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Abstract

Cardiovascular diseases are one of the main causes of death all over the world.
In this kind of pathologies, it is fundamental to be well-timed in order to obtain
good prognosis in reperfusive treatment. In particular, an automatic classification
procedure based on statistical analyses of tele-transmitted ECG traces would be
very helpful for an early diagnosis. This work is a pilot analysis on electrocar-
diographic (ECG) traces (both normal and pathological ones) of patients whose
12-leads pre-hospital ECG has been sent by life supports to 118 Dispatch Center
of Milan. The statistical analysis consists of preliminary steps like reconstructing
signals, wavelets denoising and removing the biological variability in the signals
through data registration. Then, a multivariate functional k-means clustering of
reconstructed and registered ECGs is performed, and performances of classifica-
tion method are validated. So a semi-automatic diagnostic procedure, based on the
sole ECG’s morphology, is proposed to classify patients and predict pathologies.

1 Introduction

Cardiovascular ischemic diseases are nowadays one of the main causes of death all
over the world. Every year 160.000 persons are affected by an heart failure and 50.000
persons suddenly die for heart attack. In Italy, they are responsible of 44% of over-
all deaths. Cardiovascular diseases also call for the most part of emergency rescue
operations. In fact, almost all events which require rescue operations to the 118 Milan
Dispatch Center (the Italian free toll number for emergencies) are classified as “medical
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events” and concern cardiovascular system. In case of Coronary Arteries ischemic dis-
ease, it is fundamental to be well-timed in order to obtain good prognosis in reperfusive
treatment. This result can be obtained only with pre, inter and intra-hospital networks
well organized and synchronized.

Since 2001, a working group collecting 23 Cardiology Units of Milan Area and 118
Dispatch Center has been activated on Milan urban area. Starting from 2006, this group
perform monthly data collection twice a year on all patients admitted to any hospital
belonging to the Milan Cardiological Network with coronary artery disease, stratifying
them on mode of admission to Emergency Room (ER), i.e. self-presented, delivered
by Basic or Advanced Life Supports with or without tele-ECG transmission. From the
analysis of these data, time of first ECG tele-transmission has been pointed out as the
most important factor to guarantee a quick access to an effective treatment for patients.
The quicker ECG is performed, the higher is the probability of good reperfusion of the
treatment the patient undergoes (see Antman et al., 2009; Ieva and Paganoni, 2010;
Grieco et al., 2007, 2010).

Then, since 2008, a project has been started with the aim
of spreading the intensive use of ECG as pre-hospital di-
agnostic tool and of constructing a new database of ECGs
with features never recorded before in any other data col-
lection on heart diseases. In fact, anticipating diagnostic

time, reducing infarction complications and optimizing the number of hospital admis-
sions are the three main goals of PROMETEO (PROgetto sull’area Milanese Elettro-
cardiogrammi Teletrasferiti dall’ Extra Ospedaliero). Thanks to the partnerships of
Azienda Regionale Emergenza Urgenza (AREU), Abbott Vascular and Mortara Ran-
goni Europe s.r.l., ECG recorder with GSM transmission have been installed on all
Basic Life Supports (BLSs) of Milan urban area. Up to the start of PROMETEO, just
Advanced Life Supports (ALSs) were able to make and send ECG from territory, be-
cause physicians were carried on them. To make this project possible, intensive training
courses have been carried out to more than 3500 rescuers working on BLSs. Thanks
to PROMETEO, planned and realized by 118 Dispatch Center of Milan, it is possible
to send quickly the ECG from territory to 118 Dispatch Center itself, and then to the
hospital where patient will be admitted to, even when a BLS is sent to the patient.

Persuading people to call 118 Dispatch Center when needed, equipping all Mi-
lan life supports with ECG recorder and training rescuers to acquire ECG correctly to
all people which call 118 for rescue, regardless of symptoms declared, is the way to
strongly reduce delays in treatments and then in reperfusion. In fact this could be the
way to obtain early diagnosis and then quicker delivery of patients from territory to
Intensive Cardiac Care Units (ICCU) of Hospitals, i.e. a better service for patients af-
fected by Acute Coronary Syndromes (ACS), enabling them to avoid to spend time in
the ER and to go directly to Cath-Lab or to Percutaneous Coronary Intervention (PCI).

In this work we analyse a pilot database composed by 48 ECG traces extracted from
PROMETEO datawarehouse. Selection criteria will be explained below. The whole
datawarehouse contains all ECG traces recorded on Milan urban area by basic life sup-
ports since the end of 2008 up to now. Most of them are pathological, showing acute
arrhythmias as well as atypical modifications.
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Each file contained in PROMETEO datawarehouse is in correspondence to three
sub-files. The first one is called details and contains technical information, useful
for signal processing and analysis, such as times of waves’ repolarization and depo-
larization, landmarks indicating onset and offset instances of main ECG’s curves and
segments, and automatic diagnoses, established by Mortara-Rangoni VERITAS

TM
al-

gorithm. We used these automatic diagnoses to label ECG traces we analyzed, in order
to validate our unsupervised clustering algorithm’s performance. The challenge of this
work, in fact, consists of tuning and testing a real time procedure which enables semi
automatic diagnosis of the patients’ disease based only on ECG traces morphology,
then not dependent on clinical evaluations. The second sub-file is called Rhythm and
contains the ECG signal sampled for 12 seconds (10000 sampled points). The third one
is called Median. It is built starting from Rhythm file, and depicts a reference beat last-
ing 1.2 seconds (1200 points). We carried out the analysis considering only the Median
files, obtaining 8 curves (one for each lead, see Section 2.1 for details) for each patient,
which represents his/her “Median” beat for that lead. Examples of Rhythm and Median
files of a patient are reported in Fig. 1 and 2 respectively.

Figure 1: An example of file Rhythm.

The main goal of this work is then to identify, from a statistical perspective, specific
ECG patterns which could benefit from an early invasive approach. In fact, the identi-
fication of statistical tools capable of classifying curves starting from their shape only
could support an early detection of heart failures, not based on usual clinical criteria.
To this aim, it is extremely important to understand the link between cardiac physiol-
ogy and ECG trace shape. As detailed in following sections, we focus on Physiological
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Figure 2: An example of file Median.

traces in contrast to Left and Right Bundle Branch Block (LBBB and RBBB respec-
tively) traces. Bundle Branch Block is a cardiac conduction abnormality seen on the
ECG. In this condition, activation of the left (right) ventricle is delayed, which results
in the one ventricle contracting later than the other.

Details on Bundle Branch Blocks and their connection with non-physiological shape
of ECG signal will be treated in Section 2, where also clinical details about ECG signals
will be given together with an overview of the pilot database. Procedures of wavelet
smoothing and landmarks registration performed on ECG traces are explained in Sec-
tion 3. In Section 4 data analysis is presented, consisting of a functional k-means clus-
tering of QT-segments of smoothed and registered ECG traces. Finally, in Section 5
results of analysis are discussed, and further developments to be explored in future
works are proposed.

2 Electrocardiography and Bundle Branch Block

Before starting with technical details about statistical data analysis, a brief introduction
to ECG signal and to electrophysiology of Bundle Branch Block is presented, in order
to better understand features of data which will be analyzed in the following.
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2.1 The ECG signal

Electrocardiography is a transthoracic recording of the electrical activity of the heart
over time captured and externally recorded through skin electrodes. The ECG works
mostly by detecting and amplifying the tiny electrical changes on the skin that are
caused when the heart muscle “depolarises” during each heart beat (for further inquiry
about clinical details, see Lindsay, 2006).

First attempts of measuring ECG signals date back to Willem Einthoven (see Einthoven,
1908; Einthoven et al., 1950). The Einthoven limb leads (standard leads) are illustrated
in Fig. 3 and are defined in the following way:

Lead I: VI = ΦL −ΦR, Lead II: VII = ΦF −ΦR, Lead III: VIII = ΦF −ΦL;

where

Figure 3: Eithofen limb leads

VI = voltage of Lead I
VII = voltage of Lead II
VIII = voltage of Lead III
ΦL = potential at the left arm
ΦR = potential at the right arm
ΦF = potential at the left foot

These lead voltages satisfy the
following relationship:

VI +VIII =VII, (1)

hence only two of these three leads
are independent. The lead vec-
tors associated with Einthoven’s
lead system are conventionally
found based on the assumption
that the heart is located in an infinite, homogeneous volume conductor (or at the center
of a homogeneous sphere representing the thorax). If the position of the right arm, left
arm, and left foot are at the vertices of an equilateral triangle, having the heart located
at its center, then the lead vectors also form an equilateral triangle. A simple model
results from assuming that the cardiac sources are represented by a dipole located at the
center of a sphere representing the thorax, hence at the center of the equilateral triangle.
With these assumptions, the voltages measured by the three limb leads are proportional
to the projections of the electric heart vector on the sides of the lead vector triangle.
The voltages of the leads are obtained from Equation (1).

Nowadays, the most commonly used clinical ECG-system, the 12-lead ECG sys-
tem, consists of the following 12 leads, which are: I, II, III, aVR, aVL, aVF, V1, V2,
V3, V4, V5, V6. The main reason for recording all 12 leads is that it enhances pattern
recognition. In fact, this combination of leads gives the clinician an opportunity to com-
pare the projections of the resultant vectors in two orthogonal planes and at different
angles, as shown in Fig. 4 and explained in Goldberger (1942a; 1942b); Mason and
Likar (1966) and Wilson et al. (1944).
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Figure 4: The projections of the lead vectors of the 12-lead ECG system in three or-
thogonal planes when one assumes the volume conductor to be spherical homogeneous
and the cardiac source centrally located.

Of these 12 leads, the first six are derived from the same three measurement points.
Therefore, any two of these six leads include exactly the same information as the other
four. So, the ECG traces analyzed in the following sections will consist of leads I, II,
V1, V2, V3, V4, V5 and V6 only.

The file Rhythm of our dataset represents the output of an ECG recorder. From
this curve it is possible to trace a representative heartbeat for each patient. As we said
before, this is the content of file Median, which consists of a trace of a single cardiac
cycle (heartbeat), i.e. of a P wave, a QRS complex, a T wave, and a U wave, which are
normally visible in 50 to 75% of ECGs. The baseline voltage of the electrocardiogram
is known as the isoelectric line and is represented by the PR segment.

Fig. 5 shows a scheme of the typical shape of a physiological single beat, recorded
on ECG graph paper; main relevant points, segments and waves are highlighted. The
figure also includes definitions of segments and intervals in the trace. Deflections in
this signal are denoted in alphabetic order starting with the letter P, which represents
atrial depolarization. The ventricular depolarization causes the QRS complex, and re-
polarization is responsible for the T-wave. Atrial repolarization occurs during the QRS
complex and produces such a low signal amplitude that it cannot be detected, with the
exception of physiological ECGs (see Scher and Young, 1957).
Finally, in Fig. 6, the connection between relevant waves and segments of ECG trace
and mechanic activation of heart is illustrated.
Interpretation of the ECG relies on the idea that different leads “view” the heart from
different angles. This has two benefits. Firstly, leads which are showing anomalies
due to the presence of pathology (for example Right or Left Bundle Branch Blocks,
see Section 2.2) can be used to infer which region of the heart is affected. Secondly,
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Figure 5: Scheme of the typical shape of a physiological single beat, recorded on ECG
graph paper. Main relevant points, segments and waves are highlighted.

the overall direction of travel of the wave of depolarization (which can reveal other
problems) can also be inferred. This direction is named the heart electrical axis.

2.2 Bundle Branch Blocks

The heart’s electrical activity begins in the sinoatrial node (the heart’s natural pace-
maker, n.1 in Fig. 7), which is situated on the upper right atrium. The impulse travels
next through the left and right atria and summates at the AV node (n.2 in Fig. 7). From
the AV node the electrical impulse travels down the Bundle of His (n.3 in Fig. 7) and
divides into the right and left bundle branches (n.4 and 10 in Fig. 7). The right bundle
branch contains one fascicle. The left bundle branch subdivides into two fascicles: the
left anterior fascicle and the left posterior fascicle (n.4 and 5 in Fig. 7). Ultimately,
the fascicles divide into millions of Purkinje fibres which in turn interdigitise with indi-
vidual cardiac myocytes, allowing for rapid, coordinated, and synchronous physiologic
depolarization of the ventricles.
When a bundle branch or fascicle becomes injured (due to underlying heart disease,
myocardial infarction, or cardiac surgery), it may cease to conduct electrical impulses
appropriately. This results in altered pathways for ventricular depolarization. Since the
electrical impulse can no longer use the preferred pathway across the bundle branch, it
may move instead through muscle fibers in a way that both slows the electrical move-
ment and changes the directional propagation of the impulses. As a result, there is a
loss of ventricular synchrony, ventricular depolarization is prolonged, and there may be
a corresponding drop in cardiac output.

From a clinical perspective a bundle branch block can be diagnosed when the du-
ration of the QRS complex on the ECG exceeds 120 ms. A right bundle branch block
typically causes prolongation of the last part of the QRS complex, and may shift the
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Figure 6: Correspondence between waves in ECG signal and cardiac phases.

heart’s electrical axis slightly to the right. The ECG will show a terminal R wave in lead
V1 and a slurred S wave in lead I. Left bundle branch block widens the entire QRS, and
in most cases shifts the heart’s electrical axis to the left. The ECG will show a QS or
RS complex in lead V1 and a monophasic R wave in lead I. Another usual finding with
bundle branch block is appropriate T wave discordance: this means that the T wave will
be deflected opposite the terminal deflection of the QRS complex. Unfortunately, some
individuals will exhibit both left and right bundle branch blocks and have a profoundly
abnormal QRS interval. This degree of electrical degradation to the myocardium may
lead to Ventricular Dyssynchrony, reflected in shape modification of ECG curves, as
described above. From a statistical point of view, instead, we will focus our analy-
sis on shape modifications induced on the ECG trace by the effect of the pathology,
and we will investigate these shape modifications only in a statistical perspective, i.e.
not using clinical criteria to classify ECGs. The exploitation of these morphological
modifications in the clustering procedure will be the focus of the following Sections.

3 Data smoothing and registration

As mentioned above, the aim of this work is exploring ECG curves morphology. Thus,
the basic statistical unit is the multivariate function which describes heart dynamics, for
each patient, on the eight significant leads. However, in practice we have only noisy
and discrete observation of this function. Moreover, each patient has his own “bio-
logical” time, i.e. the same event of the heart dynamics may happen at different time
measurements for different patients: this is only misleading from a morphological point
of view. These two problems are common in Functional Data Analysis applications and
they can be addressed respectively with data smoothing and registration (see Ramsay
and Silverman, 2005).
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Figure 7: Conduction system of the heart: 1. Sinoatrial node; 2. Atrioventricular node;
3. Bundle of His; 4. Left bundle branch; 5. Left posterior fascicle; 6. Left-anterior
fascicle; 7. Left ventricle; 8. Ventricular septum; 9. Right ventricle; 10. Right bundle
branch.

3.1 Wavelets smoothing

The first step of the statistical analysis consists in data smoothing starting from noisy
measurements; the choice of the functional basis is crucial. Wavelet bases seem suitable
for our data because every basis function is localized both in time and in frequency,
being therefore able to capture ECG strong localized features (peaks, oscillations...).
Every basis function is therefore identified by two indices: the second one identifies
time position of the basis function, while the first one indicates the level of wavelet
decomposition and corresponds to the frequency. In particular we use a Daubechies
wavelet basis with 10 vanishing moments (see Daubechies, 1988 for details).

The wavelet smoothing procedure is illustrated schematically in Fig. 8. The first
step consists in changing over to wavelet domain and estimating basis coefficients. True
wavelet coefficients are estimated starting from the empirical wavelet coefficients, com-
puted by Discrete Wavelet Transform (DWT) of the original data. To use DWT, it is
necessary that the number of observations is a power of two. Thus, in the further analy-
sis we use only the central 210 = 1024 observation points. There is no loss of significant
information: the region on which we focus the analysis contains all the important fea-
tures of the ECG trace.

Since the eight leads traces (i.e. I, II, V1, V2, V3, V4, V5 and V6) capture the same
physical signal, we expect that every significant feature will be reflected on all leads.
Therefore, in the attempt to separate the true functional signal from measurement noise
we choose a smoothing procedure which takes into account the multivariate nature of
the data. Thus, we resort to the method proposed in Pigoli and Sangalli (2010) to obtain
the estimate of the vectorial function

f(t) = (I(t), II(t),V 1(t),V 2(t),V 3(t),V 4(t),V 5(t),V 6(t)).
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for each of the n = 48 patients in the database.
Let {wk ∈R8;k= 1, . . . ,210} be a noisy and discrete observation of the 8-dimensional

ECG trace f on a grid of 210 equispaced points. Assume that these data are generated
by the model

wk = f(tk)+ εk k = 1, . . . ,210, (2)

where the error εk has multivariate normal distribution with mean 0 ∈R8 and variance-
covariance matrix σ 2I8. Our goal is to accurately estimate the 8 - dimensional curve f.
We thus consider the corresponding model on the space of wavelet coefficients. Thanks
to the orthogonality of the wavelet transform, this is given by

d j,k = d0
j,k +ρ j,k, (3)

with d j,k,d0
j,k,ρ j,k ∈ R8, where

d j,k = (dIi
j,k,d

IIi
j,k,d

V 1i
j,k ,d

V 2i
j,k ,d

V 3i
j,k ,d

V 4i
j,k ,d

V 5i
j,k ,d

V 6i
j,k )

are the vectors of the empirical wavelet coefficients corresponding to the data, d0
j,k are

the vectors of the true wavelet coefficients of f and ρ j,k are the wavelet transforms of
the noise, having multivariate normal distribution with mean 0 and variance-covariance
matrix σ2

d I8. The estimation is based on a soft thresholding approach: vector of empiri-
cal coefficients is considered coming from noise if its square euclidian norm is below a
threshold t8 = σ̂ 2

d (3log(210)). The standard deviation σ̂d is estimated using the median
of the absolute deviation from the median (MAD) on wavelet coefficients of level 9,
which are supposed to be pure noise (see e.g. Donoho et al., 1995). If the square norm
of coefficients vector exceeds this threshold, a shrinkage is applied. Thus, estimated
coefficients vector will be

d̂ j,k =

(
1−

√
t8

||d j,k||2

)
+

d j,k . (4)

Finally, estimated functional coordinates of f can be obtained through wavelet recon-
struction of L2(R). For details on this smoothing procedure, see Pigoli and Sangalli
(2010).

Fig. 9 shows raw data and functional estimates obtained with this wavelet smooth-
ing procedure for a normal subject. Observations are now in a functional form and thus
we can use functional data analysis techniques.

3.2 Landmark registration

Functional observations usually show both phase and amplitude variation, i.e. each
curve has its own biological time so that same features can appear at different times
among the patient. It is well known that a correct separation between these two kind of
variability is necessary for a successful analysis (see Ramsay and Silverman, 2005). We
address this problem through a registration procedure based on landmarks, which are
points of the curve that can be associated with a specific biological time. Five of these
landmarks are provided by Mortara-Rangoni measurement procedure and identify the P
wave (Ponset, Poffset), QRS complex (QRSonset, QRSoffset) and T wave (Toffset). We add one
more landmark corresponding with the R peak on the I lead (I peak). We choose this
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Figure 8: Steps of the wavelet smoothing procedure. In our case n = 48 (number of
patients), J = 10 (since we have 210 = 1024 points for each track).

Figure 9: Raw data of the eight leads (black points) and wavelet functional estimates
(red) for a normal subject.

landmark because only on the I lead both normal and pathological ECG traces present
a clearly identifiable R peak. Since all the leads capture the same heart dynamics,
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biological time must be the same. Thus, these landmarks can be used to register all the
leads. For each patient i we look for a warping function hi such that

hi(Ponset) = P0
onset hi(Poffset) = P0

offset

hi(QRSonset) = QRS0
onset hi(I peak) = I peak0

hi(QRSoffset) = QRS0
offset hi(Toffset) = T 0

offset

where P0
onset,P

0
offset,QRS0

onset, I peak0,QRS0
offset,T

0
offset are the mean values of the corre-

spondent landmarks (see Table 2). We solve this problem using spline interpolation of
order 3. Thus, the registered vectorial function will be

Fi(t) = fi(hi(t)).

for every patient i = 1, . . . ,48. Fig. 10 shows both unregistered and registered I leads
for all the 48 patients.

The registration procedure separates morphological information (i.e. amplitude
variability) and duration of ECG intervals (i.e. phase variability). The former is cap-
tured by the registered ECG traces, while the latter is described by warping functions,
determined by landmarks. In clinical practice the duration of ECG interval and particu-
larly the QRS complex length is the most important parameter to identify pathological
situations. However, this kind of information is not able to distinguish among different
pathologies, such as Right and Left Bundle Branch Blocks. This can be seen also in our
exploratory dataset. If we perform a multivariate 3-means algorithm on interval lengths
(Poffset −Ponset, QRSonset −Poffset, QRSoffset −QRSonset and Toffset −QRSoffset), with the
aim of identifying the existing 3 groups, we obtain the result shown in Table 1: this
method correctly separates physiological traces from pathological ones but it gives no
information on the pathology.

For this reason, we focus our analysis on the registered curves, in the attempt to
extract other diagnostic information from ECG morphology. The final diagnostic pro-
cedure should of course consider both information coming from morphology analysis
and from segments lengths.

Normal RBBB LBBB
Cluster 1 25 0 0
Cluster 2 0 9 5
Cluster 3 0 4 5

Table 1: Confusion matrix related to patients disease classification. Results are obtained
performing 3-means clustering algorithm on interval lengths.

4 Data analysis

In this section we propose the use of functional data analysis techniques to perform
clustering of smoothed and registered ECG traces. Aim of the analysis is the devel-
opment of a proper classification procedure, able to distinguish the grouping structure
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Figure 10: Original I leads for the 48 patients (left) and registered ones (right). Vertical
lines indicate landmarks positions.

induced in the sample of ECGs by the presence of different pathologies, on the basis of
the sole shape of the considered curves.

4.1 Data selection

As previously discussed in Section 2, ECG traces are very complex functional data,
in which different portions of the domain can be analyzed in order to detect differ-
ent pathologies. The main focus of our analysis stands in the investigation of BBB
pathology, which mainly expresses in the ECG trace through a lengthening of the QRS
complex and a modification of the T wave (see Section 2.2). In fact, the diagnosis of
BBB is not concerned with modifications in P wave, since this portion of the ECG curve
deals with cardiac rithm dysfunctions our patients are not affected by. We thus focus
our classification analysis on the QT-segment.

In particular, the analyzed dataset consists of the ECG signals of n = 48 patients,
among which 25 are Normal and 23 are affected by BBB (13 on the right hand side of
the heart, and 10 on the left hand side). All the raw ECG traces of these patients have
been smoothed and registered according to the procedures described in Section 3.

The landmarks used in the registration procedure are fixed as the mean of the land-
marks of all the curves in the dataset; this means that all registered curves show relevant
features at the same time points, corresponding to these reference landmarks common
to the whole dataset (see Section 3.2): this fact allows us to select, for all the regis-
tered curves of the dataset, only the portion of ECG trace belonging to the interval
[P0

offset,T
0

offset], which is relevant to our diagnostic purposes. The reference values (mean
over patients) of landmarks are reported in Table 2, together with the associated stan-
dard deviations.

In particular, we select only the portion of

F(t) = {Fr(t)}8
r=1 = (I(t), II(t), V 1(t), V 2(t), V 3(t), V 4(t), V 5(t), V 6(t))

such that t ∈ [P0
offset,T

0
offset], where P0

offset and T 0
offset are the values reported in the first

line, second and sixth columns of Table 2. The final dataset employed in the subsequent
classification analysis is shown in Fig. 11.
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P0
onset P0

offset QRS0
onset I peak0 QRS0

offset T 0
offset

mean 188.9 300.2 356.9 407.7 478.0 758.1
standard deviation 38.7 36.7 16.9 17.2 21.3 38.4

Table 2: Landmarks obtained at the end of the registration procedure, as the mean of
landmarks of all the curves, and used to select the portion of smoothed and registered
ECG curves relevant to our analysis (first line of the table); in the second line, landmarks
standard deviations. Landmarks values are referred to a registered time in ms.

4.2 Functional classification

We analyze the n patients according to a functional k-means clustering procedure, in
which all the eight leads Fi(t) : R → R8, for patients i = 1, . . . ,n, are simultaneously
clustered. To develop this clustering procedure we suppose that Fi(t) ∈ L2(R;R8).
Since we consider all the eight leads simultaneously in the analysis, we name the em-
ployed clustering procedure multivariate functional k-means.

A proper definition of functional k-means procedure and an introduction to its con-
sistency properties can be found in Tarpey and Kinateder (2003). We develop the same
k-means procedure, choosing the following distance between ECG traces

d(Fi(t),F j(t)) =

√
8

∑
r=1

∫ T 0
offset

P0
offset

(Fr
i (t)−Fr

j (t))2dt, for i, j = 1, . . . ,n. (5)

Note that the measure defined in (5) is the natural distance in the Hilbert space L2(R;R8).
The k-means clustering algorithm is an iterative procedure, which alternates a step

of centroid calculation, in which a relevant functional representative (the centroid) for
each cluster is identified, and a step of cluster assignment, in which all curves are
assigned to a cluster, and in particular to the cluster whose centroid is nearer according
to the measure in (5). The identification of centroids φl(t), for l = 1, . . . ,k, should find
the solution to the following optimization problem

φl(t) = argmin
φ∈L2(R;R8)

∑
i:Ci=l

d(Fi(t),φ(t))2,

where Ci is the cluster assignment of the ith patient at the current iteration. The solution
to this infinite dimensional optimization problem corresponds (due to the definition of
d(·, ·)) to a functional mean of data belonging to the same cluster. For another imple-
mentation of functional k-means algorithm, which integrates registration procedure in
the classification steps, see Sangalli et al., (2010); here, instead, we chose to separate
the two procedures of registration and clustering, since the latter doesn’t use any infor-
mation beside morphology of the ECG traces, while the former is based on landmarks
provided by the Mortara-Rangoni VERITAS

TM
algorithm.

Cluster centroids can be obtained via local polynomial regression (loess, see Kohler
(2002) for further details on consistency), with the benefit of keeping the variance of
the estimator of the mean constant also at the boundaries of the domain, thanks to the
locally varying neighbourhood of data used in the estimation process. More precisely,
this technique corresponds to a polynomial regression (we chose polynomial degree
r = 2), in which the fitting is done locally, since for every point t in the abscissa of the
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Figure 11: Final dataset used in the classification analysis: 48 smoothed and registered
ECG traces, selected over the portion of the abscissa including QRS complex and T
wave for each patient; each panel corresponds to a different lead.
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curves the fit is made using points in a neighborhood of t, weighted by their distance
from t. The size of the neighborhood is controlled by the parameter α , in terms of
proportion of points in the abscissa to be considered in the estimation; we set α = 5%.

The k-means clustering procedure clearly depends not only on the choice of the
metric d(·, ·), but also on the number of clusters k. Being the number of clusters a–
priori unknown, we also consider a way to select the optimal number of clusters k∗ via
a silhouette plot of the final classification (see Struyf et al., 1997). In particular, the
silhouette plot of a final classification consists in a bar plot of the silhouette values si,
obtained for each patient i = 1, . . . ,n as

si =
bi −ai

max{ai,bi}
,

where ai is the average distance, according to (5), of the ith patient to all other patients
assigned to the same cluster, while

bi := min
l=1,...,k;l ̸=Ci

∑ j:C j=l d(Fi(t),F j(t))

#{ j : C j = l}

is the minimum average distance of the ith patient from another cluster. Clearly si al-
ways lies between −1 and 1, the former value indicating a misclassified patient, while
the latter a very well classified one. Note that a patient which alone constitutes a clus-
ter, has silhouette value equal to 1, but he is not considered in the silhouette plot for
choosing k∗.

4.3 Results and discussion

In Fig. 12 are shown the final silhouette plots obtained by clustering the sample of
48 ECG traces according to a multivariate functional k-means procedure, and setting
k = 2,3,4,5. As we can appreciate from the picture, the grouping structure obtained
setting k = 3 seems the best one, both in terms of silhouette profile, and in terms of
wrong assignments. Thus we set k∗ = 3.

The final classification obtained setting k = 3 is shown in Fig. 13, 14 and 15,
where the whole functional dataset is shown in lightgray, and only curves assigned
respectively to the first, second and third cluster are superimposed in a different color
(black, red and green respectively). From inspection of these pictures a different shape
of ECGs assigned to different clusters can be immediately appreciated.

Being aware of the different pathologies of the patients included in the sample,
we could also analyze the confusion matrix associated to the final cluster assignments,
with respect to the Mortara-Rangoni algorithm disease classification (Normal, RBBB
and LBBB). The confusion matrix is shown in Table 3; we remark that the final cluster
assignments are based on the sole shape of the smoothed and registered ECG curves,
analyzed via a unsupervised classification procedure. The results seem appreciable:
the final grouping structure traces out quite coherently the patients disease classifica-
tion, with only few cases wrongly assigned. In particular, we compute sensitivity and
specificity to quantify the effectiveness of the clustering procedure: the two values are
respectively 91.3% for sensitivity, and 100% for specificity.

Finally, it seems interesting to visualize the smoothed original ECG trace of a rep-
resentative for each cluster, so that one can characterize the final grouping structure by
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Figure 12: Silhouette plots of the clustering result obtained via multivariate functional
k-means procedure, setting k = 2,3,4,5; data are ordered according to an increasing
value of silhouette within each cluster, and are coloured according to the cluster assign-
ment.

means of a “typical shape” of ECGs assigned to each cluster. This cluster represen-
tative can be obtained by selecting, among all curves assigned to a given cluster, the
one that according to the measure d(·, ·) defined in (5) is more similar to the final esti-
mated centroid of the cluster. The representative ECG traces for each cluster are shown
in Fig. 16; we remark that the disease classification of these patients is coherent with
the result shown in Table 3, since the one associated to the first cluster is Normal, the
one associated to the second one suffers from RBBB, and the one assigned to the third
suffers from LBBB. Moreover, supposing not to take into account the Mortara-Rangoni
algorithm disease classification, also from clinical inspection of the three selected ECG
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Normal RBBB LBBB
Black 25 2 0
Red 0 9 2

Green 0 2 8

Table 3: Confusion matrix related to patients disease classification. Results are obtained
by multivariate functional 3-means clustering algorithm to smoothed and registered QT-
segment of ECG curves.

traces in Fig. 16 the diagnosis of the physician would have been physiological, affected
by RBBB and by LBBB respectively for the first, second and third patient.

This final consideration might lead to the definition of a semi–automatic diagnostic
procedure based on the previously described functional clustering technique of ECG
traces: in fact, the final result of our clustering procedure is a set of k centroids repre-
sentative of each cluster, which can be used as reference signals to compare a new ECG
trace. Suppose a new ECG signal is available: we could have an immediate hint on the
new patient’s pathology by smoothing its ECG trace, registering it and finally assigning
it to the group characterized by the nearest centroid, again according to the measure
defined in (5).

Further refinements of our clustering procedure could help in its integration in the
cardiovascular context, possibly for the diagnosis of different kinds of pathologies (not
only BBB); due to the extreme generality of the algorithm, which is based only on
morphological characteristics of the curves, this generalization can be based on a proper
definition of a measure of the distance between functional data.

5 Conclusions and further developments

In this work we proposed a statistical framework for analysis and classification of ECG
curves starting from their sole morphology.

We analyzed a pilot database composed by 48 ECG traces - 25 of them were Nor-
mal, 13 were Right Bundle Branch Blocks and 10 were Left Bundle Branch Blocks -
extracted from PROMETEO datawarehouse.

The strongly localized features (peaks, oscillations. . .) of ECG curves makes them
particulary suited to be smoothed via wavelets decomposition, since every basis func-
tion is localized both in time and in frequency; to this aim, we used a Daubechies
wavelet basis with 10 vanishing moments. Moreover, being ECGs functional observa-
tions, they show both phase and amplitude variation, i.e. the same features can appear
at different times among the patients. Since a correct separation between these two
kind of variability is necessary for a successful analysis, we perform landmark–based
registration of ECG traces, choosing as landmarks those time points that can be asso-
ciated with a specific biological event: five of them are provided by the measurement
procedure, identifying the P wave, the QRS complex and the T wave; we add one more
landmark corresponding to the peak of R wave on the I lead, an easily localized feature
on each ECG.
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Figure 13: Smoothed and registered ECG traces (QT-segment): the whole dataset is
plotted in lightgray, except for the curves assigned to the first cluster pointed out by
multivariate functional 3-means procedure, which are shown in black.
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Figure 14: Smoothed and registered ECG traces (QT-segment): the whole dataset is
plotted in lightgray, except for the curves assigned to the second cluster pointed out by
multivariate functional 3-means procedure, which are shown in red.
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Figure 15: Smoothed and registered ECG traces (QT-segment): the whole dataset is
plotted in lightgray, except for the curves assigned to the third cluster pointed out by
multivariate functional 3-means procedure, which are shown in green.
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Figure 16: Smoothed original ECG signals of representative patients of three groups
pointed out by multivariate functional 3-means procedure (Black curves refer to physi-
ological trace, Green ones to LBBB trace, Red ones to RBBB trace).
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Through smoothing and registration we managed to separate morphological infor-
mation of the curves (i.e. amplitude variability), and duration of each ECG interval
(i.e. phase variability); we can thus focus on each of them to perform clustering of
smoothed and registered ECG traces. We chose to analyze morphological information
via a multivariate functional k-means, thus simultaneously clustering all 8 leads of each
patient, and to treat phase information via a multivariate k-means on the ECG intervals
duration of each patient. The optimal number of clusters can be chosen via a silhouette
plot of the final classification. The confusion matrix resulting from our classification
framework shows appreciable results, with low misclassification rate. Moreover, this
technique could also help in the semi–automatic diagnosis of BBB–related anomalies
of ECGs, with an extreme generality of the classification procedure due to the flexibility
in the definition of a proper measure of the distance between functional data.

The innovative aspect of this proposal consists in developing advanced statisti-
cal methods aimed at detecting pathological ECG traces (in particular Bundle Branch
Blocks), starting only from morphological features of the curves. This allows for diag-
noses consistent with clinical practice, starting from purely statistical considerations.
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