first term u(DF, A, F) reflects the benefits of correct pre-

diction by the tool, correct action by the decision maker and the cost of audit whereas

u(DF, A, F) reflects the costs of audit and the false positive.

Such Bayesian updating and simple decision analysis tools can be used to compare

the performance of fraud detection tools. It has been successfully implemented in sup-

porting management decisions in healthcare organizations, in evaluation of healthcare

providers and in helping physicians in identifying effective treatments (see the examples

in Spiegelhalter et al. (2004) and Faltin et al. (2012)). Bayesian decision analysis can help

to incorporate subjective knowledge especially for borderline cases that require expertise

(Berger (2013)). However, it should be noted that the investigators should be careful about

the legal framework such as assuming all providers are initially assumed to be innocent.

Li et al. (2008) argue that the research efforts to detect conspiratorial fraud, for which

insurer, patient and provider may conduct collobarative fraud, can be very rewarding.

This still has not been adressed. Another wide-spread concern in industry is the ability of

fraudsters to adapt to algorithms and policy changes. This makes especially supervised

algorithms obsolete after a while, since training data sets have an expiration date because

of changing fraud patterns. For these purposes, we believe game theoretic approaches

can be useful. For instance, adversarial risk analysis (Rios Insua et al. (2009)) can be

suitable for more sophisticated fraud schemes. These methods are adaptive to dynamic

fraud patterns and adjustments of fraudsters. Another consideration to combat changing

fraud schemes can be social network based methods, as argued by an official from a state

Medicaid program (GAO (2012)).
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6.2 Bayesian Approaches

In addition to their potential advantages in decision analysis, Bayesian approaches can

also be beneficial in other ways as part of medical fraud assessment frameworks. Bayesian

estimation and inference has a number of advantages in statistical modeling and data

analysis (Congdon (2007). It can provide probability interpretations on quantities of in-

terest such as hypotheses, intervals of parameters, membership of a subject and model se-

lection (Jackman (2009)). For instance, probabilistic assessment of fraud can be retrieved

and revised based on new data and expert knowledge. Probabilistic inference can be ben-

eficial while profiling the providers and assessing their differences from their benchmark

group for potential outlier detection.

Bayesian methods provide tools to work within hierarchical settings such as random

effect models that account for variability of a given parameter across a number of groups

(Gelman et al. (2014)). For instance, the multinomial Bayesian latent variable model of

Bayerstadler et al. (2016) uses covariate information to predict fraud probabilities within a

supervised framework. An unsupervised alternative would be to extend latent Dirichlet

allocation (Blei et al. (2003)) to identify hidden patterns among providers and medical

procedures. Bayesian nonparametrics could also be useful in identifying homogenous

groups of providers such as exploiting the clusterization naturally implied by Dirichlet

process mixtures.

Another potential advantage is the learning aspect of Bayesian approaches. For in-

stance, despite the extensive use of sampling in medical audits, there is not a framework

that enables the auditors to utilize all the information from the available samples. Learn-

ing about the general population by using already audited samples within a iterative

sampling framework can be beneficial. Measuring the information gain of a prospective

sample can help the auditor to allocate resources more efficiently. One such approach

would be to use an iterative stratified sampling framework that uses Lindley’s entropy-

based information measure (Lindley (1956)) to evaluate the expected amount of informa-

tion from the next sample. Learning about patterns can also be considered in the context

of overpayment estimation and modeling. Novel overpayment models that use Bayesian
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inference can be proposed to quantify learning about the parameters of the overpayment

distribution. The natural updating mechanism enables the auditor to combine sources of

information and analyze adaptive fraudulent behavior. Lastly, Bayesian approaches also

handle missing values in a straightforward manner.

6.3 Modeling Extensions

Most of the statistical medical assessment literature is focused on data mining methods

which aim to identify potential fraudulent claims. Li et al. (2008) argue that there has

been a lack of research in causal models that aim to identify the drivers of fraud, and the

literature has not improved a lot in the last decade.

Musal (2010) use regression models with dummy variables for geographic analysis

of potential fraud. Although logistic regression has been employed as a classification

approach within supervised methods, the causal relationship is not generally reported.

Liou et al. (2008) use step-wise logistic regression to identify the most effective factors for

the claims of patients with diabetes. They also suggest that sensitivity analyses can be

conducted for neural networks to understand the drivers of fraud despite the fact that

the significance of individual variables to fraud cannot be specified.

On the other hand, the literature of causal models against other types of fraud is more

established. For instance, Viaene et al. (2004) use logistic regression in classification of

automobile insurance claims. Logistic regression model has also been used to detect

factors associated with fraudulent financial statements (Yue et al. (2009)). El Bachir Bel-

hadji and Tarkhani (2000) identify indicators of insurance fraud using a regression model.

Bermúdez et al. (2008) propose a Bayesian skewed logit model for fraud data. In addi-

tion to these regression models, hidden Markov models are proposed to detect credit card

fraud (Srivastava et al. (2008)). We believe these approaches are worthwhile investigating

for the medical fraud data.

Models that utilize dyadic representation of medical data can be useful to capture

pairwise relationships and provide novel insights. Dyadic medical data such as the num-

ber of claims processed and the monetary charges associated with provider-patient pairs
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may be of interest. One potential model is to focus on the relationship between provider

types and the counts and types of services they bill for. Such a Poisson based cocluster-

ing model can be used to signal fraudulent collective activities among providers such as

kickback payments and abnormal referral rates. FBI has suggested that high or very low

referral rates may signal fraud (FBI (2013)). Therefore, the referral rates among providers

can be further analyzed to understand the processes. It can also be utilized to model mon-

etary amount data which can reveal the patterns of charging for excessive or unnecessary

services.

7 Conclusion

This paper provides a comprehensive survey of statistical medical fraud assessment. Af-

ter providing a description of the medical data, statistical methods are discussed with a

focus on sampling, overpayment estimation and data mining. We present illustrations of

recently proposed unsupervised methods using real world medical claims data. In ad-

dition, we provide a discussion of a number of potential directions for future research,

including decision analytic and Bayesian approaches.

Data related issues such as restricted funding, concerns about privacy of the data, in-

complete data, poor integration of available data are among the biggest challenges of the

widespread application of these statistical methods. Access to medical data sets have

been relatively limited due to legal, privacy and competitive reasons. Governmental

health organizations and private insurance companies aim to provide more opportuni-

ties for researchers to access the medical data they possess. The Research Data Assistance

Center (CMS (2016c)) is a CMS contractor that provides assistance in using Medicare and

Medicaid data for research purposes under certain conditions. It should be noted that

Medicare and Medicaid programs are limited to certain population groups such as peo-

ple who are over 65 or people who are below a certain income level. Therefore, only one

third of U.S. citizens have access to these governmental programs. With these limitations

in mind, Health Care Cost Institute was founded by researchers and some private insurers

to understand the drivers of health care costs and utilization using private insurance data
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(HCCI (2016)). Another institution which may provide researchers information about

disease specific fraud patterns is Centers for Disease Control and Prevention. In order

to overcome data availability issues, researchers can choose to work with synthetic data.

Data fusion methods may also help integrate publicly available data sources. Another

issue is the challenge of forming teams that have both the required medical knowledge

and the statistical expertise. Data privacy also becomes a concern within the integrated

teams. Traceable medical data should always be secured and accessed with respect to the

appropriate protocols.

Ability to detect new fraud patterns and misclassification remain important statistical

issues in the supervised methods. There should be more generic rules in integration of dif-

ferent methods for better classification. After a fraud type is detected by investigators, it

will be less likely to be used again as fraudsters will try other means. Legitimate patterns

also can shift as insurance plans are updated in the competitive health care market. As

new data become available, parameters need to be retrained or tuned accordingly. There-

fore, a fraud system is preferred to have self learning and evolving capabilities to adapt

to changing patterns. Unsupervised data mining methods should be considered more be-

cause of their ability to model dynamic changing fraud patterns with smaller costs. It is

also pointed out that there is also lack of research in identifying potential drivers of fraud

and prediction of fraud using these identifiers.

The increase in computational power and speed of accessing databases and perform-

ing data analysis make real time pre-payment monitoring and analysis more feasible.

Learning based methods can be preferred because of the power of natural updating and

adaption despite the expense of computational challenges. However, even when fully

automating a decision process is possible, legal and ethical concerns may still warrant

auditors to act as the active responsibles.

Post-payment fraud analysis should be done with caution because of the heteroge-

neous nature of medical claims data. Both false negatives and false positives are crucial

and costly. False negatives result in misclassifying fraudulent cases as legitimate, and

lead to undeserved payments. Whereas, false positives correspond to improper identi-

fication of suspect providers that are not engaged in fraud. This can change the public
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opinion of a physician and can have adverse effects. Models should not be applied na-

tionwide without considering local conditions. The level of aggregation may turn out to

be important. The decision maker also should be aware of the legal and ethical aspects

while using metrics. Issar (2015) discusses such concerns and analyze the admissibility of

statistical proof for medical reimbursement.

Statistical medical fraud assessment approaches should complement medical preven-

tion, detection and response efforts. While fraud detection involves identifying fraud as

quickly as it has occurred, fraud prevention describes the measures to stop fraud from

occurring in the first place. Therefore, creating an anti-fraud culture, improving internal

compliance systems have long term effects against fraud. Response efforts include im-

proving the system or law enforcement initiatives to reduce the chances of future fraud.

Fraud assessment both affects and is affected by the changes in policy. Despite that, most

of the literature have not reported the practical implications of their findings for health

care managers and decision makers. There needs to be more collaboration among the

relevant parties of medical insurance programs.
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