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Abstract

Topology changes in multi-phase fluid flows are difficult to model within a tradi-
tional sharp interface theory. Diffuse interface models turn out to be an attractive
alternative to model two-phase flows. Based on a Cahn–Hilliard–Navier–Stokes model
introduced by Abels, Garcke and Grün (Math. Models Methods Appl. Sci. 2012),
which uses a volume averaged velocity, we derive a diffuse interface model in a Hele–
Shaw geometry, which in the case of non-matched densities, simplifies an earlier model
of Lee, Lowengrub and Goodman (Phys. Fluids 2002). We recover the classical Hele–
Shaw model as a sharp interface limit of the diffuse interface model. Furthermore,
we show the existence of weak solutions and present several numerical computations
including situations with rising bubbles and fingering instabilities.
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1 Introduction

Interfaces in fluid flow play an important role in many applications. A mathematical
description of such phenomena typically involves highly nonlinear equations due to the
unknown interfaces. Two-phase flow in the special case of a Hele–Shaw cell which involves
the slow flow of a fluid between two parallel flat plates which are fixed at a small distance
apart still contains many ingredients of more complicated systems. Especially interesting
instabilities like the Saffman–Taylor fingering instability [48] can occur and this instability
has important applications in technology. We refer for example to the analogy of the Hele–
Shaw cell to instabilities that appear when one tries to extract residual oil from a porous
rock, see [52, 53]. Water is pumped into the porous rocks to direct the oil to the producing
wells, but it was observed that a lot of oil remained in the ground when the water appeared
at the wells. One explanation of this phenomenon was attributed to the instabilities of
the oil-water interface, which allowed the water to flow through the porous rocks without
displacing much of the oil.

In a sharp interface description, the Hele–Shaw model is given as follows. The overall
domain Ω is occupied by two fluids, modeled as time-dependent disjoint regions Ω1 and Ω2,
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which are separated by a time-dependent hypersurface Σ. Introducing the fluid velocity v,
the viscosities ηi and densities ρi, i = 1,2, (which can be different in the two phases), the
pressure p, the gravity vector g = gĝ with modulus g and unit vector ĝ, the unit normal
ν on Σ pointing into Ω2, one has to study the following set of equations:

divv = 0 in Ω1 ∪Ω2, (1.1a)

12η1v = −∇p + ρ1g in Ω1, (1.1b)

12η2v = −∇p + ρ2g in Ω2, (1.1c)

[v]2
1 ⋅ ν = 0 on Σ, (1.1d)

[p]2
1 = σκ on Σ, (1.1e)

V = v ⋅ ν on Σ. (1.1f)

Here, [⋅]
2
1 denotes the jump across the interface, σ is the surface tension, κ is the mean

curvature and V is the normal velocity. These equations can be derived from more complete
models involving the (Navier–)Stokes equations in situation where the flow is slow (small
Reynolds number) and is confined between two parallel plates at a small distance apart,
see for example [43].

Such a sharp interface description breaks down when the topology of the interface
changes. As a remedy, various diffuse interface models have been introduced to describe
incompressible two-phase flows. A first model restricted to equal densities was introduced
by Hohenberg and Halperin [32], while a first diffuse interface model for two-phase flow
allowing for a density contrast was introduced by Lowengrub and Truskinowsky [40].
However, the model in [40] leads to a velocity field which is not divergence-free (solenoidal)
although both individual fluids are. Let us remark that Lowengrub and Truskinowsky used
a mass averaged velocity field to define their diffuse interface model. More recently, Abels,
Garcke and Grün [3] introduced a diffuse interface model with a divergence-free velocity
field which also allows for different densities.

We base our derivation of a diffuse interface model for a Hele–Shaw cell on the Cahn–
Hilliard–Navier–Stokes model of [3], which in nondimensional form reads as

divv = 0, (1.2a)

∂t(ρ∗(ϕ)v) + div (ρ∗(ϕ)v ⊗ v) −∇p =
1

Re
div (2η∗(ϕ)Dv) +G (1.2b)

−
ε

Ca
div (∇ϕ⊗∇ϕ) +

ρ2−ρ1

2ρ2
div (m(ϕ)v ⊗∇µ),

∂●tϕ = div (m(ϕ)∇µ), (1.2c)

µ =
1

ε
Ψ′

(ϕ) − ε∆ϕ, (1.2d)

with suitable boundary and initial conditions. Here, ϕ is an order parameter which rep-
resents the difference in the volume fractions, such that {ϕ = −1} represents fluid 1 and

{ϕ = 1} represents fluid 2. The function ρ∗(ϕ) =
ρ2−ρ1

2ρ2
ϕ +

ρ2+ρ1

2ρ2
is the nondimensional-

ized density of the fluid mixture, Dv = 1
2(∇v + (∇v)⊺) is the symmetric gradient for the

volume-averaged velocity v, p denotes the pressure, η∗(ϕ) =
η2−η1

2η2
ϕ + η2+η1

2η2
is the nondi-

mensionalized viscosity of the mixture, Re denotes the Reynolds number, Ca denotes the
capillary number, ε > 0 is a (small) parameter related to the thickness of the interfacial
regions, Ψ′ is the derivative of a potential Ψ which has equal minima at ±1, µ is the chem-
ical potential, m(ϕ) is a non-negative mobility which, in the case of a constant mobility
m(ϕ) =m, can be seen as the reciprocal of the Pélect number Pe, ∂●tϕ = ∂tϕ+∇ϕ ⋅v is the
material derivative of ϕ, and G denotes an external body force.
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We will show, via a formal asymptotic analysis, that for slow flow in a Hele–Shaw cell
geometry the above model leads to a Hele–Shaw–Cahn–Hilliard model

divv = 0, (1.3a)

12η∗(ϕ)v = −∇p +G −
ε

Ca
div (∇ϕ⊗∇ϕ), (1.3b)

∂●tϕ = div (m(ϕ)∇µ), (1.3c)

µ =
1

ε
Ψ′

(ϕ) − ε∆ϕ, (1.3d)

which inherits a divergence-free velocity field from the Cahn–Hilliard–Navier–Stokes model
(1.2). In this paper, we will study the model (1.3) in detail both from an analytical and
also from a numerical point of view.

An earlier Hele–Shaw–Cahn–Hilliard model was introduced by Lee, Lowengrub and
Goodman [36, 37]. However, they used the Cahn–Hilliard–Navier–Stokes model of Lowen-
grub and Truskinovsky [40] as a basis and obtained

divv −
α

Pe
∆µ = 0, (1.4a)

ρ(c)(∂tc +∇c ⋅ v) −
1

Pe
∆µ = 0, (1.4b)

v +
1

12η(c)
(∇p +

Ch

Ma
div (ρ(c)∇c⊗∇c) − ρ(c)ĝ) = 0, (1.4c)

µ − f ′0(c) +
Ch

ρ(c)
div (ρ(c)∇c) −Maαp = 0, (1.4d)

where Pe is the Pélect number, Ch is the Cahn number, Ma is the Mach number, c is the
mass concentration of fluid 1, so that {c = 1} represents fluid 1 and {c = 0} represents fluid
2, ρ(c) is the total density, α is the difference between the reciprocals of the actual mass
densities of the fluid, f0(c) = c

2(1 − c2) is a potential with two minima at c = 0 and c = 1,
η(c) = η1c+ η2(1− c) is the interpolation of the two viscosities, and ĝ is the unit vector of
gravity. We refer the reader to Section 2.3 for more details.

It is important to note that the velocity v in (1.4) is the mass-averaged velocity, which
is in contrast to the volume-averaged velocities in (1.2) and (1.3). One observes that the
mass-averaged velocity is not divergence-free and that the pressure p enters the equation
for the chemical potential (1.4d). These facts make the analysis and the numerical ap-
proximation of this model quite involved. We remark that Lee, Lowengrub and Goodman
derived (1.3) from (1.4) in the case where a Boussinesq approximation is valid, i.e., the
deviation of ρ from its spatial average needs to be small which basically means that the
densities of the two fluids are very close. Our derivation however is valid for any density
contrast among the fluids.

We spatially approximate the Hele–Shaw–Cahn–Hilliard equations by means of NURBS-
based Isogeometric Analysis [16, 33] as it allows a straightforward construction of the finite
dimensional function spaces for high order problems [31, 50]. Indeed, in this paper, we
formulate the Hele–Shaw–Cahn–Hilliard model (1.3) in terms of the pressure p and order
parameter ϕ, thus yielding a fourth order problem in the latter variable. In this respect,
our finite dimensional function spaces are built out of globally C1-continuous B-spline ba-
sis functions of degree 2 [44]. For the time discretization, we use Backward Differentiation
Formulas (BDF) of order 2 [45] with equal order extrapolation of the unknowns to obtain
a semi-implicit formulation of the full discrete problem as e.g. in [22].

Finally, we propose and discuss numerical results for two benchmark problems: the
rising bubble and viscous fingering tests [34, 36].
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The outline of this paper is as follows: In Section 2 we derive (1.3) from (1.2) by means
of a formal asymptotic analysis. In Section 3, we derive the sharp interface limit of (1.3)
and prove the existence of weak solutions to (1.3). In Section 4 we present the numerical
scheme for (1.3) reformulated in terms of the pressure p and the order parameter ϕ, and
in Section 5 we present and discuss the numerical results.

2 Derivation of the Hele–Shaw–Cahn–Hilliard model

2.1 A Navier–Stokes–Cahn–Hilliard model for incompressible two-phase
flows

We start from the volume-averaged velocity model introduced by Abels, Garcke and Grün
in [3]: For fluid i, i = 1,2, let ρi denote the actual mass density, ρi the density of a pure
component, ui ∶=

ρi
ρi

the volume fraction, vi the individual velocity, and ηi the viscosity.

The volume-averaged velocity for the fluid mixture is defined as

v = u1v1 + u2v2.

We define the order parameter ϕ as the difference in the volume fractions, i.e., ϕ = u2−u1,
then we obtain the following system of equations:

divv = 0, (2.1a)

∂t(ρ(ϕ)v) + div (ρ(ϕ)v ⊗ v) = div (2η(ϕ)Dv) −∇p +G (2.1b)

− σεdiv (∇ϕ⊗∇ϕ) +
ρ2−ρ1

2 div (m(ϕ)v ⊗∇µ),

∂●tϕ = div (m(ϕ)∇µ), (2.1c)

µ =
σ

ε
Ψ′

(ϕ) − σε∆ϕ. (2.1d)

Here, ρ(ϕ) =
ρ2−ρ1

2 ϕ +
ρ2+ρ1

2 is the density of the fluid mixture, Dv = 1
2(∇v + (∇v)⊺) is

the symmetric gradient, p denotes the pressure, η(ϕ) =
η2−η1

2 ϕ +
η2+η1

2 is the viscosity
of the mixture, σ is a constant related to the surface energy density, ε > 0 is a (small)
parameter related to the thickness of the interfacial regions, Ψ′ is the derivative of a
potential Ψ which has equal minima at ±1, µ is the chemical potential, m(ϕ) is a non-
negative mobility, ∂●tϕ = ∂tϕ + ∇ϕ ⋅ v is the material derivative of ϕ, and G = G(ρ(ϕ))
denotes a body force which may depend on the density. The example we have in mind
refers to the gravitational force and reads:

G(ϕ) = ρ(ϕ)gĝ, (2.2)

where the unit vector ĝ indicates the direction of gravity and g is the modulus.
The model (2.1) consists of the Navier–Stokes equations coupled with a Cahn–Hilliard

system. The capillary forces due to surface tension are modeled by the term σεdiv (∇ϕ⊗

∇ϕ), and the term
ρ2−ρ1

2 div (m(ϕ)v ⊗ ∇µ) accounts for the effects of non-matched fluid
densities. We point out that the simple form for continuity equation (2.1a) is due to the
choice of v as the volume-averaged velocity, when compared for instance to the approach
of Antanovskii [8] and Lowengrub and Truskinovsky [40], where a mass-averaged velocity
is used and leads to a more complex expression for the continuity equation.

Furthermore, (2.1) satisfies the energy equality

d

dt
∫

Ω
(
ρ

2
∣v∣2 +

σ

ε
Ψ(ϕ) +

σε

2
∣∇ϕ∣2) dx + ∫

Ω
(2η ∣Dv∣2 +m ∣∇µ∣2) dx = ∫

Ω
G ⋅ v dx ,
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when we complement (2.1) with the boundary conditions

∂νϕ = ∇ϕ ⋅ ν = 0, ∂νµ = 0, v = 0

on the boundary Γ of the bounded domain Ω ⊂ Rd, d = 1,2,3, under consideration. Here
ρ
2 ∣v∣2 denotes the kinetic energy of the fluid mixture, 1

εΨ(ϕ) + ε
2 ∣∇ϕ∣2 is the Ginzburg–

Landau energy density, and its product with σ approximates the surface energy density in
the limit ε→ 0, cf. [42]. The total energy (consisting of the kinetic energy and the surface
energy) is dissipated by viscous stress and diffusion, given by the second integral on the
left-hand side. We also obtain energy contributions via the body force G in the form of
the right-hand side. For the existence of weak solutions to (2.1) we refer to the work of
Abels, Depner and Garcke [1, 2].

2.2 Nondimensionalization and the Hele–Shaw approximation

We now follow the procedure outlined in [43, Chapter 4], and consider the Navier–Stokes–
Cahn–Hilliard equations (2.1) with the body force G given as in (2.2) in a domain Ω ⊂ R3

which occupies a region in between two rigid walls, one at {x3 = 0} and one at {x3 = H},
for some H > 0. To be precise, we assume that Ω = Ω′ × (0,H) with a domain Ω′ ⊂ R2.

We consider a characteristic length L and a characteristic velocity V . We denote by
δ = H

L ≪ 1 the ratio between the height H and the characteristic length L in the (x1, x2)-

directions. We set T = V
L as the characteristic time scale and, due to the geometry of the

domain under consideration, we rescale the third component of the spatial variable and
the third component of the velocity by δ. That is,

xi = Lxi,∗, vi = V vi,∗, for i = 1,2,

x3 = δLx3,∗, v3 = δV v3,∗,

where the variables with ∗-subscript denote nondimensionalized variables. In the following,
we use the notation ∂i ∶= ∂xi,∗ for i = 1,2,3, and ∇∗ = (∂1, ∂2, ∂3 )

⊺. Let us consider a
constant mobility m(ϕ) =m and define

ε = ε∗L, µ =
σ

L
µ∗, Pe =

V L2

σm
,

where Pe is the Pélect number. Then, the Cahn–Hilliard part (2.1c)-(2.1d) and the Neu-
mann boundary conditions become

∂t∗ϕ +∇∗ϕ ⋅ v∗ =
1

Pe
(∂2

1µ∗ + ∂
2
2µ∗ +

1

δ2
∂2

3µ∗) in Ω, (2.3a)

µ∗ =
1

ε∗
Ψ′

(ϕ) − ε∗ (∂
2
1ϕ + ∂

2
2ϕ +

1

δ2
∂2

3ϕ) in Ω, (2.3b)

0 = ∂1ϕν1 + ∂2ϕν2 +
1

δ
∂3ϕν3 on Γ, (2.3c)

0 = ∂1µ∗ν1 + ∂2µ∗ν2 +
1

δ
∂3µ∗ν3 on Γ. (2.3d)

Since v∗, ϕ, and µ∗ depend on δ via the third spatial component, we assume that there
exists an asymptotic expansion in δ, i.e.,

vj,∗ = vj,0 + δvj,1 + δ
2vj,2 + h.o.t., for j = 1,2,3,

ϕ = ϕ0 + δϕ1 + δ
2ϕ2 + h.o.t.,

µ∗ = µ0 + δµ1 + δ
2µ2 + h.o.t..
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We will substitute these expansions into (2.3) and solve them order by order. On the
surfaces {x3,∗ = 0} and {x3,∗ = 1}, as ν1 = ν2 = 0 we obtain from (2.3c)-(2.3d) for all orders
j = 0,1,2 . . . ,

∂3ϕj(x1,∗, x2,∗,0) = ∂3µj(x1,∗, x2,∗,0) = 0,

∂3ϕj(x1,∗, x2,∗,1) = ∂3µj(x1,∗, x2,∗,1) = 0.
(2.4)

Meanwhile, to orders O( 1
δ2 ) and O(1

δ ), we obtain from (2.3a)-(2.3b),

∂2
3µ0 = ∂

2
3ϕ0 = 0, ∂2

3µ1 = ∂
2
3ϕ1 = 0.

Upon integrating with respect to x3,∗ and using the conditions (2.4) we have that µ0, µ1,
ϕ0, and ϕ1 are independent of x3,∗. Then, to order O(1) we obtain from (2.3a)-(2.3b),

∂t∗ϕ0 + ∂1ϕ0v1,0 + ∂2ϕ0v2,0 =
1

Pe
(∂2

1µ0 + ∂
2
2µ0 + ∂

2
3µ2) ,

µ0 =
1

ε∗
Ψ′

(ϕ0) − ε∗ (∂
2
1ϕ0 + ∂

2
2ϕ0 + ∂

2
3ϕ2) .

Integrating the above equations with respect to x3,∗ from 0 to 1, and using the condition
(2.4) leads to

∂t∗ϕ0 + ∂1ϕ0v1,0 + ∂2ϕ0v2,0 =
1

Pe
(∂2

1µ0 + ∂
2
2µ0) , (2.5a)

µ0 =
1

ε∗
Ψ′

(ϕ0) − ε∗ (∂
2
1ϕ0 + ∂

2
2ϕ0) , (2.5b)

where

vj,0(x1,∗, x2,∗) ∶= ∫

1

0
vj,0(x1,∗, x2,∗, s)ds , j = 1,2, (2.6)

denotes the components of the mean velocity v = (v1,0, v2,0)
⊺. In particular, in the limit

δ → 0, we obtain a two-dimensional Cahn–Hilliard system convected by the mean velocity
v and complemented with Neumann boundary conditions on ∂Ω′ from (2.3c)-(2.3d).

For the Navier–Stokes part (2.1a)-(2.1b), the continuity equation after the transfor-
mation becomes

∂1v1,∗ + ∂2v2,∗ + ∂3v3,∗ = 0. (2.7)

From the above computation with the Cahn–Hilliard part, we expect that a scale factor
of 1

δ2 will appear from the term div (2η(ϕ)Dv) in (2.1b). Thus, in order to retain the
pressure, the body force and the capillary term in the limit δ → 0, we set

ρ(ϕ) = ρ2ρ∗(ϕ), η(ϕ) = η2η∗(ϕ), p =
η2V

Lδ2
p∗, G = ρ2gρ∗(ϕ)ĝ,

and define

Ca =
V η2

δ2σ
, Re =

ρ2V L

η2
, Bo =

δ2ρ2gL
2

η2V

where the capillary number Ca is the ratio between viscous forces and surface tension,
the Reynolds number Re is the ratio between inertial forces and viscous forces, and the
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Bond number Bo is the ratio between gravitational forces and viscous forces. We now
nondimensionalize the first component of the momentum equation (2.1b):

0 = Re (∂t∗(ρ∗v1,∗) + (v∗ ⋅ ∇∗)(ρ∗v1,∗)) +
1

δ2
∂1p∗ −

Bo

δ2
ρ∗ĝ1

+
ε∗
δ2Ca

(∂1(∂1ϕ∂1ϕ) + ∂2(∂1ϕ∂2ϕ) +
1

δ2
∂3(∂1ϕ∂3ϕ))

− (∂1(2η∗∂1v1,∗) + ∂2(η∗(∂1v2,∗ + ∂2v1,∗) + ∂3 (η∗ (∂1v3,∗ +
1

δ2
∂3v1,∗)))

−
Re

Pe

1 − λρ

2
(∂1(v1,∗∂1µ∗) + ∂2(v1,∗∂2µ∗) +

1

δ2
∂3(v1,∗∂3µ∗)) ,

(2.8)

where λρ =
ρ1

ρ2
denotes the density ratio. We point out that, in the case ρ2 ≥ ρ1, i.e., fluid

2 is the heavier fluid, then the Atwood number A ∶=
ρ2−ρ1

ρ2+ρ1
can be expressed as A =

1−λρ
1+λρ

.

Similarly, for the second component of the momentum equation (2.1b) we obtain

0 = Re (∂t∗(ρ∗v2,∗) + (v∗ ⋅ ∇∗)(ρ∗v2,∗)) +
1

δ2
∂2p∗ −

Bo

δ2
ρ∗ĝ2

+
ε∗
δ2Ca

(∂1(∂2ϕ∂1ϕ) + ∂2(∂2ϕ∂2ϕ) +
1

δ2
∂3(∂2ϕ∂3ϕ))

− (∂1(η∗(∂2v1,∗ + ∂1v2,∗)) + ∂2(2η∗∂2v2,∗) + ∂3 (η∗ (∂2v3,∗ +
1

δ2
∂3v2,∗)))

−
Re

Pe

1 − λρ

2
(∂1(v2,∗∂1µ∗) + ∂2(v2,∗∂2µ∗) +

1

δ2
∂3(v2,∗∂3µ∗)) .

(2.9)

Meanwhile, for the third component of the momentum equation (2.1b) we have

0 = δRe (∂t∗(ρ∗v3,∗) + (v∗ ⋅ ∇∗)(ρ∗v3,∗)) +
1

δ3
∂3p∗ −

Bo

δ2
ρ∗ĝ3

+
ε∗
δ3Ca

(∂1(∂3ϕ∂1ϕ) + ∂2(∂3ϕ∂2ϕ) +
1

δ2
∂3(∂3ϕ∂3ϕ))

− (∂1 (η∗ (
1

δ
∂3v1,∗ + δ∂1v3,∗)) + ∂2 (η∗ (

1

δ
∂3v2,∗ + δ∂2v3,∗)) +

1

δ
∂3 (2η∗∂3v3,∗))

−
Re

Pe

1 − λρ

2
(δ∂1(v3,∗∂1µ∗) + δ∂2(v3,∗∂2µ∗) +

1

δ
∂3(v3,∗∂3µ∗)) .

(2.10)

The no-slip boundary condition becomes

v1,∗ = 0, v2,∗ = 0, v3,∗ = 0 on Γ,

and thus on the surfaces {x3,∗ = 0} and {x3,∗ = 1} we have

v3,0(x1,∗, x2,∗,0) = v3,0(x1,∗, x2,∗,1) = 0. (2.11)

The procedure to obtain a set of equations from the Navier–Stokes part in the limit δ → 0
is similar to what we have performed for the Cahn–Hilliard part. In the following, we will
only sketch the details. Let p∗ = p0 + δp1 + δ

2p2 + h.o.t. denote an asymptotic expansion
of the pressure. Due to the fact that ϕ0 and ϕ1 are independent of x3,∗, to order O( 1

δ3 )

we find that (2.10) yields

∂3p0 = 0,
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and thus p0 is independent of x3,∗. Similarly, thanks to the fact that ∂3ϕ0 = ∂3ϕ1 = ∂3µ0 =

0, to order O( 1
δ2 ) we obtain from (2.8) and (2.9),

0 = ∂ip0 −Boρ∗ĝi +
ε∗
Ca

(∂1(∂1ϕ0∂iϕ0) + ∂2(∂2ϕ0∂iϕ0) + ∂3(∂3ϕ2∂iϕ0)) + η∗∂
2
3vi,0

for i = 1,2. Integrating the above equation with respect to x3,∗ from 0 to 1, and using the
conditions (2.4) and (2.11) leads to

η∗vi,0(x1,∗, x2,∗, s) =
1

2
s(s − 1) (∂ip0 −Boρ∗ĝi +

ε∗
Ca

(∂1(∂1ϕ0∂iϕ0) + ∂2(∂2ϕ0∂iϕ0))) ,

for i = 1,2. Dividing by η∗ and integrating over s from 0 to 1 leads to the equation for the
mean velocity v = (v1,0, v2,0), (recall (2.6)):

vi,0 = −
1

12η∗
(∂ip0 −Boρ∗ĝi +

ε∗
Ca

(∂1(∂1ϕ0∂iϕ0) + ∂2(∂2ϕ0∂iϕ0)))

for i = 1,2. Furthermore, thanks to (2.7) and the condition (2.11), we obtain

0 = ∫
1

0
∂3v3,0(x1,∗, x2,∗, s)ds = −∫

1

0
∑
i=1,2

∂ivi,0(x1,∗, x2,∗, s)ds = −∂1v1,0 − ∂2v2,0.

Thus, from the Navier–Stokes part (2.7)-(2.10) we obtain

divv = 0, (2.12a)

v = −
1

12η∗(ϕ0)
(∇p0 −Boρ∗(ϕ0)ĝ +

ε∗
Ca

div (∇ϕ0 ⊗∇ϕ0)) , (2.12b)

where ∇f = (∂1f, ∂2f)
⊺ denotes the two-dimensional gradient of a scalar function f , and

divf = ∂1f1 + ∂2f2 denotes the two-dimensional divergence of a vector function f . Here,
we reuse the notation ĝ = (ĝ1, ĝ2)

⊺.
Dropping the subscripts and combining (2.5) and (2.12) leads to the following nondi-

mensionalized Hele–Shaw–Cahn–Hilliard model:

divv = 0, (2.13a)

12η(ϕ)v = −∇p +Boρ(ϕ)ĝ −
ε

Ca
div (∇ϕ⊗∇ϕ), (2.13b)

∂tϕ +∇ϕ ⋅ v =
1

Pe
∆µ, (2.13c)

µ =
1

ε
Ψ′

(ϕ) − ε∗∆ϕ, (2.13d)

where div ⋅, ∇⋅, and ∆⋅ are to be interpreted as the two-dimensional divergence, gradient
and Laplace operators, respectively. Using the identity

∇(
1

ε
Ψ(ϕ) +

ε

2
∣∇ϕ∣2) = (

1

ε
Ψ′

(ϕ) − ε∆ϕ)∇ϕ + εdiv (∇ϕ⊗∇ϕ)

and defining the modified pressures

q = p +
1

ε
Ψ(ϕ) +

ε

2
∣∇ϕ∣2 , r = p +

1

ε
Ψ(ϕ) +

ε

2
∣∇ϕ∣2 + µϕ,
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we obtain two variants of (2.13b):

12η(ϕ)v = −∇q +Boρ(ϕ)ĝ +
1

Ca
µ∇ϕ, (2.14a)

12η(ϕ)v = −∇r +Boρ(ϕ)ĝ −
1

Ca
ϕ∇µ. (2.14b)

In the case where there is no density contrast, i.e., ρ1 = ρ2, and the gravitational forces
are neglected, the model (2.13) with (2.14b) has been studied by Wang and Zhang in [55]
concerning strong well-posedness globally in time for two dimensions and locally in time
for three dimensions, and by Wang and Wu in [54] concerning long-time behavior and
well-posedness in three dimensions with well-prepared data.

If, in addition, there is no viscosity contrast, i.e., η1 = η2, then Feng and Wise es-
tablished the global existence of weak solutions in two and three dimensions via the
convergence of a fully discrete and energy stable implicit finite element scheme in [21].
Uniqueness of weak solutions can be shown if additional regularity assumptions on the
solutions are imposed, see [21, Thm. 2.4], and the error analysis of the numerical scheme
is performed in [39]. For the convergence analysis of finite difference schemes, we refer the
reader to [13, 14, 56].

Meanwhile, Bosia, Conti and Grasselli proved that weak solutions to the Cahn–Hilliard–
Brinkman model converge to a weak solution of the Hele–Shaw–Cahn–Hilliard model in
[11]. The Cahn–Hilliard–Brinkman model is a related system where an addition term of
the form −div (νDv) is added to the left-hand side of (2.14b). Here, Dv ∶= 1

2(∇v+(∇v)
⊺) is

the rate of deformation tensor and ν > 0 is the approximation parameter. Error estimates
in terms of ν between the Cahn–Hilliard–Brinkman model and the Hele–Shaw–Cahn–
Hilliard have also been derived in two dimensions. A nonlocal version of the results of [11]
has been recently established in [18].

Recently, the asymptotic behavior ε→ 0 of global weak solutions ∗ to the Hele–Shaw–
Cahn–Hilliard model (2.13) with (2.14a), and the particular scaling 1

Pe = ε
α for 0 ≤ α < 1

and Bo = 0 has been studied by Fei in [20], which employs the varifold approach of Chen
[15]; see also [4, 24, 41] and [5, Appendix A]. In Section 3.3 below we will establish the
global in time existence of weak solutions to (2.13) (with the variant (2.14a) and a general
body force G(ϕ) replacing Boρ(ϕ)ĝ) for two and three dimensions.

2.3 Comparison with the Lee–Lowengrub–Goodman model

In this section, we compare the model (2.13) with the model of Lee, Lowengrub and
Goodman [36]. In the sequel, we will denote the mass-averaged velocity by w. Let c
denote an order parameter distinguishing the two fluid phases, with Ω1 ∶= {c = 1} and
Ω2 = {c = 0}. Recalling ρi and vi as the actual mass density and individual velocity of
fluid i, i = 1,2, the total density ρ(c) and mass-averaged velocity w are defined as

ρ(c) =
1

ρ−1
1 c + ρ−1

2 (1 − c)
, ρ(c)w = ρ1v1 + ρ2v2.

Let η(c) = η1c+ η2(1− c) denote the interpolation of the two viscosities. We introduce the
coefficient

α ∶=
1

ρ1
−

1

ρ2
= −

ρ′(c)

(ρ(c))2
, (2.15)

∗We point out that the L2 temporal regularity for the time derivative ∂tϕ (written as ∂tc
ε) in [20] may

be a typo, cf. Theorem 3.1 below.
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and let g denote the modulus of the gravity vector g = gĝ with unit vector ĝ. Then, the
nondimensionalized Hele–Shaw–Cahn–Hilliard equations of [36, Equ. (2.18)-(2.21)] are

divw −
α

Pe
∆µ = 0, (2.16a)

ρ(c)(∂tc +∇c ⋅w) −
1

Pe
∆µ = 0, (2.16b)

w +
1

12η(c)
(∇p +

Ch

Ma
div (ρ(c)∇c⊗∇c) − ρ(c)ĝ) = 0, (2.16c)

µ − f ′0(c) +
Ch

ρ(c)
div (ρ(c)∇c) −Maαp = 0, (2.16d)

where f0 = c
2(1−c2) has two minima at c = 0 and c = 1, and the dimensionless constants Pe,

Ch and Ma are the Pélect number, the Cahn number and the Mach number, respectively.
Here we point out that the continuity equation (2.13a) and the equation for the chem-

ical potential (2.13d) in the volume-averaged model (2.13) are considerably simpler than
their counterparts (2.16a) and (2.16d) in the mass-averaged model (2.16). In particular,
the pressure appears explicitly in (2.16d) and compressibility effects may be introduced as
the mass-averaged velocity w need not be solenoidal. In contrast, these features are not
present in (2.13).

3 Analysis of the volume-averaged model

3.1 Sharp interface asymptotics

We now consider the sharp interface asymptotics of the nondimensional model (2.13)
(using v to denote the averaged velocity v and σ to denote the reciprocal of the capillary
number Ca) in the following setting:

Assumption 3.1.

� We set Pe = 1
ε and consider a more general function G replacing the term Boρ(ϕ)ĝ,

where G depends only on ϕ but not high order derivatives.

� We assume that there is a family (ϕε,vε, pε, µε)ε>0 of solutions to (2.13), which
are sufficiently smooth. For small ε, the domain Ω can be divided into two open
subdomains Ω±(ε), separated by an interface Σ(ε), given as the zero-level set of ϕε,
that does not intersect with ∂Ω = Γ.

� We assume that (ϕε,vε, pε, µε)ε>0 have an asymptotic expansion in ε in the bulk re-
gions away from Σ(ε) (the outer expansion), and another expansion in the interfacial
region close to Σ(ε) (the inner expansion).

� We assume that the zero level sets of ϕε converge to a limiting hypersurface Σ moving
with normal velocity V as ε→ 0.

� We rescale the potential Ψ such that

∫

1

−1

√
2Ψ(s)ds = 1. (3.1)

For example, the classical quartic double-well potential Ψ(s) = 1
4(1 − s

2)2 is rescaled
to Ψ(s) = 3

2
√

2
1
4(1 − s

2)2.
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The equations we study are

divv = 0, (3.2a)

12η(ϕ)v = −∇p +G(ϕ) − σεdiv (∇ϕ⊗∇ϕ), (3.2b)

∂tϕ +∇ϕ ⋅ v = ε∆µ, (3.2c)

µ =
1

ε
Ψ′

(ϕ) − ε∆ϕ. (3.2d)

The idea of the method is to plug the outer and inner expansions in the model equations
and solve them order by order, and in addition we have to define a suitable region where
these expansions should match up. For α = −2,−1,0,1, . . . , we will use the notation (3.2a)αO
and (3.2a)αI to denote the terms resulting from the order α outer and inner expansions of
(3.2a), respectively.

3.1.1 Outer expansion

We assume that (vε, pε, ϕε, µε) have the following outer expansions

vε = v0 + εv1 + h.o.t., pε =
1

ε
p−1 + p0 + h.o.t.,

ϕε = ϕ0 + εϕ1 + h.o.t., µε = µ0 + εµ1 + h.o.t..

To leading order (3.2b)−1
O we obtain

0 = ∇p−1, (3.3)

and so p−1 is constant in the bulk regions. Meanwhile (3.2d)−1
O gives

Ψ′
(ϕ0) = 0.

The stable solutions to the above equation are the minima of Ψ, which yields that ϕ0 = ±1.
This allows us to define the bulk fluid domains Ω1 ∶= {ϕ(x) = −1} and Ω2 ∶= {ϕ(x) = 1}.
To leading order we obtain from (3.2a)0

O

divv0 = 0,

and to first order we obtain from (3.2b)0
O

12η(ϕ0)v0 = −∇p0 +G(ϕ0).

3.1.2 Inner expansions

By assumption, Σ is the limiting hypersurface of the zero level sets of ϕε. In order to study
the limiting behavior close to Σ we introduce a new coordinate system, which involves the
signed distance function d(x) to Σ. Setting z = d

ε as the rescaled distance variable to
Σ, and using the convention that d(x) < 0 in Ω1, and d(x) > 0 in Ω2, we see that the
gradient ∇d points from Ω1 to Ω2, and we may use ∇d on Σ to denote the unit normal of
Σ, pointing from Ω1 to Ω2.

Let α(t, s) denote a parametrization of Σ with tangential coordinates s, and let ν
denote the unit normal of Σ, pointing into Ω2. Then, in a tubular neighborhood of Σ, for
a sufficiently smooth function f(x), we have

f(x) = f(α(t, s) + εzν(α(t, s))) =∶ F (t, s, z).

11



In this new (t, s, z)-coordinate system, the following change of variables apply, see [29],

∂tf = −
1

ε
V∂zF + h.o.t.,

∇xf =
1

ε
∂zFν +∇ΣF + h.o.t.,

where V is the normal velocity of Σ, ∇Σg denotes the surface gradient of g on Σ and h.o.t.
denotes higher order terms with respect to ε. In particular, we have

∆f = div x(∇xf) =
1

ε2
∂zzF +

1

ε
div Σ(∂zFν)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=−κ∂zF

+ h.o.t.,

where κ = −div Σν is the mean curvature of Σ. If v is a vector-valued function with
V (t, s, z) = v(x) for x in a tubular neighborhood of Σ, then we obtain

div xv =
1

ε
∂zV ⋅ ν + div ΣV + h.o.t..

The inner variables of (vε, pε, ϕε, µε) are denoted as (Vε, Pε,Φε,Ξε) with the inner expan-
sion

Fε(t, s, z) = F0(t, s, z) + εF1(t, s, z) + h.o.t., for Fε ∈ {Vε,Φε,Ξε},

Pε(t, s, z) =
1

ε
P−1(t, s, z) + P0(t, s, z) + h.o.t..

(3.4)

Since the zero level sets of ϕε converge to Σ, we additionally impose that

Φ0(t, s, z = 0) = 0. (3.5)

In order to match the inner expansions valid in the interfacial region to the outer expan-
sions of Section 3.1.1 we employ the matching conditions, see [29],

lim
z→±∞

F0(t, s, z) = f
±
0 (t, x), (3.6)

lim
z→±∞

∂zF0(t, s, z) = 0, (3.7)

lim
z→±∞

∂zF1(t, s, z) = ∂νf
±
0 (t, x), (3.8)

where f±0 (t, x) ∶= limδ↘0 f0(t, x ± δν) for x ∈ Σ. For the pressure, we have

lim
z→±∞

P−1(t, s, z) = p
±
−1(t, x), (3.9)

lim
z→±∞

(P0(t, s, z) − z∂νp
±
−1(t, x)) = p

±
0(t, x). (3.10)

We will employ the following notation: Let δ > 0 and for x ∈ Σ with x − δν ∈ Ω1 and
x + δν ∈ Ω2, we denote the jump of a quantity f across the interface by

[f]2
1 ∶= lim

δ↘0
f(t, x + δν) − lim

δ↘0
f(t, x − δν). (3.11)

Then, the expansions of (3.2a), (3.2c) and (3.2d) in terms of the inner variables are

1

ε
∂zV ⋅ ν + div ΣV + h.o.t. = 0, (3.12a)

1

ε
(−V +V ⋅ ν)∂zΦ − ∂zzΞ + h.o.t. = 0, (3.12b)

Ξ −
1

ε
Ψ′

(Φ) +
1

ε
∂zzΦ − κ∂zΦ + h.o.t. = 0. (3.12c)
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For the tensor product εdiv (∇ϕ⊗∇ϕ) we obtain the formula

div (ε∇ϕ⊗∇ϕ) =
1

ε2
∂z((∂zΦ)

2ν) +
1

ε
∂z(∂zΦ∇ΣΦ) +

1

ε
div Σ((∂zΦ)

2ν ⊗ ν)

+ div Σ(∂zΦ(ν ⊗∇ΣΦ +∇ΣΦ⊗ ν)) + h.o.t.,

so that the expansion of (3.2b) becomes

12η(Φ)V + (
1

ε
∂zPν +∇ΣP) −G(Φ)

+
1

ε2
∂z(σ(∂zΦ)

2ν) +
1

ε
σ∂z(∂zΦ∇ΣΦ) +

1

ε
div Σ(σ(∂zΦ)

2ν ⊗ ν)

+ div Σ(σ∂zΦ(ν ⊗∇ΣΦ + σ∇ΣΦ⊗ ν)) + h.o.t. = 0.

(3.13)

3.1.3 Expansions to leading order

To leading order we obtain from (3.2d)−1
I

Ψ′
(Φ0) − ∂zzΦ0 = 0. (3.14)

This is a second order equation in z and together with the conditions limz→±∞ Φ0(t, s, z) =
±1, and Φ0(t, s,0) = 0 we obtain a unique solution Φ0(z) to (3.14) that is independent
of s and t, i.e., (3.14) can be viewed as an ordinary differential equation in z. For the

double-well potential Ψ(s) = 1
4(1−s

2)2, the unique solution is given by Φ0(z) = tanh ( z√
2
).

Furthermore, multiplying (3.14) by Φ′
0, integrating and applying matching conditions (3.6)

and (3.7) to Φ0 leads to the so-called equipartition of energy

1

2
∣Φ′

0(z)∣
2
= Ψ(Φ0(z)) ∀z ∈ R.

By (3.1), we see that

∫
R
∣Φ′

0(z)∣
2
dz = ∫

R
2Ψ(Φ0(z))dz = ∫

1

−1

√
2Ψ(s)ds = 1. (3.15)

Then, to leading order (3.2a)−1
I , we obtain

∂zV0 ⋅ ν = 0, (3.16)

which implies that V0 ⋅ ν is independent of z. Integrating and applying the matching
condition (3.6) to V0 yields

[v0]
2
1 ⋅ ν = 0.

Meanwhile, from (3.2b)−2
I we have

∂zP−1ν + σ∂z(Φ
′
0)

2ν = 0.

Taking the scalar product with ν and upon integrating with respect to z leads to

P−1(t, s, z) = P̂ (t, s) − σ(Φ′
0(z))

2,

for some function P̂ independent of z. Sending z → ±∞ and applying the matching
condition (3.9) to P−1 and (3.7) to Φ0, we see that

p−−1 = P̂ (t, s) = p+−1.
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In particular, the constant values of p−1 in the bulk phase (see (3.3)) should match. We
take p±−1 = 0 so that P−1 is a function only in z and

P−1(z) = −σ(Φ
′
0(z))

2. (3.17)

To leading order (3.2d)−1
I gives

(−V +V0 ⋅ ν)Φ′
0 = ∂zzΞ0.

By (3.16), V0 ⋅ν is independent of z, and so upon integrating and apply matching conditions
(3.6) to Φ0 and (3.7) to Ξ0, we obtain

2(−V + v0 ⋅ ν) = (−V + v0 ⋅ ν)∫
R

Φ′
0 dz = ∫

R
∂zzΞ0 dz = 0.

This implies that

V = v0 ⋅ ν, ∂zΞ0 = 0. (3.18)

3.1.4 Expansions to first order

To first order, we obtain from (3.2d)0
I

Ξ0 = Ψ′′
(Φ0)Φ1 − σ∂zzΦ1 + κΦ′

0.

Multiplying by Φ′
0, integrating over R with respect to z leads to

∫

∞

−∞
Ξ0(t, s)Φ

′
0(z)dz = ∫

∞

−∞
(Ψ′

(Φ0))
′Φ1 − ∂zzΦ1Φ′

0 + κ ∣Φ′
0∣

2
dz . (3.19)

Integration by parts, applying the matching conditions (3.6) and (3.7) applied to Φ0, and
using that Ψ′(±1) = 0, we see that

∫

∞

−∞
(Ψ′

(Φ0))
′Φ1 − ∂zzΦ1Φ′

0 dz = [Ψ′
(Φ0)Φ1 − ∂zΦ1Φ′

0]
∞
−∞

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0 by (3.6),(3.7)

−∫

∞

−∞
∂zΦ1 (Ψ

′
(Φ0) −Φ′′

0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0 by (3.14)

dz ,

and so the first two terms on the right-hand side of (3.19) are zero. Then, using (3.15)
and (3.18), we obtain from (3.19),

2µ0 = κ. (3.20)

Next, using that P−1 and Φ0 depend only on z, to first order we obtain from (3.2b)−1
I

0 = ∂zP0ν + σ∂z(2Φ′
0∂zΦ1)ν + σ div Σ((Φ′

0)
2ν ⊗ ν).

Taking the scalar product with ν, integrating and applying the matching condition (3.10)
and using (3.15) leads to

0 = [p0]
2
1 + σ [2Φ′

0∂zΦ1]
∞

−∞
+ σ div Σ (ν ⊗ ν)ν = [p0]

2
1 − σκ,

where we used that div Σ(ν ⊗ ν) = −κν. Hence, the sharp interface limit of (3.2) is

divv0 = 0 in (Ω1 ∪Ω2) ∖Σ, (3.21a)

12η(ϕ0)v0 = −∇p0 +G(ϕ0) in (Ω1 ∪Ω2) ∖Σ, (3.21b)

[v0]
2
1 ⋅ ν = 0 on Σ, (3.21c)

[p0]
2
1 = σκ on Σ, (3.21d)

V = v0 ⋅ ν on Σ. (3.21e)
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Remark 3.1. We point out that the formal asymptotic analysis performed with the de-
generate mobility

m(ϕ) = (1 − ϕ2
)+

will yield the same sharp interface limit (3.21). For more details, we refer to [3, 28].

Remark 3.2. If we use the variant (2.14a) of the velocity equation instead of (3.2b), i.e.,

12η(ϕ)v = −∇q +G(ϕ) + σµ∇ϕ, (3.22)

then the outer and inner expansions of the pressure q do not require a term scaling with
1
ε . That is, we can consider

qε = q0 + εq1 + h.o.t., qε = Q0 + εQ1 + h.o.t.

as the corresponding outer and inner expansions, respectively. While the analysis for the
outer expansions remains unchanged, from the leading order inner expansion (3.22)−1

I we
obtain after taking the scalar product with ν and integrating, and using (3.19) and (3.20),

0 = ∫
∞

−∞
∂zQ0 − σΞ0Φ′

0 dz = [q0]
2
1 − 2µ0 = [q0]

2
1 − σκ,

which is the nondimensionalized Young–Laplace law (3.21d) for the modified pressure q.

3.2 Sharp interface limit for the mass-averaged model

It turns out that in choosing

Pe =
1

ε
, Ch = ε2, Ma =

Σr

σ
ε, Σr ∶= ∫

1

0

√
2ρ(s)

√
f0(s)ds ,

and the rescaling µ↦ 1
εµ in the mass-averaged model (2.16), that is,

divw − αε2∆µ = 0, (3.23a)

ρ(c)(∂tc +∇c ⋅w) − ε2∆µ = 0, (3.23b)

w +
1

12η(c)
(∇p +

σ

Σr
εdiv (ρ(c)∇c⊗∇c) − ρ(c)ĝ) = 0, (3.23c)

µ −
1

ε
f ′0(c) +

ε

ρ(c)
div (ρ(c)∇c) − α

Σr

σ
p = 0, (3.23d)

will result in a sharp interface limit that coincides with (3.21) when we consider G(ϕ) =
ρ(ϕ)ĝ. We will briefly sketch the details below.

� We consider an outer expansion for the pressure p = p0 + εp1 + . . . , that is, p−1 =

0. Then, one obtains to leading order (3.23d)−1
O that f ′0(c0) = 0, which yields the

solutions c0 = 0 or 1, and the bulk domains can be defined as Ω1 = {c0 = 1} and
Ω2 = {c0 = 0}. Then, from (3.23a)0

O and (3.23c)0
O we obtain

divw0 = 0, w0 = −
1

12η(c0)
(∇p0 − ρ(c0)ĝ) in (Ω1 ∪Ω2) ∖Σ.
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� For the inner expansions, we denote the inner variable of c and w by C and W ,
respectively, and assume that the 1

2 -level sets of cε converges to Σ, which implies
that

C0(t, s, z = 0) =
1

2
.

Furthermore, we assume that the inner expansion for the pressure Pε is given as in
(3.4), and we alter the matching conditions (3.9), (3.10) to

lim
z→±∞

P−1(t, s, z) = 0, lim
z→±∞

P0(t, s, z) = p
±
0(t, x).

� To leading order (3.23a)−1
I we obtain [w0]

2
1 ⋅ν = 0, and to leading order (3.23b)−1

I we
obtain V =w0 ⋅ ν whenever ρ > 0 and ∂zC0 ≠ 0.

� To leading order (3.23c)−2
I we obtain

∂zP−1 +
σ

Σr
∂z(ρ(C0)(∂zC0)

2
) = 0.

Integrating and applying the matching conditions for P−1 and ∂zC0 yields that
P−1(t, s, z) = −

σ
Σr

(ρ(C0)(∂zC0)
2)(t, s, z). Then, substituting this into (3.23d)−1

I gives

0 = f ′0(C0) −
1

ρ(C0)
∂z(ρ(C0)∂zC0) − αρ(C0)(∂zC0)

2. (3.24)

Together with the conditions limz→∞C0(t, s, z) = 0, limz→−∞C0(t, s, z) = 1, and
C0(t, s,0) = 1

2 this yields a second order ODE in z, which implies that we can
choose C0 to be a function depending only on z, and thus P−1 only depends on z.
Multiplying (3.24) by C ′

0, applying the product rule to the second term and using
the definition of α leads to 0 = (f0(C0) −

1
2 ∣C ′

0∣
2
)′, and upon integrating yields the

equipartition of energy

1

2
∣C ′

0(z)∣
2
= f0(C0(z)) ∀z ∈ R. (3.25)

� Lastly, using the fact that C0, P−1 are independent of s and t, we obtain from
(3.23c)−1

I

∂zP0ν +
σ

Σr
∂z (2ρ(C0)C

′
0∂zC1 + ρ

′
(C0)C1(C

′
0)

2) −
σ

Σr
κ(ρ(C0)(C

′
0)

2
)ν = 0.

Taking the scalar product with ν, integrating with respect to z and applying the
matching conditions for C ′

0, we obtain with the help of the equiparition of energy
(3.25) and a change of variables s = C ′

0(z),

[p0]
2
1 =

σκ

Σr
∫
R
ρ(C0(z)) ∣C

′
0(z)∣

2
dz =

σκ

Σr
∫

1

0

√
2ρ(s)

√
f0(s)ds = σκ.

3.3 Global existence of weak solutions

In this section, we investigate the existence of weak solutions to the Hele–Shaw–Cahn–
Hilliard model (3.2) with the parameters ε = σ = 1, and rescaling the viscosity by a factor

16



of 1
12 . For a bounded domain Ω ⊂ Rd, d = 2,3, with boundary Γ and an arbitrary but fixed

terminal time T > 0, we consider

divv = 0 in Ω × (0, T ) =∶ Q, (3.26a)

η(ϕ)v = −∇q +G(ϕ) + µ∇ϕ in Q, (3.26b)

∂tϕ + div (ϕv) = ∆µ in Q, (3.26c)

µ = Ψ′
(ϕ) −∆ϕ in Q, (3.26d)

0 = ∂νϕ = ∂νµ on Γ × (0, T ), (3.26e)

0 = v ⋅ ν + b(h − aq) on Γ × (0, T ), (3.26f)

ϕ(0) = ϕ0 in Ω. (3.26g)

Here a > 0, b ≥ 0 are constants, h is a prescribed boundary function. Although (2.13) is
derived as a model in two dimensions, we include in our analysis the existence theory for
three dimensions, which is applicable to the situation of fluid flow in a porous medium.
We also point out that, in the case b = 0, the pressure q is determined up to a constant,
and therefore we prescribe in addition that ∫Ω q dx = 0 for the case b = 0. Before presenting
the existence result we introduce the notation and useful preliminaries for this section.

Notation. We set H ∶= L2(Ω), V ∶= H1(Ω), HΓ ∶= L2(Γ). For a (real) Banach space
X its dual is denoted as X ′ and ⟨⋅, ⋅⟩X denotes the duality pairing between X and X ′.
The L2-inner product on Ω and on Γ will be denoted by (⋅, ⋅) and (⋅, ⋅)Γ, respectively.
For convenience, we use the notation Lp ∶= Lp(Ω) and W k,p ∶=W k,p(Ω) for any p ∈ [1,∞],
k > 0 to denote the standard Lebesgue spaces and Sobolev spaces equipped with the norms
∥ ⋅ ∥Lp and ∥ ⋅ ∥Wk,p . In the case p = 2 we use notation ∥ ⋅ ∥H ∶= ∥ ⋅ ∥L2 , ∥ ⋅ ∥HΓ

∶= ∥ ⋅ ∥L2(Γ), and

∥ ⋅∥V ∶= ∥ ⋅∥H1 . We denote Rd-valued functions and spaces consisting of Rd-valued functions
in boldface, that isH ∶= (L2(Ω))d and V ∶= (H1(Ω))d. The mean of an integrable function
f ∶ Ω→ R is defined as f ∶= 1

∣Ω∣ ∫Ω f dx , and we denote

L2
0 ∶= {f ∈H ∶ f = 0}, V ′

0 ∶= {f ∈ V ′
∶ ⟨f,1⟩V = 0}, H2

N ∶= {f ∈H2
∶ ∂νf = 0 on Γ}.

For the velocity, we introduce the space

Hdiv ∶= {f ∈ (C∞
0 (Ω))d ∶ divf = 0 in Ω}

∥⋅∥L2
,

i.e., Hdiv is the closure of the space of all divergence free vector fields in (C∞
0 (Ω))d in the

L2-norm. Integration with respect to the Hausdorff measure on Γ will be denoted by dΓ .

Useful preliminaries. We have the Sobolev embedding V ⊂ Lr for any r ∈ [1,∞) in
two dimensions and r ∈ [1,6] in three dimensions, and the following compact embeddings
in dimension d (see [6, Thm. 6.3] and [23, Thm. 11.2, p. 31])

Hj+1
∶=W j+1,2

⊂⊂W j,q
∀j ≥ 0, j ∈ Z,

for any q ∈ [1,∞) in two dimensions and q ∈ [1,6) in three dimensions. We state the
Gagliardo–Nirenberg interpolation inequality in dimension d (see [23, Thm. 10.1, p. 27],
[19, Thm. 2.1] and [6, Thm. 5.8]): Let Ω be a bounded domain with Lipschitz boundary,
and f ∈ Wm,r(Ω) ∩ Lq(Ω), 1 ≤ q, r ≤ ∞. For any integer j, 0 ≤ j < m, suppose there is
α ∈ R such that

1

p
=
j

d
+ (

1

r
−
m

d
)α +

1 − α

q
,

j

m
≤ α ≤ 1.
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If r ∈ (1,∞) and m − j − d
r is a nonnegative integer, we in addition assume α ≠ 1. Under

these assumptions, there exists a positive constant C depending only on Ω, m, j, q, r, and
α such that

∥Djf∥Lp ≤ C∥f∥αWm,r∥f∥1−α
Lq . (3.27)

We recall the Poincaré inequalities (see for instance [51, Equ. (1.35), (1.37a) and (1.37c)]):
There exist positive constants Cp depending only on Ω such that, for all f ∈ V ,

∥f − f∥
H
≤ Cp∥∇f∥H , (3.28)

∥f∥H ≤ Cp (∥∇f∥H + ∥f∥HΓ
) . (3.29)

For fixed b > 0 and a given function ϕ, we introduce the operators Nb,ϕ ∶ V → V ′ and
N0,ϕ ∶ V ∩L2

0 → V ′
0 by

⟨Nb,ϕ(f), ζ⟩V ∶= ∫
Ω

1
η(ϕ)∇f ⋅ ∇ζ dx + ∫

Γ
bafζ dΓ ,

⟨N0,ϕ(f), ζ⟩V ∶= ∫
Ω

1
η(ϕ)∇f ⋅ ∇ζ dx .

(3.30)

Under a boundedness assumption on η (see (A2) below), the Lax–Milgram theorem and
the Poincaré inequality (3.29) yield that the inverse operator N −1

b,ϕ is well-defined and
stable under perturbations. I.e., for any g ∈ V ′, there exists a unique u ∈ V such that

u = N −1
b,ϕ(g) with ∥u∥V ≤ C∥g∥V ′ ,

for some positive constant C not depending on g and u. Furthermore, given g1, g2 ∈ V ′

and the corresponding unique solution u1, u2 ∈ V it holds that

∥u1 − u2∥V ≤ C∥g1 − g2∥V ′ .

Similarly, using the Poincaré inequality (3.28) with zero mean, the inverse operator N −1
0,ϕ ∶

V ′
0 → V ∩L2

0 is also well-defined and stable under perturbations.

Assumption 3.2.

(A1) We assume that Ω ⊂ Rd, d = 2,3, is a bounded domain with C3-boundary Γ.

(A2) We assume that η ∈ C0(R), G ∈ C0(R;Rd) and

η0 ≤ η(s) ≤ η1, ∣G(s)∣ ≤ G0 ∣s∣ +G1 ∀s ∈ R,

for some positive constants η0, η1, G0 and G1.

(A3) We assume that h ∈ L2(0, T ;HΓ) and ϕ0 ∈ V .

(A4) The potential Ψ ∈ C2(R) is nonnegative and satisfies

Ψ(s) ≥ c0 ∣s∣
2
− c1, ∣Ψ′

(s)∣ ≤ c2Ψ(s) + c3, ∣Ψ′′
(s)∣ ≤ c4 ∣s∣

r−2
+ c5

for positive constants c0, c1, c2, c3, c4, c5, and exponent r ≥ 2 for two dimensions
and r ∈ [2,6) for three dimensions.
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Theorem 3.1 (Existence of weak solutions). Under Assumption 3.2, for

4

3
≤ p < 2 in two dimensions, p =

8

5
in three dimensions,

there exists a quadruple of functions (ϕ,µ, q,v) with

ϕ ∈ L2
(0, T ;H3

) ∩L∞(0, T ;V ) ∩W 1,p
(0, T ;V ′

),

µ ∈ L2
(0, T ;V ), v ∈ L2

(0, T ;Hdiv ),

q ∈ Lp(0, T ;V ) with a trace in L2
(0, T ;HΓ) for b > 0,

q ∈ Lp(0, T ;V ∩L2
0) for b = 0

such that ϕ(0) = ϕ0 and

(η(ϕ)v +∇q −G(ϕ) − µ∇ϕ,ζ) = 0, (3.31a)

(η(ϕ)−1
(∇q −G(ϕ) − µ∇ϕ),∇φ) + b(aq − h,φ)Γ = 0, (3.31b)

⟨∂tϕ,φ⟩V + (∇µ,∇φ) + (v ⋅ ∇ϕ,φ) = 0, (3.31c)

(µ,φ) − (Ψ′
(ϕ), φ) − (∇ϕ,∇φ) = 0 (3.31d)

for a.e. t ∈ (0, T ), and for all φ ∈ V and ζ ∈H.

Note that by the compact embedding

L∞(0, T ;V ) ∩W 1,1
(0, T ;V ′

) ⊂⊂ C0
([0, T ];H),

the initial value ϕ(0) makes sense as a function in H and thus the initial condition ϕ0

is attained. Furthermore, the boundary condition (3.26f) can be attained by choosing
ζ = η(ϕ)−1∇φ in (3.31a), leading to

(v,∇φ) = (−∇q +G(ϕ) + µ∇ϕ, η(ϕ)−1
∇φ) = b(aq − h,φ)Γ.

We further point out that the temporal regularity for ∂tϕ and the pressure q have been
similarly observed in the work of [11, 26, 35].

Proof. The proof is based on a Galerkin approximation. We consider the set of eigen-
functions of the Neumann-Laplacian {wi}i∈N which forms an orthonormal basis of H. In
[26, §3] it has been shown that {wi}i∈N is also a basis of H2

N . Let Wk ∶= span{w1, . . . ,wk}
denote the finite dimensional subspace spanned by the first k eigenfunctions, and let Πk de-
note the orthogonal projection into Wk. We consider a Galerkin ansatz (ϕk, µk, qk,vk)k∈N
which satisfy ϕk = ∑

k
i=1 αik(t)wi ∈Wk,

∂tϕk = ∆µk −Πk (vk ⋅ ∇ϕk) , ϕk(0) = Πk(ϕ0), (3.32)

µk = −∆ϕk +Πk (Ψ′
(ϕk)) , (3.33)

vk = −η
−1
k (∇qk −G(ϕk) − µk∇ϕk) , (3.34)

where ηk ∶= η(ϕk), and qk satisfies an elliptic problem whose weak formulation reads as

(η−1
k ∇qk,∇ζ) + ba(qk, ζ)Γ = (η−1

k (G(ϕk) + µk∇ϕk) ,∇ζ) + b(h, ζ)Γ ∀ζ ∈ V. (3.35)

Let us define the linear functionals Fb,ϕk , F0,ϕk ∈ V
′ by

⟨Fb,ϕk , ζ⟩V ∶= (η−1
k (G(ϕk) + µk∇ϕk) ,∇ζ) + b(h, ζ)Γ,

⟨F0,ϕk , ζ⟩V ∶= (η−1
k (G(ϕk) + µk∇ϕk) ,∇ζ)
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for all ζ ∈ V , where µk is as defined in (3.33). Then, we may express qk as

qk = N
−1
b,ϕk

(Fb,ϕk) if b > 0, or qk = N
−1
0,ϕk

(F0,ϕk) if b = 0, (3.36)

where the operators Nb,ϕk and N0,ϕk are defined in (3.30). Taking the inner product of
(3.32) with wj , j = 1, . . . , k, and substituting (3.33), (3.34) and (3.36) leads to a system
of nonlinear ODEs for the coefficients {αik(t)}1≤i≤k. The right-hand side depends con-
tinuously on the coefficients {αik(t)}1≤i≤k. Applying the theory of ordinary differential
equations yields the existence of tk ∈ (0, T ] such that the resulting ODE system has a
solution αk = (αik)1≤i≤k ∈ C

0([0, tk);Rk) that is absolutely continuous. We may define µk
by the equation (3.33), then qk is defined by (3.36) and vk is defined by (3.34).

We now derive a priori estimates for the Galerkin ansatz (ϕk, µk, qk,vk). In the follow-
ing, the constant C > 0 may vary line to line, but it is independent of k. For convenience,
we denote

Ek(t) ∶= ∫
Ω

Ψ(ϕk(t)) +
1

2
∣∇ϕk(t)∣

2 dx .

Note that by the assumption ϕ0 ∈ V , the growth assumptions (A4) on Ψ and the Sobolev
embedding V ⊂ Lp for p ≥ 2 in two dimensions and p ∈ [1,6] for three dimensions, there
exists a constant C such that

Ek(0) ≤ C (∥ϕ0∥
max(r,2)
V + 1) .

First estimate. Substituting ζ = qk in (3.35), and taking the inner product of (3.32)
with µk, the inner product of (3.33) with ∂tϕk, and the inner product of (3.34) with vk,
summing and integrating from 0 to s ∈ (0, T ] leads to

Ek(s) + ∫
s

0
∥∇µk∥

2
H + ∥

√
ηkvk∥

2
H + ba∥qk∥

2
HΓ
dt

= ∫

s

0
(G(ϕk),vk) + b(h, qk)Γ dt + Ek(0).

(3.37)

By the growth conditions for G in (A2) we see that

∣∫

s

0
(G(ϕk),vk)dt ∣ ≤ ∫

s

0
G1∥ϕk∥H∥vk∥H +G2 ∣Ω∣

1
2 ∥vk∥H dt

≤ ∫

s

0

1

2
η0∥vk∥

2
H +C(η0,G1,G2, ∣Ω∣) (∥ϕk∥

2
H + 1) dt .

Using the lower bound for Ψ in (A4), we have

∫
Ω

Ψ(ϕk(s))dx ≥ c1∥ϕk(s)∥
2
H − c2 ∣Ω∣

1
2 ,

and thus, by the lower bound on the viscosity η, we obtain from (3.37)

1

2
∥Ψ(ϕk(s))∥L1 +

c1

2
∥ϕk(s)∥

2
H +

1

2
∥∇ϕk(s)∥

2
H

+ ∥∇µk∥
2
L2(0,s;H) +

η0

2
∥vk∥

2
L2(0,s;H) + ba∥qk∥

2
L2(0,s;HΓ)

≤ C∥ϕk∥
2
L2(0,s;H) +C + ∫

s

0
b∥h∥HΓ

∥qk∥HΓ
ds .

(3.38)
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Applying Young’s inequality to the last term on the right-hand side of (3.38), and then
applying Gronwall’s inequality (see [27, Lem. 3.1]) leads to

∥Ψ(ϕk(s))∥L1 + ∥ϕk(s)∥
2
H + ∥∇ϕk(s)∥

2
H

+C (∥∇µk∥
2
L2(0,s;H) + ∥vk∥

2
L2(0,s;H) + ba∥qk∥

2
L2(0,s;HΓ)

)

≤ C (1 +
b

a
∥h∥2

L2(0,T ;HΓ)
) ∀s ∈ (0, T ].

(3.39)

For the case b = 0, we obtain (3.38) without the terms in the HΓ-norm. Furthermore, the
a priori estimate (3.39) guarantees that we can extend the Galerkin ansatz to the whole
of [0, T ], and thus tk = T for all k ∈ N.

Second estimate. Integrating (3.33) and using (A4) leads to

∣∫
Ω
µk dx ∣ ≤ ∫

Ω
∣Ψ′

(ϕk)∣ dx ≤ c2∥Ψ(ϕk)∥L1 + c3 ∣Ω∣ .

By (3.39) we have that the mean µk is bounded uniformly in L∞(0, T ), and thus by the
Poincaré inequality (3.28) and the boundedness of ∥∇µk∥L2(0,T ;H), we have

∥µk∥L2(0,T ;H) ≤ C.

Third estimate. We may view (3.33) as an elliptic equation for ϕk:

−∆ϕk + ϕk = µk −Πk(Ψ
′
(ϕk)) + ϕk in Ω, (3.40a)

∂νϕk = 0 on Γ. (3.40b)

Then, the argument in [26, §4.2] yields that {ϕk}k∈N is bounded uniformly in L2(0, T ;H3).
We will omit the details and refer the reader to [26].

Fourth estimate. Substituting ζ = qk in (3.35) leads to

∫
Ω

1

ηk
∣∇qk∣

2 dx + ba∥qk∥
2
HΓ

= ∫
Ω

1

ηk
(G(ϕk) + µk∇ϕk) ⋅ ∇qk dx + ∫

Γ
bhqk dΓ

≤ ∫
Ω

1

2ηk
∣∇qk∣

2
+

1

2η0
(∣G(ϕk)∣

2
+ ∣µk∇ϕk∣

2
) dx + b∥h∥HΓ

∥qk∥HΓ
.

Case (i) b > 0. For this case, Young’s inequality gives b∥h∥HΓ
∥qk∥HΓ

≤ ba
2 ∥qk∥

2
HΓ

+
b

2a∥h∥
2
HΓ

, which leads to

1

η1
∥∇qk∥

2
H + ba∥qk∥

2
HΓ

≤
1

η0
(∥G(ϕk)∥

2
H + ∥µk∇ϕk∥

2
H) +

b

a
∥h∥2

HΓ
. (3.41)

Case (ii) b = 0. For this case, we obtain

η0

η1
∥∇qk∥

2
H ≤ ∥G(ϕk)∥

2
H + ∥µk∇ϕk∥

2
H . (3.42)

For both cases, we obtain an a priori estimate of the form

∥∇qk∥H ≤ C (∥G(ϕk)∥H + ∥µk∇ϕk∥H +
√
b∥h∥HΓ

) . (3.43)
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By (A2) and (A3), we have that G(ϕk) ∈ L
∞(0, T ;H) and h ∈ L2(0, T ;HΓ). Thus, we

expect that the temporal regularity of ∇qk will be no greater than the temporal regularity
of the product µk∇ϕk. Let s ∈ [1,∞) for two dimensions, then by the Gagliardo–Nirenberg
inequality (3.27), we see that

∥∇ϕk∥
L

2s
s−1

≤ C∥∇ϕk∥
1
2s

H2∥∇ϕk∥
1− 1

2s
H for two dimensions,

∥∇ϕk∥L3 ≤ C∥∇ϕk∥
1
4

H2∥∇ϕk∥
3
4
H for three dimensions.

(3.44)

By Hölder’s inequality and Sobolev embedding, we obtain for two dimensions,

∫

T

0
∥µk∇ϕk∥

4s
2s+1

H dt ≤ ∫
T

0
∥µk∥

4s
2s+1

L2s ∥∇ϕk∥
4s

2s+1

L
2s
s−1

dt

≤ C∥ϕk∥
2 2s−1

2s+1

L∞(0,T ;V )∫

T

0
∥µk∥

4s
2s+1

V ∥ϕk∥
2

2s+1

H3 dt

≤ C∥ϕk∥
2 2s−1

2s+1

L∞(0,T ;V )
∥µk∥

4s
2s+1

L2(0,T ;V )
∥ϕk∥

2s
2s+1

L2(0,T ;H3)
,

and so µk∇ϕk ∈ Lr(0, T ;H) for 4
3 ≤ r < 2 in two dimensions. For three dimensions, we

obtain analogously

∫

T

0
∥µk∇ϕk∥

8
5
H dt ≤ ∫

T

0
∥µk∥

8
5

L6∥∇ϕk∥
8
5

L3 dt ≤ C∥ϕk∥
6
5

L∞(0,T ;V )
∥µk∥

8
5

L2(0,T ;V )
∥ϕk∥

2
5

L2(0,T ;H3)
,

and so µk∇ϕk ∈ L
8
5 (0, T ;H). Thus, from (3.43), and using the Poincaré inequality (3.29)

for the case b > 0 or the condition qk = 0 and the Poincaré inequality (3.28) for the case
b = 0, we obtain that

{qk}k∈N is bounded in

⎧⎪⎪
⎨
⎪⎪⎩

Lp(0, T ;V ), 4
3 ≤ p < 2 in two dimensions,

L
8
5 (0, T ;V ) in three dimensions.

Fifth estimate. Using (3.44), in three dimensions, for an arbitrary test function ζ ∈

L
8
3 (0, T ;V ) we have

∣∫
Q

Πk(vk ⋅ ∇ϕk)ζ dx dt ∣ = ∣∫
Q
vk ⋅ ∇ϕkΠk(ζ)dx dt ∣ ≤ ∫

T

0
∥vk∥L2∥∇ϕk∥L3∥Πk(ζ)∥L6 dt

≤ C∥vk∥L2(0,T ;H)∥ϕk∥
3
4

L∞(0,T ;V )
∥ϕk∥

1
4

L2(0,T ;H3)
∥ζ∥

L
8
3 (0,T ;V )

.

This implies that {Πk(vk ⋅ ∇ϕk)}k∈N is bounded in L
8
5 (0, T ;V ′). Then, from (3.32) we

have that {∂tϕk}k∈N is bounded in L
8
5 (0, T ;V ′). For two dimensions, we have for any

s ∈ [1,∞),

∣∫
Q
vk ⋅ ∇ϕkΠk(ζ)dx dt ∣ ≤ ∫

T

0
∥vk∥L2∥∇ϕk∥

L
2s
s−1

∥Πk(ζ)∥L2s dt

≤ C∥ϕk∥
1− 1

2s

L∞(0,T ;V )
∥vk∥L2(0,T ;H)∥ϕk∥

1
2s

L2(0,T ;H3)
∥ζ∥

L
4s

2s−1 (0,T ;V )

and so {Πk(vk ⋅ ∇ϕk)}k∈N and {∂tϕk}k∈N are bounded in Lp(0, T ;V ′) for 4
3 ≤ p < 2.
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Compactness. The above a priori estimates and the application of [49, §8, Corollary 4]
yield the existence of a relabelled subsequence (vk, qk, ϕk, µk)k∈N such that

ϕk → ϕ weakly-∗ in L∞(0, T ;V ) ∩L2
(0, T ;H3

) ∩W 1,p
(0, T ;V ′

),

ϕk → ϕ strongly in C0
([0, T ];Ls) ∩L2

(0, T ;W 2,s
) and a.e. in Q,

µk → µ weakly in L2
(0, T ;V ),

qk → q weakly in Lp(0, T ;V ) and also in L2
(0, T ;HΓ) if b > 0,

vk → v weakly in L2
(0, T ;Hdiv ),

Πk(vk ⋅ ∇ϕk)→ ξ weakly in Lp(0, T ;V ′
),

for some function ξ ∈ Lp(0, T ;V ′) and

4

3
≤ p < 2, 1 ≤ s <∞ in two dimensions, p =

8

5
, 1 ≤ s < 6 in three dimensions.

To deduce that (ϕ,µ, q,v) is a weak solution of (2.13) that satisfies (3.31), we argue as
follows: Fix j ∈ N and δ ∈ C∞

c (0, T ), multiplying (3.32), (3.33) with δwj , and integrating
in time leads to

0 = ∫
T

0
δ(t) [(∂tϕk,wj) + (∇µk,∇wj) + (Πk(vk ⋅ ∇ϕk),wj)] dt ,

0 = ∫
T

0
δ(t) [(µk,wj) − (∇ϕk,∇wj) − (Ψ′

(ϕk),wj)] dt ,

(3.45)

where we used (Πk(Ψ
′(ϕk)),wj) = (Ψ′(ϕk),wj). On one hand we see that

∫

T

0
δ(t)(vk ⋅ ∇ϕk,wj)dt = ∫

T

0
δ(t)(Πk(vk ⋅ ∇ϕk),wj)dt → ∫

T

0
δ(t)⟨ξ,wj⟩V dt . (3.46)

On the other hand, the strong convergence of ∇ϕk to ∇ϕ in L2(0, T ;W 1,s) and the fact
that wj ∈H

2 shows that

∫
Q
∣δ(∇ϕk −∇ϕ)wj ∣

2 dx dt ≤ ∥δ∥2
L∞(0,T )∥∇ϕk −∇ϕ∥

2
L2(0,T ;H)∥wj∥

2
L∞ → 0,

and so δwj∇ϕk → δwj∇ϕ strongly in L2(0, T ;H). Together with the weak convergence of
vk in L2(0, T ;H), we obtain

∫

T

0
δ(t)(vk ⋅ ∇ϕk,wj)dt → ∫

T

0
δ(t)(v ⋅ ∇ϕ,wj)dt . (3.47)

Equating (3.46) and (3.47) leads to

∫

T

0
δ(t)⟨ξ,wj⟩V dt = ∫

T

0
δ(t)(v ⋅ ∇ϕ,wj)dt .

Passing to the limit k →∞ in (3.45), using the above weak/weak* convergences yields

0 = ∫
T

0
δ(t) [⟨∂tϕ,wj⟩V + (∇µ,∇wj) + (v ⋅ ∇ϕ,wj)] dt , (3.48)

0 = ∫
T

0
δ(t) [(µ,wj) − (∇ϕ,∇wj) − (Ψ′

(ϕ),wj)] dt . (3.49)
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We refer to [25, §3.1.2] for the details on how to pass to the limit in the term with Ψ′.
Meanwhile, substituting ζ = wj in (3.35), then multiplying with δ and integrating over
time, we obtain

0 = ∫
T

0
δ(t) [(∇qk −G(ϕk) − µk∇ϕk, η

−1
k ∇wj) + b(aqk − h,wj)Γ] dt . (3.50)

Due to the a.e. convergence of ϕk to ϕ in Q, and the continuity of η and G, we have that
η(ϕk)

−1 → η(ϕ)−1 and G(ϕk) → G(ϕ) a.e. in Q. Furthermore, by the boundedness of η,
applying Lebesgue’s dominated convergence theorem yields

η(ϕk)
−1δ∇wj → η(ϕ)−1δ∇wj strongly in Lm(0, T ;Lm) for m ∈ [1,6]. (3.51)

Meanwhile, from the strong convergence ϕk → ϕ in L2(0, T ;H) we find that

G0 ∣ϕk∣
2
+G1 → G0 ∣ϕ∣

2
+G1 strongly in L1

(Q).

Then, using the growth assumption (A2) for G and the generalized Lebesgue dominated
convergence theorem ([47, Thm. 1.9, p. 89], [7, Thm. 3.25, p. 60]), it holds that

G(ϕk)→G(ϕ) strongly in L2
(0, T ;H). (3.52)

By the Gagliardo–Nirenberg inequality (3.27) we find that

L∞(0, T ;H) ∩L2
(0, T ;H2

) ⊂

⎧⎪⎪
⎨
⎪⎪⎩

L12(0, T ;L3) in two dimensions,

L8(0, T ;L3) in three dimensions.

Thus, from the boundedness of {ϕk}k∈N in L∞(0, T ;V )∩L2(0, T ;H3), we see that {∇ϕk}k∈N
is bounded in L3(0, T ;L3). Furthermore, using the strong convergence of ϕk to ϕ in
L2(0, T ;W 2,s) for s ∈ [1,6), and (3.51) for m = 6, we obtain

∫
Q
∣δ [(η(ϕk)

−1
− η(ϕ)−1

)∇wj ⋅ ∇ϕk + η(ϕ)
−1
∇wj ⋅ ∇(ϕk − ϕ)]∣

2
dx dt

≤ ∥δ(η(ϕk)
−1
− η(ϕ)−1

)∇wj∥
2
L6(0,T ;L6)∥∇ϕk∥

2
L3(0,T ;L3)

+
1

η2
0

∥δ∥2
L∞(0,T )∥∇wj∥

2
L6∥∇(ϕk − ϕ)∥

2
L2(0,T ;L3) → 0.

This implies that

δη(ϕk)
−1
∇wj ⋅ ∇ϕk → δη(ϕ)−1

∇wj ⋅ ∇ϕ strongly in L2
(0, T ;H). (3.53)

Then, combining (3.51), (3.52), (3.53) and the weak convergences for qk and µk, after
passing to the limit k →∞ in (3.50) we obtain

0 = ∫
T

0
δ(t) [η(ϕ)−1

(∇q −G(ϕ) − µ∇ϕ),∇wj) + b(aq − h,wj)Γ] dt . (3.54)

Next, multiplying (3.34) by δη(ϕk)(wj1 , . . . ,wjd)
⊺ =∶ δη(ϕk)ζj for 1 ≤ j1, . . . , jd ≤ k, passing

to the limit k →∞ yields

∫

T

0
δ(t)(η(ϕ)v,ζj)dt = ∫

T

0
δ(t)(−∇q +G(ϕ) + µ∇ϕ,ζj)dt . (3.55)

Since (3.48), (3.49), (3.54) and (3.55) hold for arbitrary δ ∈ C∞
c (0, T ), we infer that

(ϕ,µ, q,v) satisfies (3.31) with φ = wj and ζ = (wj1 , . . . ,wjd)
⊺. Using that {wj}j∈N is basis

of H2
N and H2

N is dense in V , we deduce that (3.31) holds for arbitrary φ ∈ V and ζ ∈H.
This concludes the proof.
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4 Numerical approximation

We briefly describe the numerical approximation of the Hele–Shaw–Cahn–Hilliard prob-
lem (2.13) with the variant (2.14a). In particular, by recalling that µ = µ(ϕ) = 1

εΨ′(ϕ) −

ε∆ϕ from (2.13d) and v(q,ϕ) = − 1
12η(ϕ)

(∇q −Boρ(ϕ)ĝ − 1
Caµ(ϕ)∇ϕ) from (2.14a), we

reformulate the dimensionless problem (2.13) in terms of the (modified) pressure q and
order parameter ϕ and endow it with suitable initial and boundary conditions as:

−div (
1

12η(ϕ)
(∇q −Boρ(ϕ)ĝ −

1

Ca
µ(ϕ)∇ϕ)) = 0 in Ω × (0, T ), (4.1a)

∂tϕ + v(q,ϕ) ⋅ ∇ϕ − ε∆µ(ϕ) = 0 in Ω × (0, T ), (4.1b)

1

12η(ϕ)
(∇q ⋅ ν −Boρ(ϕ)ĝ ⋅ ν) = fN on ΓN × (0, T ), (4.1c)

q = 0 on ΓD × (0, T ), (4.1d)

∇µ(ϕ) ⋅ ν = 0 on Γ × (0, T ), (4.1e)

∇ϕ ⋅ ν = 0 on Γ × (0, T ), (4.1f)

ϕ(t = 0) = ϕ0 in Ω, (4.1g)

where ΓN ∪ ΓD = Γ ≡ ∂Ω, Γ̊N ∩ Γ̊D = ∅, and fN is a suitable function. We remark
that Problem (4.1) is time-dependent, nonlinear, and it involves a fourth order differen-
tial operator in (4.1b). Then, we rewrite for convenience the dimensionless density and

viscosity as ρ(ϕ) = Θ1ϕ + Θ2 and η(ϕ) = Λ1ϕ + Λ2, respectively, where Θ1 ∶=
1
2 (1 −

ρ1

ρ2
),

Θ2 ∶=
1
2 (1 +

ρ1

ρ2
), Λ1 ∶=

1
2 (1 − η1

η2
), and Λ2 ∶=

1
2 (1 + η1

η2
). We recall that for ϕ = −1, we obtain

the pure phase labeled “1”, while ϕ = 1 refers instead to the pure phase “2”.
Let us now introduce the function spaces V = {w ∈H1(Ω) ∶ w = 0 on ΓD} and H ∶=

H2
N = {w ∈H2(Ω) ∶ ∂νw = 0 on Γ}, then, by suitably using integration by parts, the weak

formulation of (4.1) reads as follows: Find, for all t ∈ (0, T ), q ∈ V and ϕ ∈H, such that

∫
Ω
∇ψ ⋅ (

1

12η(ϕ)
∇q) dx −Bo∫

Ω
∇ψ ⋅ ĝ

ρ(ϕ)

12η(ϕ)
dx

−
1

Ca
∫

Ω
∇ψ ⋅ (

µ(ϕ)

12η(ϕ)
∇ϕ) dx = ∫

ΓN
ψ fN dΓ , (4.2a)

∫
Ω
ϑ∂tϕdx + ∫

Ω
ϑv(q,ϕ) ⋅ ∇ϕdx + ∫

Ω
∇ϑ ⋅ (Ψ′′

(ϕ)∇ϕ) dx

+ ε2
∫

Ω
∆ϑ∆ϕdx = 0, (4.2b)

hold for all ψ ∈ V and ϑ ∈H with ϕ(t = 0) = ϕ0 in Ω.

4.1 Spatial approximation

For the spatial approximation of (4.2) we use NURBS-based Isogeometric Analysis (IGA)
[16, 33]. Indeed, in (4.2) we look for a solution ϕ ∈ H ⊂ H2(Ω) for all t ∈ (0, T ), i.e., we
need H2(Ω)-conformal finite dimensional test and trial function spaces, say Hh, which are
comprised of globally C1-continuous basis functions. This requirement can be straight-
forwardly fulfilled by using B-splines (or NURBS) basis functions [44] of degree p ≥ 2;
we refer the interested reader to [9, 17, 31, 38, 50] for an overview of high order PDEs –
including phase field problems – solved by means of NURBS-based IGA.
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We introduce the bivariate B-splines basis {NA(x)}
nbf
A=1 and we write the approximate

pressure and order parameter as

qh(x, t) =
nbf

∑
A=1

NA(x) qA(t) and ϕh(x, t) =
nbf

∑
A=1

NA(x)ϕA(t),

respectively, with the control variables {qA(t)}
nbf
A=1 and {ϕA(t)}

nbf
A=1 being time-dependent.

By introducing the B-splines space Nh = span{NA, A = 1, . . . , nbf}, we define the finite
dimensional spaces Vh ∶= V ⋂Nh and Hh ∶= H⋂Nh. Then, the semi-discrete formulation
of (4.2) reads as follows: Find, for all t ∈ (0, T ), qh ∈ Vh, ϕh ∈Hh, such that

∫
Ω
∇ψh ⋅ (

1

12η(ϕh)
∇qh) dx −Bo ∫

Ω
∇ψh ⋅ ĝ

ρ(ϕh)

12η(ϕh)
dx

−
1

Ca
∫

Ω
∇ψh ⋅ (

µ(ϕh)

12η(ϕh)
∇ϕh) dx = ∫

ΓN
ψh fN dΓ , (4.3a)

∫
Ω
ϑh ∂tϕh dx + ∫

Ω
ϑh v(qh, ϕh) ⋅ ∇ϕh dx + ∫

Ω
∇ϑh ⋅ (Ψ′′

(ϕh)∇ϕh) dx

+ ε2
∫

Ω
∆ϑh∆ϕh dx = 0, (4.3b)

hold for all ψh ∈ Vh and ϑh ∈ Hh with ϕh(t = 0) = ϕ0,h in Ω, where ϕ0,h is the L2(Ω)

projection of the initial condition ϕ0 onto the space Nh.

4.2 Time discretization

The time discretization of (4.3) is based on Backward Differentiation Formulas (BDF)
[30, 45] with equal order temporal extrapolations based on Newton–Gregory backward
polynomials [12, 46]. Using this semi-implicit formulation yields a fully discrete problem
which can be solved in a computationally efficient and accurate manner; see for example
[22] and [10] for the use of the BDF scheme together with NURBS-based IGA spatial
approximations of the PDEs.

We partition the time interval [0, T ] into Nt subintervals of equal size ∆t = T
Nt

yielding
the discrete time instances tn = n∆t for n = 0, . . . ,Nt. Then, we denote with qnh and
ϕnh the approximations of the pressure qh and order parameter ϕh at the time tn. The
approximation of ∂tϕh in (4.3) by a σ-order BDF scheme is

∂tϕh ≈
ασϕ

n+1
h − ϕn,BDFσ

h

∆t
.

For example for σ = 1, we have ασ = 1 and ϕn,BDFσ
h = ϕnh for n ≥ 0; instead, for σ = 2,

ασ =
3
2 and ϕn,BDFσ

h = 2ϕnh −
1
2ϕ

n−1
h for n ≥ 1. Then, replacing the derivative ∂tϕh in (4.3b)

with the σ-order BDF approximation, while the other time dependent terms are evaluated
at the time instance tn+1 (i.e., terms involving qn+1

h and ϕn+1
h ), yields a nonlinear fully

discrete problem at each time instance (for example, for σ = 1 we have the backward Euler
scheme).

In order to obtain a semi-implicit fully discrete problem, the nonlinear terms depending
on qn+1

h and ϕn+1
h are replaced by extrapolations of order σ by means of the Newton–

Gregory backward polynomials, say qn+1,σ
h and ϕn+1,σ

h , respectively. For example, for σ = 1,

these are qn+1,σ
h = qnh and ϕn+1,σ

h = ϕnh for n ≥ 0; while, for σ = 2, we have qn+1,σ
h = 2 qnh −q

n−1
h

and ϕn+1,σ
h = 2ϕnh − ϕ

n−1
h for n ≥ 1. For a BDF scheme of order σ, the semi-implicit
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formulation of the fully discrete problem reads as follows: Find, for all n ≥ σ−1, qn+1
h ∈ Vh,

ϕn+1
h ∈Hh, such that

∫
Ω
∇ψh ⋅

⎛

⎝

1

12η (ϕn+1,σ
h )

∇qh
⎞

⎠
dx −Bo Θ1∫

Ω
∇ψh ⋅ ĝ

1

12η (ϕn+1,σ
h )

ϕn+1
h dx

−
1

Ca
∫

Ω
∇ψh ⋅

⎛

⎝

µ (ϕn+1,σ
h )

12η (ϕn+1,σ
h )

∇ϕh
⎞

⎠
dx

= Bo Θ2∫
Ω
∇ψh ⋅ ĝ

1

12η (ϕn+1,σ
h )

dx + ∫
ΓN

ψh fN dΓ ,

(4.4a)

ασ
∆t
∫

Ω
ϑhϕ

n+1
h dx − ∫

Ω
ϑh

⎛

⎝

1

12η (ϕn+1,σ
h )

∇ϕn+1,σ
h

⎞

⎠
⋅ ∇qn+1

h dx

+Bo Θ1∫
Ω
ϑh

⎛

⎝

1

12η (ϕn+1,σ
h )

∇ϕn+1,σ
h ⋅ ĝ

⎞

⎠
ϕn+1
h dx

+
1

Ca
∫

Ω
ϑh

µ (ϕn+1,σ
h )

12η (ϕn+1,σ
h )

∇ϕn+1,σ
h ⋅ ∇ϕn+1

h dx

+ ∫
Ω
∇ϑh ⋅ (Ψ′′ (ϕn+1,σ

h )∇ϕn+1
h ) dx + ε2

∫
Ω

∆ϑh∆ϕn+1
h dx

=
1

∆t
∫

Ω
ϑhϕ

n,BDFσ
h dx

−Bo Θ2∫
Ω
ϑh∇ϕ

n+1,σ
h ⋅ ĝ

1

12η (ϕn+1,σ
h )

dx , (4.4b)

hold for all ψh ∈ Vh and ϑh ∈Hh with ϕ0
h = ϕ0,h in Ω.

5 Numerical results

We present some numerical results for the Hele–Shaw–Cahn–Hilliard model for incom-
pressible flows. Specifically, we solve two benchmark problems: the rising bubble test, for
which a less dense fluid rises into a more dense one in presence of a gravitational field as
e.g. in [34, 36], and the viscous fingering test, for which a less viscous fluid is injected into
a more viscous one [48].

For both the tests, we use the (dimensionless) computational domain Ω = (0,0.5) ×
(0,1). For the spatial approximation, we consider NURBS-based IGA with globally C1-
continuous B-splines basis functions of degree p = 2 – as described in Section 4.1 – with
32,768 equally-sized mesh elements, yielding the dimensionless mesh size h = 1

256 and a
total of nbf = 33,540 B-splines basis functions. For the time discretization, we use the
semi-implicit formulation (4.4) with the BDF scheme of order σ = 2; the time step size ∆t
and T are specified later for the two tests.

5.1 Test 1: rising bubble

For this test, we set ΓD = {(x,y) ∈ Γ ∶ y = 0} and ΓN ≡ Γ/ΓD by referring to the boundary
conditions in (4.1) with fN = 0. Then, we set ρ2 = 1, η1 = η2 = 0.1, σ = 10−5, g = 9.80665,
the characteristic length L = 1, δ = 0.1, V = 0.1, and ε = 2h = 1

128 . In this manner, we
have Ca = 106 and Bo = 0.980665. For the time discretization, we set ∆t = 2.5 ⋅ 10−5
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t = 0.0 t = 5.000 ⋅ 10−2 t = 1.000 ⋅ 10−1

t = 1.500 ⋅ 10−1 t = 2.000 ⋅ 10−1 t = 2.490 ⋅ 10−1

t = 2.500 ⋅ 10−1 t = 2.510 ⋅ 10−1 t = 2.515 ⋅ 10−1

Figure 1: Test 1. Rising bubble for ρ1 = 5 and ρ2 = 1. Phases evolution at different time
instances.
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t = 2.520 ⋅ 10−1 t = 2.530 ⋅ 10−1 t = 2.550 ⋅ 10−1

t = 2.625 ⋅ 10−1 t = 2.750 ⋅ 10−1 t = 2.875 ⋅ 10−1

t = 3.125 ⋅ 10−1 t = 3.500 ⋅ 10−1 t = 4.000 ⋅ 10−1

Figure 2: Test 1. Rising bubble for ρ1 = 5 and ρ2 = 1. Phases evolution at different time
instances.
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t = 0.0 t = 5.000 ⋅ 10−2 t = 1.000 ⋅ 10−1

t = 1.500 ⋅ 10−1 t = 2.000 ⋅ 10−1 t = 2.490 ⋅ 10−1

t = 2.500 ⋅ 10−1 t = 2.510 ⋅ 10−1 t = 2.515 ⋅ 10−1

Figure 3: Test 1. Rising bubble for ρ1 = 5 and ρ2 = 1. Velocity field at different time
instances; the black contour lines highlight the interface among the phases.
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t = 2.520 ⋅ 10−1 t = 2.530 ⋅ 10−1 t = 2.550 ⋅ 10−1

t = 2.625 ⋅ 10−1 t = 2.750 ⋅ 10−1 t = 2.875 ⋅ 10−1

t = 3.125 ⋅ 10−1 t = 3.500 ⋅ 10−1 t = 4.000 ⋅ 10−1

Figure 4: Test 1. Rising bubble for ρ1 = 5 and ρ2 = 1. Velocity field at different time
instances; the black contour lines highlight the interface among the phases.
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t = 2.00 ⋅ 10−2 t = 3.00 ⋅ 10−2 t = 4.00 ⋅ 10−2

t = 4.55 ⋅ 10−2 t = 4.75 ⋅ 10−2 t = 5.00 ⋅ 10−2

t = 6.00 ⋅ 10−2 t = 7.00 ⋅ 10−2 t = 8.00 ⋅ 10−2

Figure 5: Test 1. Rising bubble for ρ1 = 20 and ρ2 = 1. Velocity field at different time
instances; the black contour lines highlight the interface among the phases.
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for T = 4.0 ⋅ 10−1. As initial condition for the order parameter, we choose ϕ0(x,y) =
1
2ζ+(x,y)ζ−(x,y) − 1, with

ζ±(x,y) = 1 ± tanh(
4

3ε
(y −

1

3
±

1

4π
(1 +

cos(2πx)

2
))) ,

which yields the set-up in Fig. 1 (top-left), where the blue color is associated to ϕ = −1
– the pure phase labeled “1” corresponding to the “heavy” fluid – while the red color is
associated to ϕ = +1 – the pure phase “2” corresponding to the “light” fluid.

We start by considering the case ρ1 = 5, for which Θ1 = −2 and Θ2 = 3. We report in
Figs. 1, and 2 the time evolution of the order parameter, which highlights the formation
and rising of the bubble of light fluid, including topological changes. Correspondingly, we
report in Figs. 3, and 4 the evolution of the computed velocity field v(qn+1

h , ϕn+1
h ); as we

can observe, relatively high magnitudes of the velocity occur at pinch-off and when the
curvature of the interface is significant.

We also consider the case where the density of the heavier fluid is larger, say ρ1 = 20
(for which Θ1 = −

19
2 and Θ2 =

21
2 ) yielding the result highlighted in Fig. 5 with the velocity

field.

5.2 Test 2: viscous fingering

We set ΓN ≡ Γ with ΓD = ∅ and, in order to enforce the injection of the fluid into the
domain, fN = −V on ΓN,b = {(x,y) ∈ Γ ∶ y = 0}, fN = V on ΓN,t = {(x,y) ∈ Γ ∶ y = 1},
and fN = 0 on ΓN/ (ΓN,b⋃ΓN,t), for some injection velocity V > 0. In this case, in order
to obtain a well-posed problem, we prescribe the values of the control coefficients of the
pressure field (approximated by IGA) q32,319 = q32,320 = 0 for all n ≥ 1. Then, we choose
ρ1 = ρ2 = 1, η2 = 1, g = 0, L = 1, δ = 0.1, V = 50, and ε = 2h = 1

128 , for which Bo = 0. For
the time discretization, we set ∆t = 2.5 ⋅ 10−6 for T = 10−3. The initial condition is

ϕ0(x,y) = − tanh(
4

3ε
(y −

1

10
+

cos(16πx)

100
)) ,

which yields the set-up in Fig. 6 (top-left); we recall that the blue color is associated to
ϕ = −1 – the phase “1” indicating the more viscous fluid – while the red color is associated
to ϕ = +1 – the phase “2” indicating the less viscous fluid.

We set η1 = 50 and σ = 10−5, for which Ca = 5.0 ⋅ 108. The time evolution of the
computed order parameter and velocity are reported in Figs. 6 and 7, respectively, which
highlight the insurgency of the viscous fingering phenomenon.

In Fig. 8 we compare the order parameters at different time instances obtained for the
values of the viscosity η1 = 10, 20, and 50 for σ = 10−5, thus yielding Ca = 108, 2.0 ⋅ 108,
and 5.0 ⋅ 108, respectively. We remark that the more viscous the fluid “1”, the longer the
fingers.

Finally, in Fig. 9 we show the order parameter at different time instances obtained for
the viscosity η1 = 50 and values of the surface tension σ = 104, 10, and 10−5 thus yielding
Ca = 0.5, 5.0 ⋅ 102, and 5.0 ⋅ 108, respectively. We observe that, the smaller the surface
tension, the longer the fingers.
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t = 0.0 t = 1.25 ⋅ 10−4 t = 2.50 ⋅ 10−4
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different time instances.
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