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Abstract

We consider the C1-Virtual Element Method (VEM) for the conform-
ing numerical approximation of some variants of the Cahn-Hilliard equa-
tion on polygonal meshes. In particular, we focus on the discretization
of the advective Cahn-Hilliard problem and the Cahn-Hilliard inpainting
problem. We present the numerical approximation and several numerical
results to assess the efficacy of the proposed methodology.
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1 Introduction

The Cahn-Hilliard equation, which is a fourth-order nonlinear parabolic prob-
lem, was initially introduced as a diffusive interface model to characterize the
phase segregation of binary alloys at constant temperature [30]. Compared
to sharp-interface models, where the individual interfaces need to be explicitly
tracked, the advantage of a diffuse-interface approach is that topological changes
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are automatically handled, since interfaces are treated in a diffuse manner
thanks to the introduction of a parameter which, varying continuously, accounts
for the different material phases and/or the concentration of the different com-
ponents. Since the seminal paper by Cahn and Hilliard, several different variants
have been studied (see, e.g., the book [67] and the references therein) covering
a wide spectrum of applications. Here we mention, for example, the model-
ing and simulation of solidification processes, spinodal decomposition, coarsen-
ing of precipitate phases, shape memory effects, re-crystallisation, dislocation
dynamics [33, 41, 68, 74], wettability [47], diblock copolymer [75, 73], tumor
growth [2, 48, 53, 78, 31], image inpainting [23, 22], crystal growth [37, 42, 76, 51]
and crack propagation [66, 60, 24].

In the last decades, different numerical techniques have been utilized to solve
the Cahn-Hilliard equation and its variants, including finite difference, finite ele-
ment, and spectral methods. A crucial difficulty in designing numerical schemes
is that these equations typically involve spatial differential operators that are
higher than second-order. Therefore, standard conforming C0 Finite Element
Methods (FEMs) are ruled out and approximation spaces with higher regular-
ity are required. However, the construction of such approximation spaces with
higher regularity is deemed a difficult task because it requires a set of basis
functions with such a global regularity. Examples in this direction can be found
all along the history of finite elements: from the oldest works in the sixties of the
last century, e.g., [9, 21, 35] to the most recent attempts in [79, 80, 56, 55]. De-
spite its intrinsic difficulty, designing approximations with global C1 or higher
regularity is still a major research topic. In the literature there is a limited
number of works addressing the solution of the Cahn-Hilliard equation by the
C1-FEM, see [40, 39]. To circumvent the well known difficulty met in the imple-
mentation of C1-FEMs, another possibility is the use of non-conforming (see,
e.g., [38]) or discontinuous (see, e.g., [77, 43]) methods; obviously in such cases
the discrete solution will not satisfy C1 regularity.

Alternatively, the Cahh-Hilliard problem can be split into a coupled of
lower-order differential equations and mixed formulation can be employed for
discretization at the expense of introducing additional unknowns, see, e.g.,
[46, 58, 10, 62, 32, 64]. Recently, in [52] isogeometric analysis has been employed
to discretize the Cahn-Hilliard problem, whereas in [63] the same approach has
been used to discretize the advective Cahn-Hilliard equation. A remarkable
feature of this methodology is that the approximation spaces exhibit higher-
order continuity properties, thus avoiding the use of mixed formulations. More
recently, in [6] the C1-Virtual Element Method (VEM) has been employed to
discretize the Cahn-Hilliard equation on polygonal meshes, employing highly
regular conforming approximation spaces, thus circumventing the introduction
of additional variables typical of mixed formulations.

Roughly speaking, the VEM is a Galerkin-type projection method that gen-
eralize the finite element method, which was originally designed for simplicial
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and quadrilateral/hexahedral meshes, to polygonal/polyhedral (polytopal, for
short) meshes. The VEM has been originally introduced in [13] and does not re-
quire the explicit knowledge of the basis functions spanning the approximation
space. The functions that belong to such approximation spaces are dubbed as
“virtual” as they are never really computed, with the noteworthy exception of a
subspace of polynomials that are indeed used in the formulation and implemen-
tation of the method. The virtual element functions are uniquely characterized
by a set of values, the so called degrees of freedom. The VEM can then be
implemented using only the degrees of freedom and the polynomial part of the
approximation space. The crucial idea behind the VEM is that the elemental
approximation space is defined elementwise as the solution of a partial differ-
ential equation. Then the global approximation space is obtained by globally
“gluing” the local spaces in an arbitrary highly regular conforming way. Thus,
the virtual element “paradigm” provides a major breakthrough as it allows to
obtain highly-regular Galerkin methods, and the construction of numerical ap-
proximation sof any order of accuracy on unstructured two-dimensional and
three-dimensional meshes made by general polytopal elements.

The first works proposing a C1-regular conforming VEM addressed the clas-
sical plate bending problems [29, 34], second-order elliptic problems [16, 17],
and the nonlinear Cahn-Hilliard equation [6]. More recently, highly regular vir-
tual element spaces were considered for the von Kármán equation modeling the
deformation of very thin plates [65], geostrophic equations [70] and fourth-order
subdiffusion equations [61], two-dimensional plate vibration problems of Kirch-
hoff plates [69], transmission eigenvalue problems [71], and fourth-order plate
buckling eigenvalue problems [72]. In [8] the highly-regular conforming VEM
for the two-dimensional polyharmonic problem (−∆)p1u = f , p1 ≥ 1 has been
proposed. The VEM is based on an approximation space that locally contains
polynomials of degree r ≥ 2p1 − 1 and has a global Hp1 regularity. In [7], this
formulation has been extended to a virtual element space that can have arbi-
trary regularity p2 ≥ p1 ≥ 1 and contains polynomials of degree r ≥ p2. VEMs
for three-dimensional problems are also available for the fourth-order linear el-
liptic equations [15] (see also [26]), and highly-regular conforming VEM in any
dimension has been proposed in [57].

In this paper, hinging upon the use of C1-VEM, we study the conform-
ing virtual element approximation on polygonal meshes of two variants of the
Cahn-Hilliard equation, namely the Advective Cahn-Hilliard (ACH) problem
and the Cahn-Hilliard Inpainting problem (CHI). Those variants have been se-
lected both for their relevance in applications and for the presence, with respect
to the classical Cahn-Hilliard equation, of the additional convective term in
the ACH problem and the reaction term in the CHI problem. The numerical
treatment of those terms is new in the context of the conforming virtual ele-
ment discretization of Cahn-Hilliard equations. It is also worth mentioning that
the numerical treatment of the advective Cahn-Hilliard represents an important
preliminary step to tackle in future works the virtual element approximation
of more complicated problems, as the convective nonlocal Cahn-Hilliard (see,
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e.g., [36]) or the Navier-Stokes-Cahn-Hilliard problem (see, e.g., [49, 50] and
[12, 45, 59]).

The paper is organized as follows. In Section 2 we introduce the continu-
ous problems, whereas in Section 3 we present their conforming virtual element
approximation. In Section 4 we collect and discuss several numerical results to
show the efficacy of our discretization methodology. Finally, in Section 5 we
draw some conclusions.

Notation. Throughout the paper, we will follow the usual notation for Sobolev
spaces and norms [1]. Hence, for an open bounded domain ω, the norms in the
spaces W s

p (ω) and Lp(ω) are denoted by ∥·∥W s
p (ω) and ∥·∥Lp(ω), respectively.

The norm and seminorm in Hs(ω), s ≥ 1, are denoted by ∥·∥s,ω and |·|s,ω,
respectively. The L2-inner product and the L2-norm are denoted by (·, ·)ω and
∥ · ∥ω, respectively. The subscript ω may be omitted when ω is the whole com-
putational domain Ω. We denote with x = (x1, x2) the independent variable.
With the usual notation the symbols ∇, ∆, ∆2, D2 denote the gradient, the
laplacian, the bilaplacian and the Hessian for (regular enough) scalar functions,
whereas ∂t denotes the derivative with respect to the time variable.

2 Continuous problems

In this Section we introduce the two variants of the classical Cahn-Hilliard
problem, whose numerical discretization will be addressed in the sequel of this
paper. More specifically, we consider the Advective Cahn-Hilliard problem and
the Cahn-Hilliard Impainting problem. For each variant, we provide the weak
formulation that will the basis for the construction of the virtual element dis-
cretization.

Let Ω ⊂ R2 be an open bounded domain. Let ψ : R → R with ψ(x) =
(1− x2)2/4 and let ϕ(x) = ψ′(x), we consider the following two variants of the
Cahn-Hilliard problem, where γ ∈ R+, 0 < γ ≪ 1, represents the interface
parameter.

Advective Cahn-Hilliard problem. For a given final time T > 0, find
c(x, t) : Ω× [0, T ] → R such that:

∂tc−
1

Pe
∆
(
ϕ(c)− γ2∆c

)
+ div(uc) = 0 in Ω× (0, T ],

c(·, 0) = c0(·) in Ω,

∂nc = ∂n
(
ϕ(c)− γ2∆c

)
= 0 on ∂Ω× (0, T ],

(1)

where ∂n denotes the (outward) normal derivative and Pe is a positive constant.
We note that on the boundary of the domain we impose no-flux type condition
both on c and on the so-called chemical potential ϕ(c) − γ2∆c. Finally, u ∈
H(div,Ω) ∩ [C0(Ω)]2 is a given function such that divu = 0 in Ω and u · n = 0
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on ∂Ω. Here
H(div,Ω) = {v ∈ [L2(Ω)]2 : divv ∈ L2(Ω)} .

Cahn-Hilliard inpainting problem. Let f be a given binary image and
D ⊂ Ω be the inpainting domain. For a given final time T > 0, find c(x, t) :
Ω× [0, T ] → R such that:

∂tc−∆
( 1
γ
ϕ(c)− γ∆c

)
+ λ(x)(f − c) = 0 in Ω× (0, T ],

c(·, 0) = c0(·) in Ω,

∂nc = ∂n
( 1
γ
ϕ(c)− γ∆c

)
= 0 on ∂Ω× (0, T ],

(2)

where

λ(x) =

{
λ0, x ∈ Ω \D,
0, x ∈ D,

λ0 being a positive parameter. See, e.g., [23, 22] for more details on the model.
We now briefly introduce the variational formulations of (1) and (2) that will

be used to derive the virtual element discretizations. To this aim, we preliminary
define the following bilinear forms

aD
2

(v, w) =

∫
Ω

(D2v) : (D2w) dΩ ∀v, w ∈ H2(Ω),

a0(v, w) =

∫
Ω

v w dΩ ∀v, w ∈ L2(Ω),

b(v, w) =

∫
Ω

u · ∇v w dΩ ∀v, w ∈ H1(Ω),

(3)

and the semi-linear forms

l(f ; v, w) =

∫
Ω

λ(f − v)w dΩ ∀v, w ∈ L2(Ω) ,

r(z; v, w) =

∫
Ω

ϕ′(z)∇v · ∇w dΩ ∀z, v, w ∈ H2(Ω) .

(4)

Finally, we introduce the space

V =
{
v ∈ H2(Ω) : ∂nv = 0 on ∂Ω

}
. (5)

The weak formulation of problem (1) reads as follows: find c(·, t) ∈ V s.t.a0(∂tc, v) +
γ2

Pe
aD

2

(c, v) +
1

Pe
r(c; c, v) + b(c, v) = 0 ∀v ∈ V,

c(·, 0) = c0 .

(6)

Similarly, the weak formulation of problem (2) reads as follows: find c(·, t) ∈ V
s.t. a

0(∂tc, v) + γaD
2

(c, v) +
1

γ
r(c; c, v) + l(f ; c, v) = 0 ∀v ∈ V,

c(·, 0) = c0 .

(7)
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3 Virtual element discretization

In this Section we describe the virtual element discretization of problems (6)-(7)
on computational meshes made of general polygons. In particular, in Section 3.1
we introduce the assumptions on the regularity of the polygonal mesh together
with the definition of crucial projector operators that will be fundamental in the
construction of the virtual element discretization. In Section 3.2 we describe the
C1-Virtual Element spaces that will of paramount importance to guarantee a
conforming approximation of the Cahn-Hilliard problems. Finally, in Section 3.4
we introduce the semi-discrete in space virtual element discretization of (6)-(7)
together with a fully discrete scheme based on the use of the backward Euler
method for time discretization.

3.1 Mesh assumptions and polynomial projections

From now on, we will denote with E a general polygon, having ne edges e,
moreover |E| and hE will denote the area and the diameter of E, respectively.
Let {Ωh}h be a sequence of decompositions of Ω into general polygons E, where
the granularity h is defined as h = supE∈Ωh

hE . We suppose that {Ωh}h fulfills
the following assumption:
(A1) Mesh assumption. There exists a positive constant ρ such that for any
E ∈ {Ωh}h

• Any E ∈ {Ωh}h is star-shaped with respect to a ball BE of radius ≥ ρ hE ;

• Any edge e of any E ∈ {Ωh}h has length ≥ ρ hE .

We remark that the hypotheses above, though not too restrictive in many prac-
tical cases, could possibly be further relaxed, combining the present analysis
with the studies in [20, 25, 27].

Referring to Problem (7), we assume that for any h there exists Dh ⊆ Ωh

such that Dh is a decomposition of D, i.e. Ωh matches with the subdivision of
Ω into D and Ω \D.

We denote with Σh the set of all the mesh edges and for any E ∈ Ωh we
denote with ΣE

h the set of the edges of E. Furthermore for any mesh vertex ξ
we denote with hξ the average of the diameters of the elements having ξ as a
vertex. The total number of vertexes, edges and elements in the decomposition
Ωh are denoted by NV , Ne and NP , respectively.

Using standard VEM notations, for any mesh object ω ∈ Ωh ∪ Σh and for
any n ∈ N let us introduce the space Pn(ω) to be the space of polynomials
defined on ω of degree ≤ n (with the extended notation Pm(ω) = {0} for any

negative integer m). Moreover, P̂n\m(ω) = Pn(ω) \ Pm(ω), for m < n, denotes
the polynomials in Pn(ω) with monomials of degree strictly greater than m.
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Finally, we introduce the broken polynomial space

Pn(Ωh) = {q ∈ L2(Ω) s.t. q|E ∈ Pn(E) for all E ∈ Ωh} .

For any non-negative s ∈ R let us introduce the broken space:

Hs(Ωh) = {v ∈ L2(Ω) s.t. v|E ∈ Hs(E) for all E ∈ Ωh} .

Furthermore, we introduce the following notation: let {XE}E∈Ωh
be a family

of forms XE :
∏ℓ

j=1H
sj (E) → R, then we define

X :

ℓ∏
j=1

Hsj (Ωh) → R , X (u1, . . . , uℓ) =
∑

E∈Ωh

XE(u1, . . . , uℓ) , (8)

for any uj ∈ Hsj (Ωh), and j = 1, . . . , ℓ.
For any E ∈ Ωh, let us introduce the following polynomial projections:

• the L2-projection Π0,E
n : L2(E) → Pn(E), given by∫

E

qn(v − Π0,E
n v) dE = 0 for all v ∈ L2(E) and qn ∈ Pn(E), (9)

with obvious extension for vector functions Π0,E
n : [L2(E)]2 → [Pn(E)]2

and tensor functions Π0,E
n : [L2(E)]2×2 → [Pn(E)]2×2;

• the H2-seminorm projection ΠD2,E
n : H2(E) → Pn(E), defined by

∫
E

D2qn : D2(v − ΠD2,E
n v) dE = 0 for all v ∈ H2(E) and qn ∈ Pn(E),∫

∂E

(v − ΠD2,E
n v) ds = 0 ,∫

∂E

∂n(v − ΠD2,E
n v) ds = 0 .

(10)

The global counterparts of the previous projections

Π0
n : L

2(Ωh) → Pn(Ωh) , ΠD2

n : H2(Ωh) → Pn(Ωh)

are defined for all E ∈ Ωh by

(Π0
nv)|E = Π0,E

n v , (ΠD2

n v)|E = ΠD2,E
n v . (11)

In the following the symbol ≲ will denote a bound up to a generic positive
constant, independent of the mesh size h, but which may depend on Ω, on the
“polynomial” order of the method k and on the regularity constant appearing
in the mesh assumption (A1).
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3.2 Virtual Element space

In the present Section we outline an overview of the H2-conforming Virtual
Element space [28, 6, 7] combined with the construction proposed in [3] in order
to define the “enhanced” version of such space such that the “full” L2-projection
Π0,E

k is computable by the degrees of freedom (DoFs).
Let k ≥ 2 be the “polynomial” order of the method. We thus consider on

each polyhedral element E ∈ Ωh the “enhanced” virtual space

Vh(E) =

{
v ∈ C1(E) s.t. (i) ∆2v ∈ Pk(E) ,

(ii) v|e ∈ Pk̃(e) ∀e ∈ ΣE
h ,

(iii) ∂nv|e ∈ Pk−1(e) ∀e ∈ ΣE
h ,

(iv)

∫
E

(
v −ΠD2,E

k v)p̂k dE = 0 ∀p̂k ∈ P̂k\k−4(E)

}
,

(12)

where k̃ = max{3, k}. We here summarize the main properties of the space
Vh(E) (we refer to [28, 3] for a deeper analysis).

(P1) Polynomial inclusion: Pk(E) ⊆ Vh(E);

(P2) Degrees of freedom: the following linear operators DV constitute a set
of DoFs for Vh(E):

DV1 the value of v(ξ) at any vertex ξ of the polygon E,

DV2 the value of hξ∂x1v(ξ) and hξ∂x2v(ξ) at any vertex ξ of the polygon
E,

DV3 the values of v at ke = max{0, k − 3} distinct points of every edge
e ∈ ΣE

h ,

DV4 the values of he∂nv at kn = max{0, k − 2} distinct points of every
edge e ∈ ΣE

h ,

DV5 the moments of v against a polynomial basis {mi}i of Pk−4(E) with
∥mi∥L∞(E) = 1:

1

|E|

∫
E

vmi dE .

Therefore the dimension of Vh(E) is

dim(Vh(E)) = (3 + ke + kn)ne +max

{
0,

(k − 3)(k − 2)

2

}
.

(P3) Polynomial projections: the DoFs DV allow us to compute the follow-
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ing linear operators:

Π0,E
k−2 : D

2Vh(E) → [Pk−2(E)]2×2 ,

Π0,E
k−2 : ∆Vh(E) → Pk−2(E) ,

Π0,E
k−1 : ∇Vh(E) → [Pk−1(E)]2 ,

Π0,E
k : Vh(E) → Pk(E) .

The global space Vh(Ωh) is defined by gluing the local spaces with the obvious
associated sets of global DoFs:

Vh(Ωh) = {v ∈ V s.t. v|E ∈ Vh(E) for all E ∈ Ωh} , (13)

with dimension

dim(Vh(E)) = 3NV + (ke + kn)Ne +max

{
0,

(k − 3)(k − 2)

2

}
NP .

We now recall the optimal approximation properties for the space Vh(Ωh)
(see, for instance, [28, 6]).

Proposition 1 (Approximation property of Vh(Ωh)) Under the Assump-
tion (A1) for any v ∈ Vh(Ωh) ∩Hs(Ωh) there exists vI ∈ Vh(Ωh) such that for
all E ∈ Ωh it holds

∥v − vI∥0,E + hE |v − vI |1,E + h2E |v − vI |2,E ≲ hsE |v|s,E ,

where 2 < s ≤ k + 1.

3.3 Virtual Element forms

The next step in the construction of our method is to define a discrete version of
the continuous forms in (3) and (4). It is clear that for an arbitrary functions in
Vh(Ωh) the forms are not computable since the discrete functions are not known
in closed form. Therefore, following the usual procedure in the VEM setting,
we need to construct discrete forms that are computable by the DoFs.

In the light of property (P3) for any vh, wh ∈ Vh(E) we define the com-
putable local discrete bilinear forms:

aD
2,E

h (vh, wh) =

∫
E

(Π0,E
k−2D

2vh) : (Π
0,E
k−2D

2wh) dE + h−2
E SE(vh, wh) ,

a0,Eh (vh, wh) =

∫
E

(Π0,E
k vh)(Π

0,E
k wh) dE + h2ESE(vh, wh) ,

bEh (vh, wh) =

∫
E

u · (Π0,E
k−1∇vh) (Π

0,E
k wh) dE ,

(14)
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and for any vh, wh, zh ∈ Vh(E) the semi-linear forms

lEh (f ; vh, wh) =

∫
E

λ(f −Π0,E
k vh)Π

0,E
k wh dE ,

rEh (zh; vh, wh) =

∫
E

ϕ′(Π0,E
k zh)(Π

0,E
k−1∇vh) · (Π

0,E
k−1∇wh) dE .

(15)

The VEM stabilizing term in (14) is given by

SE(vh, wh) = SE
(
(I −Π0,E

k )vh, (I −Π0,E
k )wh

)
, (16)

where SE(·, ·) : Vh(E) × Vh(E) → R is a computable symmetric discrete form

satisfying for all vh ∈ Vh(E) ∩ ker(Π0,E
k ) the following bounds

|vh|22,E ≲ h−2
E SE(vh, vh) ≲ |vh|22,E ,

∥vh∥20,E ≲ h2ES
E(vh, vh) ≲ ∥vh∥20,E .

(17)

Many examples of such stabilization can be found in the VEM literature [18, 19,
14, 28]. In the present paper we consider the so-called dofi-dofi stabilization
defined as follows: let v⃗h and w⃗h denote the real valued vectors containing the
values of the local degrees of freedom associated to vh, wh in the space Vh(E)
then

SE(vh, wh) = v⃗h · w⃗h . (18)

In particular we notice that the linear operators DV in property (P2) are
properly scaled to recover the bounds (17).

The global forms can be derived by (14) and (15), employing the notation
in (8).

3.4 Virtual Element problem

Referring to the space (13) the discrete bilinear forms (14) and the discrete
semi-linear forms (15), we can state the following semi-discrete problems.
Advective Cahn-Hilliard VEM problem: find ch(·, t) ∈ Vh(Ωh) s.t.a0h(∂tch, vh) +

γ2

Pe
aD

2

h (ch, vh) +
1

Pe
rh(ch; ch, vh) + bh(ch, vh) = 0 ∀vh ∈ Vh(Ωh),

ch(·, 0) = c0,h .
(19)

Cahn-Hilliard inpainting VEM problem: find ch(·, t) ∈ Vh(Ωh) s.t.a
0
h(∂tch, vh) + γaD

2

h (ch, vh) +
1

γ
rh(ch; ch, vh) + lh(f ; ch, vh) = 0 ∀vh ∈ Vh(Ωh),

ch(·, 0) = c0,h .
(20)

In problems (19) and (20) the discrete initial datum c0,h ∈ Vh(Ωh) is the DoFs
interpolant of c0, i.e. DV(c0,h − c0) = 0.
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In the next step we formulate a fully discrete version of problems (19) and
(20). We introduce a sequence of time steps tn = nτ , n = 0, . . . , N , with time
step size τ . Next, we define vnh,τ ≈ vh(·, tn) as the approximation of the function
vh(·, t) ∈ Vh(Ωh) at time tn, n = 0, . . . , N . Here we chose the backward Euler
method. The fully discrete systems consequently reads as follows.

Advective Cahn-Hilliard discrete problem.
given c0h,τ = c0,h, find c

n
h,τ with n = 1, . . . , N s.t. ∀vh ∈ Vh(Ωh) it holds:

1

τ
a0h(c

n
h,τ − cn−1

h,τ , vh) +
γ2

Pe
aD

2

h (cnh,τ , vh) +
1

Pe
rh(c

n
h,τ ; c

n
h,τ , vh) + bh(c

n
h,τ , vh) = 0 .

(21)
Cahn-Hilliard inpainting discrete problem.

given c0h,τ = c0,h, find c
n
h,τ with n = 1, . . . , N s.t. ∀vh ∈ Vh(Ωh) it holds:

1

τ
a0h(c

n
h,τ − cn−1

h,τ , vh) + γaD
2

h (cnh,τ , vh) +
1

γ
rh(c

n
h,τ ; c

n
h,τ , vh) + lh(f ; c

n
h,τ , vh) = 0 .

(22)

4 Numerical results

In this section, we numerically explore the efficacy of the conforming virtual el-
ement discretizations (21) and (22). In particular, the results of the approxima-
tion of the advective Cahn-Hilliard problem are reported in Section 4.1, while
the ones obtained with the Cahn-Hilliard inpainting problem are collected in
Section 4.2.

We remark that the resulting nonlinear systems (21) and (22) at each time
step are solved by the Newton method, using the l2-norm of the relative resid-
ual as a stopping criterion, with tolerance 1e-6. Except otherwise stated, the
Jacobian linear system is solved by GMRES, preconditioned by a Block-Jacobi
preconditioner, using the l2-norm of the relative residual as a stopping criterion,
with tolerance 1e-8.

mesh 1/h # elements # nodes # DoFs
QUAD 128 16384 16641 49923
TRI 128 56932 28723 86169
CVT 128 16384 32943 98829

Table 1: Mesh size parameter h, number of elements, number of nodes and num-
ber of degrees of freedom (DoFs) of the polygonal meshes used in the numerical
tests.

For the computational mesh, we consider three different mesh families, i.e.,
quadrilateral (QUAD), triangular (TRI) and central Voronoi tessellation (CVT)
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(a) Cartesian (QUAD)
mesh

(b) Triangular (TRI) mesh (c) CVT (CVT) mesh

Figure 1: Example of polygonal meshes used in the numerical tests.

meshes. An example of a mesh of each family is shown in Figure 1. The cor-
responding number of elements, number of nodes, and number of degrees of
freedom of the meshes used in all tests (except Test 4.1.1) are reported in Ta-
ble 1.

Finally, the simulations have been performed using an in-house Fortran90
parallel code based on the PETSc library [11]. Except otherwise stated, the
parallel tests were run on 32 cores of the INDACO linux cluster at the University
of Milan (indaco.unimi.it).

4.1 Advective Cahn-Hilliard problem

We consider two scenarios: the evolution of a cross (Tests 1 and 2, Figure 2)
and a spinoidal decomposition (Test 3, Figure 3). In both cases, the convective
field u is taken from [58], i.e.

u(x, y) = f(r)(2y − 1, 1− 2x)T , (x, y) ∈ Ω = (0, 1)2

where

f(r) =
1

2

(
1 + tanh

(
β

(
1

2
− ϵ− r

)))
and r =

√(
x− 1

2

)2

+

(
y − 1

2

)2

,

with β = 200 and ϵ = 0.1. The parameters Pe and γ in system (1) are set to
100 and 0.01, respectively.

4.1.1 Test 1: parallel performance of the solver

We first study the performance of the parallel solver by comparing four different
methods:
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Advective Cahn-Hilliard problem, evolution of a cross

QUAD mesh with 147456 elements, DoFs = 444675
p Mumps BJ GAMG bAMG

nit Tsol nit it Tsol nit it Tsol nit it Tsol
1 2.2 67.8 2.2 14.7 15.5 2.2 11.5 27.8 2.2 13.3 36.7
2 2.2 39.4 2.2 33.9 10.9 2.2 13.8 19.4 2.2 13.4 21.1
4 2.2 24.4 2.2 37.4 8.6 2.2 13.8 10.1 2.2 13.8 12.9
8 2.2 21.6 2.2 45.8 11.7 2.2 14.2 12.7 2.2 14.0 13.3
16 2.2 14.3 2.2 46.2 6.4 2.2 14.4 7.3 2.2 14.0 8.1
32 2.2 7.8 2.2 45.0 1.1 2.2 14.4 1.7 2.2 14.1 2.3
48 2.2 7.2 2.2 43.7 0.82 2.2 14.8 1.3 2.2 14.2 1.7

CVT mesh with 147456 elements, DoFs = 884814
p Mumps BJ GAMG bAMG

nit Tsol nit it Tsol nit it Tsol nit it Tsol
1 OoM OoM 2.2 32.2 44.9 2.2 18.9 88.7 2.2 21.1 135.7
2 2.2 202.1 2.2 79.6 36.1 2.2 25.6 67.8 2.2 24.1 172.2
4 2.2 123.9 2.2 95.9 27.6 2.2 28.5 59.8 2.2 25.6 125.3
8 2.2 85.4 2.2 107.4 23.9 2.2 30.4 45.9 2.2 26.9 74.6
16 2.2 53.2 2.2 110.6 14.6 2.2 30.7 39.6 2.2 27.2 38.1
32 2.2 32.4 2.2 109.7 4.7 2.2 31.2 34.3 2.2 27.1 18.1
48 2.2 27.2 2.2 108.3 3.2 2.2 30.8 30.5 2.2 27.2 12.9

Table 2: Strong scaling test on QUAD and CVT meshes, Advective Cahn-
Hilliard, evolution of a cross. p=number of procs; nit=average Newton iterations
per time step; it=average GMRES iterations per Newton iteration; Tsol=average
CPU time in seconds per time step; OoM=out of memory.

• Mumps: the Jacobian system at each Newton iteration is solved by the
parallel direct solver Mumps [4, 5];

• BJ: the Jacobian system at each Newton iteration is solved by the Block-
Jacobi preconditioner implemented in the PETSc object PCBJACOBI;

• GAMG: the Jacobian system at each Newton iteration is solved by the Al-
gebraic Multigrid preconditioner implemented in the PETSc object PCGAMG,
with default settings;

• bAMG: the Jacobian system at each Newton iteration is solved by the Al-
gebraic Multigrid preconditioner boomerAMG [54] of the HYPRE library
[44].

The initial datum c0 is a piecewise constant function whose jump set has the
shape of a cross, see Figure 2, Panels (a-e-i). The time step size considered is
τ = 2e−5 and the simulation is run for 50 time steps, up to T = 1e−3. The unit
square domain is discretized by a QUAD mesh of 147456 elements (1/h = 384,
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DoFs = 444675) and a CVT mesh of 147456 elements (1/h = 384, DoFs =
884814); see Table 2. We increase the number of processors from 1 to 48, keep-
ing fixed the global number of DoFs, thus performing a strong scaling test. The
code is run on the Galileo100 cluster of CINECA laboratory (www.cineca.it).

The results show that the four parallel solvers are all scalable, since the
CPU times reduce when the number of processors increase. As expected, the
Algebraic Multigrid preconditioners exhibit a scalable behavior of GMRES iter-
ations, which remain almost constant with respect to the number of processors.
The BJ preconditioner shows an initial increase in terms of iterations, but after
8-16 processors they remain stable. We believe that this scalable behavior of
the BJ preconditioner is due to the dominant effect of the mass matrix, which
improves the conditioning of the Jacobian linear system. Indeed, the most ef-
fective solver results to be the BJ preconditioner, which in case of the CVT
mesh is about 9 times as fast as Mumps, 10 times as fast as GAMG and 4 times
as fast as bAMG.

4.1.2 Test 2: evolution of a cross under convection

As in the previous test, the initial datum c0 is again a piecewise constant function
whose jump set has the shape of a cross. The time step size considered is
τ = 2e − 5 and the simulation is run for 500000 time steps, up to T = 10.
The evolution of the cross simulated on the three computational meshes with
data reported in Table 1 is displayed in Figure 2. The cross, rotating under the
convective field, evolves towards a circle.

4.1.3 Test 3: evolution of spinodal decomposition under convection

The initial datum is now a small uniformly distributed random perturbation
about zero, within a circle; see Figure 3, Panels (a-e-i). The time step size
considered is τ = 2e− 5 and the simulation is run for 500000 time steps, up to
T = 10. The evolution of the spinoidal decomposition on the three computa-
tional meshes is displayed in Figure 3. The initial random distribution evolves
very quickly into bulk regions. Then, the convective term makes the bulk re-
gions to form concentric circles, which tends very slowly to a central circular
bulk region.

4.2 Cahn-Hilliard inpainting problem

We consider three scenarios: inpainting of a double stripe (Test 4, Figure 4),
inpaiting of a cross (Test 5, Figure 5) and inpaiting of a circle (Test 6, Figure 6).
The time step size considered is τ = 2e−5 and the simulation is run for 50 time
steps, up to T = 1e − 3. The parameters γ and λ0 are set to 0.01 and 50000,
respectively. In all next tests, the time step size considered is τ = 2e − 5 and
the simulation is run for 1000 time steps, up to T = 0.02.
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QUAD mesh

(a) t = 0.01 (b) t = 0.1 (c) t = 1 (d) t = 10

TRI mesh

(e) t = 0.01 (f) t = 0.1 (g) t = 1 (h) t = 10

CVT mesh

(i) t = 0.01 (j) t = 0.1 (k) t = 1 (l) t = 10

Figure 2: Test 2, evolution of a cross with convection on the unit square, γ =
1/100, Pe = 100. The mesh parameters are reported in Table 1.

4.2.1 Test 4: inpainting of a double stripe

In this test, the initial configuration consists of two vertical stripes with a central
horizontal damage, see Figure 4. At the final instant t = T = 0.02, the correct
double stripe configuration is recovered, for all mesh configurations. We show
also the final configuration without smoothing effects, projecting the solution c
to 0.95 if c > 0 and to −0.95 if c < 0 (binary).

4.2.2 Test 5: inpainting of a cross

Here, the initial configuration consists of two stripes, one vertical and one hor-
izontal, crossing at the center of the domain, with a central square damage,
see Figure 5. At the final instant T = 0.02, the correct cross configuration is
recovered. As before, we also report the final configuration without smoothing
effects, projecting the solution c to 0.95 if c > 0 and to −0.95 if c < 0 (binary).
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QUAD mesh

(a) t = 0.01 (b) t = 1 (c) t = 5 (d) t = 10

TRI mesh

(e) t = 0.01 (f) t = 1 (g) t = 5 (h) t = 10

CVT mesh

(i) t = 0.01 (j) t = 1 (k) t = 5 (l) t = 10

Figure 3: Test 3, spinoidal decomposition of a random disk with convection on
the unit square, γ = 1/100, Pe = 100. The mesh parameters are reported in
Table 1.

4.2.3 Test 6: inpainting of a circle

In the final test, the initial configuration is a circle with a horizontal central
damage, see Figure 6. At the final instant T = 0.02, the correct circle config-
uration is recovered, for all mesh configurations. This can be appreciated also
from Figure 6 (right panel) where we report the final configuration (binary plot)
projecting the solution c to 0.95 if c > 0 and to −0.95 if c < 0.
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QUAD mesh

(a) t = 0 (b) t = 0.02 (c) t = 0.02(binary)

TRI mesh

(d) t = 0 (e) t = 0.02 (f) t = 0.02(binary)

CVT mesh

(g) t = 0 (h) t = 0.02 (i) t = 0.02(binary)

Figure 4: Test 4, impainting of a double stripe. The mesh parameters are re-
ported in Table 1. Left: initial configuration (t = 0). Middle: final configuration
(t = T = 0.02). Right: final configuration (t = T = 0.02) without smoothing
effects, projecting the solution c to 0.95 if c > 0 and to −0.95 if c < 0.
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QUAD mesh

(a) t = 0 (b) t = 0.02 (c) t = 0.02(binary)

TRI mesh

(d) t = 0 (e) t = 0.02 (f) t = 0.02(binary)

CVT mesh

(g) t = 0 (h) t = 0.02 (i) t = 0.02(binary)

Figure 5: Test 5, impainting of a cross. The mesh parameters are reported
in Table 1. Left: initial configuration (t = 0). Middle: final configuration
(t = T = 0.02). Right: final configuration (t = T = 0.02) without smoothing
effects, projecting the solution c to 0.95 if c > 0 and to −0.95 if c < 0.
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QUAD mesh

(a) t = 0 (b) t = 0.02 (c) t = 0.02 (binary)

TRI mesh

(d) t = 0 (e) t = 0.02 (f) t = 0.02(binary)

CVT mesh

(g) t = 0 (h) t = 0.02 (i) t = 0.02(binary)

Figure 6: Test 6, impainting of a circle. The mesh parameters are reported
in Table 1. Left: initial configuration (t = 0). Middle: final configuration
(t = T = 0.02). Right: final configuration (t = T = 0.02) without smoothing
effects, projecting the solution c to 0.95 if c > 0 and to −0.95 if c < 0.
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5 Conclusions

In this paper we considered the C1-Virtual Element conforming approxima-
tion on polygonal meshes of some variants of the Cahn-Hilliard equation. In
particular, we focused on the advective Cahn-Hilliard problem and the Cahn-
Hilliard impainting problem. In the first part of the paper we introduced the
continuous problems and we gave a detailed description of the virtual element
discretizations, while in the second part we numerically explored the efficacy of
the proposed methodology through a wide campaign of numerical experiments.
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