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Abstract

A finite element-based image segmentation strategy enhanced by an anisotropic
mesh adaptation procedure is presented. The methodology relies on a split Breg-
man algorithm for the minimisation of a region-based energy functional and on an
anisotropic recovery-based error estimate to drive mesh adaptation. More precisely,
a Bayesian energy functional is considered to account for image spatial information,
ensuring that the methodology is able to identify inhomogeneous spatial patterns in
complex images. In addition, the anisotropic mesh adaptation guarantees a sharp
detection of the interface between background and foreground of the image, with a
reduced number of degrees of freedom. The resulting split-adapt Bregman algorithm
is tested on a set of real images showing the accuracy and robustness of the method,
even in the presence of Gaussian, salt and pepper and speckle noise.

1 Introduction

Image segmentation aims to identify a partition of a given image into subregions char-
acterised by different pixel intensities or textures. This problem is of great interest for
several applications, encompassing medical imaging [60], autonomous vehicles [38], agri-
culture [61] and forensics [7].

Many techniques have been proposed in the literature to solve image segmentation
problems, including thresholding [54], edge detection [79], region-growing [74] and neu-
ral networks [50, 24] approaches. In the seminal work [52], D.B. Mumford and J. Shah
proposed a variational framework for image segmentation introducing an energy func-
tional whose minimum is associated with the boundary of the object to be segmented.
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Stemming from this result, different strategies were proposed to approximate the Mumford-
Shah functional. Major contributions encompass the Chan-Vese approach [18] based on
an active contour model without edge detection, the Ambrosio-Tortorelli functional [3]
and other discrete models [15, 16, 10] providing sequences of approximations Γ-convergent
to the Mumford-Shah functional.

The present work focuses on the finite element approximation of region-based image
segmentation strategies originated from the Chan-Vese model. These methods rely on the
solution of a partial differential equation to describe the evolution of a level-set function
associated with the contour of the region to be segmented [64, 44, 65]. In this context,
the treatment of image inhomogeneities and noise represents a crucial aspect for the ro-
bustness of the segmentation algorithm. In [43], the region-scalable fitting energy (RSFE)
model was proposed to deal with image inhomogeneities by introducing appropriate ker-
nel functions in the data fitting term, thus accounting for the information provided by the
pixel intensity in local regions at a controllable scale. To fully exploit the richness in
spatial information of the image, see e.g. [71], statistical models leveraging nonlocal in-
formation via appropriate estimates of the probability distributions of the pixel intensities
were proposed in [41, 13, 72]. More recently, bias correction models [26, 67] and super-
resolution techniques [14] were introduced to ensure a robust treatment of inhomogeneous
images with the goal of achieving high-resolution segmentations, also in the presence of
noise. A known issue, common to the above mentioned models, is the ill-posedness of
the associated minimisation problem. To remedy this issue, a strategy to convexify the
energy functional was proposed in [17]. In addition, the split Bregman algorithm [37]
was specifically developed to tackle optimisation problems with regularised functionals
as the ones arising in image segmentation [69, 70].

When dealing with the above mentioned numerical optimisation problems, the assess-
ment of the quality of the computed solution (or of quantities of interest depending on the
solution) represents a crucial aspect to provide verified and reliable results. In the context
of finite element approximations, a posteriori error estimates have been successfully de-
veloped to provide either quantitative error bounds [21, 55, 27, 53, 22, 56, 2, 51, 35, 34]
or qualitative information to drive mesh adaptation strategies [5, 6, 40]. In the latter
case, particular attention has been devoted to the local control of the geometric features
of the mesh (i.e., shape, size and orientation of the elements), by means of anisotropic
elements stretched along the direction orthogonal to the gradient of the quantity of inter-
est [63, 25, 46, 45, 29, 48, 58, 8, 4, 42, 30, 49]. It is worth noticing that the coupling of
finite element approximations and mesh adaptation in the context of image segmentation
was previously explored in [68, 11, 23] and [73, 19, 20] in isotropic and anisotropic set-
tings, respectively. Nonetheless, all the above models were devised for images featuring
sharp interfaces and regions with homogeneous intensities.

In order to treat image inhomogeneities, the present work couples a region-based
Bayesian segmentation model, able to account for spatial information, with an anisotropic
mesh adaptation procedure. More precisely, the split Bregman method for the segmen-
tation is enriched with a recovery-based error estimate to construct anisotropic meshes
guaranteeing an accurate description of the contour of the image, with a reduced number
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of degrees of freedom. The resulting algorithm is thus capable of exploiting the spatial
information to identify complex inhomogeneous patterns in real images, even in the pres-
ence of different sources of noise, such as Gaussian, salt and pepper and speckle noise.
The remainder of the article is organised as follows. Section 2 introduces the split Breg-
man method for a region-based segmentation model based on a Bayesian approach and
able to account for the spatial information in the image. In section 3, the anisotropic
recovery-based error estimate is presented along with the split-adapt Bregman method re-
sulting from its coupling with the selected optimisation algorithm. Numerical validation
of the split-adapt Bregman algorithm and its application to the segmentation of real im-
ages corrupted by different types of noise are presented in section 4. Finally, section 5
summarises the presented results, A reports the extension of the discussed framework
to the RSFE model and B provides some details about the parameters employed in the
numerical simulations.

2 The optimisation problem of region-based image segmenta-
tion

In this section, the formulation of a region-based segmentation model accounting for im-
age spatial information is introduced and the split Bregman algorithm [37] to solve the
resulting minimisation problem is recalled.

Consider an image Ω⊂R2 and denote by U :Ω→[0, 255] the grey level intensity of the
associated pixels. A level-set function φ is employed to describe the unknown contour
separating Ω into two disjoint regions ΩI and ΩE defined as

ΩI := {x ∈ Ω : Hε(φ(x)) = 1}, (1a)

ΩE := {x ∈ Ω : Hε(φ(x)) = 0}, (1b)

where Hε denotes the regularised Heaviside function

Hε(φ) :=
1

2
+

1

π
arctan

(
φ

ε

)
, ε > 0. (2)

In this framework, the image segmentation problem can be written as an optimisation
procedure consisting of minimising a suitable energy functional F(φ(x)). In order to
enforce the existence of a global minimum for the image segmentation functional F , a
constraint on the level-set function is commonly introduced [69], namely

−α ≤ φ(x) ≤ α, for a.e. x ∈ Ω. (3)

In the present work, the level-set function is described by means of a piecewise constant
approximation such that

φ(x) =

{
α, x ∈ ΩI

−α, x ∈ ΩE

(4)

and the value α=1 is selected for the numerical simulations in section 4.
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2.1 A Bayesian approach accounting for spatial information

In order to handle inhomogeneous images by exploiting the intrinsic spatial information,
a region-based Bayesian segmentation model is considered. This model is obtained by
maximising the a posteriori probability P(x∈Ωi |U(x)=κ) of correctly assigning a given
pixel x to the region Ωi it belongs to, knowing the value κ of the pixel intensity U(x).
From Bayes’ theorem, it follows

P(x ∈ Ωi | U(x) = κ) ∝ pi(κ)P(x ∈ Ωi), (5)

where the likelihood pi(κ) := P(U(x)=κ | x∈Ωi) represents the probability that the
pixel intensity at x is equal to κ, knowing that point x belongs to the region Ωi, whereas
P(x∈Ωi) is the prior probability distribution encapsulating any a priori information avail-
able on the image.

To determine the likelihood, the spatial information of the image is exploited by per-
forming a kernel density estimate [57] and a probability density function (PDF) of the
pixel intensity in each region is constructed [41, 13], namely

pi(κ) :=

∫ 255

0
Kτ (κ− ξ)Ii(ξ)dξ, (6)

where Kτ is a Gaussian kernel with standard deviation τ , namely

Kτ (x) :=
1

2πτ2
e−

‖x‖2

2τ2 , (7)

‖x‖ being the Euclidean norm of the position vector, whereas Ii is the discrete histogram
accounting for the frequency of recurrence of the pixel intensities in the region Ωi. More
precisely, the value Ii(κ) of the recurrence of the intensity κ in the region Ωi is obtained
by computing the cardinality of the set {x∈Ωi : U(x)=κ}. The procedure in equation (6)
thus performs a smoothing of the resulting discrete histogram via a convolution product
with the Gaussian kernel Kτ in order to obtain a continuous definition of the probability
distribution pi.

As mentioned above, the prior P(x∈Ωi) can be employed to incorporate any available
information on the image into the model, e.g., by exploiting the knowledge on the nature
of the noise due to the measurement devices used for image acquisition [62]. In this work,
a non-informative shape prior accounting only for the information on the regularity and
the length of the contour is considered, namely

P(x ∈ Ωi) ∝ e−ν‖φ(x)‖TV,g , (8)

where ν is a positive regularisation parameter and ‖φ(x)‖TV,g denotes the weighted total
variation (TV) norm, i.e.,

‖φ(x)‖TV,g :=

∫
Ω
g(U(x))|∇φ(x)|dx, (9)
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defined as the L1(Ω) norm of the gradient of the level-set function weighted by the so-
called edge detector function [43, 69], namely

g(U) =
1

1 + β‖∇U‖22
, β > 0, (10)

where ‖ · ‖2 denotes the classical L2(Ω) norm and β is a positive scaling factor.
Assuming independence of the pixel intensities at different points x, see e.g. [13], the

a posteriori probability (5) can be rewritten as

P(x ∈ Ωi | U(x) = κ) ∝
∏
x∈ΩI

pI(U(x))
∏

x∈ΩE

pE(U(x)) e−ν‖φ(x)‖TV,g . (11)

It is worth recalling that the maximisation of the functional in equation (11) is equivalent
to the minimisation of its negative logarithm [75]. Hence, the energy functional for the
Bayesian model is given by

FBAY(φ, p̃I, p̃E) :=−
∫

Ω
[log(p̃I(U(x)) + log(p̃E(U(x))]dx

+ ν

∫
Ω
g(U(x))|∇φ(x)|dx.

(12)

The first term drives the separation of Ω into two regions, ΩI and ΩE, by exploiting the
image spatial information encapsulated in the PDF of the pixel intensity

p̃i(U(x)) :=

{
pi(U(x)), for x ∈ Ωi

ζ, elsewhere
(13)

where ζ>0 is a regularisation parameter which guarantees that log(p̃i(U(x))) is well-
defined. The second term in equation (12) features the weighted TV norm of the level-set
function and it is responsible for the regularisation of the segmented contour by enhancing
its smoothness [12]. It is worth noticing that the introduction of this regularisation term in
equation (12) has two goals. On the one hand, it fosters the detection of local changes in
the pixel intensity through the edge detection function defined in (10). On the other hand,
it contributes to the convexification of the energy functional, thus ensuring the existence
of a global minimum [17, 69].

Remark 2.1 (Regularisation term) It is well-known that the TV norm ‖φ(x)‖TV,g de-
notes a total variation measure. If Ω is a Caccioppoli set, such a measure represents
the perimeter of the set Ω itself [36]. In this context, the regularisation term in equa-
tion (12) can be interpreted as a penalisation on the length of the boundary, preventing
high-frequency oscillations of the segmented contour.

2.2 Split Bregman algorithm for image segmentation

The minimisation of the Bayesian energy functional introduced in equation (12) can be
recast as

min
φ

{
G(φ(x)) + ν‖φ(x)‖TV,g

}
, (14)
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where the functional G(φ(x)) is given by

G(φ(x) = GBAY(φ(x)) := −
∫

Ω
[log(p̃I(U(x)) + log(p̃E(U(x))]dx. (15)

It is worth recalling that the weighted TV norm of the level-set function in equa-
tion (14) can be equivalently interpreted as a weighted L1(Ω) norm of its gradient, that
is ‖∇φ‖1,g := ‖φ‖TV,g. Moreover, following [66], an auxiliary variable d=∇φ is intro-
duced and problem (14) is rewritten as

min
φ,d

{
G(φ(x)) + ν‖d(x)‖1,g +

µ

2
‖d(x)−∇φ(x)‖22

}
, (16)

where the last term enforces the constraint d=∇φ with the penalty parameter µ>0.
The split Bregman method for L1-regularised problems provides an iterative proce-

dure to solve the minimisation problem in equation (16), according to a staggered ratio-
nale [37]. At iteration k, the split Bregman method, detailed in algorithm 1, performs the
following three steps:

Step A: φk+1 = min
φ

{
G(φ) +

µ

2
‖dk −∇φ− bk‖22

}
, (17a)

Step B: dk+1 = min
d

{
ν‖d‖1,g +

µ

2
‖d−∇φk+1 − bk‖22

}
, (17b)

Step C: bk+1 = bk + ∇φk+1 − dk+1. (17c)

Algorithm 1 Split Bregman algorithm for image segmentation
Input : Tolerance η? for the stopping criterion and initial contour φ0.

1: Construct the computational mesh Th;
2: Set k=0, φ0

h=φ0, d0
h=∇φ0 and b0

h=0;
3: while ‖φk+1

h − φkh‖2 > η?
∥∥φkh∥∥2

do

4: Compute the contour φk+1
h solving equation (20);

5: Compute the auxiliary variable dk+1
h via the shrinkage operator (21);

6: Compute the Bregman update bk+1
h using equation (17c);

7: k ← k + 1;
8: end while

Output : Boundary φkh of the segmented region.

Starting from a guess of the contour, φ=φ0, the variables d0=∇φ0 and b0=0 are set.
Step A is responsible for the computation of φk+1 after fixing the last available approx-
imations for d and b, obtained from iteration k. Following the gradient flow equation
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approach proposed in [17], the solution φk+1 of the minimisation problem (17a) is com-
puted as the steady-state solution of the evolution equation

∂φ

∂t
−∆φ = − 1

µ
sk + ∇ · (bk − dk), in Ω, t > 0

∇φ · n = 0 in ∂Ω, t > 0

φ = φ0, in Ω, t = 0

(18)

where the source term sk is obtained by evaluating the expression

s(x) = sBAY(x) := − log(p̃I(U(x))− log(p̃E(U(x)) (19)

using the last computed level-set function φk.
In this work, a low-order conforming finite element framework is considered to evolve

the level-set function representing the boundary of the region to be segmented. For al-
ternative formulations providing high-order accurate level-set approximations, interested
readers are referred to [1, 59, 28].

First, a computational mesh Th consisting of nel conforming simplicial elements
Ki, i=1, . . . ,nel is defined (Algorithm 1 - Step 1). Let Vh be the space of piecewise
linear continuous finite element functions on the mesh Th and denote by φh, dh and bh
the finite element approximations of φ, d and b, respectively. The discrete counterpart of
equation (18), obtained by considering a conforming finite element discretisation in space
and an implicit Euler scheme for time marching, is: find φk+1∈Vh such that∫

Ω
δφφk+1

h dx + ∆t

∫
Ω
∇δφ ·∇φk+1

h dx

=

∫
Ω
δφφkhdx + ∆t

∫
Ω
δφ

(
− 1

µ
sk + ∇ · (bkh − dkh)

)
dx,

(20)

for all δφ∈Vh (Algorithm 1 - Step 4).
The value φk+1

h yielded by the discrete problem (20) is thus used in step B to de-
termine a new approximation for dh via the solution of the minimisation problem (17b)
(Algorithm 1 - Step 5). This is achieved via a thresholding operation, namely

dk+1
h = shrink

{
bkh + ∇φk+1

h ,
ν

µ
g(U)

}
, (21)

where shrink denotes the shrinkage operator [37] defined as

shrink {f, γ} :=
f

|f |
max{|f | − γ, 0}. (22)

Finally, step C of the split Bregman method computes the correction bk+1
h accounting

for the discrepancy between ∇φk+1
h and dk+1

h by means of equation (17c) (Algorithm 1
- Step 6), before the counter of the iterative procedure is updated (Algorithm 1 - Step 7)
and a new iteration starts.
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The split Bregman method stops when a steady-state solution is achieved, that is, when
the relative variation of the level-set function from iteration k to iteration k+1 is below
a user-defined tolerance η? (Algorithm 1 - Step 3). Of course, other stopping criteria
may also be devised to exploit specific information provided by the model. For instance,
a spatial function measuring the discrepancy between p̃I(U(x)) and p̃E(U(x)) at each
point x could be considered, namely

δp(x) := |p̃I(U(x))− p̃E(U(x))| . (23)

The resulting stopping criterion accounting for the variation of the probability distribu-
tions from iteration k to iteration k+1 would thus follow by substituting step 3 of algo-
rithm 1 with the verification of the condition ‖δk+1

p − δkp‖2 > η?‖δkp‖2.
It is worth noticing that the described split Bregman strategy is suitable also for other

image segmentation models that can be formulated according to equation (14). This is
the case of the RSFE functional [43, 69] employed for benchmarking in some simulations
of section 4. A presentation of the RSFE model is reported in A, whereas the details of
the parameters involved in the definition of the associated energy functional and in the
construction of the split Bregman algorithm are provided in B.

3 Anisotropic mesh adaptation enhancing image segmentation

In this section, a mesh adaptation strategy is introduced into the split Bregman algorithm.
Since a piecewise constant definition is employed for the level-set function φ, see equa-
tion (4), the region where ∇φ is different from zero is associated with the neighbourhood
of the contour to be segmented. Hence, following the seminal works [76, 77, 78] by
O.C. Zienkiewicz and J.Z. Zhu on recovery-based error estimates, a local error indicator
is constructed to evaluate the error of the gradient of the level-set function measured in
the L2(Ω) norm. The computation is carried out in an anisotropic framework [31, 32] in
order to exploit the intrinsic directionality of the gradient of the level-set function. The
resulting strategy allows to increase the accuracy of the segmented region while reducing
the number of degrees of freedom required for the description of the contour, as shown by
the numerical experiments in section 4.

3.1 The anisotropic setting

According to the anisotropic setting in [31, 32], the geometric properties (i.e., shape, size
and orientation) of each mesh elementK∈Th are described through the spectral properties
of the affine invertible map TK :K̂→K. This map transforms the reference equilateral
triangle K̂ inscribed in the unit circle with centre at the origin into a generic triangle K
inscribed in an ellipse. Any point x=(x, y)T∈K can thus be expressed as a function of
the coordinates x̂=(x̂, ŷ)T in the reference element K̂, being

x = TK(x̂) := MKx̂ + wK , (24)
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where MK∈R2×2 is the Jacobian of the transformation responsible for the rotation and
deformation of the reference element K̂, whereas wK∈R2 is a shift vector accounting for
rigid translations.

The polar decomposition MK=BKZK of the Jacobian allows to identify a symmetric
positive definite matrix BK∈R2×2 describing the deformation of the triangle K and an
orthogonal matrix ZK∈R2×2 accounting for the rotation of K. Moreover, from the spec-
tral decomposition of BK , it follows that BK=RT

KΛKRK , where RT
K := [r1,K , r2,K ]

is the matrix of the right eigenvectors and ΛK := diag(λ1,K , λ2,K) is the diagonal ma-
trix of the corresponding eigenvalues, with λ1,K ≥ λ2,K > 0. The eigenvectors r1,K

and r2,K identify the directions of the semi-axes of the ellipse circumscribed to the trian-
gle K, whereas λ1,K and λ2,K measure the corresponding lengths. Finally, the quantity
sK := λ1,K/λ2,K ≥ 1, known as aspect ratio or stretching factor, quantifies the ele-
mental anisotropy of the triangle K. In particular, sK=1 corresponds to the equilateral
shape (i.e., the isotropic case), whereas the higher the value of sK , the more stretched the
resulting triangle.

3.2 An anisotropic recovery-based error estimate

In order to define a recovery-based error estimate, first the so-called recovered gradient
needs to be constructed. Following [47, 58], a piecewise constant reconstruction of the
discrete gradient ∇φh over the patch ∆K := {T∈Th : T∩K 6=∅}, associated with
element K, is considered. More precisely, the average of the gradient of the discrete
solution φh over the patch is computed, weighted by the area of the patch elements. The
resulting recovered gradient is

P∆Kφh(x) :=
1

|∆K |
∑
T∈∆K

|T |∇φh|T , for x ∈ K. (25)

Thus, the anisotropic recovery-based error estimate [47] is given by

η2 =
∑
K∈Th

η2
K , (26)

where ηK denotes the contribution of element K to the global estimate, with

η2
K :=

1

λ1,Kλ2,K

[
λ2

1,KrT1,KG∆K
r1,K + λ2

2,KrT2,KG∆K
r2,K

]
, (27)

G∆K
∈R2×2 being the symmetric positive semidefinite matrix with components[

G∆K

]
ij

:=
∑
T∈∆K

∫
T

[
P∆Kφh − ∇φh|∆K

]
i

[
P∆Kφh − ∇φh|∆K

]
j
dx. (28)

It is worth noticing that the scaling factor (λ1,Kλ2,K)−1 in equation (27) guarantees
the consistency of the anisotropic error estimate with the isotropic case characterised by
λ1,K=λ2,K .
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Finally, the estimate in equation (27) can be rewritten by means of a geometric scaling
as

η2
K := λ1,Kλ2,K |∆̂K |

[
sKr

T
1,K

G∆K

|∆K |
r1,K + s−1

K rT2,K
G∆K

|∆K |
r2,K

]
, (29)

where |∆K |=λ1,Kλ2,K |∆̂K |, ∆̂K=T−1
K (∆K) being the pullback of the patch ∆K via

the transformation TK . More precisely, the information on the area of the element is
encapsulated in the term λ1,Kλ2,K |∆̂K |, whereas the remaining terms strictly depend on
the anisotropic information of the element via {r1,K , r2,K} and the aspect ratio sK .

3.3 Construction of the anisotropically adapted mesh

The error estimate in equation (27) provides information on the regions where additional
accuracy is required to describe the segmentation contour. In order to improve such a
description, a metric-based procedure is employed to construct an adapted mesh [9, 33].

Starting from the current mesh Th, the local information provided by the error esti-
mate ηK is exploited in a predictive way to construct a symmetric positive definite matrix
M∈R2×2, known as metric, containing all the geometric information of the target mesh.
From a practical viewpoint, the metric is approximated on the mesh Th by means of a
piecewise constant function such that

M|K = RT
KΛ−2

K RK ∀K ∈ Th. (30)

It can be verified, see [46], that a new metric providing a mesh with minimum car-
dinality for a user-defined accuracy on the error is obtained via an iterative procedure
minimising, for each element, the functional

JK(sK , r1,K , r2,K) = sKrT1,K
G∆K

|∆K |
r1,K + s−1

K rT2,K
G∆K

|∆K |
r2,K , (31)

under the constraints sK≥1 and ri,K ·rj,K=δij , δij being the Kronecker delta. The so-
lution of this optimisation problem is provided by the following result (see [46] for the
proof):

Proposition 3.1 Let {θi, ti}, i=1, 2 be the eigenvalues and eigenvectors of the matrix
G∆K

/|∆K |, with t1 and t2 orthonormal vectors and θ1 ≥ θ2 > 0. The values (s?K , r
?
1,K , r

?
2,K)

minimising the functional in equation (31) are given by

s?K = (θ1/θ2)1/2, r?1,K = t2, r?2,K = t1. (32)

To fully describe the metricM? associated with the adapted mesh, the values of the
optimal eigenvalues λ?1,K and λ?2,K , now merged in s?K , need to be individually identified
for each element K. It follows that

λ?1,K = θ
−1/2
2

(
τ? ‖∇φh‖2∆K

2|K̂|

)1/2

, (33a)

λ?2,K = θ
−1/2
1

(
τ? ‖∇φh‖2∆K

2|K̂|

)1/2

, (33b)
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where K̂=T−1
K (K) is the pullback of element K via the map TK and τ? is a user-defined

accuracy. It is worth noticing that the optimal eigenvalues in equation (33) are obtained
imposing a local tolerance on the error in element K. More precisely, the local tolerance
τ? ‖∇φh‖2∆K

prescribes a target precision in element K, as a relative measure of the av-
erage Euclidean norm of the gradient of the level-set solution on the patch ∆K , weighted
by the area of the patch elements, that is,

‖∇φh‖2∆K
:=

1

|∆K |
∑
T∈∆K

|T | ‖∇φh|T ‖2 . (34)

Hence, the optimal piecewise constant metricM? is provided by the pairs {λ?i,K , r?i,K},
with i=1, 2 for all mesh elements K∈Th. The corresponding adapted mesh is obtained
by means of the adaptmesh routine available in FreeFem++ [39].

Remark 3.1 (Maximum stretching) According to the above procedure, the optimal eigen-
values λ?1,K and λ?2,K are computed starting from the value of the optimal stretching fac-
tor s?K . Since the level-set function φ is discretised by means of a piecewise constant
approximation, an excessive stretching of the mesh elements could be responsible for a
loss of accuracy of the approximation in the direction parallel to the interface. Hence,
from a practical viewpoint, the mesh adaptation procedure introduces a user-defined up-
per bound for s?K . In the simulations in section 4, the maximum admissible value for the
stretching factor is fixed to 1, 000.

Remark 3.2 (Metric relaxation) In order to avoid abrupt changes in the element size
during the adaptation procedure, a relaxation step is introduced when defining the new
metricM?

ω . Hence, this is obtained as a linear combination of the computed target metric
M? with the previous metricMOLD , namely

M?
ω = ωM? + (1− ω)MOLD , ω ∈ [0, 1]. (35)

3.4 Split-adapt Bregman algorithm for image segmentation

The split Bregman method presented in algorithm 1 is now enriched with the anisotropic
mesh adaptation procedure just detailed. Indeed, the discrete level-set function φh exhibits
strong gradients across the contour of the region to be segmented. An anisotropically
adapted mesh is thus ideal to capture such directional features, providing an accurate
description of the interface between the background and the foreground of the image,
with a reduced number of degrees of freedom. The resulting strategy is described in
algorithm 2.

Following the structure of split Bregman, the split-adapt Bregman algorithm first
solves step A to compute an approximation φk+1

h of the level-set function after fixing
the last available values for dh and bh at iteration k (Algorithm 2 - Step 4). Then, ev-
ery nBreg Bregman iterations (Algorithm 2 - Step 5), the mesh adaptation procedure is
performed:
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Algorithm 2 Split-adapt Bregman algorithm for image segmentation
Input : Tolerance η? for the stopping criterion and initial contour φ0. For adaptation:
target accuracy τ?, number nBreg of Bregman iterations between two adaptation steps
and metric relaxation parameter ω..

1: Construct the initial computational mesh T 0
h ;

2: Set k=0, φ0
h=φ0, d0

h=∇φ0 and b0
h=0;

3: while
∥∥∥φk+1

h − φkh
∥∥∥

2
> η?

∥∥φkh∥∥2
do

4: Compute the contour φk+1
h solving equation (20);

5: if kmodnBreg = 0 then
6: Construct the gradient reconstruction P∆Kφ

k+1
h using (25);

7: Use τ? to estimate the eigenpairs {λ?i,K , r?i,K}, i=1, 2 in (32)-(33);
8: Construct the relaxed metricM?

ω via (35);
9: Generate the mesh T k+1

h usingM?
ω and the adaptmesh routine;

10: Interpolate φk+1
h , dkh and bkh on the new mesh T k+1

h ;
11: Reduce the value of the target accuracy τ? ← τ?/2;
12: end if
13: Compute the auxiliary variable dk+1

h via the shrinkage operator (21);

14: Compute the Bregman update bk+1
h using equation (17c);

15: k ← k + 1;
16: end while

Output : Boundary φkh of the segmented region and final adapted mesh T kh .

i) the reconstructed gradient P∆Kφh (Algorithm 2 - Step 6) is employed to estimate
the eigenpairs of the target metric (Algorithm 2 - Step 7);

ii) the relaxed metricM?
ω is constructed (Algorithm 2 - Step 8) and employed to con-

struct the associated adapted mesh T k+1
h , avoiding any abrupt change in the element

size (Algorithm 2 - Step 9);

iii) the last computed finite element approximations are interpolated on the new mesh
T k+1
h (Algorithm 2 - Step 10);

iv) the target accuracy τ? of the adaptation routine is halved (Algorithm 2 - Step 11);
notice that this step is performed for a maximum of 5 times, then the value of τ? is
frozen.

Finally, steps B and C perform the shrinkage operation and the Bregman update to deter-
mine dk+1

h and bk+1
h , respectively (Algorithm 2 - Steps 13-14), before the iteration counter

k is updated (Algorithm 2 - Step 15) and a new iteration is carried out. As for the split
Bregman method, the algorithm stops when the relative variation of the level-set function
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between two consecutive iterations is below a user-defined tolerance η? (Algorithm 2 -
Step 3).

Similarly to the split Bregman algorithm, also the split-adapt Bregman strategy is
suitable for any image segmentation model that can be formulated as in equation (14).

4 Numerical experiments

In this section, the performance of the split-adapt Bregman algorithm is analysed by
means of a set of numerical experiments using both synthetic and real images. The pro-
posed approach outperforms the standard split Bregman strategy by enhancing the quality
of the segmented region at a limited extra cost. Moreover, the split-adapt Bregman al-
gorithm is shown to be robust to different sources of noise, including Gaussian, salt and
pepper and speckle noise. Finally, the method is applied to the segmentation of a chal-
lenging medical image.

4.1 Validation of the split-adapt Bregman algorithm

A validation of the split-adapt Bregman method is performed using a 200 × 200 pixels
synthetic image with homogeneous regions, see figure 1(a). In this context, the region-
based Bayesian model presented in section 2 is compared with the classical RSFE model
described in A.

The problem is first solved using the standard split Bregman algorithm on a domain
discretised with a uniform structured mesh of 79,202 triangular elements, with hmin=1
and hmax=1.4. The initial guess for the segmentation is displayed in figure 1(d). Both the
RSFE model and the Bayesian strategy achieve the required tolerance of η?=0.5× 10−2.
More precisely, the RSFE model requires 12 iterations, whereas the Bayesian strategy
converges in 8 iterations. The two approaches are able to subdivide the regions within the
image, also identifying non-connected areas as it is evident in figures 1(b) and 1(c). In this
example, the RSFE model provides more accuracy than the Bayesian approach, as shown
by the perfect match of the size of the segmented regions in figure 1(b) with respect to the
original image in figure 1(a), whereas the result of the Bayesian approach in figure 1(c)
appears slightly overdiffusive, partially smoothing the boundaries and overgrowing the
segmented regions.

The description of the region boundaries is clearly affected by the quality of the un-
derlying computational mesh. Figures 1(e) and 1(f) display a detail of the segmented
contours provided by the split Bregman method applied to the RSFE and the Bayesian
model, respectively. Although the latter strategy provides a more regular approxima-
tion of the contour reducing the jagged effect which characterises the RSFE solution,
the smoothness of the interface is still severely affected by the lack of resolution of the
computational grid.

The numerical test is thus repeated using the split-adapt Bregman algorithm with the
same value of the tolerance η? and the same initial guess. This strategy performs one
anisotropic mesh adaptation step every nBreg=3 iterations of the Bregman solver. The
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(a) Image (b) RSFE - Split Bregman (c) Bayesian - Split Bregman

(d) Initial guess (e) Detail of 1(b) (f) Detail of 1(c)

Figure 1: Synthetic image with homogeneous regions - (a) Image and (d) initial guess
for the segmentation. Final segmented results on a uniform structured mesh using the
standard split Bregman algorithm with (b) the RSFE model and (c) the Bayesian approach.
(e-f) Details of the segmentation outcomes.

tolerance for the error estimate is initially set to τ?=0.5 and it is successively halved after
each run of the adaptation routine. In addition, the relaxation parameter ω=0.9 is se-
lected to construct the new metric. The split-adapt Bregman algorithm converges after 12
iterations with 4 mesh adaptation steps for the RSFE model, whereas 7 iterations with 2
mesh adaptation steps are required for the Bayesian model. The outcome of the segmenta-
tion, provided in figure 2, highlights the superiority of the split-adapt Bregman algorithm
with respect to the standard split Bregman approach, in terms of accuracy of the interface
description. As previously observed, for this example the segmentation yielded by the
RSFE model provides excellent accuracy in both the shape and the size of the segmented
regions, whereas the Bayesian approach slightly overgrows the segmented regions.

Although the split-adapt Bregman algorithm entails an extra cost associated with the
computation of the new metric and the adaptation step, the resulting meshes feature a
reduced number of elements with respect to the uniform structured ones. Hence, a sig-
nificant computational saving characterises the Bregman steps. More precisely, the fi-
nal mesh for the RSFE model, see figure 3(a), contains 29,281 triangular elements, with
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(a) RSFE - Split-adapt Bregman (b) Bayesian - Split-adapt Bregman

(c) Detail of 2(a) (d) Detail of 2(b)

Figure 2: Synthetic image with homogeneous regions - Final segmented results on an
adapted mesh using the split-adapt Bregman algorithm with (a) the RSFE model and (b)
the Bayesian approach. (c-d) Details of the segmentation outcomes.

hmin=0.27×10−1, hmax=35.69 and a maximum elemental stretching factor sK=844.99.
Similarly, figure 3(b) displays the final mesh for the Bayesian approach featuring 55,614
triangles, with hmin=0.1, hmax=18.32 and maximum aspect ratio sK=822.48. It is worth
noticing that, although the maximum stretching factor of the elements is comparable in
the two cases, the adapted mesh in figure 3(b) maintains regions with isotropic elements,
compare, e.g., the detail in figure 3(d) with the corresponding one, obtained using the
RSFE functional, in figure 3(c). Such a result can be ascribed to the reduced number
of adaptation steps performed for the Bayesian model and to the relaxation of the initial
computational grid, resulting in a final mesh with a larger number of elements with re-
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spect to the RSFE model. Nonetheless, the overall reduced number of iterations of the
optimisation algorithm (i.e., 7 versus 12) still makes the split-adapt Bregman method for
the Bayesian functional competitive from the computational viewpoint.

(a) RSFE - Final mesh (b) Bayesian - Final mesh

(c) Detail of 3(a) (d) Detail of 3(b)

Figure 3: Synthetic image with homogeneous regions - Final adapted mesh using the
split-adapt Bregman algorithm with (a) the RSFE model and (b) the Bayesian approach.
(c-d) Details of the final meshes.

Remark 4.1 (Application to other segmentation models) The above simulations show
that the split-adapt Bregman algorithm works seamlessly both with the RSFE and the
Bayesian model, without requiring any interaction with the user. It is worth mentioning
that the applicability of the split-adapt Bregman methodology can be generalised to any
region-based segmentation model that can be expressed according to equation (14) and
that can be solved using the standard split Bregman approach.

Remark 4.2 (Frequency of mesh adaptation) A key aspect to control the overall com-
putational cost of the split-adapt Bregman algorithm is the selection of the number nBreg
of iterations of the optimisation method between two adaptation steps. Numerical ex-
periments, not reported here for brevity, were performed to test different values of this
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parameter. More precisely, for nBreg=1, adaptation is performed after every Bregman
iteration, introducing a significant additional cost into the algorithm for the generation
of the new mesh and the interpolation of the previously computed finite element approx-
imations. This approach was disregarded for its excessive computational burden. For
large values of nBreg, the adapted mesh is frozen for several iterations of the optimisation
algorithm. In this case, after the initial iterations, the evolving interface is not prop-
erly tracked since the adapted mesh is excessively refined in some regions of the domain,
while the discretisation of other areas is too coarse, resulting in a reduced accuracy of
the representation of the boundary. Hence, the value nBreg=3 was selected for all the
simulations in the present work, as a trade-off between computational cost and accuracy
of the split-adapt Bregman algorithm.

4.2 Treatment of image spatial information

For the second test, a 200 × 200 pixels synthetic image with mean value of the RGB
intensity equal to [177, 177, 177] and non-uniform variance is considered, see figure 4(a).
The variance of the background is set to 0.05, whereas a square region in the centre of
the domain is characterised by variance 0.4, thus introducing a spatial information of the
pixel inhomogeneity which represents a challenge for image segmentation algorithms.

(a) Image (b) RSFE - Split Bregman (c) Bayesian - Split Bregman

Figure 4: Synthetic image with spatial information - (a) Image. Final segmented results
on a uniform structured mesh using the split Bregman algorithm with (b) the RSFE model
after 500 iterations (no convergence is attained) and (c) the Bayesian approach after 12
iterations.

As for the case in the previous section, the segmentation problem is first solved us-
ing the standard split Bregman method to minimise the RSFE and the Bayesian func-
tional. The domain is discretised using a uniform structured grid of 79,202 triangles, with
hmin=1 and hmax=1.4. The initial guess for the segmentation is the same as in figure 1(d),
while the tolerance for the stopping criterion is set to η?=0.5× 10−3. The split Bregman
algorithm applied to the RSFE model is unable to converge. The solution obtained after
500 iterations is shown in figure 4(b), highlighting the failure of the RSFE functional in
correctly identifying the two regions in the image. More precisely, the RSFE model only
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considers a small region surrounding each pixel through the convolution with a Gaussian
kernel, see equation (36), and it does not fully exploit the image spatial information. On
the contrary, the Bayesian model embeds such a spatial information into the PDFs of the
pixel intensity in each region, by performing the nonparametric kernel density estimate in
equation (6). The estimated PDFs obtained from the smoothing of the discrete histograms
of the pixel intensity κ are displayed in figure 5. Both probability distributions are centred
on the value κ=177. Moreover, the external region features a limited variation of the in-
tensity, whereas the internal one has a larger variance, coherently with the original image
in figure 4(a). The solution provided by the split Bregman algorithm with the Bayesian
functional converges in 12 iterations and the resulting segmentation accurately identifies
the two regions in the image as it can be appreciated in figure 4(c).

(a) External region (b) Internal region

Figure 5: Synthetic image with spatial information - Estimated probability density func-
tions of the pixel intensity κ for the (a) external and (b) internal region.

Although the segmentation result in figure 4(c) is able to discriminate the presence
of two regions by exploiting the spatial information of the image, the quality of the de-
scription of the interface is still affected by the poor resolution of the underlying compu-
tational grid. The split-adapt Bregman algorithm is thus applied to the Bayesian model to
improve the quality of the segmentation. The anisotropic mesh adaptation is performed
every nBreg=3 iterations of the Bregman solver. The initial tolerance for adaptation is
set to τ?=0.5 and it is halved after each run of the adaptation routine. The relaxation
parameter ω=0.9 is employed to construct the new metric.

Starting from the same initial guess and considering the same tolerance η? for the
stopping criterion of the optimisation loop, the split-adapt Bregman method converges in
12 iterations with 4 mesh adaptation steps. Figure 6 displays the final segmentation and
the corresponding adapted mesh consisting of 15,096 triangles, with hmin=0.4 × 10−1,
hmax=49.56 and a maximum stretching factor sK=847.3. The split-adapt Bregman al-
gorithm is thus capable of improving the description of the interface by avoiding mesh-
dependent jagged effects, see figure 7, while reducing the number of required mesh ele-
ments by almost 80%.
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(a) Final segmentation (b) Final mesh

Figure 6: Synthetic image with spatial information - Final (a) segmentation and (b)
adapted mesh using the split-adapt Bregman algorithm with the Bayesian model.

(a) Split Bregman (b) Split-adapt Bregman

Figure 7: Synthetic image with spatial information - Detail of the final segmentation
obtained using (a) the standard split Bregman and (b) the split-adapt Bregman algorithm
with the Bayesian model.

4.3 Robustness to different noise sources

In this section, the robustness of the split-adapt Bregman method is explored by consider-
ing the segmentation of three real images with inhomogeneous spatial information. These
images are corrupted by introducing Gaussian, salt and pepper and speckle noise, respec-
tively. Given its superiority with respect to the RSFE functional when complex patterns
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and spatial information are involved, only the Bayesian model is henceforth considered.
First, the 306 × 212 pixels image in figure 8(a) is corrupted by a Gaussian noise

with variance 0.1 (see figure 8(b)). The ground truth segmentation is obtained using
the split-adapt Bregman method to minimise the Bayesian functional on the noise-free
image in figure 8(a). More precisely, the tolerance η?=0.1 × 10−2 is set to stop the
Bregman algorithm, while mesh adaptation is executed every nBreg=3 iterations of the
optimisation loop. The intial tolerance for adaptation is set to τ?=0.5 and it is subse-
quently halved after each run of the adaptation routine. Finally, the relaxation parame-
ter ω=0.9 is employed to generate the new metric. Starting from a uniform structured
mesh of 128,710 triangles with hmin=1, hmax=1.4, the split-adapt Bregman algorithm
converges in 54 iterations with 18 mesh adaptation steps. The final segmentation is dis-
played in figure 8(c) on an adapted mesh featuring 206,568 triangular elements, with
hmin=0.9 × 10−2 and hmax=76.77, while the stretching factor achieves the maximum
admissible value sK=1, 000.

Both the split Bregman and the split-adapt Bregman methods provide accurate seg-
mentations of the noisy image as confirmed by figures 8(d) and 8(e), respectively. The
former converges in 19 iterations using the uniform structured mesh of 128,710 elements
described above, whereas the latter requires 27 Bregman iterations with 9 mesh adapta-
tion steps, leading to a final mesh of 77,197 triangles with hmin=0.1×10−1, hmax=67.45
and with the maximum admissible aspect ratio sK=1, 000, see figure 8(f). In figures 8(g)
and 8(h), a detail of the two segmentations is shown, highlighting the superiority of the
split-adapt Bregman method: this approach is able to improve the accuracy of the inter-
face representation, while reducing the number of required mesh elements by almost 40%.
Finally, figure 8(i) displays a detail of the adapted mesh, showing the benefit of employing
elements with a large stretching factor to improve the smoothness and the accuracy of the
description of the interface.

It is worth noticing that the introduction of the noise into the image is responsible for
a change in the spatial information as shown in figure 9, where the estimated probability
density distributions for the original and the noisy images are reported. Indeed, it is evi-
dent that the noise increases the variance of the background. More precisely, the values of
the pixel intensity associated with the external region increases from the interval [0, 77] in
the noise-free case to the interval [0, 127] in the noisy image, introducing additional dif-
ficulties for the segmentation algorithms. This is particularly evident in localised regions
where the difference between the background and the foreground is less clear (e.g., the
tail) and the corresponding segmentation suffers from a slight loss of accuracy.

The second example considers a 307×259 pixels image corrupted by a salt and pepper
noise with variance 0.5× 10−1. The original noise-free and noisy images are supplied in
figure 10(a) and 10(b), respectively. Figure 10(c) displays the ground truth segmentation
provided by the split-adapt Bregman method applied to the Bayesian functional on the
noise-free image, when the stopping criterion is set to η?=0.5 × 10−2. Mesh adaptation
is performed every nBreg=3 Bregman iterations, with an initial tolerance τ?=0.5 which
is halved after each adaptation loop. The new metric is thus determined using the relax-
ation parameter ω=0.9. The initial structured mesh consists of 157,896 elements, with

20



(a) Noise-free image (b) Noisy image (c) Ground truth

(d) Split Bregman (e) Split-adapt Bregman (f) Final mesh

(g) Detail of 8(d) (h) Detail of 8(e) (i) Detail of 8(f)

Figure 8: Real image with Gaussian noise - (a) Noise-free image, (b) image corrupted by
Gaussian noise with variance 0.1 and (c) ground truth segmentation of the noise-free im-
age provided by the split-adapt Bregman algorithm. Final segmented results of the noisy
image computed using (d) the standard split Bregman and (e) the split-adapt Bregman
algorithm. (f) Final adapted mesh and (g-i) details of the segmentation and the adapted
mesh.

hmin=1, hmax=1.4. The final mesh, obtained after 6 iterations of the split-adapt Bregman
algorithm with 2 mesh adaptation steps, features 39,064 triangles, with hmin=0.85×10−1,
hmax=4.72 and a maximum elemental stretching factor sK=557.29.

Both the split Bregman and the split-adapt Bregman algorithms confirm their capabil-
ity of exploiting the spatial information to accurately segment noisy images, even in the
presence of salt and pepper noise. More precisely, figure 10(d) shows the output of the
split Bregman algorithm on the previously introduced uniform structured mesh of 157,896
elements. The result of the split-adapt Bregman approach, displayed in figure 10(e), is ob-
tained using an adapted mesh of 9,739 triangles, with hmin=0.56×10−1, hmax=93.4 and
maximum aspect ratio sK=482.93 (see figure 10(f)). The standard split Bregman method
converges in 9 iterations, whereas the split-adapt Bregman strategy requires 12 Bregman
iterations with 4 mesh adaptation loops. It is worth noticing that the extra iterations re-
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(a) Noise-free image 8(a) (b) Noisy image 8(b)

Figure 9: Real image with Gaussian noise - Estimated probability density functions of the
pixel intensity κ for the (a) noise-free and (b) noisy images.

quired by the second algorithm to converge introduce an almost negligible computational
burden given the extremely coarse mesh designed by the adaptation tool. Indeed, excel-
lent results are obtained using a computational mesh almost 94% coarser than the uniform
grid employed by the standard split Bregman method. Moreover, from the comparison of
figures 10(g) and 10(h), it is evident the improvement led by mesh adaptation, with a lim-
ited computational effort, in terms of the description of the boundaries of the segmented
region. A detail of the final adapted mesh is provided in figure 10(i), showing the local
refinement of the elements and their anisotropy along the interface between the object and
the background.

The last example of this section represents a challenge for segmentation algorithms,
the goal being the treatment of an image corrupted by speckle noise. Figure 11(a) dis-
plays the 171 × 135 pixels image in its original version, whereas the one corrupted by a
speckle noise of variance 0.1× 10−1 is shown in figure 11(b). The ground truth solution
yielded by the split-adapt Bregman method on the noise-free image when the stopping
criterion is controlled by the tolerance η?=0.1 × 10−2 is shown in figure 11(c). As for
the previous simulations, the mesh is adapted every nBreg=3 iterations of the optimisa-
tion loop and the new metric is computed using the relaxation parameter ω=0.9. The
tolerance for the adaptation loop is initially set to τ?=0.5 to be successively halved af-
ter each adaptation step. The initial uniform structured grid consists of 45,560 triangles
with hmin=1 and hmax=1.4, whereas the final adapted mesh features 40,491 elements
with hmin=0.88 × 10−2 and hmax=48.64 while the stretching factor attains the maxi-
mum admissible value sK=1, 000. The case under analysis is particularly challenging
for segmentation algorithms given the richness of spatial information present in both the
background and the foregound of the image. Indeed, the split-adapt Bregman method
requires 84 iterations with 28 mesh adaptation steps to converge to the ground truth seg-
mentation of the noise-free image. In addition, some numerical artifacts are detected in
the form of small segmented regions near the boundary, as displayed in figure 11(c).
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(a) Noise-free image (b) Noisy image (c) Ground truth

(d) Split Bregman (e) Split-adapt Bregman (f) Final mesh

(g) Detail of 10(d) (h) Detail of 10(e) (i) Detail of 10(f)

Figure 10: Real image with salt and pepper noise - (a) Noise-free image, (b) image cor-
rupted by salt and pepper noise with variance 0.5×10−1 and (c) ground truth segmentation
of the noise-free image provided by the split-adapt Bregman algorithm. Final segmented
results of the noisy image computed using (d) the standard split Bregman and (e) the split-
adapt Bregman algorithm. (f) Final adapted mesh and (g-i) details of the segmentation and
the adapted mesh.

The image corrupted by speckle noise is segmented using the split Bregman and split-
adapt Bregman algorithms. The resulting solutions are presented in figure 11(d) and 11(e),
respectively. In this challenging case, the split-adapt Bregman algorithm suffers from the
appearance of numerical artifacts in the segmentation. Nonetheless, the overall quality of
the solution in figure 11(e) for the case of the noisy image is comparable with the ground
truth segmentation of the noise-free image in figure 11(c), confirming the robustness of the
split-adapt Bregman method even in the presence of speckle noise. Concerning the com-
putational cost of the performed segmentations, the split Bregman method converges after
20 iterations on the previously introduced uniform structured grid of 45,560 triangles. The
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(a) Noise-free image (b) Noisy image (c) Ground truth

(d) Split Bregman (e) Split-adapt Bregman (f) Final mesh

(g) Detail of 11(d) (h) Detail of 11(e) (i) Detail of 11(f)

Figure 11: Real image with speckle noise - (a) Noise-free image, (b) image corrupted by
salt and pepper noise with variance 0.1 × 10−1 and (c) ground truth segmentation of the
noise-free image provided by the split-adapt Bregman algorithm. Final segmented results
of the noisy image computed using (d) the standard split Bregman and (e) the split-adapt
Bregman algorithm. (f) Final adapted mesh and (g-i) details of the segmentation and the
adapted mesh.

split-adapt Bregman strategy provides a result after 27 optimisation iterations with 9 mesh
adaptation steps, leading to the anisotropic mesh in figure 11(f), characterised by 50,366
elements, with hmin=0.15 × 10−1, hmax=44.52 and maximum admissible aspect ratio
sK=1, 000. Although in this case the cardinality of the adapted mesh is slightly supe-
rior to the one of the initial structured grid, the split-adapt Bregman algorithm still allows
to improve the quality of the interface as it is clearly visible in figures 11(g) and 11(h).
Indeed, the quality of the segmented boundary greatly improves owing to the local refine-
ment and the anisotropy of the mesh elements, see figure 11(i) for a detail.

The above simulations highlight the capability of the split-adapt Bregman method
applied to the Bayesian segmentation model of exploiting the spatial information in the
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images under analysis, even when they are corrupted by different types of noise. In addi-
tion, the split-adapt Bregman method outperforms the standard split Bregman algorithm
by significantly improving the quality of the boundaries of the segmented region while
reducing the number of required degrees of freedom of the problem thanks to the proper
alignment, sizing and shaping of the mesh elements.

4.4 Application to medical images

The last example considers the segmentation of a 214×120 pixels medical image obtained
via the ultrasound of a gallbladder, see figure 12(a). Notice that the image is extremely
noisy, thus constituting an actual challenge for segmentation algorithms.

(a) Image (b) Split Bregman

(c) Split-adapt Bregman (d) Final mesh

(e) Detail of 12(c) (f) Detail of 12(d)

Figure 12: Real ultrasound image - (a) Image. Final segmented results computed using
(b) the split Bregman and (c) the split-adapt Bregman algorithm. (d) Final adapted mesh
and (e-f) details of the segmentation and the adapted mesh.
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The segmentation is performed using the split Bregman and split-adapt Bregman algo-
rithms with the tolerance η?=0.1× 10−2 to stop the optimisation procedure. In addition,
for the split-adapt Bregman strategy, the mesh adaptation loop is executed every nBreg=3
iterations of the optimisation method, with an initial tolerance τ?=0.5 which is halved
after each run of the adaptation procedure. As in previous simulations, the relaxation pa-
rameter ω=0.9 is used to combine two consecutive metrics. The split Bregman method
is executed on a uniform structured grid with 50,694 triangles such that hmin=1 and
hmax=1.4 and it converges in 17 iterations. The split-adapt Bregman algorithm performs
94 optimisation iterations with 31 mesh adaptation steps to converge on the adapted mesh
displayed in figure 12(d). The final mesh consists of 89,845 triangular elements, with
hmin=0.95 × 10−2 and hmax=30.61 and with the stretching factor achieving the maxi-
mum admissible value sK=1, 000. Despite the same tolerance η? is employed for both
approaches, the split-adapt Bregman algorithm outperforms the standard method provid-
ing a more complete description of the region to be segmented, while capturing also finer
features of the image. The resulting segmentations are shown in figure 12(b) and 12(c)
for comparison. In addition, consistently with previous simulations, the split-adapt Breg-
man method also improves the quality of the interface as confirmed by the details in
figures 12(e) and 12(f).

The employed Bayesian segmentation model is able to extract the spatial information
from the image under analysis, despite its complexity and the presence of speckle noise.
This is confirmed by the PDF of the pixel intensity κ in the internal and external regions,
obtained via the nonparametric kernel density estimate (see figure 13). Indeed, the model
clearly identifies two regions in the image, each associated with a different interval of
values of the pixel intensity. The numerical artifacts yielded by the split-adapt Bregman

Figure 13: Real ultrasound image - Estimated probability density function of the pixel
intensity κ.

segmentation can be ascribed to the high level of noise in the original image. A possible
remedy to this issue, beyond the scope of the present manuscript, is the coupling of the
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discussed segmentation strategy with a preliminary denoising or filtering step in order to
improve the quality of the input data for the split-adapt Bregman method.

5 Concluding remarks

In this work, the split Bregman algorithm for region-based image segmentation was en-
riched by means of a mesh adaptation procedure driven by an anisotropic recovery-based
error estimate. The methodology employs a piecewise constant definition of the level-set
function to describe the interface between the background and the foreground of the im-
age, leading to large values of the gradient of such a function across the contour of the
region to be segmented. In addition, the image spatial information is exploited during the
segmentation via the construction of a Bayesian model which estimates the probability
distributions of the pixel intensity in each region.

The proposed split-adapt Bregman algorithm solves the first step of the split Bregman
method by means of the finite element method. Then, an anisotropic recovery-based error
estimate is computed to construct a new metric (i.e., to generate a new mesh) in order
to capture the directional features of the gradient of the level-set function. The resulting
anisotropically adapted mesh provides an accurate description of the interface between
the background and the foreground of the image, with a reduced number of degrees of
freedom. Finally, the optimisation algorithm is resumed and the shrinkage step and the
Bregman update are performed on the adapted mesh.

The novelty of the proposed approach is two-fold. On the one hand, the split-adapt
Bregman algorithm is able to handle image inhomogeneities by exploiting the spatial in-
formation encapsulated in the PDFs of the Bayesian model. This ensures an accurate seg-
mentation of real images featuring complex spatial patterns that traditional region-based
or edge-based segmentation strategies fail to process. On the other hand, the mesh adapta-
tion step enhances the accuracy of the segmented contour providing a smooth description
of the interface without jagged details. The proper alignment, sizing and shaping of the
anisotropically adapted mesh elements also guarantee that the increased precision of the
contour is achieved with a reduction of the degrees of freedom up to 94%, making the
overall split-adapt Bregman method very competitive from the computational viewpoint.

The resulting split-adapt Bregman method was successfully tested on synthetic and
real images featuring inhomogeneous spatial patterns. In addition, the algorithm proved
to be robust even in the presence of different types of noise, including Gaussian, salt
and pepper and speckle noise, confirming its superiority with respect to the standard split
Bregman approach. Finally, the split-adapt Bregman method was applied to an extremely
challenging medical image obtained from the ultrasound of a gallbladder with remarkably
good results.
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A Region scalable fitting energy approach

Starting from the work [18] by T.F. Chan and L.A. Vese on region-based models, the RSFE
method [43] improves the description of spatially inhomogeneous regions by exploiting
the local information in the neighbourhood of each pixel. This is achieved by introducing
the local weighted averages fi, i=I,E of the pixel intensity given by

fi(x) :=

∫
Ω
Kσ(x− z)U(z)χi(φ(z))dz∫
Ω
Kσ(x− z)χi(φ(z))dz

, (36)

where χI(φ)=Hε(φ) and χE(φ)=1−Hε(φ) denote the characteristic functions associated
with ΩI and ΩE, respectively, while Kσ is a Gaussian kernel with standard deviation
σ. Notice that the classical averages of the pixel intensity characterising the Chan-Vese
model can be retrieved by neglecting the Gaussian kernel Kσ in equation (36).
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The discrepancy between the pixel intensity of the image U and the local weighted
averages fI and fE in ΩI and ΩE, respectively are defined by

eI(x) :=

∫
Ω
Kσ(x− z)(U(z)− fI(x))2χI(φ(z))dz

eE(x) :=

∫
Ω
Kσ(x− z)(U(z)− fE(x))2χE(φ(z))dz,

(37)

where the convolution product with the Gaussian kernel is employed.
Following [43], the energy functional for the RSFE model thus coincides with

FRSF(φ, eI, eE) :=

∫
Ω

[µIeI(x) + µEeE(x)]dx + ν

∫
Ω
g(U(x))|∇φ(x)|dx, (38)

where µI, µE and ν are positive constants to be properly tuned. The first term is re-
sponsible for the separation of Ω into two regions by exploiting the discrepancies eI and
eE defined in equation (37), whereas the second term introduces a regularisation of the
segmented contour via the weighted TV norm as in section 2.1.

Split Bregman algorithm for region-scalable fitting energy

Following the rationale introduced in section 2.2, the minimisation of the RSFE func-
tional (38) can be rewritten in the form of the optimisation problem (14), with the func-
tional G(φ(x)) defined as

G(φ(x)) = GRSF(φ(x)) :=

∫
Ω

(µIeI(x) + µEeE(x))dx. (39)

Hence, steps A, B and C of the split Bregman strategy in equation (17) can be similarly
applied to the minimisation of the RSFE functional. Only minor modifications are re-
quired to adapt the framework presented in section 2.2 to the new energy functional in
equation (39). More precisely, the evolution equation (18) yielded by step A of the split
Bregman strategy requires the definition of a new source term

s(x) = sRSF(x) := µIeI(x) + µEeE(x), (40)

which is thus evaluated using the last computed level-set function φk as in section 2.2.
The remaining steps of the split Bregman algorithm are not affected by the change in the
definition of the energy functional fromFBAY toFRSF . Hence, equations (21) and (17c) are
valid also for the minimisation of the RSFE functional and the overall procedure described
in algorithm 1 stands. Finally, the optimisation procedure stops when the relative variation
of the level-set function from iteration k to iteration k+1 is below a user-defined tolerance
η? (Algorithm 1 - Step 3).
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B Selection of model and method parameters

In table 1, the values of the parameters involved in the definition of the energy functionals
and in the construction of the split Bregman method used in the simulations of section 4
are provided. For a detailed discussion on the sensitivity of the split Bregman method to
the choice of these parameters, interested readers are referred to [43, 69, 13].

Bayesian model accounting for spatial information
τ µ ζ

1 1 10−8

Region-scalable fitting energy
σ µ µi, i=I,E

8 10−3 10−5

Split Bregman algorithm
ν β ε

1 100 10−2

Table 1: Parameters used in the definition of the Bayesian and RSFE functionals and in
the setup of the split Bregman algorithm.
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