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Abstract

The problem of outlier detection in high dimensional settings is nowadays a crucial point for a
number of statistical analysis. Outliers are often considered as an error or noise, instead, they
may carry important information on the phenomenon under study. If not properly identified,
they may lead to model misspecification, biased parameter estimation and incorrect results,
especially in those contexts where the number of available statistical units is lower than the
number of parameters (for example, Functional Data Analysis).
In this paper we introduce a robustly adjusted version of the functional boxplot, which is the
most common tool adopted to perform outlier detection in Functional Data Analysis. A crucial
element of the functional boxplot is the inflation factor of the fences, controlling the proportion
of observations flagged as outlier. After an overview of the methods and tools currently
available in the literature, we will describe a robust method to compute a data-driven value for
such inflation factor. In doing so, we will make use of robust estimators of variance-covariance
operators and the corresponding eigenvalues and eigenfunctions.
Two simulation studies are proposed to give direct insights into the use of the proposed
functional boxplot, and test both the robustness and accuracy of robust variance-covariance
estimators, together with the performances of the functional boxplot in recognising truly
outlying observations.

1 Introduction

During statistical analysis, outliers are often considered as an error or noise, instead, they may
carry important information on the phenomenon under study. In fact, detected outliers are
candidates for aberrant data that may otherwise adversely lead to model misspecification, biased
parameter estimation and incorrect results. It is therefore important to identify them prior to
modelling and data analysis (see [Wil+02] and [LSJ04]).
There is no general definition of outliers, since their presence often depends on assumptions
regarding the hidden structure of data and the applied detection method. Yet, some definitions
are general enough to cope with various types of data and methods. Hawkins in [Haw80] defines
an outlier as “an observation that deviates so much from other observations as to arouse suspicion
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that it was generated by a different mechanism”. [BG05] proposes an interesting classification of
outlier detection methods for both the univariate and multivariate case, distinguishing between
parametric and nonparametric.

Outlier detection is particularly important in those contexts where contaminations may lead
to consistent bias in estimation and inference. This is the case, among others, of Functional
Data Analysis (FDA), the study field dealing with the statistical analysis of functions, which
are regarded as sample realisations of suitable random processes (for an overview, see the
monographs [RS05], [FV06] and [HK12]). Functional data are statistical units constituted by a
sequence of measurements of a quantity of interest over a continuous variable (typically time or
space). This concept suits well the rich output of scientific, technologic or economic processes
considered nowadays, but requires special attention in its use since not all the statistical tools
from multivariate statistics can straightforwardly be extended to this framework.
From a mathematical point of view, functional data can be seen as random functions, that is
to say random elements of a functional space, i.e. X : (Ω,A, PX) −→ (V , ‖ · ‖V ), where V is
generally taken as a real, separable, infinite-dimensional Hilbert space, with norm ‖ · ‖V . The
possible difficulties in the extension of classic multivariate tools to FDA are a consequence of the
very rich structure of V .

Outlier detection is of great importance in settings where inference is typically carried out
with a limited amount of data compared to their dimensionality (a problem known as large P
- small N), and it is even more the case with functional data, where observations are functions,
i.e. infinite dimensional elements of function spaces. The presence of a few atypical observa-
tions may have dramatic consequences in the distortion of common sample (cross-sectional)
estimators of location and dispersion parameters, which in turn are often used as basis for
subsequent inferential processes. The FDA community has started debating only recently on the
development of robust estimators and outlier detection techniques, able to restrain the fictitious
variability induced by extremal observations in a dataset. This delay is probably due to the
difficulty of pointing out an univocal definition of functional outliers as, given the very rich
nature of functional data, it is difficult to point out extremality patterns that are sufficiently
general to be independent of the particular dataset at hand. To this aim, an appreciable effort
was carried out in [HRS15], where authors proposed a first taxonomy of functional outliers (see
also the considerations in[FGGM08]). Despite that, a thorough and satisfactory definition of
functional outlier is still far away from an operational point of view.

There are two ways, in general, to face outliers in a data sample: i) to apply outlier-detection
tools and remove allegedly outlying observations from the dataset; ii) to robustify the estimators
adopted for carrying out the inference. The first option brings about the methods for the effective
identification of outliers with the aim of robustifying the sample (i.e. to purge it of outliers); the
second directly targets the robustification of estimators. In this paper we address the problem
of robustifying a dataset of curves, by enhancing a classic tool for functional outlier detection,
namely the functional boxplot [SG11] (see Figure 2). Similarly to the case of real, univariate
data, the functional boxplot is a visualization tool used to display the distribution of observed
data, and to identify atypical curves. In particular, we will consider its adjusted version, an
evolution of the standard tool proposed in [SG12] (see also [MBLR15]), where the adjustment
allows to control the probability of rejecting atypical observations of a given family of genuine
(i.e. not contaminated by outliers) gaussian data. We propose to integrate its adjustment process
with natively functional robust estimators of location and variability, in order to overcome
some shortcomings of the current technique and to have an appropriate, coherent and robust
diagnostic tool for dataset robustification.
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The paper is organized as follows: in Section 2 we will present and motivate the problem of
outlier detection and dataset robustification in FDA, with an overview the available approaches.
In Section 3 we will describe the notion of functional depths, which are a fundamental instru-
ment of the functional boxplot. In Section 4 we will describe in detail the traditional functional
boxplot and we will propose our version of the adjusted functional boxplot, based on the robust
functional estimators recalled therein. Some simulation studies are presented in Section 5.
All the analyses have been carried out with R [R C15], and the implementation of the pro-
posed method is available upon request at the BitBucket Repository https://bitbucket.org/
ntarabelloni/rfda ).

2 Outlier Detection and Robustification of functional data

The starting point of any functional data analysis is the reconstruction of data from noisy, point-
wise observations and undergo a separation of amplitude from phase variability. The latter process
is known as registration (or alignment). The first (amplitude) can be seen as a “vertical” variability
in the function values, while the second (phase) is expressed by the “horizontal” dispersion
of the same features across the dataset. A motivation for this separation stems from biological
and medical applications, where the possible landmarks of signals can be dispersed along the
horizontal axis following the so-called patient-specific variability, and entered the praxis of
functional data analysis. In fact, the longitudinal dispersion of the same features would prevent
from doing appropriate pointwise comparisons between signals. Registration is performed by
using proper warping functions to map the timings of each observation to a common time (see,
among others, [RS05], [Van12], [Mar+15] and references therein). As output we have a dataset of
functions where the main features occur at the same reference time instant for all subjects, so
that simple statistics as cross-sectional mean or covariance can be properly computed.

Although a formal and exhaustive definition of functional outlier is still missing in literature,
the separation between amplitude and phase variability inspired the main distinction currently
accepted between outlyingness patterns, i.e. magnitude and shape outliers. The first are related
to amplitude, and are a direct analogue of the outlyingness concept in the multivariate context,
while the second are related to phase variability, hence are completely new and does not have a
counterpart in classic statistics. The different nature of these kinds of outliers motivates the need
for different tool to detect and handle them.

In common practice, a dataset will be affected by both magnitude and shape outliers, and a
first attempt to separate them is the registration step itself, where the synchronisation procedure
may point at those data with degenerate warping. Alternatively, such data can be identified
and possibly removed by applying detection methods tailored to shape outliers, such as the
outliergram (see [AGR14]). At the end of this stage, the only remaining outliers will be of magni-
tude type, for which we propose a refined version of the classic depth-based functional outlier
detection procedure based on the functional boxplot.
Our version of the functional boxplot, that fulfils both a graphical depiction of data and outlier
detection, incorporates the strengths of the available estimators of location and dispersion for
functional data in the traditional functional adjusted boxplot (which will be recalled in detail
in Section 4). Thus, it can be seen as a synthesis of the two approaches to robust statistics for
functional data: robust estimation and outlier detection.
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Among the alternatives to the cross-sectional sample mean, we will consider the sample
spatial median, whose definition was recently extended to functional data as a particular case
of functional spatial quantile (see, e.g., [CCZ13] and [CC14b]). Alternatives to the sample co-
variance, instead, are proposed in applications involving PCA in [Loc+99] and [Ger08], where
authors estimate covariances from data projected onto a unit sphere centred in the spatial median
of data. A different approach to robust covariance estimation is followed in [KP12] and [CG15],
where authors find estimators as solution of suitable (spatial median-like) L1 minimisation
problems.

In the development of robust estimators of statistical parameters, a key quantity in measuring
their performances is the breakdown point, which we conveniently recall here. Given a dataset X
and an estimator T(X ), its breakdown point is:

ε∗ = inf

{
ε : sup
X ′ε
|T(X )− T(X ′ε)| = ∞

}
, (2.1)

where X ′ε indicates an ε− contaminated/replaced/modified version of dataset X (see [HR09]).
This means that the breakdown point measures the minimum data corruption required to bring
estimates very far away from the correct one. For instance, the standard sample median has
breakdown point 0.5, which is the highest value a translation-equivariant estimator can achieve
[HR09]. On the contrary, just one observation can cause breakdown for the standard sample
mean. This notion, that can be straightly translated to the case of functional data, makes no
assumption on the particular functional form of the dataset corruption considered.

In order to exemplify the dangers of dealing with functional outliers, we show in Figure 1
the results of a simple simulation study. Here, a functional dataset of N = 180 observations
with an outlier contamination proportion of ε = 20% (150 genuine observations and 30 outliying
ones), generated according to models detailed in Subsection 5.1, is used to assess the empirical
breakdown of standard sample estimators of mean and covariance. In particular, sample mean
and covariance are computed on an increasing number of sample units, adding the observations
one at a time, and leaving the outliers at the end, so that their effect on the estimation is identified.
The sample mean is compared with the functional spatial median. In Figure 1 the logarithm of
the estimation error is displayed with respect to the square root of the increasing sample size of
the data used to compute the estimates.
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Figure 1: Corruption of standard sample estimators in presence of outliers, for data of Subsec-
tion 5.1. Sample mean and covariance estimators are computed for a dataset of 150 genuine
observations to which an increasing number of outliers is added, up to 30. Left: Log-error norm
w.r.t. exact sample mean versus square root of number of sample units, using the sample mean
(squares), and using sample median (circles). Right: Log-error of Hilbert-Schmidt norm versus
square root of number of sample units using sample covariance.
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Figure 2: Adjusted functional boxplot, obtained by using the strategy proposed in the current
paper on a subset of the synthetic population of the second simulation study of Subsection 5.2.
The median is represented in white, the fences in orange, outliers are highlighted in red while
genuine data are shown in shades of blue.
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3 Statistical depth measures

Analogously to the standard, univariate boxplot for real random variables, the functional boxplot
relies on a suitable ordering of functional data. Yet, high-dimensional spaces, even euclidean
ones, do not have a natural order relation. Statistical depths, which were proposed in the
framework of classic multivariate statistics (see the seminal paper by Tukey [Tuk75]) in order
to introduce orderings in data clouds, represent a possible solution also for functional data. In
particular, the statistical depth of a point with respect to a probability distribution is a measure of
its centrality, hence depths offer a center-outward ordering relation for multi-dimensional data.
Given a random vector X : (Ω,A, P) −→ Rp, the halfspace depth (or Tukey depth) of z ∈ Rp

w.r.t. PX is HD(z; PX) = infa∈Rp PX {x ∈ Rp : 〈a, x− X〉 ≥ 0} . Since the ideas of Tukey, much
effort has been devoted to the development of a theory of depth measures, along with alternative
definitions of depth for multivariate and functional data. Important examples are the simplicial
depth (see [Liu90]), where the centrality is measured as the probability of z ∈ Rp being included
in a random simplex generated by the p + 1 copies of X; the Mahalanobis depth ([Liu92], [LS93]),
which incorporates the Mahalanobis distance induced by X to define an intuitive notion of
depth; the spatial depths [VZ00], defined starting from the spatial multivariate quantile theory
as D(z; PX) = 1− ‖E[(z − X)/‖z − X‖]‖; yet, many other definitions have been considered
throughout the years. For an exhaustive review, see for instance [LPS99] and [ZS00].

3.1 Statistical depth for functional data

Starting from depths for multivariate data, generalisations to the functional and multivariate
functional case have been recently proposed. The new definitions of depth are generally con-
ceived so that a list of desired properties are satisfied. Among others, a very basic one (of
which we will use a version to get the functional boxplot), is affine invariance. Given a family
of functional data, X : (Ω,A, PX)→ (V , ‖ · ‖), where V is a real, separable Hilbert space, and a
generic depth function D(·, PX )→ [0, 1], we have:

D(Lz, PLX) = D(z, PX), ∀z ∈ V , (3.1)

where L ∈ F ⊆ L(V ,V), where L(V ,V) denotes the set of linear operators between V and itself.
In the classic multivariate case, the linear operators generally considered for the proposition to
hold are of type Lz = Az + b, where A is any nonsingular matrix and b is a vector [ZS00]. In the
case of functional data, the characterisation of F is still an open problem, and different types of
affine invariance properties are satisfied by the different depths available. Here we assume then
a rather weak version of (3.1), namely location-scale invariance, corresponding to the particular
choice of F = {L : ∃(λ, w) ∈ R+ × V : ∀x ∈ V , L(x) = λx + w}.

Other important properties of statistical depths, borrowed from multivariate statistics, are the
maximality at the center, the monotonicity w.r.t the deepest point and the vanishing at infinite property
(for their thorough description and review in the functional case, see [MP12]).

A first definition of depth for functional data, based on the time integration of a depth for
scalar random variables, was given in [FM01]. The functional version of the halfspace depth (see
among others [CC14a], where they show its structural inconsistency) and the functional version
of spatial depth [CC14b], were recently proposed in the FDA community. Yet, among the most
popular definitions is the band-depth (BD), which was proposed in [LPR07], [LPR09]. Given a
random function X ∈ C(I), where I indicates the dependent (e.g. time) variable, X1, X2, . . . , XN ,
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i.i.d. copies of the process and given J ∈N, the band depth of z ∈ C(I) is defined as:

BDJ
X(z) =

J

∑
j=1

(
N
j

)−1

∑
i1<i2<...,<ij

I
{

G(z) ∈ Env(Xi1 , . . . , Xij), ∀t ∈ I
}

, (3.2)

where G(z) denotes the graph of z(t) and Env(Xi1 , . . . , Xij) indicates the envelope of Xi1 , . . . , Xij ’s
graphs, i.e.

Env(Xi1 , . . . , Xij) =

{
(t, y) : t ∈ I, min

l=1,...,j
Xil (t) ≤ y ≤ max

r=1,...,j
Xir (t)

}
.

Of course, it must be J ≥ 2, and its value controls the size of the tuples sampled from the
observed data.
Due to the presence of the indicator function, in presence of real data with many crossings
BD may yield low and similar values of depth to most of the observations, thus leading to the
problem of heavy tails. To overcome this, authors proposed the Modified Band Depth (MBD),
where the time interval that z spends in the envelope is weighted over I:

MBDJ
X(z) =

1
J

J

∑
j=1

(
N
j

)−1

∑
i1<i2<...,<ij

λ̃

{
t ∈ I : min

l=1,...,j
Xil (t) ≤ z(t) ≤ max

r=1,...,j
Xir (t)

}
, (3.3)

where λ̃(A) = λ(A)/λ(I), and λ denotes the Lebesgue measure.
In [LPR09], authors state that while the choice of J clearly increases the magnitude of depth, it
does not affect the induced ordering and therefore the ranks. This was supported in [Tar+15]
by a simulation study involving an application with electrocardiograph (ECG) data. By setting
J = 2, it is possible to greatly ease the computational effort required to compute depths, and
exploit an exact and efficient algorithm proposed in [SGN12].
MBD fulfils property (3.1) over the subset of translation-scale functionals, yet in [LPR09], it was
shown that affine invariance holds also for the linear functionals T(x) = λx + w, with a(t) 6= 0
for all t ∈ I, b ∈ C(I), and the functionals H(x) = h(x), where h(·) is a continuous and strictly
monotone mapping. Due to appealing properties and its popularity, in the following we will use
MBD in the construction of the functional boxplot, but other possible depth definition can be
applied, provided they fulfil (3.1).

4 The robust adjusted functional boxplot

In [SG11] authors suggest to use functional depths and the orderings they induce to build a
functional boxplot, which serves both for visualisation and robustification purposes. In particular,
let us denote by:

Cα =

{
(t, z(t)) : min

l=1,...,dαNe
Xl(t) ≤ z(t) ≤ max

r=1,...,dαNe
Xr(t)

}

the generic sample α-central region of data, i.e. the region containing the α% most central
observations of the sample. A functional boxplot is obtained similarly to the case of univariate
scalar data in the following steps: 1) take the region C0.5, which contains the 50% of most central
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curves of the sample; 2) inflate it by a factor F ≥ 1 and build the fences given by the envelope of
the functions entirely contained inside the inflated region; 3) consider the observations crossing
the fences or completely external as atypical curves. We prefer to use the term atypical rather
than outlier to remark that these data are only observations that, according to the empirical
distribution of data, should be rarely observed. Clearly, atypical observations can be either
genuine but rare outcomes of the random process generating data, or corrupted data due to a
possible contamination of the dataset. While the latter should be readily discarded, the former
must be handled with care as, though not entirely representative of the generating law, they
could still be useful for estimation. To point out this distinction, in standard univariate statistics,
it is generally taken F = 1.5, so that in case of standard gaussian generating law, the proportion
of data flagged as outliers is δ = 2 Φ(4 z0.25) ≈ 0.698%.

In [SG12] authors argue that the choice F = 1.5 cannot be applied to boxplots for functional
data, and suggest to select an optimal value for F such that only a fraction δ of the most outlying
curves are discarded when data follow a gaussian process. This is completely in agreement
with the univariate case. Yet, since no analytic expression for F can be derived, a suitable
computational procedure to compute it must be devised. In [SG12] it is suggested to first
estimate location and dispersion parameters from data, then to use them to simulate a synthetic
population of gaussian functions without outliers, such that the optimal value of F can be
computed numerically.

Despite this strategy being correct in principle, its practical fulfilment is at present not
completely satisfactory, for a number of reasons that will be clear at the end of this subsection
and in the following. The contribution of the present paper is to propose a valid, coherent and
distribution-free alternative.

Since we are dealing with dataset potentially contaminated by outliers, suitable robust
estimators must be used before simulating the gaussian population, so that a correct simulation
and a coherent method is obtained. In fact, the synthetic gaussian population we would like
to generate should have the same mean and covariance of the real dataset, which clearly are
unknown and must be estimated.

The simulation strategy drives the choice of robust estimators. In fact, a classic simulation
method is to exploit the Karhunen-Loève decomposition of X, X = µ + ∑∞

i=1 ξi
√

λi ϕi, where
{ϕi, λi}i≥1 are the eigen-couples of covariance function, and {ξi}i≥1 is a collection of centred,
uncorrelated random variables with unit variance. In practice, only the first L eigen-elements can
be estimated from data, therefore we simulate a sample of gaussian functions with the truncated
expansion Z = µ + ∑L

i=1 zi
√

λi ϕi, with {zi}L
i=1 i.i.d. standard normals.

The robust dispersion estimator should allow to estimate the required eigenvalues and
eigenfunctions of covariance operator. Regardless of its robustness, the robust covariance
estimator currently adopted in the functional boxplot, as it was suggested in [SG12], does not
guarantee that its eigenvalues and eigenfunctions do actually estimate those of X’s covariance.
We propose, instead, two alternative robust estimators, recently proposed for functional data
covariance. In Subsection 4.1 we will review both the currently employed robust covariance
estimator, and the alternatives we suggest to use, highlighting their pros and cons, while in
Subsection 4.2 we will make use of them in our version of the functional boxplot.

4.1 Robust estimators for functional data

In order to get an estimate of covariance operator from data, authors of [SG12] suggest to exploit
a robust componentwise estimator of the dispersion matrix which was originally proposed
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in [MG01] in the context of random vectors. Given the random variables X, Y : (Ω,A) → R,
observed at {X}N = {X1, . . . , XN} and {Y}N = {Y1, . . . , YN}, a highly robust estimator of their
covariance is:

γ̂X,Y =
αβ

4

[
Q2

N ({X}N /α + {Y}N /β)−Q2
N ({X}N /α− {Y}N /β)

]
(4.1)

where α = QN({X}N), β = QN({Y}N). QN({X}N) is a classic estimator of the scale of X, very
popular in robust statistics (see [RC92] and [RC93]), defined as:

QN({X}N) = d
{
|Xi − Xj|; i < j, i, j = 1, 2, . . . , N

}
(k) , (4.2)

with k = b((N
2 ) + 2)/4c+ 1. The constant d is chosen depending on the probability distribution

of X, in order to have Fisher consistency, and in the adjustment procedure of [SG12] is set to be
equal to (

√
2 Φ−1(5/8))−1 = 2.2191, in order to target Gaussian data (for a complete motivation,

see [RC93]).
A robust estimator of covariance for a p-dimensional random vector X : (Ω,A) → Rp is

given by applying estimator (4.1) to each couple of components of X. A first drawback is that
the matrix Γ̂Q obtained is in general only symmetric but not positive (semi-)definite, then it
should be suitably transformed by exploiting quite complex methods discussed in [RM93] such
as shrinkage.

Even if in [SG12] the resulting estimator was studied only in the multivariate case for N ≥ p,
they argue that it can be also applied in the functional case to estimate a pointwise approximation
of the covariance operator CX from the pointwise discretised version of data (hence in the case
N ≤ p). Anyway, estimation problems are likely to occur in this case. A possible solution
could be to start by reducing the dimensionality of data. Clearly, a Karhunen-Loève reduction
is not possible, because the eigen-decomposition of covariance operator is unknown without
distributional assumptions, and it cannot be computed according to the cross-sectional sample
estimators of covariance and mean, which can be corrupted by the outliers we want to remove.
Therefore, a basis representation on a general functional basis must be used. This basis, though,
needs not give a parsimonious representation of data, then the sample size could still be less
than data dimension.

Beyond this and above all, the relations between the spectrum of the transformed version of
covariance Γ̂Q and that of the original covariance operator is not clear. Finally, due to the tuning
constant d, at this stage the procedure of estimating the covariance’s entries is consistent only for
data which are gaussian.

It is not among the scopes of the present paper to delve deeper in the study of Γ̂Q, but in view
of the drawbacks in the estimation of CX’s eigenvalues and eigenfunctions, we now introduce
two alternative estimators that, besides being robust, can be safely employed to this aim. By
using them, the estimation of CX’s eigenfunctions will be straightforward, while the estimation
of eigenvalues will require some additional work through the use of QN and the properties of
functional depths, and will be described directly in Subsection 4.2, where we will explain in
detail our proposed robust adjusted functional boxplot.

Spherical covariance estimator

Robust estimators that directly exploit the functional nature of data can be used instead of Γ̂Q to
compute modal (i.e. projective) surrogates of CX, and have been recently studied as a part of a
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general effort to spread out robust statistics techniques to FDA. In [Ger08], expanding an idea
firstly advanced in [Loc+99], the author suggests the following spherical covariance estimator
(and the corresponding sample version) for a random function with values in L2(I):

CS = E

[
(X− µ̃)⊗ (X− µ̃)

‖X− µ̃‖2

]
, ĈS =

1
N

N

∑
i=1

(
Xi − ̂̃µ

)
⊗
(

Xi − ̂̃µ
)

∥∥∥Xi − ̂̃µ
∥∥∥

2 , (4.3)

where µ̃ indicates the spatial (or geometric) median of X (see [Kem87] and [CC14a] ), i.e. the
solution µ̃ ∈ L2(I) to the problem:

µ̃ = arg min
z∈L2(I)

E [‖X− z‖ − ‖X‖] , E

[
X− µ̃

‖X− µ̃‖

]
= 0, (4.4)

that exists and is unique whenever X has a nonatomic distribution and is not entirely supported
on a line. Clearly, the empirical version ̂̃µ can be obtained by addressing this M-estimation
problem:

̂̃µ = arg min
z∈L2(I)

N

∑
i=1

(‖Xi − z‖ − ‖Xi‖) ,
N

∑
i=1

Xi − ̂̃µ∥∥∥Xi − ̂̃µ
∥∥∥
= 0. (4.5)

The solution of equations (4.5) can be carried out with specific methods and implementations.
Here we used the averaged stochastic gradient algorithm proposed in [CCZ13], suitably modified
to account for a modal expansion of functional data.

The spherical covariance in (4.3) can be interpreted by considering that (X− µ̃) / ‖X− µ̃‖
is the projection of X on the unit sphere with centre in the spatial median. Then the spherical
covariance CS is simply the covariance of the projected data.
In [Ger08] CS is used to perform robust principal component analysis on functional data, by
exploiting its robustness and the spectral similarities to sample covariance CX . In fact it is shown
that CS possesses the same eigenfunctions {ϕi}L

i=1 of CX , ∀L ∈N, with breakdown depending
on the spacing of eigenvalues and generally decreasing with L. Assuming a L−component
generative model for X (which can result after the KL truncation of original data),

X = µ +
L

∑
k=1

ζk
√

λk ϕk, (4.6)

where {λk, ϕk}L
k=1 are the eigen-couples of CX and Z = (ζ1, . . . , ζL) have symmetric and ex-

changeable marginals (e.g. Z is spherical), we have the following breakdown points for the
estimated eigenfunctions of CS:

ε∗ϕ1
≤ λ̃1 − λ̃2

1 + λ̃1 − λ̃2
,

ε∗ϕk
≤ min

{
λ̃k−1 − λ̃k

1 + λ̃k−1 − λ̃k
,

λ̃k − λ̃k+1

1 + λ̃k − λ̃k+1

}
, k = 2, . . . , L− 1,

ε∗ϕL
≤ min

{
λ̃L−1 − λ̃L

1 + λ̃L−1 − λ̃L
,

λ̃L

1 + λ̃L

}
.

(4.7)

Here λ̃i indicates the i-th eigenvalue of CS that, in general, does not coincide with λi, the eigen-
value of CX. In fact, it is shown that λ̃k = λkΩkk, k = 1, . . . , L, where Ω = E

[
ZZT/ZTΛZ

]
,
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Z = (ζ1, . . . , ζL) and Λ = diag (λ1, . . . , λL). From equation (4.7) we deduce that the breakdown
of ϕk depends on the spacing of CS’s eigenvalues, but since λ̃i → 0 as i → ∞, the high-order
eigenfunctions will have nearly zero breakdown. This is quite natural, since high-order modes
are also those where variance is smaller and smaller, therefore are very easy to corrupt. Luckily,
this is not a big issue, as we are interested only in the first modes of variation, because those
generally capture most of X variability.

Given the relation with
{

λ̃i
}

, in order to estimate eigenvalues {λi} it is instead recommended
to first compute the eigenfunctions and then to robustly estimate the variance of projected data,
as it will be discussed in Subsection 4.2.

Median covariation estimator

A different robust estimator of CX was proposed in [KP12], where authors formulated the
problem of robust estimation in a similar way to that of the spatial median. In other words, they
point out that sample covariance is a sample location estimator of the quantity (X− µ)⊗ (X− µ),
thus suggested a median-type estimator for dispersion, much in the same way as the spatial
median is a robust alternative to the sample mean. The spatial median of X solves equation (4.4),
therefore they suggest the estimator Cρ

M solving:

Cρ
M = arg min

T ∈HS
E [ρ (‖(X− µ)⊗ (X− µ)− T ‖HS)− ρ (‖(X− µ)⊗ (X− µ)‖HS)] , (4.8)

where ρ is a real, convex function with ρ(0) = 0 and µ ∈ L2(I) indicates a location parameter for
X. Here HS indicates the space of linear Hilbert-Schmidt operators from L2(I) to itself, which,
endowed with the Hilbert-Schmidt norm ‖T ‖HS =

(
∑∞

i=1 λ2
i
)1/2 becomes a Hilbert space itself.

The choice of this space is motivated by the fact that CX is a Hilbert-Schmidt operator [Bos00].
We consider the case ρ(u) = u and µ = µ̃, yielding the estimator CM a spatial median-type
covariance operator of X.

Provided that the distribution of X is not concentrated on a line, equation (4.8) has an unique
solution. Moreover, if we replace µ with a consistent estimator, the covariance estimator obtained
is consistent for the corresponding operator defined around µ.

Equation (4.8) does not have an analytical solution, thus a proper computational method
must be used to solve it numerically. In their original paper [KP12], authors propose to use a
Quasi-Newton BFGS algorithm (see [NW99]) to directly solve the optimisation problem, while
here we adapted the much simpler, efficient and reliable averaged stochastic gradient algorithm
described in [CG15], suitably adapted to cope with a basis-representation of functional data.

For what concerns the eigen-decomposition of CM, under the assumption that the distribution
of KL scores (i.e. the vector Z = {ζi}i≥1 in the un-truncated version of model (4.6)) is invariant
under the change of sign of any component, CM has the same eigenfunctions as CX . Unfortunately,
similarly to CS, the two set of eigenvalues are not coincident and linked in a non-trivial way, in
particular:

λ̃k = λk

E
[
ζ2/
√

∑∞
i=1(λ̃i − λiζ

2
i )

2 + ∑j 6=i λiλjζ
2
i ζ2

j

]

E
[
1/
√

∑∞
i=1(λ̃i − λiζ

2
i )

2 + ∑j 6=i λiλjζ
2
i ζ2

j

]

where λ̃k denotes the k−th eigenvalue of CM and λk the k−th eigenvalue of CX . Therefore, also
in this case, a robust estimation from the scores of data projected on estimated eigenfunctions is
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recommended (see Subsection 4.2 for a discussion about this).
In Subsection 4.2, we will employ both spherical covariance and median covariation to obtain

our proposed functional boxplot.

4.2 Robust adjusted functional boxplot

A property common to the robust estimators showed in the previous subsection is that, under
similar hypotheses, their spectral structure is similar to that of CX . In particular, eigenfunctions
are the same, while eigenvalues in general are not.
In order to recover the correct set of eigenvalues of CX, that we recall are used together with
eigenfunctions to generate the gaussian population for the tuning of F, it is possible to robustly
estimate them from data, once the corresponding eigenfunctions have been computed from
either CS or CM. In practice, the computation of eigenvalues turns into a set of robust univariate
scale estimation problems, a very well established branch of the statistical research.

Some of the classic estimators used in this context are the MAD (median absolute deviation),
QN or SN (proposed together with QN in [RC93]). They are compared in [RC93], where authors
seem to advise the use of QN as it has 50% breakdown and an asymptotic efficiency of 88.27%
for Gaussian distributions, consequently, our choice fell on it. MAD, SN and QN require all
to specify a tuning, multiplicative constant (parameter d in (4.2)) which is necessary to make
them consistent for the distribution of interest. They are not, in this sense, fully distribution-
independent.

This could be a major issue for their use in the procedure of tuning the parameter F in the
functional boxplot. In particular, we recall that eigenvalues and eigenfunctions of X should
be used to generate a genuine family of gaussian data through a KL-type generative model
with Gaussian scores, but if we want the procedure to be general, it should not depend on the
particular latent distribution of data. A solution can come by directly exploiting the translation-
scale invariance of the statistical depths (property (3.1)) used to build the functional boxplot.
In particular, for a random function X, in order to generate the associated gaussian family Y,
instead of using model:

Yi = µX +
∞

∑
j=1

√
λj ζi,j ϕj, ζi,j

i.i.d.∼ N (0, 1), (4.9)

we use model:

Y∗i =
(Yi − µX)√

λ1
=

∞

∑
j=1

√
λj

λ1
ζi,j ϕj, ζi,j

i.i.d.∼ N (0, 1). (4.10)

Owing to property (3.1), we get D(Y|PY) = D(Y∗|PY∗). As a consequence, their induced order
relation is the same. Moreover, the α% central regions are related by Cα(Y) =

√
λ1Cα(Y∗) + µX ,

hence PY∗(Y∗ ∈ FCα(Y∗)) = PY(Y ∈ FCα(Y)), and the value of F is the same in the two cases.
The advantage in the procedure is that the ratios

√
λj/
√

λ1 can be conveniently estimated
with QN(ϕj)/QN(ϕ1), without the need to determine the distribution-specific constant d (see
Subsection 4.1). As a consequence, the whole procedure of estimating eigenfunctions and
eigenvalues, and to use them in order to simulate the gaussian synthetic population (4.10) to
tune F, is coherent and distribution-free. At the same time, the robustness of estimates is enforced
by the use of either spherical covariance or median covariation. We come then to the algorithm
in Figure 3 to compute the optimal value F∗ of the robust adjusted functional boxplot:
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Algorithm 1: Robust adjusted functional boxplot

Input: Functional dataset D = {X1, . . . , XN}
1 Compute ĈS or ĈM;
2 for i ∈ 1, . . . , L do
3 compute ϕ̂i;
4 for j ∈ 1, . . . , N do
5 compute projections pi,j = Πϕ̂i

(Xj);

6 compute qi = QN({pi,1, . . . , pi,N});
7 if i == 1 then
8 ρ1 = 1;

9 else
10 ρj = qj/q1;

11 sample M realisations of Y∗k = ∑L
j=1 ρjζk,jφj, with ζk,j

i.i.d.∼ N (0, 1), k = 1, . . . , M;
12 compute MBDk = MBD(Y∗k |Y∗) for k = 1, . . . M;
13 compute Ĉ0.5(Y∗);
14 find F∗ s.t. P̂Y∗(Y∗ ∈ F∗C0.5(Y∗)) = 2Φ(4 z0.25);

Figure 3: Pseudo-code of algorithm to compute the tuning constant F∗.

5 Simulation Studies

In this section we will present some simulation studies concerning the tools employed in the
construction of the proposed functional boxplot. In particular, two aspects will be studied, namely
the ability of the robust functional estimators to provide robust estimates of eigenfunctions and
eigenvalues (see Subsection 5.1), and the ability of the strategy proposed to compute the optimal
value F∗ of reproducing the true (yet in practice unobservable) value (see Subsection 5.2).

5.1 A comparison of robust covariance estimators

While some robustness properties of the theoretical study of the breakdown properties of
eigenfunctions and eigenvalues arising from CS were explained before, we find particularly
interesting to complete the paper with a numerical study whose aim is to assess and compare
the robustness of CS and CM in practice.

We fix a generative model for a family of functional data with realistic features, then we
artificially create a number of outliers, and study the empirical corruption of standard and robust
estimators as more and more outliers are added to the dataset. As reference model we choose a
gaussian process with mean µX = sin(4πt), t ∈ I = [0, 1], and exponential Matérn covariance
function CX(s, t) = α exp (−β|s− t|), s, t ∈ I. In the following we will use α = 0.12 and β = 0.4.

This simple choice produces as output functional realisations which, upon suitably choosing
parameters, show the typical features of real functional data, i.e. an identifiable “shape” subjected
to variability and some roughness (due for instance to the presence of unfiltered noise). Beside
this, the analytical form of the covariance function leads to a more accurate computation of the
exact eigenfunctions of the covariance operator. In fact, solving the KL decomposition leads to
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Figure 4: Illustration of the model and data for the simulation study in Subsection 5.1. Left: Plot
of the first L = 10 terms

√
λi ϕi(t), i = 1, . . . , L, of the exponential covariance function (α = 0.12,

β = 0.4). Right: Plot of the genuine dataset (shades of blacks) of Xi(t) ∼ PX, i = 1, . . . , 150 and
contaminating outliers (red), Yi(t) ∼ PY, i = 1, . . . , 30, with an overall contaminating proportion
of δ = 20%.

the following second-order, Fredholm integral equation:

∫ 1

0
CX(s, t)ϕi(s)ds = λi ϕi(t), ∀t ∈ [0, 1], ∀i = 1, 2, . . .

which in case of the exponential covariance can be rearranged in such a way to yield the
eigenfunctions form:

ϕi(t) =





cos
(

ωi

(
t− 1

2

))(
1
2
+

sin(ωi)

2ωi

)− 1
2

if i is even

sin
(

ωi

(
t− 1

2

))(
1
2
− sin(ωi)

2ωi

)− 1
2

if i is odd

(5.1)

and with eigenvalues λi = 2α/(β + ω2
i /β). Here ωi are the (ordered) positive roots of the

equation (β−ω tan(ω/2))(ω− β tan(ω/2)). Such equation cannot be solved analytically, and
a root-finding algorithm should be applied. We used the univariate Brent method, available in
package stats of R [R C15] through uniroot command, which is reasonably fast and globally
convergent.

We generated a dataset of N = 150 functional observations, and we added up to 20% of
outliers (30 functional observations) to contaminate it. The outliers were generated according
to the model: Yi(t) = (5/2 + wi)µX(t) + Zi(t), i = 1, . . . , 30, where {wi}30

i=1 ∼ E(2) is an i.i.d
exponential sample, µX is the mean of the model for X and Zi(t) is a realisation from a centred
stochastic gaussian process with the same exponential covariance as X. This modelling choice
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Figure 5: Comparison of eigenvalues and eigenfunctions estimation through sample, spherical
and median covariance, for a functional dataset generated according to the models in Subsec-
tion 5.1. The estimation is repeated on an increasing sample size, and 20% outliers are added one
at a to the dataset. Left: Log-error norm of first eigenfunction (top) and eigenvalue (bottom). Right:
Log-error norm of second eigenfunction (top) and eigenvalue (bottom).

allows to have outliers with the very same shape of X, and at the same time with a magnitude
undoubtedly outlying. We report two illustrative plots of the models for data and outliers in
Figure 4. In the left plot are shown the quantities

√
λi ϕi, i = 1, . . . , 10, that highlight the spectral

structure of the chosen exponential covariance; in the right plot, instead, we report an example
of the simulated, genuine data from PX , and the outliers generated according to PY.

In order to measure the robust estimation performances of both spherical and median covariance
estimators, we compute empirical eigenvalues and eigenfunctions the outlying observations
adding outliers one at a time to the dataset to which the robust estimators are applied. In
particular, as explained in Subsection 4.2 eigenvalues are computed by using QN to robustly
estimate the standard deviation on the robustly estimated eigenfunctions. Since we know the
exact expression of eigenvalues and eigenfunctions arising from the spectral decomposition of
exponential covariance, we can compute the exact estimation error due to the gradual increment
in data contamination. A visual summary of the performances is shown in Figure 5, where the

15



sample, spherical and median covariance are compared. It is clear how the robust alternatives
perform better both for what concerns eigenfunctions and eigenvalues. In particular, the two
robust estimators seem to be quite equivalent in their performances, with perhaps a better
stability in the estimation of the second eigenfunction for the median covariance.

5.2 Approximation of F∗

In this subsection we present a simulation study to assess the use of the two robust estimators in
the procedure of determining the exact value of F∗ in the robust, adjusted functional boxplot. In
particular, in order to isolate the effect of estimators’ accuracy from that of outliers, we design
two schemes with progressive complexity.

In the first one, depicted in top panel of Figure 6, we will consider populations without
outliers, and measure the quality of the approximation of F∗ through the robust estimation of
eigen-couples, with either spherical covariance CS or median covariation CM. Hence, we expect
the values F∗S and F∗M to be sufficiently close to the reference value F∗.
Such value, F∗, is computed from a dataset of simulated functional observations, generated by
exploiting a truncated KL decomposition with L ∈ N terms of the gaussian process with the
same exponential covariance of Subsection 5.1 (with α = 0.12 and β = 0.4). The computation
of the adjusted value of F makes use of a numerical optimisation method (namely, optim from
package stats, which for 1D problems exploits Brent algorithm [R C15]).

We simulate a dataset of M = 104 curves with the selected generating law, observed on a
grid of P = 200 time points. To make comparisons more fair, the size of the simulated sample
generated after the estimation of eigenvalues/eigenvectors is the same as the original one, which
will be used to determine the benchmark value F∗. We then compute F∗S and F∗M and repeat
the whole procedure 50 times. A visual comparison of the obtained distributions is provided in
Figure 7 (left). We can notice that the three boxplots are completely in accordance, and a Wilcoxon
test for the equality of the distributions gives a p-value of about 50% for benchmark-spherical
samples, and about 25% in the benchmark-median case.

In the second design, whose workflow is depicted in bottom panel of Figure 6, we add a percent-
age γ of outliers gto a genuine dataset, and assess the ability of our enseble estimation/simulation
method to reproduce the correct F∗ using either spherical covariance or median covariation.
Having established that the values of F∗ and F∗S or F∗M are in accordance in absence of outliers,
here the outcome will describe mainly the effect of outliers on the estimation of the tuning factor.
The generating law we use is the same as before, and we set the percentage of outliers (see the
bottom panel of Figure 6) γ = 2 Φ(4z0.25). The outliers are generated according to a symmetric
law Yi(t) = (4 + Zi(t))(2Bi − 1), where Bi ∼ B(1/2). The symmetric design of outliers is chosen
in order to select a distortion effect on the magnitude of covariance, which we expect will be
reflected in the values of eigenvalues.

We remark that, the specific law for the generation of outliers we chose, is devised in such a
way to produce observations undoubtedly recognisable as outlying. In fact, being the definition
of functional outliers only operative and dependent on the employed outlier detection tool
(above all, the functional boxplot, which we are now manipulating), we had to be sure to work
with observations universally recognisable as outliers.

Again, we start with a population of M = 104 functions, with a chosen fraction γ of outliers.
We compute the values F∗S and F∗M with a simulated population of M = 104 signals, and repeat
the procedure 50 times. As a result, we compute first the fraction of outliers correctly identified
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Figure 6: Analysis workflow of the first (above) and second (below) simulation designs in
Subsection 5.2.

Case Mean TPR (± std. dev. ) Mean FPR (± std. dev.)

Sample 1 (-) 6.46 · 10−3

Spherical 1 (-) 6.85 · 10−3

Median 1 (-) 7.09 · 10−3

Table 1: Table summarising the results of the second simulation study.

as outliers using the adjusted value of F just computed, which we call true-positive-rate (TPR). In
all the cases, the TPR is always 1, meaning that all the real outliers are correctly identified. Then,
we computed the proportion of observations incorrectly identified ad outliers, which we called
false-positive-rate (FPR). The distribution of FPR across all the repetitions and for all the cases
(benchmark, spherical covariance and median covariation) is shown in Figure 7 (right), while
results in tabular form are reported in Table 1.
We deduce that the distributions are in complete accordance, and two Wilcoxon tests for the
equality of the distributions (benchmark-spherical covariance and benchmark-median covaria-
tion) in the two cases give p-values of about 25% and 7%.

An example of functional boxplot, obtained with the mean value of the quantities F∗ com-
puted in the 50 trials, is shown in Figure 2, where for graphical reasons only a subset of M = 103

of the original dataset is used. The results are visually equivalent among the sample, spherical
and median cases, thus only the result for the sample case is shown.
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Figure 7: Outcomes of the simulation study in Subsec 5.2. Left: boxplots of F∗, F∗S and F∗M. Right:
false positive rates in outlier detection using F∗, F∗S and F∗M.

6 Discussion and Conclusions

In this paper we focused on robust statistics and outlier detection in FDA, a branch of statistics
that, despite its maturity, saw little effort in the development of robust methods. Being the
definition of outlier in infinite dimensional settings still far from being exhaustive, we felt a more
comprehensive overview and discussion of the topic was needed. In view of this, first we gave
an overview of the scattered contributions available in literature to define and deal with outliers
(both magnitude and shape ones), trying to identify a common toolchain to employ them in a
general data analysis.

So far, the most important instrument to perform outlier detection is the (adjusted) functional
boxplot, which we described and analysed in detail, reporting some concerns in its actual com-
putation. In particular, these are related to the tuning of the inflation factor, F, which is based on
the simulation of a dataset of gaussian functional data with same mean and covariance as the
original dataset, and were described in detail.
Our proposal, instead, incorporated two alternative robust methods to estimate variance-
covariance operator’s spectrum, in order to take advantage of a fully functional setting and to
build a coherent tuning process. These were based on the use of the recently proposed spherical
covariance and median covariation estimators, whose robustness and estimation accuracy prop-
erties have also been investigated in a simulation experiment. To complete the tuning procedure,
a different probabilistic law generating the family of gaussian functional data used to compute
the optimal value F∗ was proposed. By combining it with the property of most of functional
depths of being translation-scale invariant, and with the particular robust estimator chosen to es-
timate functional scores, we were able to obtain the desired F∗ robustly and without distribution
assumptions on original data. The performances obtained by our proposed method to compute
F∗ and the consequent functional boxplot were studied in an ad-hoc computer experiment, were
we established that results obtained with either spherical covariance or median covariation are
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completely satisfactory.
This work is the seminal step for a wide range of further developments. The most intuitive

one is the generalisation to the multivariate functional case, which is a context where each
statistical unit is a vector of functions. Moreover, the flexibility of the method allows for dif-
ferent tools for ranking curves to be used within the functional boxplot, provided the fulfil the
translational-scale invariance property.
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