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1. Introduction. These notes originated from the authors’ effort while study-
ing interpolation techniques on the Grassmann manifold. This has been a hot topic
recently since it is an important tool in parametric reduced order modelling. Fortu-
nately, there is an extensive literature available with seminal contributions both from
the engineering, e.g., [2, 3, 11, 15], and mathematical communities, e.g., [5, 29, 1, 4].
More generally, the development of numerical methods involving manifolds is a very
active research area, see, e.g., [6] and references therein.
Given all these previous works, the reader may immediately ask the following ques-
tion: is there any need for an additional introductory manuscript? It is the authors’
belief that this is actually the case. The aim of these notes is to precisely fill a gap in
the literature, by providing a reference which gently introduces numerical analysts to
the very interesting research topic of interpolation on the Grassmann manifold. In-
deed, on the one hand, the engineering literature often does not provide the necessary
mathematical details needed by a numerical analyst to understand the subject and to
solidly build new computational algorithms. On the other hand, manuscripts from the
mathematical community, despite being seminal references, tend to be overwhelming
in terms of details, and mathematically concepts that are often not familiar to nu-
merical analysts approaching the topic for the first time. These notes are meant to be
a first very gentle introduction to these numerical methods, before approaching the
more organic references [1, 4, 29]. Further, the notes are self-contained concerning the
derivation of geodesics, the algorithms to compute the exponential and logarithmic
maps, and interpolation algorithms on the Grassmann manifold. These mathematical
results are all well-known, but the original proofs are scattered across several manu-
scripts, often using different notations and level of detail, so that their study may not
be immediate.
The manuscript is organized as follows. In Section 2 we introduce the very few con-
cepts on general manifolds that will be needed in the rest of the notes. To guide
the reader throughout our survey, we consider two examples: the unit circle and the
Stiefel manifold. These are used systematically to smoothly introduce and visualise
the mathematical concepts that are encountered in this manuscript. In Section 3
we discuss the Grassmann manifold and, retracing the same path of Section 2, pres-
ent the necessary tools on the concrete case of the Grassmann manifold. Section 4
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deals with interpolation algorithms by first describing in sequence a linear, a piece-
wise linear and a high-order interpolation scheme for univariate Grassmann-valued
maps. Then, the well-known general high-order interpolation method for multi-variate
Grassmann-valued maps [2], which is often just stated and taken for granted in sev-
eral manuscripts, is introduced as a natural generalization of the previous simpler
methods that are easier to understand intuitively. Finally, in Section 5 we discuss two
numerical examples arising in the context of model order reduction and stationary
methods for linear systems. For both examples, we include full-working Matlab codes
which are also available for download as supplementary material.

2. What is a manifold?. Differentiable manifolds are abstract mathemati-
cal objects that extend our intuition of smooth one-dimensional curves and two-
dimensional surfaces to arbitrary dimensions and ambient spaces. In these notes,
we focus on manifolds which are embedded into a larger ambient space, that is they
can be seen as subsets of a larger linear space. As an example, consider a sphere
which is a two-dimensional surface embedded into the three dimensional space R3.
This special class of manifolds are often called submanifolds, but for the sake of sim-
plicity we will simply call them manifolds.
Just as not all subsets of R3 represent a differentiable two-dimensional surfarce, dif-
ferentiable manifolds must satisfy some conditions in order to deserve such a title.

Definition 2.1 (Manifold). A subset M ⊂ Rn+d is called a d-dimensional differ-
entiable manifold if there exists a collection of open sets {Uα}α and functions (called
coordinate charts) {φα}α such that every p ∈ M belongs to at least one Uα and the
functions φα : M ⊃ Uα → φα(Uα) ⊂ Rd are diffeomorphisms. Further, whenever
Uα ∩ Uβ 6= ∅,

(2.1) φα ◦ φ−1
β : φβ (Uα ∩ Uβ)→ φα (Uα ∩ Uβ)

is a diffeomorphism.

Recall that a diffeomorphism between two sets U and V is a bijective differentiable
map φ : U → V such that its inverse is also differentiable. Intuitively, a differential
manifold looks locally (around every p) like a subset of Rd, since we may find an
open neighboorhod of p which is in one-to-one correspondance with an open subset
of Rd through a smooth function, see Fig. 1 for a graphical description. Remark
further that the inverse of a chart provides a useful smooth local parametrization of
the manifold around a point p: let Uα be an open set such that p ∈ Uα, then

φ−1
α : Rd ⊃ φα(Uα)→ Uα ⊂M ⊂ Rn+d

is a local parametrization around the point p.
The adjective differentiable entails that differentiable manifolds enjoy some extra
properties compared to “simple” manifolds. This is due to the requirement that
the coordinate charts are diffeomorphisms, which results in the important property
that, given an open set Uα and a function f :M⊃ Uα → R defined on the manifold,
we may consider f̂ := f ◦φα, which is now a function from Rd → R whose properties,
such as, e.g., differentiability, can be studied with standard tools from calculus. The
compatibility condition (2.1) guarantes that the definition of f̂ as well as its properties
do not depend on the precise choice of the coordinate charts.
We next discuss a first classical example to clarify the concepts.

Example 2.2 (The unit circle). Consider the two dimensional unit circle
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Fig. 1. Graphical description of a coordinate chart. Given a point P on the manifold M, we
can find an open subset Uα, and a diffeomorphism φα which maps Uα into an open subset φα(Uα)
of Rd.

S1 :=
{
x = (x1, x2) ∈ R2 : x2

1 + x2
2 = 1

}
⊂ R2, the four sets

U1 = S1 ∩
{
x ∈ R2 : x1 > 0

}
, U2 = S1 ∩

{
x ∈ R2 : x1 < 0

}
,

U3 = S1 ∩
{
x ∈ R2 : x2 > 0

}
, U4 = S1 ∩

{
x ∈ R2 : x2 < 0

}
,

and the charts

φ1 = U1 3 x 7→ x2 ∈ (−1, 1), φ2 = U2 ⊃ x→ x2 ∈ (−1, 1),

φ3 = U3 3 x 7→ x1 ∈ (−1, 1), φ4 = U4 ⊃ x→ x1 ∈ (−1, 1).

Clearly, each point p ∈ S1 belongs to at least one set Uj, j = 1, . . . , 4, and further
the maps φj are diffeomorphism since they are bijective and, e.g., φ−1

1 : (−1, 1)→ U1

is defined as φ−1
1 (x2) = (

√
1− x2

2, x
2
2) and it is differentiable in the interval (−1, 1).

Finally, one may check, e.g., that U1 ∩ U3 =
{
x ∈ R2 : 0 < x1 < 1, x2 =

√
1− x2

1

}
,

and φ3 ◦ φ−1
1 : (0, 1) 3 x1 →

√
1− x2

1 is a diffeomorphism of the unit invertal into
itself. Hence we conclude that S1 is a one-dimensional manifold.

Definition 2.1 relies on open sets and coordinate charts to define a manifold. There-
fore, to check whether the unit circle is a manifold in Example 2.2, we had to come up
with an explicit family of open sets and coordinate charts. In view of most common
geometric surfaces and curves for which we have parametric and implicit represen-
tations, we may wonder if we could have an implicit definition of a manifold, thus
avoiding the need to specify local parametrizations/coordinate charts. The next the-
orem provides a positive answer to this question.

Theorem 2.3 (Implicit definition of a manifold, Prop. 18.7 [12]). Let h : Rn+d ⊃
Ω→ Rd be a differentiable map and c ∈ Rd such that the differential Dh(p) ∈ Rd×(n+d)

has maximum rank for every p ∈ Ω with h(p) = c. Then, the preimage

M := h−1(c) = {p ∈ Ω : h(p) = c}

is a d-dimensional differentiable manifold of Rn+d.

Theorem 2.3 allows us to check more easily that given sets have the structure of a
differentiable manifold. Here are two classical examples.

Example 2.4 (The unit circle revisited). Let h : R2 → R defined by h(x) = x2
1 + x2

2.
Obviously, S1 = h−1(1). Further, h is differentiable and Dh(x) = (2x1, 2x2) ∈ R1×2

is different from zero for every x ∈ S1. Hence, S1 is a differential manifold.

Example 2.5 (The Stiefel manifold). Let us consider the set of orthonormal matrices

(2.2) St(n, k) :=
{
X ∈ Rn×k such that X>X = Ik

}
.
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The set St(n, k) coincides with the preimage of the null matrix through the map
F : Rn×k → Sym(k) with F (X) = X>X−Ik, where Sym(k) =

{
A ∈ Rk×k : A = A>

}
is the set of symmetric matrices. To show that St(n, k) is a manifold, we show that the

differential of F has full rank, which equivalently means that for every Ṽ ∈ Sym(k),

there is a V ∈ Rn×k such that DFX [V ] = Ṽ . A direct calculation shows that

DFX [V ] = X>V + V >X. It is then sufficient to choose V = 1
2XṼ to verify

DFX [V ] =
1

2
X>XṼ +

1

2
Ṽ >X>X = Ṽ .

Hence, we conclude that St(n, k) is a manifold and it is called the Stiefel manifold.

We have previously mentioned that differentiable manifolds locally “look like” an
Euclidean space. As a matter of fact, to each point p we may associate a linear
vector space which locally approximates the manifold. This is the same concept as
the tangent line to a curve in a specific point, which is nothing more than a linear
vector space (spanned by the tangent vector) that locally approximates it. To do so,
we consider all the smooth curves that lie entirely on M and pass through a given
point p. The tangent space of M at p is defined as the set of all possible velocities
(derivatives) of these curves.

Definition 2.6 (Tangent plane and tangent vectors). Let M be a differentiable
manifold and I ⊂ R an open set containing 0. For all p ∈M, the set

(2.3) TpM := {ċ(0)| c : I →M is smooth and c(0) = p}

is called tangent space ofM at p. That is, v ∈ TpM if and only if there exists a curve
c on M that passes through p with velocity v = ċ(0). Elements of TpM are called
tangent vectors.

The next example shows how to use Definition 2.6 to calculate tangent spaces.

Example 2.7 (Tangent spaces to the unit circle and Stiefel manifold). Let S1 be the
unit circle and x(t) : (a, b) → S1 a curve on the manifold such that x(0) = x for a
fixed x ∈ S1. Since x(t) ∈ S1 for every t ∈ (a, b), it must hold x1(t)2 + x2(t)2 = 1.
Taking the derivative with respect to t of this expression leads to

0 =
d

dt |t=0
1 =

d

dt |t=0

(
x1(t)2 + x2(t)2

)
= 2 (x1(0)ẋ1(0) + x2(0)ẋ2(0)) = 2x>ẋ.

Hence, the velocity v of each curve lying on S1 and passing through x must satisfy
x>v = 0, i.e. TxS

1 :=
{
v ∈ R2 : x>v = 0

}
. The reader can easily check that TxS

1

indeed coincides with the direction tangent to the unit circle S1 at point x.
Next, let St(n, k) be the Stiefel manifold defined in (2.2), and X(t) a curve lying on
St(n, k) with X(0) = X. The curve X(t) must satisfy

0 =
d

dt |t=0
Ik =

d

dt |t=0
X(t)>X(t) = Ẋ(0)>X(0) +X(0)>Ẋ(0).

Therefore, TXSt(n, k) =
{
V ∈ Rn×k : V >X +X>V = 0

}
.

Direct calculations allow one to verify in these two examples that the tangent space
is indeed a linear vector space. However, it is not clear at all from (2.3) that this
property should hold more generally. Fortunately, it is possible to characterize the
tangent space of an implicitely defined manifold as the kernel of the smooth defining
function h. The kernel being a subspace, we then conclude that the tangent space is
indeed a linear vector space.
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Theorem 2.8 (Characterization of the tangent space - Proposition 5.38 in [21]). Let
h : Rn+d ⊃ Ω → Rd be a differentiable map, c ∈ Rd and M := h−1(c) be a differen-
tiable manifold. Then given a p ∈M, TpM = KerDhp.

The last concept we introduce is that of a distance between two points on a manifold.
Let us first review the Euclidean case. Let x and y be two points on R2, and c :
[0, 1]→M a smooth curve such that c(0) = x and c(1) = y. Letting L(t) := ‖ċ(t)‖2,
the length of the curve is defined as

(2.4) L(c) :=

∫ 1

0

L(t) dt.

The distance between two points in R2 is then equal to length of the shortest curve c
starting at x and ending at y, namely

(2.5) d(x,y) := inf
c:[0,1]→R2:c(0)=x, c(1)=y

L(c).

The shortest curve between two points is called geodesic. In practice, the minimization
problem (2.5) can be solved using the Euler-Lagrange equations,

(2.6)
d

dt

dL
dċi
− dL
dci

= 0, i = 1, 2.

A direct calculation shows that a minimizer is c?(t) = (x1+t(y1−x1), x2+t(y2−x2)), so
that we recover the standard Euclidean distance d(x,y) =

√
(y1 − x1)2 + (y2 − x2)2.

When considering manifolds, it possible to define a distance between two points on
a manifold by extending the construction just recalled. To do so, one needs first to
introduce an appropriate norm for the vectors {ċ(t)}t∈(0,1), which are now elements

of the tangent space. The so-called Riemannian metric on M is a smooth1 family
of scalar products (〈·, ·〉p)p∈M, 〈·, ·〉p : TpM× TpM → R, in order that for every

v ∈ TpM, ‖v‖ :=
√
〈v, v〉p. Consequently, the length of a curve c on the manifold is

given by L(c) :=
∫ 1

0

√
〈ċ(t), ċ(t)〉c(t) dt, and the distance between two points p, q ∈M

is given by

dM(p, q) = inf
c:[0,1]→R2:c(0)=p, c(1)=q

∫ 1

0

√
〈ċ(t), ċ(t)〉c(t) dt.

A curve attaining the minimum, if it exists, is called geodesic.

3. The Grassmann manifold. In this section, we focus on the Grassmann
manifold and we introduce the main tools that will be needed to interpolate on such
a manifold.

Definition 3.1 (Grassmann manifold). The Grassmann manifold is defined as the
set of all k-dimensional subspaces of Rn,

Gr(n, k) := {V ⊂ Rn : V is a subspace, dim(V) = k} .

There are several ways to represent an element V of the Grassmann manifold. A first
approach uses a matrix U ∈ Rn×k whose columns form a basis of V, i.e. V = span(U).

1We will not dive into what “smooth” means here. The interested reader is refereed to [6,
Definitions 3.44 and 3.52].
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However, there are obviously several different matrices representing the same subspace
V. Therefore the latter is identified with the equivalence class

[U ] :=
{
M ∈ Rn×k : M = UK, K ∈ Rk×k invertible

}
,

containing all matrices of rank k whose columns span V.
A second way associates V with one of its orthonormal bases, V = span(Q) with
Q ∈ Rn×k and Q>Q = Ik. Since again we have several different orthonormal bases,
V is more correctly identified with the equivalence class

(3.1) [Q] :=
{
U ∈ Rn×k : U = QK, K ∈ Rk×k, K>K = Ik

}
containing all (equivalent) orthonormal bases of V. We therefore have the identifica-
tion Gr(n, k) = {[Q] : Q ∈ St(n, k)}.
To eliminate any equivalence relation, a third approach identifies V with the unique
orthogonal projector P : Rn×n → V, defined by P = QQ>, with Q being an orthonor-
mal matrix. This representation is unique since if Q1 is another orthonormal matrix
in [Q], we have Q1 = QK, with K ∈ Rk×k and K>K = KK> = Ik. Therefore,
Q1Q

>
1 = QKK>Q> = QQ> = P . From the numerical point of view, it is quite

convenient to represent V through an orthonormal representative matrix V ∈ St(n, k)
whose columns span V, and this is what we will do from now on. To refer to a point on
the manifold, we may use interchangeably V or [V ]. We will use the second notation
when we want to stress the matrix representative used.
The careful reader may have observed that it is definitely not clear at a first sight why
the set Gr(n, k) should have the structure of a differentiable manifold. As a matter of
fact, this is quite technical, and we refer the interested reader to, e.g., [21, Examples
1.36 and 21.21] and [6, Chapter 9]. As a pure intuitive movitation, we notice from
the second representation that Gr(n, k) can be seen as a quotient set of St(n, k) with
respect to the equivalence relation defining the equivalence classes in (3.1), namely
Q,Q1 ∈ St(n, k) satisfy

Q ∼ Q1 if and only if ∃K ∈ Rk×k, K>K = Ik, s.t. Q = Q1K.

It is then possible to prove that Gr(n, k) inherits the structure of a smooth manifold
from St(n, k) (Gr(n, k) is a quotient manifold) [21, Theorem 21.10]. Furthermore, for
any matrix representative V ∈ St(n, k) of V ∈ Gr(n, k), the tangent space of Gr(n, k)
at V is given by [6, Example 9.26],

(3.2) TVGr(n, k) :=
{

∆ ∈ Rn×k | V >∆ = 0
}
⊂ Rn×k.

Note that the tangent space does not depend on the representative V . Let V , V1

be two members of the same equivalence class and ∆ ∈ T[V ]Gr(n, k). Then 0 =

V >∆ = K>V >1 ∆ which implies, K being orthonormal, that V >1 ∆ = 0, and thus
∆ ∈ T[V1]Gr(n, k). The other inclusion can be shown similarly.

It is also possible to define a Riemannian metric on Gr(n, k). Let ∆ and ∆̃ be
two elements of the tangent space TVGr(n, k), and V ∈ St(n, k) an orthonormal
representative of V. Then the Riemannian metric ([1, Section 3.3]) on the tangent
space TVGr(n, k) is

(3.3) 〈∆, ∆̃〉V := Tr
(

(V >V )−1∆>∆̃
)
,

where Tr denotes the trace operator. Note that, again, 〈·, ·〉V does not depend on the
choice of the basis V for V.
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Next, let Y(t) ∈ Gr(n, k) be a curve on the Grassmann manifold. At each time t, a
point on the curve Y(t) is represented by an orthonormal matrix Y (t) ∈ St(n, k). Due
to the independence of the Riemannian metric on the choice of the basis, to study the
properties of Y(t) we can restrict ourselves to analyze Y (t), whose length is given by
the expression

(3.4) L(Y) =

∫ 1

0

Tr
(

(Y (t)>Y (t))−1Ẏ (t)>Ẏ (t)
)

=

∫ 1

0

L(Y (t), Ẏ (t)) dt.

The interpolation algorithms discussed in Section 4 all depend on the concept of
geodesic between two points on the manifold Gr(n, k). We therefore close this section
by carefully characterizing a minimizer of (3.4) using the Euler-Lagrange equations.

Proposition 3.2 (Characterization of the geodesics). If Y : [0, 1] 3 t → Y (t) ∈
St(n, k) is a curve minimizing (3.4), then Y (t) satisfies the differential equation

(3.5) Ÿ (t)− Y (t)Ẏ (t)>Ẏ (t) = 0, ∀t ∈ [0, 1].

Proof. The minimizers of the functional (3.4) can be computed solving the Euler-
Lagrangian equations

(3.6)
∂L
∂Y
− d

dt

∂L
∂Ẏ

= 0,

where

L(Y, Ẏ ) = Tr
(

(Y (t)>Y (t))−1Ẏ (t)>Ẏ (t)
)

= Tr
(
Ẏ (t)(Y (t)>Y (t))−1Ẏ (t)>

)
= 〈Ẏ (t)>, (Y (t)>Y (t))−1Ẏ (t)>〉F ,

and 〈·, ·〉F denotes the Frobenius scalar product between matrices. Computing the
directional derivatives with respect to Ẏ we find

∂L

∂Ẏ
[δẎ ] = 〈δẎ >, (Y >Y )−1Ẏ >〉F + 〈Ẏ >, (Y >Y )−1δẎ >〉F = 2〈δẎ >, (Y >Y )−1Ẏ >〉F

= 2〈Ẏ (Y >Y )−1, δẎ 〉F ,

and thus we conclude that ∂L
∂Ẏ

= 2Ẏ (Y >Y )−1. Further,

d

dt

∂L

∂Ẏ
=

d

dt
2Ẏ (Y >Y )−1 = 2Ÿ (Y >Y )−1 − 2Ẏ (Y >Y )−1(Ẏ >Y + Y >Ẏ )(Y >Y )−1,

(3.7)

where in the last step we used [22, Formula 59]

d

dt
(Y >Y )−1 = −(Y >Y )−1(Ẏ >Y + Y >Ẏ )(Y >Y )−1.

For the directional derivative with respect to y, we recall the derivation formula [22,
Formula 63]

∂Tr
(
AX−1B

)
∂X

= −(X−1BAX−1)>.
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Setting in our case A = Ik, Ik being the identity matrix in Rk×k, X = Y >Y , B =
Ẏ >Ẏ , using the chain rule and the properties of the trace operator, we obtain for
every matrix pertubation δY ∈ Rn×k that

∂L

∂Y
[δY ] =

∂L

∂X

∂X

∂Y
[δY ] = −〈(Y >Y )−1Ẏ >Ẏ (Y >Y )−1), Y >δY + δY >Y 〉F

= −Tr

([
(Y >Y )−1Ẏ >Ẏ (Y >Y )−1)

]>
Y >δY

)
− Tr

([
(Y >Y )−1Ẏ >Ẏ (Y >Y )−1)

]>
δY >Y

)
= −〈Y (Y >Y )−1Ẏ >Ẏ (Y >Y )−1), δY 〉

− 〈δY, Y
[
(Y >Y )−1Ẏ >Ẏ (Y >Y )−1)

]>
〉,

and hence

(3.8)
∂L

∂Y
= −Y (Y >Y )−1Ẏ >Ẏ (Y >Y )−1)− Y

[
(Y >Y )−1Ẏ >Ẏ (Y >Y )−1)

]>
.

Considering together (3.7) and (3.8), the Euler-Lagrange equations (3.6) read

2Ÿ (Y >Y )−1 − 2Ẏ (Y >Y )−1(Ẏ >Y + Y >Ẏ )(Y >Y )−1

+ Y (Y >Y )−1Ẏ >Ẏ (Y >Y )−1 + Y
[
(Y >Y )−1Ẏ >Ẏ (Y >Y )−1

]>
= 0.

To simplify the expression, we use that Y (t) ∈ St(n, k) at all times, thus Y (t)>Y (t) =
Ik, and the property of elements of the tangent space (see (3.2)), that is Ẏ (t)>Y (t) = 0
∀t ∈ [0, 1], to obtain

Ÿ (t) + Y (t)Ẏ (t)>Ẏ (t) = 0, t ∈ [0, 1].

3.1. Exponential and logarithmic maps. Equation (3.5) characterizes the
curves which are minimizers of the length functional (3.4). To compute a geodesic
between two points on Gr(n, k), we should solve (3.5) and specify the initial and final
values Y (0) = Y0 and Y (1) = Y1, where Y0, Y1 ∈ St(n, k) span the initial and final
subspaces Y0 and Y1. This procedure corresponds to solve a classical second-order
boundary value problem.
On the other hand, we could solve (3.5) by specifying an initial value Y0 and an
initial velocity Ẏ ∈ T[Y0]Gr(n, k). This corresponds to transforming a boundary value
problem into an initial value problem, much in the spirit of shooting methods [17].
Associated to these two different interpretations there are two maps which we discuss
in the following: the logarithmic map and the exponential map.2

Given an initial point Y0 ∈ Gr(n, k), represented by Y0 ∈ St(n, k), the exponential
map is a function that to every tangent vector Ẏ ∈ T[Y0]Gr(n, k) associates the final
point Y1 := span(YY0,Ẏ

(1)), where YY0,Ẏ
is a solution to the geodesic equation that

starts from [Y0] and has an initial velocity Ẏ . In symbols,

Exp[Y0] : T[Y0]M→ Gr(n, k), Ẏ 7→ span(YY0,Ẏ
(1)).

2These two maps can be generally defined on every differentiable manifold. We introduce them
directly for the Grassmann manifold for the sake of simplicity.
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Some authors require in the definition of the exponential map that the tangent vector
is sufficiently small. This is due to the fact that if the tangent vector is sufficiently
small, then YY0,Ẏ

(t) is actually the curve of minimum distance between Y0 and Y1.
This may not always be true. Consider for instance the earth as a manifold and start
from the north pole with an initial direction that makes you pass through Geneva.
Clearly, by rescaling the initial velocity you may end up at time t = 1 exactly in
Geneva, or, if the initial velocity is too large, in the middle of the Pacific ocean while
passing through the south pole. The latter is clearly not the shortest path between
the north pole and that point in the Pacific ocean.
We explicitely derive a closed formula for the exponential map in the following propo-
sition.

Proposition 3.3 (Closed formula for the exponential map). Let Y0 ∈ Gr(n, k),
represented by Y0 ∈ St(n, k), be an initial value on the Grassmann manifold and
Ẏ ∈ T[Y0]Gr(n, k) an initial velocity whose thin Singular Value Decomposition (SVD)

is [U,Σ, V ] = svd(Ẏ ), with U ∈ Rn×k, Σ ∈ Rk×k and V ∈ Rk×k. Then,

Exp[Y0](Ẏ ) = span (Y0V cos(Σ) + U sin(Σ)) ,

where the functions cos(·) and sin(·) act component-wise on the diagonal of Σ.

Proof. Let us first observe that if Y (t) is a solution of (3.5) then

d

dt

(
Ẏ (t)>Ẏ (t)

)
= Ÿ (t)>Ẏ (t) + Ẏ (t)>Ÿ (t)(3.9)

=
(
Ẏ (t)>Ẏ (t)Y (t)>

)
Ẏ (t) + Ẏ (t)>

(
Y (t)Ẏ (t)>Ẏ (t)

)
= 0,(3.10)

where we used the orthogonality property Ẏ (t)>Y (t) = Y (t)>Ẏ (t) = 0 of tangent
vectors. Equation (3.9) implies that Ẏ (t)>Ẏ (t) = Ẏ (0)>Ẏ (0) for every t. We then

introduce a singular value decomposition of Ẏ as [U,Σ, V ] = svd
(
Ẏ
)

which, using

(3.9), implies Ẏ (t)>Ẏ (t) = V Σ2V >. Replacing this term into (3.5), multiplying from
the right by V and defining Φ(t) = Y (t)V leads to

(3.11) Φ̈(t) + Φ(t)Σ2 = 0.

Σ2 being diagonal, (3.11) represents a decoupled system of equations for the k col-
umns of Φ(t) = [φ1(t)|φ2(t)| . . . |φk(t)] ∈ Rn×k. Each equation is of the form φ̈j(t) +

σ2
jφj(t) = 0, σj being the singular values of Ẏ . The overall solution is then

Φ(t) = A cos(tΣ) +B sin(tΣ),

or alternatively formulated in terms of Y ,

Y (t)V = A cos(tΣ) +B sin(tΣ),

where A,B ∈ Rn×k. These two constant matrices are determined by the initial
conditions. Evaluating at time t = 0, we find straightforwardly A = Y0V . Computing
the derivative at time t = 0 gives

Ẏ (0)V = B cos(tΣ)Σ|t=0 = BΣ =⇒ B = Ẏ (0)V Σ−1 = UΣV >V Σ−1 = U.

Thus,

(3.12) Y (t) = Y0V cos(tΣ)V > + U sin(tΣ)V >,
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which, V being an orthonormal matrix, allows us to conclude that

(3.13) span (Y (t)) = span (Y0V cos(tΣ) + U sin(tΣ)) .

Evaluating (3.13) at time t = 1 shows the claim.

Proposition 3.3 provides an easy way to compute the exponential map on the Grass-
mann manifold. The procedure can be summarized in the very short Matlab function:

1 f unc t i on [Y]=exp map (Y0 , Ydot )
2 % EXP MAP computes the exponent i a l map on the Grassman mani fo ld .
3 % Y=exp map (Y0 , Ydot ) computes the matrix r e p r e s e n t a t i v e Y in St (n , k ) o f
4 % Exp { [Y0 ] } ( Ydot ) in Gr(n , k ) , g iven a po int Y0 in St (n , k ) and a tangent
5 % vecto r Ydot in T { [Y0 ]}Gr(n , k ) .
6

7 [U, Sigma ,V]=svd ( Ydot , ’ econ ’ ) ;
8 Y=Y0∗V∗ diag ( cos ( diag ( Sigma ) ) )+U∗ diag ( s i n ( diag ( Sigma ) ) ) ;

Remark 3.4. Note that the closed formula (3.13) permits further to define the map
γ : (0, 1] 3 t → YY0,Ẏ

(t), that is, instead of returning the final value at t = 1 of the

geodesic starting from Y0 with velocity Ẏ , we can return any intermediate point that

lies on such geodesic. Since tẎ has an SVD equal to [U, tΣ, V ] = svd
(
Ẏ
)

, it follows

that γ(t) ≡ Exp[Y0]

(
tẎ
)

. This remark will be important in Section 4.

Remark 3.5 (On the name exponential map). To give an intuition on the origins of
the name exponential map, let us consider the unit circle. Any geodesic on the circle
is an arc since no other trajectories are possible. An arc on the circle starting from
y0 and with direction ẏ0 can be written in parametric form as

(3.14) y(t) = cos(t)y0 + sin(t)ẏ0.

Direct calculations show that ẏ0 can be expressed as ẏ0 = Ay0, and that exp(tA) =
cos(t)I+sin(t)A, with the skew-symmetric matrix A = [0, 1;−1, 0]. Using this relation
in (3.14), the matrix exponential arises,

y(t) = cos(t)y0 + sin(t)Ay0 = exp(tA)y0.

Let us now show that the matrix exponential satisfies the geodesic equation also in the
general case of a Stiefel manifold with k = n. First, note that for a skew-symmetric
matrix A, Y (t) = exp(tA) is orthogonal. Inserting the expression of Y (t) into the
geodesic formula, we obtain indeed

Ÿ (t) + Y (t)Ẏ (t)T Ẏ (t) = exp(tA)A2 + exp(tA)A> exp(tA)> exp(tA)A

= exp(tA)A2 + exp(tA)A>A

= exp(tA)(A2 +A>A)

= exp(tA)(A2 −A2) = 0,

where we used the properties of the matrix exponential and the skew-symmetry of A.
More deeply, the exponential map name originates in the context of Lie groups and
Lie algebras. For more details, we refer the interested reader to [21, Chapter 20].

We next consider the logarithm map on the Grassmann manifold. Given a base point
Y0 ∈ Gr(n, k) the logarithmic maps receives a second point Y1 ∈ Gr(n, k) and returns
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the initial velocity Ẏ ∈ T[Y0]Gr(n, k) of the geodesic that starts from Y0 and arrives in
Y1 at time t = 1. In other words, the logarithmic map is the inverse of the exponential
map, in the sense that if Ẏ = Log[Y0]([Y1]) then Exp[Y0](Ẏ ) = [Y1]. Note however that
the logaritmic map is not always defined. As an example, consider the earth as a
manifold (a sphere). Then, if Y0 and Y1 are the north and south pole, then there
is not a unique geodesic connecting the two points (every terrestrial meridian is a
geodesic), and thus the logaritmic map is not defined. It is however sufficient to
restrict the domain of the logarithmic map to a sufficiently small neighbourhood of
the initial point Y0.

Proposition 3.6 (Closed formula for the logarithmic map). Let Y0 and Y1 be two
points on Gr(n, k) with Stiefel representatives Y0, Y1 ∈ St(n, k). Assume that M :=

Y >0 Y1 is invertible, and let [R,S, Q̃] = svd(M), and L := (I − Y0Y
>
0 )Y1M

−1, with

[Q̂, Ŝ, R̂] = svd(L). Further, let Σ = atan
(
Ŝ
)

. Then,

(3.15) Log[Y0]([Y1]) = Q̂ΣR ∈ T[Y0]M.

Proof. To compute the logarithmic map we do not solve directly the boundary value
problem (3.5) with the appropriate boundary conditions, but we proceed with an
algebraic derivation. We start with the calculation

Y1M
−1 = (Y0Y

>
0 )Y1M

−1 + (I − Y0Y
>
0 )Y1M

−1︸ ︷︷ ︸
L

= Y0 + L,

which implies

(3.16) Y1 = Y0M + LM.

Note that (3.16) expresses the final point Y1 in terms of Y0, M and L. The rest of the
proof consists in manipulating these three terms to get a formula similar to (3.13): A
direct calculation shows that

L>L = M−>Y >1 (I − Y0Y
>
0 )(I − Y0Y

>
0 )Y1M

−1

= M−>Y >1 (I − Y0Y
>
0 )Y1M

−1

= M−>M−1 − I,(3.17)

where we used that Y >1 Y1 = Ik since Y1 ∈ St(n, k). Let [R,S, Q̃] = svd(M) and

[Q̂, Ŝ, R̂] = svd(L) be the SVDs of M and L. On the one hand, Eq (3.17) implies that

L>L = R(S−2 − I)R>. On the other hand, L>L = R̂Ŝ2R̂> due to the thin SVD of

L. Therefore, R̂ = R and Ŝ =
√
S−2 − I. We next define Σ := atan(Ŝ) which implies

Ŝ2 = tanh Σ2 = I − S−2, and thus S = cos(Σ) and ŜS = sin(Σ). Inserting the two

SVDs of M and L and the two expressions for S and ŜS into (3.16) we obtain

(3.18) Y1 = Y0R cos(Σ)Q̃> + Q̂ sin(Σ)Q̃>.

Since Q̃ ∈ Rk×k is an orthonormal matrix, we can neglect the two matrices Q̃>

multiplying from the right in (3.18) when looking at the subspaces generated by the
columns, namely,

(3.19) span (Y1) = span
(
Y0R cos(Σ) + Q̂ sin(Σ)

)
.

Note that (3.19) is exactly of the form (3.13) with t = 1. Thus, we finally deduce that

the tangent vector is Ẏ = Q̂ΣR.
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A numerical procedure to compute the logarithmic map is described by the function
log map v0. Note that, in constrast with the proof of Proposition 3.6, where the SVD
of M is needed to derive (3.18), in practice we only need to perform one SVD, that
of the matrix L, to get all quantities needed to compute the tangent vector.

1 f unc t i on [ Ydot]= log map v0 (Y0 , Y1)
2 % LOG MAP V0 computes the l oga r i thmi c map on the Grassman mani fo ld .
3 % Ydot=log map v0 (Y0 , Y1) r e c e i v e s the matrix r e p r e s e n t a t i v e s Y0 , Y1
4 % in St (n , k ) o f two po in t s on G(n , k ) , and computes the matrix
5 % r e p r e s e n t a t i v e Ydot in St (n , k ) such that [ Exp {Y0}( Ydot ) ]=[Y1 ]
6

7 [U, Sigma ,V]=svd ( ( eye ( s i z e (Y0 , 1 ) )−Y0∗Y0 ’ ) ∗Y1/(Y0’∗Y1) , ’ econ ’ ) ;
8 Theta=diag ( atan ( diag ( Sigma ) ) ) ;
9 Ydot=U∗Theta∗V’ ;

Nevertheless, the function log map v0 has two drawbacks. First, despite it cor-
rectly computes the logarithmic map on the Grassmann manifold, in the sense that
ExpY0

(LogY0
(Y1)) = Y1, it does not necessarily preserve its Stiefel representative,

that is,

Exp[Y0]

(
Log[Y0]([Y1])

)
= [Ỹ1],

where Ỹ1 spans the same subspace of Y1 but may be in a different basis. This can
be seen as follows: Let [Q̂, Ŝ, R̂] be the SVD of the tangent vector Ẏ output of
log map v0, then the exponential map returns the Stiefel representative

Ỹ1 = Y0R̂ cos(Σ)R̂> + Q̂ sin(Σ)R̂>,

which indeed spans the same subspace as Y1 in (3.18), but it is a different basis since

on the right-hand side it is multiplied by R̂> and not by Q̃>. The second drawback
is that it requires M to be invertible which is an extra hypothesis that is actually not
needed.
Recently, a different algorithm has been proposed in [29] that overcomes these two

problems. The algorithm essentially computes a new representative Ỹ1 of Y1, de-
pending on the representative of the initial condition Y0. This is done by solving a
Procrustes problem [24] through the computation of the SVD of the matrix Y >1 Y0,
which we denoted with M in Proposition 3.6. This matrix does not need to be in-
vertible, but only the calculation of its SVD is needed.

Proposition 3.7 (A second closed formula for the logarithmic map). Let Y0 and Y1

be two points on Gr(n, k) with Stiefel representatives Y0, Y1 ∈ St(n, k). Let [Q,S,R] =

svd(Y >1 Y0), Ỹ1 = Y1QR
>, L = (I − Y0Y

>
0 )Ỹ1 with [Q̂, Ŝ, R̂] = svd(L). Then,

(3.20) LogY0
(Y1) = Q̂asin (Σ) R̂> ∈ T[Y0]M,

and Exp[Y0]

(
Log[Y0]([Ỹ1])

)
= [Ỹ1].

Proof. The first step is to solve the Procrustes problem which consists in finding a
rotation of Y1 such that it is as close as possible to the representative Y0. In other
words, we try to express the two (different) subspaces in a common basis,

Φ = arg min
Φ∈Rk×k:Φ>Φ=Ik

‖Y0 − Y1Φ‖F .

To solve this problem, note that

argmin‖Y0 − Y1Φ‖F = argmin〈Y0 − Y1Φ, Y0 − Y1Φ〉 = argmax〈Φ, Y >1 Y0〉.
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Computing the SVD of Y >1 Y0, [Q,S,R] = svd
(
Y >1 Y0

)
, we have

argmax〈Φ, Y >1 Y0〉 = argmax〈Φ, QSR>〉 = argmax〈Q>ΦR,S〉.

The matrix on the left is orthogonal, and the quantity is maximized when Q>ΦR
is the identity,3 thus Φ = QR>. Let then Ỹ1 = Y1QR

> be a new representative
of Y1, and note that Y >0 Ỹ1 = RSR>. The proof then proceeds similarly to that of
Proposition 3.6. We split

(3.21) Ỹ1 = Y0Y
>
0 Ỹ1 + (I − Y0Y

>
0 )Ỹ1.

Defining L := (I − Y >0 Y0)Ỹ1, it holds that

L>L = Ỹ >1 (I − Y >0 Y0)Ỹ1 = R(I − S2)R>,

which implies [Q̂, Ŝ, R] = svd(L), where Ŝ :=
√
I − S2. Defining Σ := asin(Ŝ), we

have S = cos(Σ) and inserting this into (3.21) leads to

(3.22) Ỹ1 = Y0R cos(Σ)R> + Q̂ sin(Σ)R>.

Noticing that (3.22) is equal to Exp[Y0](Ẏ ), with Ẏ = Q̂ΣR>, we get the claim and

further that Exp[Y0]

(
Log[Y0]([Ỹ1])

)
= Ỹ1.

This improved alternative to compute the logarithmic map is implemented in the
function log map:

1 f unc t i on [ Ydot]= log map (Y0 , Y1)
2 % LOG MAP computes the l oga r i thmi c map on the Grassman mani fo ld .
3 % Ydot=log map (Y0 , Y1) r e c e i v e s the matrix r e p r e s e n t a t i v e s Y0 , Y1
4 % in St (n , k ) o f two po in t s on G(n , k ) , and computes a matrix
5 % r e p r e s e n t a t i v e Ydot in St (n , k ) such that [ Exp {Y0}( Ydot ) ]=[Y1 ]
6

7 [ Psi , S ,R]=svd (Y1’∗Y0 , ’ econ ’ ) ;
8 [Q, Sigma ,V]=svd ( ( eye ( s i z e (Y0 , 1 ) )−Y0∗Y0 ’ ) ∗Y1∗ Psi ∗R’ , ’ econ ’ ) ;
9 Theta=diag ( a s in ( diag ( Sigma ) ) ) ;

10 Ydot=Q∗Theta∗V’ ;

Incidentally, we remark that for some manifolds, as, e.g., the Stiefel manifold, there
is no close expression available for the logarithmic map. The study of numerical
methods to compute it is an active area of research, see, e.g., [7, 30, 25].

4. Algorithms for interpolation on the Grassmann manifold. Given all
the concepts introduced in the previous sections, we are now ready to discuss algo-
rithms to interpolate on the Grassmann manifold. To do so, we first review a simple
example of linear interpolation in Euclidean space. This allows us to provide a moti-
vation for the algorithms discussed later.

4.1. Linear and piecewise linear univariate interpolation. Let c : [0, 1] 3
t → c(t) ∈ R be an unknown one-dimensional smooth curve. Given only two values
of c(t), e.g., the initial and final time, c(0) = c0 and c(1) = c1, a standard problem in
numerical analysis is to infer the value of c(t) at any other t ∈ (0, 1). Interpolation
is one of the numerical techniques to solve such problem [13]. It consists in deriving

3To see this, use the fact that S is diagonal and express the Frobenius scalar product as the sum
of the elements of the product component-wise between the two matrices.
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a second map c̃ : [0, 1]→ R that can be easily evaluted for any t ∈ [0, 1] and satisfies
c̃(0) = c0 and c̃(1) = c1. The value of c at any particular point t ∈ (0, 1) is then
inferred to be c(t) ≈ c̃(t). Since we only have two points, it is natural to use linear
interpolation, namely to set c̃(t) = c0 + (c1 − c0)t, so that, e.g., c( 1

2 ) ≈ c̃( 1
2 ) =

c0+c1
2 . Let now Y be a curve on the Grassmann manifold, that is, Y : [0, 1] 3

t → Y (t) ∈ Gr(n, k). Given two points Y (0) = [Y0], Y (1) = [Y1], we would be
tempted to use again linear interpolation and set, e.g., [Y ( 1

2 )] ≈ [ 1
2 (Y0 + Y1)]. This

is equivalent to interpolate linearly component-wise the entries of the representative
matrices. Unfortunately, this straight approach does not work. First, 1

2 (Y0 + Y1) is
not necessarily an orthonormal matrix. Second, non trivial manifolds are intrisically
nonlinear objects, so that the sum of two elements does not lie on the manifold in
general. For instance, if x,y ∈ S1, 1

2 (x + y) /∈ S1. How can we then generalize the
classical concept of linear interpolation on general smooth manifolds?
The solution is to interpret the action of perfoming linear interpolation in an Euclidean
space from a broader perspective. As a matter of fact, linear interpolation consists
actually in taking c̃ as the geodesic (i.e. a straigth line, see Sec 2), that starts from c0
at t = 0 and reaches c1 at t = 1. In analogy with the Euclidean setting, when dealing
with the Grassmann manifold it is natural to build the geodesic Ỹ (t) that links Y0

and Y1 and approximate Y ( 1
2 ) with Ỹ ( 1

2 ). Using the logaritmic and exponential maps

introduced in Sec. 3.1, Ỹ (t) admits a simple close formula,

(4.1) Ỹ (t) := Exp[Y0]

(
tLogY0

([Y1])
)
,

that is, first we compute the tangent vector of the geodesic between Y0 and Y1 using
the logarithmic map, then we move an amount t ∈ [0, 1] along the geodesic with the
exponential map.

Remark 4.1 (Helpful intuitions for the generalization to higher-order/multivariate in-
terpolation). First, note that the two data points Y0, Y1 do not play the same role.
We could intuitively think that Y0 is selected as a reference point,4 since we compute
a tangent vector belonging to the tangent space of Gr(n, k) at [Y0], and we follow the
geodesic starting from [Y0]. We could have chosen as a reference point Y1, computed
a tangent vector belonging to T[Y1]Gr(n, k), and then followed the geodesic starting
from Y1. In this particular case, due to the uniqueness of the geodesic between two
points, the choice of the reference point does not matter. But this will not be true
for the high-order interpolation algorithms discussed next.
Second, we remark that we could write (4.1) as

Ỹ (t) := Exp[Y0]

(
tLog[Y0]([Y1])

)
= Exp[Y0]

(
(1− t)Log[Y0]([Y0]) + tLog[Y0]([Y1])

)
,

since Log[Y0]([Y0]) = 0. In other words, hidden in (4.1) there is a linear interpolation
of the two tangent vectors belonging to T[Y0]Gr(n, k). This hidden interpolation step
of the tangent vectors will actually become explicit in higher-order methods.

This one-dimensional linear interpolation procedure can be easily generalized to a
piecewise linear variant. Let {Y1, . . . ,YM} be M points on the Grassmann manifold
with representatives {Y1, . . . , YM}, and corresponding to the values of Y (t) at times
{t1, . . . , tM}, tj < tj+1. Then, to infer the value of Y(t) at time t, we just find the

4The terminology “starting point” could be more appropriate for linear interpolation, but “ref-
erence point” is more suitable for the generalizations in the next subsections.
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Fig. 2. Top row: Linear interpolation of a curve c(t) with values in R (left) and on a generic
manifold M (right). The curve is represented by the continuous line, while the geodesic is the black
dashed line. Bottom row: graphical representation of a piecewise linear interpolation on R (left) and
on a manifold M (right).

interval such that t ∈ [tj , tj+1], build the geodesic Ỹ (t) between Yj and Yj+1, and

finally return the value of Ỹ (t) at time t =
t−tj

tj+1−tj , where the rescaling is due to the

mapping of the interval [tj , tj+1] to [0, 1]. This numerical procedure is summarized in
the function piecewise linear inter and depicted in Fig. 2:

1 f unc t i on Ynew=p i e c e w i s e l i n e a r i n t e r (Y, t , tnew )
2 % PIECEWISE LINEAR INTER eva lua t e s the p i e c e w i s e l i n e a r i n t e r p o l a n t o f t

−>Y( t ) in tnew .
3 % p i e c e w i s e l i n e a r i n t e r (Y, t , tnew ) eva lua t e s Y( t ) at t=tnew , g iven
4 % a vecto r t conta in ing the i n t e r p o l a t i o n points , and a c e l l Y s . t .
5 % Y{ i}=Y( t i ) . The matr i ce s Y{ i } are orthogona l .
6

7 l =1; f l a g =0;
8 whi le ( l<=length ( t )−1 && f l a g ==0) %f i n d i n t e r v a l in which tnew l i e s
9 i f ( t ( l )<=tnew && tnew<=t ( l +1) )

10 t0=t ( l ) ; %ends po in t s o f the i n t e r v a l
11 t1=t ( l +1) ;
12 f l a g =1;
13 end
14 l=l +1;
15 end
16 l=l −1;
17 Ydot=log map (Y{ l } ,Y{ l +1}) ; %Y{ i } are orth .
18 r=(tnew−t0 ) /( t1−t0 ) ;
19 Ynew=exp map (Y{ l } , r ∗Ydot ) ;

4.2. High-order univariate interpolation. Suppose now that we would like
to use not just a linear interpolation method, but a higher order one. For simplicity,
we consider a quadratic interpolation. On Gr(n, k) we have data points Y0,Y 1

2
and

Y1, corresponding to the values t ∈
{

0, 1
2 , 1
}

, and t ∈ (0, 1). As a first step we choose
a reference point among the data points available. Assume, e.g., that we choose
Yref = Y 1

2
. Next, we compute using the logarithmic map the three tangent vectors

on T[Y 1
2

]Gr(n, k) associated to the geodesics starting from Y 1
2

and reaching either Y0,
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Y 1
2

or Y1. We assume for the moment that the logarithmic map is well-defined in a
sufficiently large neighboorhod containing the data points; See Sec. 4.3 to handle more
general cases. We then perform a standard quadratic interpolation on T[Y 1

2
]Gr(n, k),

(4.2) ˜̇Y (t) = l0(t)Log[Y 1
2

]([Y0]) + l 1
2
(t)Log[Y 1

2
]([Y 1

2
]) + l1(t)Log[Y 1

2
]([Y1]),

where lj(t) are Lagrange polynomials. Note that T[Y 1
2

]Gr(n, k) being a linear vector

space, the result of the interpolation still lies in T[Y 1
2

]Gr(n, k). Finally, the output of

the high-order interpolation is then

Ỹ = Exp[Y 1
2

]

(˜̇Y (t)
)
.

This algorithm can be readily generalized to arbitrary high-order methods and to
several data points by replacing (4.2) with a suitable high-order interpolation formula.
Note that the output of the algorithm does depend on the choice of the reference point,
although its impact is generally limited [2]. To the best of our knowledge, there is not
a rigourous mathematical argument to choose one particular point. Heuristically, it
makes sense to “linearize” the manifold in a point closest to t.

4.3. Multivariate interpolation. So far we restricted ourselves to the interpo-
lation of subspaces that depends on a scalar parameter t. We now review an algorithm
presented in [2], that permits dependences on a set of parameters t = (t1, . . . , t`) ∈ R`.
As the reader will notice, this algorithm is a direct generalization of the high-order
scalar interpolation presented in Sec. 4.2.
Let {Y1, . . . ,YM} be M given points on Gr(n, k) corresponding to the input pa-
rameters {t1, . . . , tM}. We may assume the data is generated by an unknown map
Y : R` 3 t → Y(t), and given a sample parameter t, we would like to estimate Y(t).
The algorithm of [2] uses coordinate charts to map an open set of the manifold con-
taining some input data to Rd, perform interpolation in Rd, and finally mapping the
interpolation result back onto the manifold. The algorithm is reported in Alg 4.1 and
it is described visually in Fig. 3. It consists in the following steps: First, we select
a reference point Yref . Then for M̃ ≤ M points that are sufficiently close to Yref

(so that the logarithmic map is well-defined) we compute the tangent vector
{
Ẏj

}M̃
j=1

of the geodesic starting from Yref and ending in Yj . Note that Ẏj ∈ TYref
Gr(n, k)

for every j. Second, given the couples (tj , Ẏj) we infer a tangent vector ˜̇Y using any
standard Euclidean interpolant such that

˜̇Y =

M̃∑
j=1

ωj Ẏj ,

where ωj ∈ R are suitable interpolation weights. As a final step, we compute the

output by moving along the geodesic using the exponential map, i.e. Y(t) ≈ Ỹ =

ExpYref

(˜̇Y ).

5. Numerical examples. In this section we illustrate the potential of interpola-
tion algorithms on the Grassman manifold in two simple, yet representative, problems
arising in reduced order modeling. The first example considers a parametric time-
dependent heat equation, where the interpolation algorithms are used to obtain more



A GENTLE INTRODUCTION TO INTERPOLATION ON THE GRASSMANN MANIFOLD17

Algorithm 4.1 Interpolation on the Grassmann manifold through tangent spaces

Require: A set {Y1, . . . ,YM} of M points on Gr(n, k), with representatives
{Y1, . . . , YM} and corresponding to the parameters {t1, . . . , tM}, and an inter-
polation point t.

1: Select a parameter ti from the data set available (e.g., the closest to t). Take
Yref = Yi as the reference point.

2: For sufficiently close points, call log map to compute Ẏj := Log[Yref ] (Yj), j =

1, . . . , M̃ , M̃ ≤M .

3: Compute ˜̇Y using a classical interpolation algorithm with input the computed

tangent vectors
{
Ẏ1, . . . , ẎM̃

}
at locations

{
t1, . . . , tM̃

}
.

4: Call exp map with arguments Yref and ˜̇Y . Return its output.

M Yref

Y(t)

Y0 Y1
Ỹ

Fig. 3. Graphical description of Alg. 4.1. The blue vectors represent the tangent vectors Ẏ0
and Ẏ1 of the geodesic starting from Yref and ending at Y0 and Y1. The red vector is the tangent

vector ˜̇Y resulting from an interpolation of Ẏ0 and Ẏ1. Following the geodesic starting from Yref
and determined by ˜̇Y we get the approximation Ỹ of Y(t).

accurate reduced bases for new parameter queries, given a reduced basis dataset com-
puted for some values of the parameter. The second problem instead deals with the
solution of parametric linear systems using a simple two-level method with damped
Jacobi smoothing, and shows how to use interpolation algorithms to derive efficient
second level coarse spaces.

5.1. Time dependent parametric heat equation. Let us consider D :=
(0, 1), Iµ a bounded interval of R, T ∈ R+, and the time dependent parametric
partial differential equation

(5.1) ∂tu(x, t;µ)−∇ · (κ(x;µ)∇u(x, t;µ)) = f(x, t), x ∈ D, t ∈ [0, T ], µ ∈ Iµ,

equipped with the boundary conditions and the initial condition

u(0, t;µ) = u(1, t;µ) = 0, u(x, 0;µ) = u0(x).

To ensure well-posedness for every admissible µ, we assume that there exist two
positive numbers κmin, κmax ∈ R+ such that

0 < κmin ≤ κ(x;µ) ≤ κmax ∀x ∈ D, ∀µ ∈ Iµ.

Our goal is the following: we would like to be able to evaluate in a fast and accurate
way the solution map µ→ u(x, t;µ).
Notice that for a fixed and given value of µ, (5.2) can be solved using a stan-
dard numerical methods: we introduce a piecewise linear finite element space Vh =
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span {φ1, . . . , φNh
}, associated to a quasi-uniform partition of the interval [0, 1] and

consider a semi-discretization in space of (5.1). This results in the first order system
of differential equations

(5.2) M∂tu(t;µ) = A(µ)u(t;µ) + f(t),

where (M)ij =
∫
D φi(x)φj(x) dx, (A)ij =

∫
D κ(x;µ)∇φi(x) · ∇φj(x) dx, (f)i =∫

D f(x, t)φi(x) dx and u(µ) = (u1(µ), · · · , uNh
(µ))> is the vector containing the coef-

ficients of the expansion of the approximated solution uh(x, t;µ) in the basis {φj}Nh

j=1
of Vh. Next, we use a classical integrator for ordinary differential equations to solve
(5.2). Letting (0, T ] = ∪NT

j=1(tj , tj+1], ∆t := tj+1 − tj be a uniform discretization of
the time interval, and using, e.g., the Crank-Nicolson scheme, we end up solving the
sequence of linear systems

(5.3)

(
M +

∆t

2
A(µ)

)
un(µ) =

(
M − ∆t

2
A(µ)

)
un−1(µ) +

∆t

2

(
fn−1 + fn

)
,

where fn := f(tn) and our approximation is given by u(x, t;µ) ≈
∑Nh

j=1 u
n
j (µ)φj(x).

Although simple, the approach described suffers from a high computational cost,
especially if we wish to approximate u(x, t µ) for many values of µ.
A key observation here5 is that for several problems, including the time-dependent
parametric PDE (5.1), the solution u(x, t;µ) can be well described, both at different
time instants and for different parameters µ, by a small dimensional subspace V
whose dimension is Nr � Nh. Assuming for the moment that one has a basis V =
[ψ1(x)| . . . |ψNr

(x)] ∈ RNh×Nr available for V (ψj are spatial functions like the φj(x)),
for every value of µ we could look for a reduced order solution of the form ur(x, t

n;µ) =

V unr (µ) =
∑Nr

j=1 ψj(x)unj,r(µ), unr (µ) = (un1,r(µ), . . . , unNr,r
(µ))> ∈ RNr , by solving

the reduced equations

(5.4) V >
(
M+

∆t

2
A(µ)

)
V unr (µ)=V >

(
M−∆t

2
A(µ)

)
V un−1

r (µ)+
∆t

2
V >
(
fn−1+fn

)
.

Notice that Eq (5.4) is derived from (5.3) by replacing un with V unr and by projecting
the equation onto the subspace V. Further, (5.4) has the computational advantange of
requiring to invert at each time step the smaller matrix V >

(
M + ∆t

2 A
)
V ∈ RNr×Nr ,

rather than
(
M + ∆t

2 A
)
∈ RNh×Nh appearing in (5.3).

To build an orthonormal basis V for V, one of the most popular methods is the Proper
Ortoghonal Decomposition (POD) (see [23, Section 6]) which consists in computing
snaphots of the discrete solution

{
u0(µi), . . . ,u

NT (µi)
}

for given parameter values
µi, i = 1, . . . ,M . All these discrete solutions are then inserted into a large matrix,
called the snapshot matrix,

S =
[
u0(µ1), . . . ,uNT (µ1), . . . ,u0(µM ), . . . ,uNT (µM )

]
∈ RNh×(NT +1)M .

Finally, one computes a Singular Value Decomposition (SVD) of S and sets V =
[ψ1, . . . , ψr], the ψj being the first Nr left singular vectors of S with Nr � NTM .
The intuition behind this construnction is that the columns of S will somehow be
similar among them if u(x, t;µ) can be well approximated by a small dimensional
subspace. Then, the left singular vectors of the SVD of S will span a subspace that

5Motivating more than two decades of intense research, see, e.g., the reference works [23, 18, 5].
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describes most of the variability in the snapshots uk(µi), very similar to the principle
behind Principal Component Analysis (PCA) in statistics, see, e.g., [23, Chapter 6].
Now, given this brief description of an approach to solve efficiently parametrized
PDEs, how do interpolation algorithms on the Grassmann manifold come into play?
The starting point is the observation that by performing the SVD of the snapshots
matrix S, we are trying to capture simultaneously the dependence of the solution
u(x, t;µ) on both the temporal and parametric variables t and µ. This may require
to take a pretty large value of Nr to capture sufficiently well the variability of the
columns of S, and thus leading to still quite a large linear system to be solved at each
time step in (5.4). The same issue might arises if we consider (5.1) for a very large
set of values µ, so that Nr might end up to be too large in a pure global approach,
while we could hope to use a small Nr if we restricted ourselves to a subset of the
parameter values.
A possible alternative is then to compute several subspaces V(µj), for a given set of
parameters µj decided a-priori, by perfoming the SVD of the snapshot matrices

S(µj) =
[
u0(µj), . . . ,u

NT (µj)
]
.

Then, we can set V(µj) = span {ψ1(µj), . . . , ψNr
(µj)}, ψk(µj) being the left singular

vectors of S(µj), and perform Grassmann interpolation to derive a new subspace Ṽ(µ)

for a new, out of sample, parameter µ. We use the tilde-notation to stress that Ṽ(µ)
is not constructed as the span of the eigenvectors of some matrix, but as the result of
an interpolation process between subspaces.
We now present a compact Matlab implementation that explores this idea and show
its potential to compute an approximated solution of (5.1). We set T = 1, Iµ =
[µmin, µmax], κ(x, µ) = 1 + xµ, f(x, t) = 4 sin(πt2 ) exp(2x2) and u0(x) = sin(3πx)x2.
For any value of µ, the solution of (5.1) can be approximated using the Matlab
function Solve given mu which implements a finite element discretization in space
and Crank-Nicolson marching scheme in time. Notice that Solve given mu calls
another function, assemble matrix, which simply assembles the finite element mass
and stiffness matrices. Due to space limitation, we do not report its implementation
here, but it is available in the folder of codes in the supplementary material.

1 f unc t i on [ uvec ]= Solve given mu (mu,P, El , c o e f f , f f un ,T, u0 ,V)
2 % SOLVE GIVEN MU computes the s o l u t i o n o f the time dependent heat

equat ion f o r a g iven parameter va lue mu.
3 % Solve given mu (mu,P, El , c o e f f , f f un ,T, u0 ,V) r e c e i v e s a parameter mu
4 % mesh matr i ce s P and El , d i f f u s i o n c o e f f i c e n t c o e f f , a f o r c e term f f u n
5 % a f i n a l time T, an i n i t i a l c ond i t i on u0 , and an opt i ona l matrix V
6 % spanning a reduced subspace .
7 % I t r e tu rn s a matrix uvec , where uvec ( : , j ) approximates u(x , t ˆ j ;\mu)
8

9 n=s i z e ( El , 2 ) ; dt=T(2)−T(1) ; % number o f e lements
10 M=assemble matr ix (@(x , e l ) 1 ,P, El , 0 , 0 ) ; % assemble mass matrix
11 i f narg in <8 V=speye (n−1,n−1) ; end % no opt . input−>Phi=

i d e n t i t y
12 i n t =(2:n) ; % i n t e r i o r nodes
13 A=assemble matr ix (@( x ) c o e f f (x ,mu) ,P, El , 1 , 1 ) ; % Assemble s t i f f n e s s matrix
14 A=A( int , i n t ) ; % remove D i r i c h l e t nodes
15 uvec=ze ro s ( s i z e (V, 2 ) , l ength (T) ) ; % a l l o c a t e matrix
16 uvec ( : , 1 )=V’∗ u0 ; % i n i t i a l c ond i t i on
17 A=V’∗A∗V; % reduced matrix i f V in

input
18 Mint=V’∗M( int , i n t ) ∗V;
19 bold=M∗( f f u n (P, 0 ) ’ ) ; % rhs at time t =0.
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20 bold=bold ( i n t ) ; % remove D i r i c h l e t nodes
21 f o r k=1: l ength (T)−1 % loop over time s t ep s
22 b=M∗( f f u n (P, k∗dt ) ’ ) ; % compute time−dep . rhs
23 b=b( i n t ) ; % remove D i r i c h l e t nodes
24 uvec ( : , k+1)=(Mint+dt /2∗A) \ . . . % s o l v e l i n e a r system
25 ( ( Mint−dt /2∗A) ∗uvec ( : , k )+dt∗V’ ∗ ( b+bold ) /2) ;
26 bold=b ;
27 end
28 uvec=V∗uvec ; %f i n a l output .

The function Solve given mu.m allows us to compute easily the matrices S(µj) since
they correspond to the function’s output uvec. A first idea that we can try is to check
the quality of the interpolation process, namely how close or far are the interpolated
subspaces Ṽ(µj) with respect to the exact V(µj). To do so, we measure the angle6

between Ṽ(µj) and V(µj) using the Matlab function subspace for several values of
µ ∈ [1, 10]. An angle close to π

2 ≈ 1.5708 means that the two subspaces are orthogonal,
that is, they are very “distant” one from the other. On the contrary, a small angle
means the two two subspaces are aligned, therefore they are very close to each other,
and equal if the angle is zero. The following Matlab script computes the angle between
V(µ) and Ṽ(µ) computed using the function piecewise linear inter described in
4.1. The result is shown on the left panel of Fig. 4.

1 dt =0.01; T=(0: dt : 1 ) ; % time step and time i n t e r v a l
2 a=0; b=1; % domain i s i n t e r v a l ( a , b )
3 h=0.01; % mesh s i z e
4 P=(a : h : b) ; % nodes
5 n=(b−a ) /h ; % number o f e lements
6 El =[ (1 : n) ; ( 2 : n+1) ] ; % c o n n e c t i v i t y matrix
7 i n t =(2:n) ; % i n t e r i o r nodes
8 f f u n=@(x , t ) 4∗ s i n ( p i ∗ t /2) ∗exp (2∗x . ˆ 2 ) ; % f o r c e term
9 u0=( s i n (3∗ pi ∗P( i n t ) ) .∗P( i n t ) . ˆ 2 ) ’ ; % i n i t i a l cond i t i on

10 kappa=@(x ,mu, e l ) exp (mu∗ s i n ( p i ∗x ) ) ; % d i f f . c o e f f .
11 uvec=ze ro s (n−1, l ength (T) ) ; % matrix conta in ing s o l s . at

each t
12 uvec ( : , 1 )=u0 ; % i n i t i a l c ond i t i on
13 Nr=10; % dimension subspace
14 mumin=1; mumax=10; % range f o r va lue s o f mu in I \

mu.
15 nsamples =10; % number o f i n t e r p o l a t i o n po in t s
16 musamples=l i n s p a c e (mumin ,mumax, nsamples ) ; %uniform samples in I \mu
17 V=c e l l ( nsamples , 1 ) ; % c e l l conta in ing subspaces
18 f o r j =1: l ength ( musamples ) % subspace at r e f . va lue s
19 Smuj=Solve given mu ( musamples ( j ) ,P, El , kappa , f fun ,T, u0 ) ;
20 [V{ j } ,˜ ,˜ ]= svds (Smuj , Nr) ;
21 end
22 muvec=(mumin : 0 . 1 : mumax) ; % range o f t e s t i n g va lue s o f \mu
23 ang levec=ze ro s ( l ength (muvec ) ,1 ) ; % ang l e s between subspaces
24 f o r j =1: l ength (muvec ) % f o r every query parameter
25 Smuj=Solve given mu (muvec ( j ) ,P, El , kappa , f fun ,T, u0 ) ;
26 [ Vj ,˜ ,˜ ]= svds (Smuj , Nr) ; % compute exact Vj
27 Vinter=p i e c e w i s e l i n e a r i n t e r (V, musamples , muvec ( j ) ) ; % Inte rp .

subspace
28 ang levec ( j )=subspace ( Vinter , Vj ) ; % ang le between subspaces .
29 end
30 p lo t (muvec , ang levec ) ; xl im ( [ mumin mumax ] ) ; yl im ( [ 0 p i / 2 ] ) ; g r i d on ; %p lo t
31 y l a b e l ( ’ Angle between subspaces ’ ) ; x l a b e l ( ’ Parameter \mu ’ ) ; s e t ( gca , ’

f o n t s i z e ’ , 14) ;

6As we can measure the angle between two lines, it is possible to define an angle between subspaces
[14].
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Fig. 4. The left panel shows the angles between the subspace V(µ) obtained through an eigen-
decomposition of S(µ) and Ṽ(µ) derived using piecewise linear interpolation on the Grassmann
manifold. The right panel shows the diffusion coefficient κ(x, µ) = 1 + xµ for different values of µ.

Notice that the angle is zero for µ = k, k = 1, . . . , 10, since then the evaluation
point coincides with an interpolation point (line 16), and thus the piecewise linear
interpolation is exact. Further, we remark that the angle is quite large for µ close
to 1, while it is small for larger values of µ. We can understand this behaviour
by looking at the right panel of Fig. 4 which shows κ(x, µ) = 1 + xµ for different
values of µ. Indeed as µ increases, κ(x, µ) varies a lot at the beginning, while it
remains very similar for large values of µ. This small variability is reflected by a
small variability of the matrices S(µj) (a slight change in κ(x;µ) will cause only a

small change in {un(µ)}NT

n=1 due to the continuity of the solution map κ→ {un}NT

n=1),
and of the subspaces V(µj), so that the interpolation algorithm delivers an accurate
approximation. This observation should also make us consider the opportunity to use
a non-uniform sampling by adding sampling points close to µ = 1. We conclude this
section by presenting a Matlab code that compares the solutions for µ = 3.5 obtained
by solving (5.3), and (5.4) with both V(µ) computed from the POD of S(µ) and with
Ṽ(µ) computed using linear interpolation between the two subspaces V(3) and V(4).

1 dt =0.01; T=(0: dt : 1 ) ; % time step , time i n t e r v a l
2 a=0; b=1; % domain i s i n t e r v a l ( a , b )
3 h=0.01; % mesh s i z e
4 P=(a : h : b) ; % nodes
5 n=(b−a ) /h ; % number o f e lements
6 El =[ (1 : n) ; ( 2 : n+1) ] ; % c o n n e c t i v i t y matrix
7 i n t =(2:n) ; % i n t e r i o r nodes
8 f f u n=@(x , t ) 4∗ s i n ( p i ∗ t /2) ∗exp (2∗x . ˆ 2 ) ; % f o r c e term
9 u0=( s i n (3∗ pi ∗P( i n t ) ) .∗P( i n t ) . ˆ 2 ) ’ ; % i n i t i a l cond i t i on

10 c o e f f=@(x ,mu, e l ) 1+x . ˆmu; % d i f f u s i o n c o e f f i c i e n t
11 Nr=5; % number o f f u n c t i o n s
12 mueval =3.5 ; % eva lua t i on po int
13 u=Solve given mu ( mueval ,P, El , c o e f f , f f un ,T, u0 ) ; % f u l l s o l u t i o n
14 [U,˜ ,˜ ]= svds (u , Nr) ; % subspace f o r mueval
15 ur=Solve given mu ( mueval ,P, El , c o e f f , f f un ,T, u0 ,U) ; %reduced s o l u t i o n
16 muinit =3; % extrema i n t e r v a l
17 u i n i t=Solve given mu ( muinit ,P, El , c o e f f , f f un ,T, u0 ) ;
18 [ Uinit ,˜ ,˜ ]= svds ( u in i t , Nr) ; % subspace f o r muinit
19 mufin =4; %extrema i n t e r v a l
20 u f i n=Solve given mu ( mufin ,P, El , c o e f f , f f un ,T, u0 ) ;
21 [ Ufin ,˜ ,˜ ]= svds ( uf in , Nr) ; % subspace f o r mufin
22 Tangent vector=log map ( Uinit , Ufin ) ; % compute tangent vec to r
23 Uinter=exp map ( Uinit , ( ( mueval−muinit ) /( mufin−muinit ) ) ∗ Tangent vector ) ;
24 u i n t e r=Solve given mu ( mueval ,P, El , c o e f f , f f un ,T, u0 , Uinter ) ;
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Fig. 5. Comparison between the solutions computed by solving (5.3) (right plot), and (5.4) using
both a subspace V(µ) obtained computing the SVD of S(µ) (central panel) and a linearly interpolated
subspace Ṽ(µ) (right panel).

25 f i g u r e ( ) ; [X,T]= meshgrid (P( i n t ) ,T) ; %p lo t
26 subplot ( 1 , 3 , 1 ) ; mesh (X,T, u ’ ) ; view ( [ 0 9 0 ] ) ; x l a b e l ( ’ x ’ ) ; y l a b e l ( ’T ’ )
27 subplot ( 1 , 3 , 2 ) ; mesh (X,T, ur ’ ) ; view ( [ 0 9 0 ] ) ; x l a b e l ( ’ x ’ ) ; y l a b e l ( ’T ’ )
28 subplot ( 1 , 3 , 3 ) ; mesh (X,T, u inter ’ ) ; view ( [ 0 9 0 ] ) ; x l a b e l ( ’ x ’ ) ; y l a b e l ( ’T ’ )

As Fig 5 shows, Nr = 5 (line 11) basis functions are actually already sufficient to
well-capture the solution behaviour. Most importantly from our point of view, Fig. 5
shows that we can avoid to recompute a subspace V(3.5) through an expensive SVD,
but instead safely use linear interpolation on the Grassmann manifold to derive a
suitably accurate subspace.

5.2. Two-level iterative methods for parametric linear systems. In this
subsection, we discuss the use of interpolation algorithms on the Grassmann manifold
to design efficient solvers for the sequence of parametrized linear systems

(5.5) A(µ)u(µ) = f , µ ∈ Iµ,

where Iµ is a subset of R and A ∈ RNh×Nh . Such parametrized systems may arise
for instance in the discretization of a stationary version of (5.1), or even in the time-
dependent case, see, e.g., (5.3). More generally, they often appear in uncertainty
quantification applications, where the repeated solution of linear systems for different
realizations of the randomness is required to study the variability of a certain quantity
of interest. Of course, the topic has been previously studied, see [8, 20, 19, 28]. In
this paragraph, we propose an alternative and novel approach based on a two-level
stationary iterative method that uses interpolation algorithms on the Grassmann
manifold to adapt to new parameter queries.
Let us recall that a classical one-level stationary method to solve Au = f is based on
the splitting of the matrix A into A = M −N , and on the iteration

un = un−1 +M−1
(
f −Aun−1

)
.

Standard well-known methods can be embedded into this abstract form [9]. The
Jacobi method is obtained setting M = D, D being the matrix containing only the
diagonal of A, the damped Jacobi method is obtained setting M = 1

ωD, ω being a
relaxation parameter, and the Gauss-Seidel method is derived setting M = D+L, L
being the lower triangular part of A. Notice that the error en := u−un satisfies the
recurrence relation en = Gen−1, G := M−1N being the iteration matrix, and that,
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theoretically, by solving the error equation at every iteration n

(5.6) Ae = f −Aun,

we could immediately find the solution u, since a direct calculation shows that u :=
un + e is the correct solution. Unfortunately, solving (5.6) is as expensive as solving
the original system Au = f .
It is well-known that a stationary method converges if and only if the spectral radius
of G is strictly smaller than one, that is, ρ(G) < 1 [9, Theorem 2.7]. Further, the
spectrum of G provides important information about the convergence of the method.
Assuming G is diagonalizable and letting {(vj , λj)}Nh

j=1 be the eigenpairs of G, we can

decompose en =
∑N
j=1 e

n
j vj , so that en+1 = Gen =

∑N
j=1 λje

n
j vj . In other words, at

each iteration the error reduces by a factor λj along the direction of the vj eigenvector.
This is a very important remark since some classical iterative methods, as the Jacobi
method, may convergence very fast along some eigenvector directions while they are
extremely slow for others7.
The idea of a two-level iterative method is to consider a subspace V which should be
close to the subspace spanned by the eigenvectors of G that are responsible for the slow
convergence of the one-level stationary iteration method. Then, we could use the one-
level iterative method to reduce the error components that are efficiently handled by
G, while we could solve a projected version of (5.6) onto the subspace V, often called
coarse problem, to reduce the remaining error components. Letting V ∈ RNh×Nc be
a matrix whose columns span V, this procedure is described by Alg. 5.1. Notice that
we have not discussed how to generate the subspace V. Here and in the numerical
codes, we assume for simplicity that the columns of V correspond to the eigenvectors
associated to the Nc largest eigenvalues of G in modulus. However, this is not a
practical choice due to the high computational cost. There are several alternatives to
construct candidate subspaces in a more efficient way, but their discussion is beyond
the scope of this manuscript (see, e.g., [10, 27]). Finally, we recall that a two-level
method is still a stationary iterative method whose iteration matrix is

(5.7) TV = Gn2(I − V (V >AV )−1V >A)Gn1 ,

so that to study the convergence of a two-level method we can analyze the spectral
radius of TV . Note that we use the subscript V to stress the dependence on the coarse
space V.
After this brief overview of iterative methods, it might appear clear where we would
like to use interpolation algorithms on the Grassmann manifold to solve (5.5) effi-
ciently. As a matter of fact, for each parameter value µ, we have a different iteration
matrix G(µ) := M−1(µ)N(µ), and consequently a different coarse space V(µ) which is
expensive to compute. Therefore, we would like to construct the coarse spaces V(µj)
for a set of different parameters µj , j = 1, . . . ,M , while for a new query parameter,

we would use a coarse space Ṽ(µj) computed by interpolation. Let us see now how
this idea works in practice in a Matlab example. We consider the stationary version
of (5.1) with κ(x, µ) = 2 + cos(µx) and for simplicity we consider a two-level method
like in (5.7) with n1 = 1 and n2 = 0.

7Indeed, the damped Jacobi method eliminates very fast high frequency components of the error,
while it struggles a lot to remove the low frequency ones [9, Sec. 4.10]. The key idea of the well-
known multigrid methods is to add a second level to the Jacobi method based on a coarse geometric
mesh, where the low frequency error components are still well represented and can be eliminated by
a direct solve, see, e.g., [26, 16, 27].
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Algorithm 5.1 Two-level stationary method

Require: u0 (initial guess)
1: un = un−1 +M−1(f −Aun−1), n = 1, . . . , n1 (pre-smoothing steps)
2: r = f −Aun1 (compute the residual)
3: Solve (V >AV )e = V >r (solve the coarse problem)
4: u0 = un1 + V e (add coarse correction)
5: un = un−1 +M−1(f −Aun−1), n = 1, . . . , n2 (post-smoothing steps)
6: Set u0 = un2 (update)
7: Repeat from 1 to 6 until convergence

1 a=0; b=1; % domain i s i n t e r v a l ( a , b )
2 h=0.01; % mesh s i z e
3 P=(a : h : b) ; % nodes
4 n=(b−a ) /h ; % number o f e lements
5 El =[ (1 : n) ; ( 2 : n+1) ] ; % c o n n e c t i v i t y matrix
6 i n t =(2:n) ; % i n t e r i o r nodes
7 c o e f f=@(x ,mu, e l ) 2+cos (mu∗x ) ; % d i f f u s i o n c o e f f i c i e n t
8 Nr=20; % Number o f b a s i s f u n c t i o n s
9 mumin=0; mumax=10; % range o f mu

10 Ninte rpo in t s =7;
11 musamples=l i n s p a c e (mumin ,mumax, N in te rpo in t s ) ;
12 V=c e l l ( Ninterpo ints , 1 ) ;
13 omega=2/3; % parameter damped Jacobi
14 f o r k=1: l ength ( musamples ) % coar s e spaces f o r va lue s o f musamples
15 A=assemble matr ix (@( x ) c o e f f (x , musamples ( k ) ) ,P, El , 1 , 1 ) ;
16 A=A( int , i n t ) ; % remove boundary nodes
17 D=spd iags ( diag (A) ,0 , s i z e (A, 1 ) , s i z e (A, 2 ) ) ; % e x t r a c t d iagona l
18 G=@( v ) v−omega∗(D\(A∗v ) ) ; % i t e r a t i o n matrix Jacobi
19 [ Vj ,˜ ]= e i g s (G, s i z e (A, 1 ) ,Nr , ’ l a r g e s t a b s ’ ) ; % e igen decomp . o f G
20 V{k}=Vj ( : , 1 : Nr) ; % keep f i r s t Nr e i g e n v e c t o r s
21 end
22 muvec=(mumin : 0 . 1 : mumax) ; % range o f t e s t i n g va lue s o f mu
23 f o r k=1: l ength (muvec )
24 A=assemble matr ix (@( x ) c o e f f (x , muvec ( k ) ) ,P, El , 1 , 1 ) ; A=A( int , i n t ) ;
25 D=spd iags ( diag (A) ,0 , s i z e (A, 1 ) , s i z e (A, 2 ) ) ;
26 G=@( v ) v−omega∗(D\(A∗v ) ) ; % i t e r a t i o n matrix Jacobi
27 [ Vex ,E]= e i g s (G, s i z e (A, 1 ) ,Nr , ’ l a r g e s t a b s ’ ) ; % e igen decomp . o f G
28 e i gen ( k )=E(1 , 1 ) ; % save s p e c t r a l r ad iu s o f G.
29 Vinter=p i e c e w i s e l i n e a r i n t e r (V, musamples , muvec ( k ) ) ; %l i n e a r i n t e r p .
30 r a d i u s 2 l e x ( k )=abs ( e i g s (@( v ) (G( v )−Vex ∗ ( ( Vex ’∗A∗Vex) \(Vex ’∗A∗(G( v ) ) ) )

) , s i z e (A, 1 ) ,1 , ’ l a r g e s t a b s ’ ) ) ;
31 r a d i u s 2 l i n t e r ( k )=abs ( e i g s (@( v ) (G( v )−Vinter ∗ ( ( Vinter ’∗A∗ Vinter ) \(

Vinter ’∗A∗(G( v ) ) ) ) ) , s i z e (A, 1 ) ,1 , ’ l a r g e s t a b s ’ ) ) ;
32 ang levec ( k )=subspace (Vex , Vinter ) ;
33 end
34 f i g u r e ( ) ; p l o t (muvec , anglevec , ’ Linewidth ’ , 1 . 3 ) ; g r i d on ; x l a b e l ( ’ \mu ’ ) ;
35 y l a b e l ( ’ Angles ’ ) ;
36 f i g u r e ( ) ; p l o t (muvec , e igen , ’ l i n ew id th ’ , 1 . 3 ) ; hold on ;
37 p lo t (muvec , rad iu s2 l ex , ’ r ’ , ’ l i n ew id th ’ , 1 . 3 ) ; p l o t (muvec , r a d i u s 2 l i n t e r , ’ k ’

, ’ l i n ew id th ’ , 1 . 3 ) ;
38 l egend ( ’ Jacobi ’ , ’Two−l e v e l Exact ’ , ’Two−l e v e l In te rp ’ ) ; g r i d on ;
39 x l a b e l ( ’ \mu ’ ) ; y l a b e l ( ’ Spe c t r a l r a d i i ’ ) ; s e t ( gca , ’ f o n t s i z e ’ , 14) ;

Fig. 6 shows on the left panel the angles between the exact and interpolated subspaces,
while on the right one we show the behaviour of the spectral radii of the one-level
damped Jacobi method (with parameter ω = 2/3) and of two two-level methods, TV(µ)

based on the exact coarse space V(µ), and TṼ(µ) based on an interpolated coarse space.
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Fig. 6. The left panel shows the angles between the exact subspaces V(µ) computing using a
SVD of G(µ), and the interpolated subspaces Ṽ(µ). The right panel compares the spectral radius of
a one-level Jacobi method, with two different two-level methods, one that uses V(µ) and one that
relies on Ṽ(µ).

We see that there is a strong relation between the subspace angles and the spectral
radius of TṼ(µ): the smaller the subspace angle is, the closer is the spectral radius
of TṼ(µ) to that of TV(µ). A related observation, important from our perspective, is
that for quite a wide range of parameters µ, ρ(TṼ(µ)) is very close to ρ(TV(µ)), which
corroborates the strategy proposed to adapt the coarse space of a two-level stationary
method by relying on interpolation methods on the Grassmann manifold.
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