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Abstract
Understanding how unlabeled graphs depend on input values or vectors

is of extreme interest in a range of applications. In this paper, we propose
a regression model taking values in Graph Space, representing unlabeled
graphs which can be weighted or unweighted, one or multi-layer, and have
same or different numbers of nodes, as a function of real valued regressor.
As Graph Space is not a manifold, well-known manifold regression models
are not applicable. We provide flexible parametrized regression models for
Graph Space, along with precise and computationally efficient estimation
procedures given by the introduced Align All and Compute regression algo-
rithm. We show the potential of the proposed model for two real datasets: a
time dependent cryptocurrency correlation matrices and a set of bus mobility
usage network in Copenhagen (DK) during the Covid-19 pandemic.

Keywords: Graph-valued data; Graph-Valued Regression; Intrinsic Geomet-
ric Statistics; Covid-19 Public Transport; Cryptocurrencies
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Defining a graph-valued regression model corresponds to building a regres-
sion model between a set of of real values (i.e. regressors) and a set of graphs
(i.e. responses), which are here modelled in the perspective of object oriented
data analysis (1). As discussed by (2), complex data such as networks (or graphs)
are often analysed in a first generation setting, where a single data point, or graph,
is analyzed. Examples off such analysis include node classification or link predic-
tion. In a second generation setting, the graphs themselves are the data objects,
leading to the analysis of a population of graphs. This is the topic of the present
paper. When analyzing a population of graphs, their nodes can be the same (a fixed
set of labelled nodes) or different (with either variable sets of labelled nodes, or
completely unlabelled graphs). In this work, we focus on graph-valued regression
for unlabelled graphs, utilizing Graph Space, where unlabelled graphs are repre-
sented as equivalence classes obtained by applying a node permutation action to
adjacency matrices or tensors (3; 4; 5).

For networks, the first generation setting embodies a well known scientific
problem: The prediction of edges and nodes in a given graph. Statisticians and
sociologists have been focusing on the analysis of random graphs since the 50s,
starting from seminal works by (6). From the Erdős-Rényi model, many differ-
ent others have been proposed to describe the theoretical distribution behind the
network datum and its variability. Exponential Random Graph Models (7; 8) and
Stochastic Actor Oriented Models (9; 10) are some examples. Dynamic Network
Analysis (DNA) is another stream of literature aiming to model the temporal evo-
lution of a network (see (11) for an overview). Aside from the exploration of gen-
erative models behind graphs, the effect of covariates should be taken into account
in graph-on-variable regression model. Some examples are: a discrete partition
of the space of the covariates to predict labelled networks (12); the definition of a
regression model with continuous covariates (13); a regression model for graphs
represented as Laplacian matrices (14); a Bayesian approach to the regression
process of binary networks (15); a multi-linear regression for a set of tensor data
(16). In machine learning, a frequently studied problem is the prediction of nodes
and edges from scalars or vectors with Graph Neural Networks (17; 18; 19) or
Variational Autoencoder for Graphs (20; 21).

Within the second generation analysis, a considerable amount of work con-
siders population analysis of graphs, where the graph plays the role of the inde-
pendent, or input, variable. This includes problems such as graph classification,
or regressing real-valued properties from graph-valued input. Such problems are
often tackled by embedding the graphs, explicitly or implicitly, in a Euclidean
feature- or embedding space (22; 23; 18; 24; 25), where much of the relational
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information is lost. This approach is fine when the information needed to make
the prediction can be encoded in a Euclidean feature space.

A more challenging problem is when the predicted dependent variable is a net-
work. Predicting an unlabelled network from a set of variables requires the defini-
tion of an interpolating regression function between graphs. We tackle this using
interpolation in Graph Space. For other types of nonlinear data, such problems
are frequently handled using tangent space methods, where regression models are
estimated in the Euclidean tangent space (26; 27) of the embedding space (in our
case Graph Space). However, these suffer from distorted residuals (28), giving
challenging conditions for model fitting. Another easily applicable approach is
given by non-parametric kernel smoothing approaches or K-nearest neighbor re-
gression, which have appeared both in manifold statistics (29) and in the more
general, stratified, tree-spaces (30). In the context of high dimensional data such
as networks, these methods suffer from the curse of dimensionality, which could
make them poorly performing in practice. Additionally, as these methods require
computing local means or neighborhoods for every test point, they can also have
significant computational cost. In terms of parametric models, linear regression
models have been generalized to geodesic (26; 31), polynomial (27) and more gen-
eral parametric (32) regression models, defined exclusively on manifolds. Staying
within the manifold-valued regression regime, more recent work also includes
manifold-valued models with uncertainty quantification (33; 28). However, as
proven in (4), Graph Space is not a manifold, so we cannot apply manifold meth-
ods directly.

We address this problem by designing an intrinsic, generalized linear regres-
sion model taking values in Graph Space. The resulting parametrized regression
models can be given a high level of flexibility via nonlinear basis functions sup-
plied by the user. We provide efficient estimates via an iterative method called
Aligned All and Compute (AAC) for regression, which combines statistical pre-
cision by using intrinsic, non-distorted residuals, with computational benefits as
estimation is effectively made in a Euclidean ”tangent space”.

The paper is organized as follows: In Section 1, we recall the Graph Space and
its basic properties. Section 2 introduces the generalized geodesic regression both
in theory and in terms of its implementation via the AAC for regression algorithm.
All the introduced concepts are shown in practice with two real case study in
Section 3: one regarding the analysis of correlation matrices of cryptocurrencies
and the other describing the effect of Covid-19 on the usage of public transport
system in Copenhagen, Denmark.
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1 Graph Space
We consider graphs as triples G = (V,E,a), where the node set V has at most n
elements, and the edge set E ⊂V 2 has maximal size n2. The nodes and edges are
attributed with elements of an attribute space A, which in this paper is assumed
to be Euclidean, via an attribute map a : E → A. Here, the map a allows us to
describe attributes on both edges and nodes, as we use self loop edges (diagonal
elements in the graphs’ adjacency matrix) to assign attributes to nodes. From
here on, we interchangeably use the term network and graph. A graph with scalar
attributes is completely specified by a weighted adjacency matrix of dimension
n×n, residing in a space X =Rn2

of flattened adjacency matrices. If the attributes
are vectors of dimension d, the graph is represented by a tensor of dimension
n×n×d, residing in a space X = Rn×n×d .

Graphs can have different numbers of nodes and different node labels or -
order. In this paper, we assume the existence across the populations of at most n
distinct nodes and we add fictionally null nodes to smaller networks, so that all
graphs can be described by a fixed-size adjacency matrix. To deal with unlabelled
nodes, matching two graphs corresponds to finding optimal permutations of their
nodes as first introduced by (3). The group T of node permutations can be repre-
sented via permutation matrices, acting on X through matrix multiplication. The
binary operation:

· : T ×X → X ,(T,x) 7→ T x

thus defines an action of the group T on X . As in (17), the obtained quotient space
X/T is called Graph Space, and each element of X/T is an unlabelled graph
G, represented as an equivalence class [x] = T x which contains all the flattened
adjacency matrices in X which can be obtained from x by permuting nodes. The
map π : X → X/T given by π(x) = [x] can be thought of as a projection of the
Euclidean total space X onto the Graph Space X/T , and the total space X plays a
similar role relative to Graph Space, as the tangent space does for manifolds, by
providing a Euclidean space in which approximate computations can be carried
out and projected back onto the space of interest – in our case the Graph Space
X/T .

Any metric dX on X defines a quotient pseudo-metric

dX/T ([x1], [x2]) = min
t∈T

dX(tx1,x2)

on X/T . Since the permutation group T is finite, dX/T is a metric, and the
Graph Space X/T is a geodesic space. However, it is neither a vector space,
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nor a manifold, and its Alexandrov curvature is unbounded from above as shown
in (4). As a consequence, well-known strategies from manifold regression (e.g.
(26; 31; 27; 32)) are not directly applicable to Graph Space. We define an intrinsic
regression model taking values on Graph Space, along with computational tools
that allow its practical estimation to be done via an iterative Align All and Com-
pute (AAC) algorithm for Regression which operates on the Euclidean total space
X .

2 Generalized Linear Regression for Graph Space
Given a sample (s1, [x1]), . . . ,(sk, [xk]), where (si, [xi]) ∈ Rp × X/T , we aim to
describe the relationship:

f : Rp→ X/T

minimizing:
k

∑
i=1

d2
X/T ([xi], f (si)) (1)

over all the possible functions belonging to a prescribed family. In this section,
we describe how such families of functions in Graph Space X/T can be defined
and parametrized, and how to estimate the resulting regression model.

First, we recall the definition of generalized geodesics:

Definition 1 (Generalized Geodesics). Denote by Γ(X) := {γ : Rp→ X} the set
of all straight lines (p = 1), planes, or hyper-planes (p > 1) in the total space
X . A curve, surface or hypersurface δ is a generalized geodesic, or generalized
geodesic subspace, on the Graph Space X/T , if it is a projection of a straight line,
plane, or hyper-plane on X :

Γ(X/T ) = {δ = π ◦ γ : γ ∈ Γ(X)}. (2)

Next, we consider two potential classes of regression models.

Definition 2 (Generalized Linear Regression Models). Consider the regression
model

f : Rp→ X/T, s 7→ f (s) ∈ X/T

where f ∈ Γ(X/T ) is a generalized geodesic. This can be written as f := fβ (s) =
π ◦ hβ (s), where π : X → X/T is the canonical projection from total to quotient
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space, and hβ : Rp→ X is a linear regression on X of the form:

hβ (s) =
p

∑
j=0

β jφ j(s) (3)

where the φ j : Rp → R, j = 1, . . . , p are continuous, possibly non-linear, basis
functions, for edge- and node-wise coefficients β j ∈ X . Denote by F (X/T ) :=
{ fβ : Rp → X/T}, the family of such models. Note that F (X/T ) contains the
family Γ(X/T ) of generalized geodesic regression models.

To simplify the notation, we omit the β writing hβ (s) = h(s) and fβ (s) = f (s)
in the following paragraphs.

Remark 1. The regression model defined in Definition 2 includes the special case
where the basis functions are the identity functions:

hβ (s) =
p

∑
j=0

β js j (4)

By using the concept of generalized linear models and the concept of align-
ment with respect to a regression model, the Generalized Linear Regression Model
is defined in the following way:

Definition 3 (Generalized Linear Regression). Given a sample (s1, [x1]), . . . ,(sk, [xk])
where (si, [xi]) ∈ Rp×X/T , their Generalized Linear Regression f ∈F (X/T ) is
the one that minimizes the residuals as specified by Equation (1).

2.1 From intrinsic residuals on X/T to Euclidean residuals on
X

Given a sample (s1,x1), . . . ,(sk,xk),(si,xi) ∈ Rp× X consisting of independent
variables si ∈Rp and regressors given by specific graph representatives xi ∈ X , the
modelling of a regression line h : Rp→ X is well known in statistics as a multiple
output regression model. This regression line can be projected onto a generalized
geodesic in the quotient space. However, this procedure depends entirely on how
the representatives xi for the graphs have been selected – since for any node per-
mutation ti, the representation tixi ∈ X is also a representative of the same graph.
Here, we introduce the concept of optimal alignment with respect to a regression
line in order to select the optimal representatives tixi ∈ [xi], ti ∈ T, i = 1, . . . ,k for
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Figure 1: Alignment Differences between the Geodesic Principal Component
Alignment and the Geodesic Regression Alignment

the graphs [xi]. The original concept of optimal alignment was introduced to min-
imize the distance between a geodesic and an equivalence class in the context of
quotient space PCA (34). In a regression problem, we instead seek to minimize
the prediction residual, which is the distance between the predicted points along
the regression line f (si) and the observed datum [xi]. The optimal representative tx
of the equivalent class [x] is the point that minimizes the distance not with respect
to the whole regression line (i.e. the projection along the line), but with respect to
the predicted point along the Generalized Linear Regression model:

Definition 4 (Alignment with respect to a regression model). Consider (si, [xi]) ∈
Rp×X/T, i = 1, . . . ,k, t ∈ T , and f : Rp→ X/T a generalized linear model in
X/T with associated h : Rp→ X . The graph representative tixi ∈ X is in optimal
regression position with respect to the regression line f on X if

dX(tixi,h(si)) = dX/T ([xi], f (si)). (5)

Figure 1 illustrates the conceptual difference between alignment with respect
to a Generalized Geodesic Principal Component (see (4; 34) for definition and
details) and to a regression model. In our case, the alignment distance is not the
distance between an observation and its orthogonal projection onto the line, but
the distance between the observation and the associated prediction.

In Theorem 1 we show that this estimation strategy actually corresponds to
regressing with intrinsic residuals from X/T .
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2.2 Estimation: The Align All and Compute Algorithm for Re-
gression

Inspired by the AAC algorithm for Generalized Geodesic Principal Components
defined in (4), we next define an AAC algorithm for regression, where the align-
ment procedure is adapted to regression.

While the regression model of Definition 3 is framed intrinsically in the Graph
Space X/T , we obtain a simple estimation procedure by the Align All and Com-
pute Algorithm for Regression (AAC) (4), which combines the euclidean regres-
sion model estimation in the total space X with iterative alignment to the current
model estimate.

Recall that we are minimizing the sum of squared residuals loss function

k

∑
i=1

d2
X/T ([xi], f (si)).

The AAC algorithm optimizes the loss with respect to one argument at a time:
first with respect to ti, freezing f (si) (i.e. aligning the points), and consequently
optimizing with respect to f (si) freezing the optimally aligned points tixi, by min-
imizing the corresponding loss function on the total space X :

k

∑
i=1

d2
X(tixi,h(si)) (6)

As a result (proven in Theorem 1 below), the loss decreases in every step,
which is crucial for its convergence.

In Algorithm 1, the detailed steps of the implementation are shown.
The AAC for Regression is implemented as a method in the GraphSpace

python package (35).
The following Theorem 1 proves the convergence in finite time of the AAC to

a local minimum. See A for proof.

Theorem 1. Let Graph Space X/T be endowed with a probability measure η

which is absolutely continuous with respect to the the push forward of the Lebesgue
measure m on X, and let λ be a probability measure absolutely continuous with re-
spect to the Lebesgue measure on Rp. Let the sample {(s1, [x1]), . . . ,(sk, [xk])},(xi, [xi])∈
Rp×X/T be sampled from λ ×η .

Assume that the AAC for Regression (Algorithm 1) fits the regression model
fβ defined in Definition 2. Assume moreover that the basis functions φ j : Rp→ R
satisfy the following properties:
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Algorithm 1: AAC to compute the Generalized Geodesic Regression
Data: {(s1, [x1]), . . . ,(sk, [xk])}
Result: Generalized Geodesic Regression f (s) ∈F (X/T )
Select randomly tixi ∈ [xi] among {[x1], . . . , [xk]}, ti ∈ T ;
Align all the observations to the representative tixi, obtaining a set of
points {t1x1, t2x2, . . . , tkxk} ∈ X in optimal position with respect to tixi;

Perform a Regression {(s1, t1x1),(s2, t2x2), . . . ,(sk, tkxk)} in X obtaining
h(s) ∈ Γ(X) solving 6;

Project as f (s) = π ◦h(s);
Set f̃ (s) = f (s)
while δ > ε do

Align all the points {[x1], [x2], . . . , [xk]} with respect to the generalized
geodesic regression f̃ (s), obtaining a new set of aligned points
t1x1, t2x2, . . . , tkxk ∈ X ;

Perform GGR on {(s1, t1x1),(s2, t2x2), . . . ,(sk, tkxk)} in X obtaining
h(s) ∈ Γ(X) by solving 6;

Project onto F (X/T ) as f (s) = π ◦h(s);
Compute a step as the distance between the sum of square prediction
errors δ = D( f̃ (s), f (s));

Align all the observations wrt f (s), obtaining a set of points
{t1x1, t2x2, . . . , tkxk} ∈ X as explained in 5;

Set f̃ (s) = f (s).
Return f (s) ∈F (X/T )
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i) φ0 := 1

ii) Sample s from λ and let (β0, . . . ,βp) 6= (β̃0, . . . , β̃k). Then, with probability
1,

p

∑
j=0

β jφ j(s) 6=
p

∑
j=0

β̃ jφ j(s).

iii) The matrix

Φ(S) =

1 φ1(s1) . . . φp(s1)
... . . . ...
1 φ1(sk) . . . φp(sk)


has full rank.

Under these circumstances, we claim that

a) The AAC algorithm terminates in finite time, and

b) With probability 1, the estimated regression curve fβ returned by the AAC
algorithm is a local minimum of the function

β 7→
k

∑
i=1

d2
X/T ([xi], fβ (si)). (7)

Note that the assumptions i) and ii) are reasonable and hold both for the lin-
ear basis functions used in ordinary least square regression model, as well as for
e.g. polynomial basis functions.

3 Case Studies
In this section, we show the potential of the model applied to two real datasets.
To understand the AAC approach, we will compute at each iteration of Algorithm
1 two errors: the Regression Error and the Post Alignment Error. The Regression
Error is the with-in sample prediction error at step m. It is computed as the dis-
tance between the prediction along the regression line at step m (i.e. hm(si)) and
the observations used to fit the current regression:

k

∑
i=1

d2
X(hm(si), ti(m)xi) (8)
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The Post Alignment Error is the distance between the prediction along the line at
step m, and the graph representative optimally aligned with respect to this predic-
tion, as defined in Definition 5. Note also, that this distance coincides with the
distance in Graph Space X/T between the graphs represented by hm(si) and xi,
where the graph [hm(si)] coincides with fm(si) = π(hm(si)).

k

∑
i=1

d2
X(hm(si), ti(m+1)xi) =

k

∑
i=1

d2
X/T ([hm(si)], [xi]) (9)

In other words, this is an intrinsic residual between the Graph Space regression
model f and the observation [xi] ∈ X/G.

Note also that the aligned points obtained at step m are the points used to fit
the regression line at step m+1.

3.1 Cryptocurrency correlation networks
The analysis of how the stock market evolves in time is a broadly discussed and
complex problem, and correlation networks are commonly used to model currency
interdependencies (36). From (37), we collect the prices in USD of the nine cryp-
tocurrencies Bitcoin, Dash, Digibyte, Dogecoin, Litecoin, Vertcoin, Stellar, Mon-
ero, Verge from the first recorded price of bitcoin on July 18th 2010, until April
3rd 2020. Based on the price data, we compute correlation networks describing
how pairs of crypto-currencies vary in price over time by computing, for every 7
days, their correlation over a time period of the following 20 days. In this way, we
obtain a set of 506 correlation matrices, split into a training set of 400 matrices
and a test set of 106.

The convergence of the algorithm is illustrated in Figure 2, where the plot
shows that more than one step is required to converge to the optimal aligned final
model. What this tells us, in particular, is that the AAC algorithm is necessary –
it would not suffice to align all graphs with a representative of the mean and carry
out a single regression model in X ; this would suffer from the same distorted
residuals as tangent space regression for manifold data.

In Figure 3, we show, for each crypto-currency, the frequency of permuta-
tion with other crypto-currencies in the analysis. This carries information on
which crypto-currencies have more interchangeable or unique roles in the market.
We see that Bitcoin, which appeared significantly earlier than the other crypto-
currencies, is very rarely interchanged with the rest. Similarly, Dash, Vertcoin
and Monero are interchanged at noticeable rates. In Figure 4, we see the pre-
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Figure 3: Permutation frequencies for the different cryptocurrencies.
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dicted correlation networks at a number of different test time points, along with
the ground truth network. The networks are illustrated both as adjacency matrices
and plotted as networks for intuitive comparison; note that while the nodes may
be permuted compared to their original order, the prediction and ground truth are
aligned and thus comparable.

3.2 Public Transport and Covid-19 in Copenhagen, Denmark
In this example, we analyse public transport mobility networks in Copenhagen
(Denmark) during the various phases of the Covid-19 epidemic in 2020. The
mobility networks are derived from the Rejsekort (travel card) data provided by
Movia - the bus company operating in the Copenhagen Region. The travel card
registers the check in and check out on the buses, along with the corresponding bus
stop. Our mobility networks are based on trips between the 27th of February and
the 13th of May, 2020. We model the bus transport as the daily origin-destination
matrix between the 10 different areas in the municipalities of Copenhagen and
Frederiksberg. As shown in Figure 5, all the bus stops belonging to an area are
aggregated into a single network node. The edges correspond to the number of
people travelling between the areas during one day (00 : 01 to 23 : 59). The re-
gression model describes the relationship between the origin destination networks
and the categorical variable indicating the Covid-19 lock-down phases in Den-
mark. After the first registered case the 27th of February 2020, Denmark imposed
a lock-down from the 13th of March to the 13th of April. During this month, the
majority of the activities such as offices, gyms, and pubs were closed. During the
following Phase II, a slow reopening has been taken place. The time regressors is
modelled using three categorical variables describing the different phases. Notice
that this regression problem corresponds to an Anova problem, where the analysis
of variance is conducted on the set of origin destination networks as a function of
a three level categorical variable describing the lockdown phases.

The regression is conducted both in the X space (i.e. without node permuta-
tion) and in the X/T space (i.e. with node permutation). The two analyses address
two different research questions. In the X space regression, every neighbourhood
maintains its own label. It is clear from both the within area trips and the between
areas trips (see Figures 6 and 7) that the bus usage during lock-down almost dis-
appears without a full recover in the phase two. If the regression is conducted
on the X/T space, the neighbourhoods become interchangeable by allowing node
permutation. In Figure 9, we focus on the permutations along time of Indre By -
the shopping central area in Copenhagen. While before and after the lock-down,
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Figure 5: Bus stops in the different areas of Copenhagen and Frederiksberg.
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Figure 6: Prediction of the within area fluxes (i.e. the nodes attributes) of three
days randomly sampled from the three periods: 03/03/2020, 12/04/2020, and
22/04/2020
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0 4000

Figure 7: Prediction of the network (i.e. the nodes attributes) of three days
randomly sampled from the three periods: 03/03/2020, 12/04/2020, and
22/04/2020

Figure 8: Prediction of the network of three days randomly sampled from the
three periods: 03/03/2020, 12/04/2020, and 22/04/2020. The dimension of the
node is proportional to the within area flux. The position of the nodes is computed
using Spectral Layout of the Networkx python package.

its role in the network is unique, during the lock-down it becomes interchangeable
with Valby and Bispebjerg - i.e. two mostly residential areas, showing how the
city usage drastically changed. The unique role of Indre By in the city network is
immediately recovered after during the Phase II. In Figure 8, the network after the
lock-down shows the same structure of the pre-lock-down, but at a lower inten-
sity. While the regression in the X space allows for a local interpretation of each
neighbours role in the network in time, the regression in the X/T space offers
an unlabeled network vision, focusing on the role that each area is playing in the
whole system.
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Figure 9: Most popular optimal matching with the node Indre By as a function
time. Vertical Lines describe transitions between different phases of the lockdown.

4 Conclusion and Further Development
In this work, we developed a graph-valued regression model, allowing scalars
or vectors as independent variable. The model is a generalized linear regression
model, which allows for the use of nonlinear basis functions to create nonlinear
regressors. The presented model is broadly applicable to every problem where a
set of graphs varying according to an external factor. The model applies to graphs
which are weighted or un-weighted, directed or un-directed, with coinciding or
different nodes which are labelled or unlabelled. These graphs are modelled as
points in the quotient space named Graph Space, obtained by applying permuta-
tion node action to the space of adjacency matrices. To define an intrinsic regres-
sion model, we implemented the Align All and Compute Algorithm for Regres-
sion in the Graph Space by iteratively aligning points to the regression line and
estimating the Multiple Output Least Square Regression as a regression model on
the total space. The experiments show the necessity of a multiple alignment pro-
cedure and the utility of the model in different application contexts. As a further
development, this algorithmic framework can be extended to different regression
strategies such as Gaussian Processes or Neural Networks. Notice that one of the
main applications of this framework is time series, and indeed, more tailored time
series regression models can be explored for this specific application.
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A Proof of Theorem 1
Theorem 1. Let Graph Space X/T be endowed with a probability measure η

which is absolutely continuous with respect to the the push forward of the Lebesgue
measure m on X, and let λ be a probability measure absolutely continuous with
respect to the Lebesgue measure on R. Let the sample {(s1, [x1]), . . . ,(sk, [xk])} ⊂
Rp×X/T be sampled from λ ×η .

Assume that the AAC for Regression (Algorithm 1) fits the regression model
fβ defined in Definition 2. Assume moreover that the basis functions φ j : Rp→ R
satisfy the following properties:

i) φ0 := 1

ii) Sample s from λ and let (β0, . . . ,βp) 6= (β̃0, . . . , β̃k). Then, with probability
1,

p

∑
j=0

β jφ j(s) 6=
p

∑
j=0

β̃ jφ j(s).

iii) The matrix

Φ(S) =

1 φ1(s1) . . . φp(s1)
... . . . ...
1 φ1(sk) . . . φp(sk)


has full rank.

Under these circumstances, we claim that

a) The AAC algorithm terminates in finite time, and

b) With probability 1, the estimated regression curve fβ returned by the AAC
algorithm is a local minimum of the function

β 7→
k

∑
i=1

d2
X/T ([xi], fβ (si)). (10)

Remark 2. Equation (4) describes a length n2 vector (corresponding to a flattened
n×n matrix) of linear regression models whose ath entry is given by

ha(s) =
p+1

∑
j=0

β j(a)φ j(s).
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Note that the index a corresponds to either a node or an edge, and we thus have
one regression model for each edge and each node, Generalized geodesic regres-
sion on X/T fits linear regression to aligned data point representatives in X , and
corresponds to basis functions φ0(s) = 1 and φi(s) = s(i) where s(i) denotes the
ith coordinate of s. However, the model also enables using more general non-
linear basis functions φi(s) as known from Euclidean statistics, leading to linear
regression models with potentially nonlinear regressors, such as e.g. polynomial
regression.

Remark 3. Conditions ii)-iii) are reasonable: In particular, they hold both for the
standard basis of Rp, as well as polynomial basis functions.

Proof. Now we turn to the proof of Theorem 1. First, we prove convergence
in finite time. Algorithm 1 consists of two steps repeated iteratively, fitting the
generalised regression model (4) to the observations {(s1, [x1]), . . . ,(sk, [xk])} ∈
Rp×X/T .

Consider the squared error loss function
k

∑
i=1

d2
X(h

cur(si),xcur
i ), (11)

where hcur is our current estimate of the regression model in X , hcur(si) ∈ X is the
corresponding regression estimate corresponding to input si, and xcur

i is the current
representative in X of the sample network [xi]. Note that the first step of Algo-
rithm 1, which aligns output representatives of [xi] to the corresponding predicted
value h(si) along the current estimation of the regression line, cannot increase the
value of (11) as an improved alignment would indeed lower it. Similarly, the sec-
ond step of Algorithm 1, which is the re-estimation of the generalized geodesic
regression given the new alignments, also cannot increase the value of (11) as,
again, an improved estimate would lower its value.

Moreover, if the value of (11) stays fixed two iterations in a row, the algorithm
will terminate. Thus, the iterative algorithm will never see the same set of sample-
wise alignments twice without terminating. As there are only finitely many such
alignments, the algorithm is forced to terminate in finite time.

Next, we turn to proving that the estimated regression model fβ is, indeed, a
local minimum. We need to show that for some ε > 0, ‖β̃ −β‖< ε implies that,
with probability 1,

k

∑
i=1

d2
X/T ([xi], fβ (si))≤

k

∑
i=1

d2
X/T ([xi], f

β̃
(si))
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We shall rely on the following lemma:

Lemma 2. Given representatives x1, . . . ,xk of [x1], . . . , [xk] with generalized linear
regression model f (s) = π ◦ h(s) obtained minimizing (11), h(s) : R → X, the
following holds with probability 1:

For all i = 1, . . . ,k and for all t ∈ T \Txi ,

dX(h(si),xi) 6= dX(h(si), txi),

where Txi is the stabilizer Txi = {t ∈ T |txi = xi}.

If the lemma holds, then we may define

ν = min{dX(h(si), txi)−dX(h(si),xi) | i = 1, . . . ,k, t ∈ T \Txi}> 0.

Since the map β 7→ hβ (s) is continuous for any fixed s∈R, where h = hβ depends
on the weights β as in Eq. 4, we can find some ε > 0 such that ‖β − β̃‖< ε indi-
cates dX(h(si), h̃(si))<

ν

2 for all observed independent variables si, i = 1, . . . ,k.
We now consider β̃ ∈ B(β ,ε); we wish to show that for all i = 1, . . . ,k and all

t ∈ T \Txi , we have d(h̃(si),xi) < d(h̃(si), txi), namely that the optimal represen-
tative of [xi] is left unchanged for all i = 1, . . . ,k, even if we perturb the regression
model. This would complete the proof.

Note that by the definition of ν , we have for any i = 1, . . . ,k and t ∈ T \Txi

d(h(si),xi)≤ d(h(si), txi)−ν .

We compute

d(h̃(si),xi)≤ d(h̃(si),h(si))︸ ︷︷ ︸
< ν

2

+d(h(si),xi)<
ν

2
+d(h(si),xi)≤

ν

2
+d(h(si), txi)−ν

<−ν

2
+d(h(si), h̃(si))︸ ︷︷ ︸

< ν

2

+d(h̃(si), txi)<−
ν

2
+

ν

2
+d(h̃(si), txi) = d(h̃(si), txi),

where the second and fourth inequalities follow from the triangle inequality. This
completes the proof of Theorem 1 under the assumption that Lemma 2 holds.

The proof of Lemma 2 relies on the following :
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Lemma 3. Let β ∈ R(p+1)×J be the parameters of the output of AAC as stated
in Theorem 1. This β encodes p+1 flattened matrices (of dimension J) of coeffi-
cients, where β j is the jth flattened matrix, and β j(a) is the jth coordinate corre-
sponding to the ath node or edge, and we denote by β (a) the (p+1)-dimensional
vector of coefficients for the node or edge a.

Then, with probability 1, β (a1) 6= β (a2) ∈R(p+1) for all a1 6= a2 ∈ {1, . . . ,J},
giving tβ 6= β for all t ∈ T \{Id}.

Proof. From the analytical solution of a linear regression model in X (see Eq. (3)),
we recall that

β̂ = (Φ(S)T
Φ(S))−1

Φ(S)T X .

Since, by the assumptions of the theorem, Φ(S) has full rank, so does
(Φ(S)T Φ(S))−1Φ(S)T . Thus, if β (a1) = β (a2) for some a1 6= a2, then the corre-
sponding elements of X belong to the same fiber of (Φ(S)T Φ(S))−1Φ(S)T , which
happens with probability 0.

Now, we are ready to prove the final Lemma 2.

Proof of Lemma 2. In order to prove the lemma, we will show that the set

XT =


(
(s1, [x1]), . . . ,(sk, [xk])

)
∈ (Rp×X/T )k

∣∣∣∣∣
d(h(si),xi) = d(h(si), txi)

for some representatives x1, . . . ,xk,
i = 1, . . . ,k and t ∈ T \Txi


has measure (λ ×η)k(XT ) = 0, where (λ ×η)k is the product measure induced
by (λ ×η) on (Rp×X/T )× . . .× (Rp×X/T )︸ ︷︷ ︸

k

.

For each element t ∈ T , denote by X t = {x ∈ X |tx = x} the fixed point set of
t. Note that (λ ×η)k(XT ) = (λ ×m)k((IdRp×π)−1(XT )), and that

(IdRp×π)−1(XT ) =
k⋃

i=1

⋃
t∈T

Xi,t ,

where

Xi,t =

{
(s1,x1, . . . ,sk,xk)∈ (Rp×X)×. . .×(Rp×X \X t)︸ ︷︷ ︸

ith

× . . .×(Rp×X)

∣∣∣∣ dX(h(si),xi)
= dX(h(si), txi)

}
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and
Xi,t ⊂ (Rp×X)×·· ·× (Rp×X)︸ ︷︷ ︸

k

.

The preimage F−1
i (0) of the function

Fi : X×·· ·×X︸ ︷︷ ︸
k

→ R, (s1,x1, . . . ,sk,xk) 7→ d2
X(h(si),xi)−d2

X(h(si), txi)

satisfies

F−1
i (0)∩ (Rp×X)× . . .× (Rp×X \X t)︸ ︷︷ ︸

ith

× . . .×/Rp×X) = Xi,t .

We show that Fi is a submersion on (Rp×X)× . . .×(Rp×X \X t))︸ ︷︷ ︸
ith

× . . .×(Rp×

X) by showing that it has nonzero gradient.
Note that

Fi(s1,x1, . . . ,sk,xk) = d2
X(h(si),xi)−d2

X(h(si), txi)
= ‖h(si)− xi‖2−‖h(si− txi‖2

= (h(si)− xi)
T (h(si)− xi)− (h(si)− txi)

T (h(si)− txi)
= 2h(si)

T (txi− xi).

It follows that
∇xiFi(s1,x1, . . . ,sk,xk) = 2h(si)

T (t− I).

We would like to show that 2h(si)
T (t − I) is nonzero with probability 1. Note

that 2h(si)
T (t − I) = 0 if and only if tT h(si) = h(si), which also indicates that

th(si) = ttT h(si) = h(si). By Lemma 3, we know that tβ 6= β with probability 1,
and by the assumptions of Theorem 1, we then have th(si) 6= h(si) with probability
1. Hence, we may conclude that with probability 1, 2h(si)

T (t− I) 6= 0, giving

∇xiFi(s1,x1, . . . ,sk,xk) 6= 0.

It follows that Fi is a submersion on

(Rp×X)× . . .× (Rp×X \X t)︸ ︷︷ ︸
ith

× . . .× (Rp×X).
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As a result, the set

F−1
i (0)∩ (Rp×X)× . . .× (Rp×X \X t)︸ ︷︷ ︸

ith

× . . .× (Rp×X) = Xi,t

has codimension 1 and, in particular,

mk(Xi,t) = mk( f−1(0)∩ (Rp×X)× . . .× (Rp×X \X t)︸ ︷︷ ︸
ith

× . . .× (Rp×X) = 0.

But then,

(λ ×η)k(Xk) = (λ ×m)k((IdRp×π)−1(XT )) = (λ ×m)k

(⋃k
i=1
⋃

t∈T Xi,t

)
≤ ∑

k
i=1 ∑t∈T (λ ×m)k(Xi,t) = 0,

which proves the lemma.
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