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Abstract

In this paper we propose a variation of the Ehrlich–Aberth method
for the simultaneous refinement of the zeros of H-palindromic polyno-
mials.

1 Introduction

The design of efficient numerical methods for solving structured generalized
eigenvalue problems has attracted a growing interest in recent years due to
application demands. Some interesting examples have been included in the
MATLAB toolbox NLEVP [2]. In this paper we are specifically concerned
with polynomial H-palindromic eigenvalue problems of the form

P (λ)x =

(

k
∑

i=0

Aiλ
i

)

x = 0, AHk−i = Ai ∈ C
n×n, i = 0, . . . , k. (1)

∗Corresponding author.
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The structure in the coefficient matrices of (1) induces symmetries in the
spectrum of the matrix polynomial. If λ is an eigenvalue then 1/λ̄ is also an
eigenvalue and this pairing holds even for the zero eigenvalue its counterpart
being an infinite eigenvalue.

Some variants of the explicit and implicit QR eigenvalue algorithm have
been devised for dealing with H-palindromic eigenvalue problems [9]. Since
the corresponding structured Schur forms exist under additional conditions
these algorithms are restricted to certain subclasses. Some methods for
computing a structured Schur form from an unstructured one have been
also proposed which can be used to post-process the output of the custom-
ary QR and QZ algorithms [11]. However these refinement techniques are
subjected to the same restrictions and can suffer from numerical difficulties
near exceptional eigenvalue configurations.

This paper is concerned with the computation of a structured approxi-
mation of the spectrum of a polynomial H-palindromic eigenvalue problem
by means of a root-finding method. Our contribution is much in the spirit of
the refinement techniques proposed in [11]. The approach taken here consists
in finding the structured approximation by using a zerofinding algorithm ap-
plied for the refinement of an unstructured approximation providing a set of
initial guesses. Since the focus is on the computation of the spectrum rather
than of the Schur form, our approach can virtually circumvent restrictions
due to the occurrence of exceptional eigenvalues.

Structure preserving rootfinders have been proposed in [10] and [5] for
dealing with real and T-palindromic polynomials, respectively. Both algo-
rithms rely upon the computation of quadratic factors associated with the
desired pairing of the zeros. These factors are simultaneously approximated
by using some modification of the Ehrlich–Aberth process [1, 3]. The method
presented in [10] makes use of Bairstow’s scheme for refining the coefficients
of the quadratic factor. The scheme reduces to the Newton–Raphson iter-
ation applied to the nonlinear system defined from the coefficients in the
remainder generated from the synthetic division algorithm applied to the
polynomial and its approximated quadratic factor.

The goal of this paper is to devise a similar strategy for covering with
H-palindromic polynomials. The derivation of the resulting algorithm is
treated in Section 2. First we observe that up to a suitable normaliza-
tion a quadratic H-palindromic polynomial can be determined by two real
parameters. Then we exploit the properties of a certain polynomial Dio-
phantine equation involving the given H-palindromic polynomial of degree
n and two approximated factors of degree n − 2, and 2, respectively. It is
shown that under some mild assumptions the solution consists of a a real
T-palindromic polynomial of degree 2. In this way by applying the Newton–
Raphson iteration to the nonlinear system given from setting the coefficients
of this polynomial equal to zero we obtain a method for the refinement of
the quadratic factor.
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Results of numerical experiments to test our algorithm are given in Sec-
tion 3. Several examples of quadratic eigenvalue problems with spectral
symmetry (λ, 1/λ̄) are considered. An initial structured approximation of
the spectrum is generated from the output returned by the polyeig function
in MATLAB and then refined by applying our simultaneous refinement pro-
cedure. Numerical tests indicate that the proposed approach is numerically
robust and computationally efficient.

2 The Derivation of the Algorithm

For a given polynomial p(z) ∈ C[z] of degree n and for a given j ∈ N with
j ≥ n, the j-reversal polynomial q(z) is defined by

q(z) = (revj p)(z) : = zjp(1/z).

A nonzero polynomial p(z) is H-palindromic if (revj p)(z) = p̄(z) for a
certain j ≥ deg p. Analogously, the polynomial p(z) is T-palindromic if
(revj p)(z) = p(z) for a certain j ≥ deg p. The natural number j is
uniquely defined and it is referred to as the grade of palindromicity of p(z)
as well as the grade of p(z) for short [12].

A palindromic polynomial admits an irreducible factorization in terms
of palindromic factors. Specifically, let p(z) ∈ C[z] be a H-palindromic
polynomial of even grade n. Then it can be factored in the form [12]

p(z) = czk
2m
∏

j=1

(aj + ājz)

ℓ
∏

j=1

(z + bj)(b̄jz + 1),

where c ∈ R, aj, bj ∈ C, |bj | 6= 1. This factorization can be rewritten into a
more compact way by grouping the zeros at the origin with their reciprocals
at infinity

p(z) = c

2m
∏

j=1

(aj + ājz)

ℓ+k
∏

j=1

(z + bj)(b̄jz + 1),

where bℓ+1 = . . . = bℓ+k = 0.
A root–finding algorithm suitably designed for H-palindromic polynomi-

als aims to compute such a structured factorization. The following result
is at the basis of the derivation of our method. It generically describes
the properties of a certain Diophantine equation associated with a given
H-palindromic polynomial.

Theorem 1 Let s(z) ∈ C[z] and q(z) = a+ bz+ āz2 ∈ C[z] be two nonzero

H-palindromic polynomials of grade ns = 2(m− 1) and nq = 2, respectively,
such that s(z) and q(z) are relatively prime and, moreover, a ∈ C \ R. For

any H-palindromic polynomial p(z) of grade np = 2m there exist uniquely
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determined a H-palindromic polynomial t(z) ∈ C[z] of grade nt = 2(m − 1)
and a T-palindromic polynomial r(z) = r0 + r1z + r0z

2 ∈ R[z] such that

p(z) = t(z)q(z) + r(z)s(z). (2)

Proof. Define x : = z + z−1 and w : = z − z−1. Observe that x2 − w2 = 4.
Let us introduce the functions cj(x) = zj + z−j, j ≥ 0. Such functions are
monic real Chebyshev-like polynomials of degree j satisfying the relations

cj(x)ck(x) = cj+k(x) + c|j−k|(x), j, k,≥ 0.

They provide a convenient basis to represent H-palindromic polynomials. If
f(z) ∈ C[z] is a H-palindromic polynomial of even grade nf then

z−nf/2f(z) = fnf/2 +

nf/2
∑

j=1

Re(fnf/2−j)(z
j + z−j) + i Im(fnf/2−j)(z

j − z−j),

which gives

z−nf/2f(z) = fR(x) + iwfI(x), fR(x), fI(x) ∈ R[z] (3)

grade(fR(x)) ≤ nf/2, grade(fI(x)) ≤ nf/2− 1, (4)

where we have used the identity

zj − z−j = w





1 + (−1)j+1

2
+

⌈j/2⌉
∑

ℓ=1

cj−2ℓ+1(x)



 , j ≥ 1.

By replacing the polynomials in (2) with their decompositions (3) we obtain

pR(x) + iwpI(x) =
(b+Re(a)x+ i Im(a)w)(tR(x) + iwtI(x)) + (r1 + r0x)(sR(x) + iwsI(x)),

which is equivalent to the (2m+ 1)× (2m+ 1) real linear system

[

pR(x)
pI(x)

]

=

[

b+Re(a)x Im(a)(x2 − 4)
Im(a) b+Re(a)x

] [

tR(x)
tI(x)

]

+(r1+r0t)

[

sR(x)
sI(x)

]

.

(5)
Under the assumptions on the input polynomials s(z) and q(z) it is easily
found that if p(z) is the zero polynomial then the unique solution of (2)
and, hence, of (5) is tR(x) = tI(x) = 0 and r0 = r1 = 0. This means that
the coefficient matrix of (5), seen as a linear system whose variables are
the coefficients of tR(x), tI(x) and r0, r1, is nonsingular and, therefore, the
coefficients of tR(t) and tI(t) together with the scalars r0 and r1 are uniquely
determined. �

Once two approximated factors s(z) and q(z) of a H-palindromic poly-
nomial p(z) are known the relations (2) and (5) could be exploited in order
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to design a refinement scheme similar to the Bairstow method [7] for the
computation of a quadratic factor of a real polynomial. This amounts to
perform one step of the Newton-Raphson method applied for the solution
of the nonlinear system

{

r0(a/|a|, b/|a|) = 0
r1(a/|a|, b/|a|) = 0.

The use of the variables a/|a| and b/|a| corresponds with a certain normal-
ization of the sought quadratic factor q(z) and different choices are eligible,
too.

The main drawback of such an approach is that the coefficients of some
expansion of p(z) should be available and this is unpractical in the case where
p(z) is implicitly defined as the determinant of a certain matrix polynomial.
To circumvent this problem we elaborate further on the relation (2). Let us
recall that the zeros (ξ, η) of the quadratic polynomial

q(z) = a+ bz + āz2 = ρ(eiθ + gz + e−iθz2), ρ, g, θ ∈ R, ρ ≥ 0,

belong to Γ∪(T×T), where T = {z ∈ C : |z| = 1} and Γ = {(z, 1/z̄) : z ∈ C∪
{∞}, |z| 6= 1}. By a straightforward calculation there follows that if |g| ≤ 2
then (ξ, η) ∈ T×T; otherwise, if |g| > 2 then (ξ, η) ∈ Γ. The computation of
(ξ, η) from the parameters θ and g involves square roots of possibly complex
arguments. To avoid difficulties with complex differentiation of the square
root function it is useful to express the coefficient g in term of an additional
real parameter ψ as follows:

g =

{

ψ + ψ−1, if |ψ| > 1,
2 cos((1− ψ)π/2), elsewhere.

In this way we find that

(ξ, η) = (−eiθ/ψ,−eiθψ), for |ψ| > 1,

and
(ξ, η) = (−eiθeiπ(1−ψ)/2,−eiθe−iπ(1−ψ)/2), for |ψ| ≤ 1.

In addition, since g = g(ψ) is monotonically increasing one can define the
inverse function ψ = ψ(g).

Under the assumptions of Theorem 1 it follows that a 6= 0 and therefore
ξ 6= 0,∞ and η 6= 0,∞. By evaluating (2) at the roots of q(z) we obtain
that

[

1 + ξ2 ξ
1 + η2 η

] [

r0
r1

]

=









p(ξ)

s(ξ)
p(η)

s(η)









.
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Since

[

1 1
−1 1

] [

ξ−1

η−1

] [

1 + ξ2 ξ
1 + η2 η

]

=







1

ξ
+ ξ +

1

η
+ η 2

1

η
+ η − 1

ξ
− ξ 0






,

the linear system can equivalently be expressed as







1

ξ
+ ξ +

1

η
+ η 2

1

η
+ η − 1

ξ
− ξ 0







[

r0
r1

]

=









p(ξ)

ξs(ξ)
+

p(η)

ηs(η)
p(η)

ηs(η)
− p(ξ)

ξs(ξ)









.

This formally yields

[

r0
r1

]

=
1

1

η
+ η − 1

ξ
− ξ

A(ξ, η)









p(ξ)

ξs(ξ)
+

p(η)

ηs(η)
p(η)

ηs(η)
− p(ξ)

ξs(ξ)









,

where

A(ξ, η) =





0 1

1
2

(

1

η
+ η − 1

ξ
− ξ

)

−1
2

(

1

ξ
+ ξ +

1

η
+ η

)



 .

If (ξ, η) ∈ Γ then ξ = ξ(θ, ψ) 6= η = η(θ, ψ) and, moreover, under the
assumptions of Theorem 1 it holds

−η−1ξ−1 det

[

1 + ξ2 ξ
1 + η2 η

]

=
1

η
+ η − 1

ξ
− ξ 6= 0.

Thus one deduces that








p(ξ)

ξs(ξ)
+

p(η)

ηs(η)
p(η)

ηs(η)
− p(ξ)

ξs(ξ)









= 0 ⇒
[

r0(θ, ψ)
r1(θ, ψ)

]

= 0.

If, otherwise, (ξ, η) ∈ T×T, then ξ and η may virtually coincide so that we
obtain

1
1

η
+ η − 1

ξ
− ξ









p(ξ)

ξs(ξ)
+

p(η)

ηs(η)
p(η)

ηs(η)
− p(ξ)

ξs(ξ)









= 0 ⇒
[

r0(θ, ψ)
r1(θ, ψ)

]

= 0.

Hence, we propose to refine the coefficients of the approximated factor
q(z) of p(z) by performing one step of the Newton-Raphson method applied
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for the solution of the nonlinear system F (θ, ψ) = 0, where F : R × R →
R× (i)R is the function defined by

F (θ, ψ) =























































p(ξ)

ξs(ξ)
+

p(η)

ηs(η)
p(η)

ηs(η)
− p(ξ)

ξs(ξ)









, if |ψ| > 1,

(

1

η
+ η − 1

ξ
− ξ

)−1









p(ξ)

ξs(ξ)
+

p(η)

ηs(η)
p(η)

ηs(η)
− p(ξ)

ξs(ξ)









, elsewhere.

From a computational viewpoint it is worth noting that the function
F (θ, ψ) can be expressed as

F (θ, ψ) = fψ(θ, ψ) · A ·









p(ξ)

ξs(ξ)
p(η)

ηs(η)









= fψ(θ, ψ) · A ·
[

g(ξ)
g(η)

]

,

where fψ(θ, ψ) is a scalar function, A ∈ R
2 × R

2 is a nonsingular constant
matrix and g(z) : = p(z)/(zs(z)). This representation is exploited for the
efficient computation of the Newton-Raphson iteration. Indeed, for the Ja-
cobian matrix J(θ, ψ) we have

J(θ, ψ) = J1(θ, ψ) + J2(θ, ψ),

where

J1(θ, ψ) = A

[

g(ξ)
g(η)

]

eeT







∂fψ
∂θ

(θ, ψ)

∂fψ
∂ψ

(θ, ψ)






, e = [1, 1]T ,

and

J2(θ, ψ) = fψ(θ, ψ)A

[

g′(ξ)
g′(η)

]







∂ξ

∂θ
(θ, ψ)

∂ξ

∂ψ
(θ, ψ)

∂η

∂θ
(θ, ψ)

∂η

∂ψ
(θ, ψ)






.

This leads to the following scheme for computing the Newton-Raphson cor-
rection N(θ, ψ) : = −J−1(θ, ψ)F (θ, ψ):

K(θ, ψ)N(θ, ψ) = −fψ(θ, ψ)e,

where K = K(θ, ψ) is given by

K = e







∂fψ
∂θ

(θ, ψ)

∂fψ
∂ψ

(θ, ψ)






+fψ(θ, ψ)









g′(ξ)

g(ξ)
g′(η)

g(η)















∂ξ

∂θ
(θ, ψ)

∂ξ

∂ψ
(θ, ψ)

∂η

∂θ
(θ, ψ)

∂η

∂ψ
(θ, ψ)






.
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In this way most of computation amounts to evaluating the Newton cor-
rection of the function g which in turn reduces to computing the Newton
corrections of the functions p(z) and s(z). The Newton correction of p(z)
can be determined by using the celebrated Jacobi formula for the derivative
of a determinant [6]. For the function s(z) it is noticed that under the pro-
cess of simultaneous refinement this function is known in factored form and
therefore its Newton correction reduces to a summation of fractions.

3 Numerical Results

The method proposed in the previous section has been implemented in MAT-
LAB and then tested for the refinement of the zeros of H-palindromic polyno-
mials given as p(z) : = det(P (z)), where P (z) = P0+P1z+P2z

2, Pj ∈ C
n×n,

is a quadratic matrix polynomial satisfying the spectral symmetry (λ, 1/λ̄).
The software is available upon request by the authors.

The resulting computational process performs as follows:

1. An initial approximation ξ = (ξj) of the generalized eigenvalues λj,
1 ≤ j ≤ 2n, of P (z) is computed by using the MATLAB function
polyeig applied to P (z).

2. The list ξ is matched against the list ν = (1/ξ̄j) to produce two
different lists γout and γin of approximations located, respectively,
outside and on the unit circle in the complex plane.

3. The elements of γout and γin are used to determine the initial approx-

imations (θ
(0)
j , ψ

(0)
j ), 1 ≤ j ≤ n, of the quadratic factors of p(z).

4. Finally, these latter pairs provide the starting guesses of the simulta-
neous refinement scheme:


































g
(k)
j (z) =

p(z)

z
∏n
ℓ=1,ℓ 6=j(e

iθ
(k)
ℓ + g

(k)
ℓ z + e−iθ

(k)
ℓ z2)

;

K(θ
(k)
j , ψ

(k)
j )N(θ

(k)
j , ψ

(k)
j ) = −f

ψ
(k)
j

(θ
(k)
j , ψ

(k)
j )e;

θ
(k+1)
j = θ

(k)
j + (N(θ

(k)
j , ψ

(k)
j ))1(mod 2π);

ψ
(k+1)
j = ψ

(k)
j + (N(θ

(k)
j , ψ

(k)
j ))2;

j = 1, . . . , n

(6)

The iteration is stopped when the norm of the correction ‖ N(θ
(k)
j , ψ

(k)
j ) ‖ is

sufficiently small or min{K(P (η)),K(P (ξ))} is sufficiently large, where (η, ξ)

are the roots of eiθ
(k)
j + g

(k)
j z + e−iθ

(k)
j z2 and K(P (z)) is some estimate of the

condition number of P (z). As observed in the previous section one internal
iteration in (6) can be carried out at the cost of evaluating two Newton

corrections of the corresponding function g
(k)
j (z). This task is accomplished
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in O(n2) flops by using some customary linearization of the quadratic ma-
trix polynomial. Within the same bound we also get the estimates for the
condition numbers.

Extensive numerical experiments have been conducted to check the ac-
curacy and the robustness of the proposed approach. The test suite has been
built to put in evidence the numerical behavior of our refinement method
even in the cases not covered in Theorem 1. The test listing includes the
following examples:

1. The quadratic eigenvalue problem p(z) : = det(P (z)) = det(z2E +
zF + PĒP ) = 0, where E,F ∈ C

n×n, P ∈ R
n×n is a certain permu-

tation matrix, F = PF̄P and the matrices E and F are defined as
E = Im ⊗ A2 and F = (Im ⊗ (A0 − iA1)) + ((A0 + iA1) ⊗ Im) with
A0, A1, A2 ∈ R

m×m,

A0 =
(m+ 1)2

π2













−2 1

1
. . . 1
1 −2






+ diag

(

a0 + b0 sin

(

jπ

m+ 1

))

j=1:m







A1 = diag

(

a1 + b1
jπ

m+ 1

(

1− e−π(1−j/(m+1))
)

)

j=1:m

A2 = diag

(

a2 + b2
jπ2

m+ 1
(1− j/(m + 1))

)

j=1:m

.

This problem arises in the stability analysis of a partial differential
equation with delays [13] and is considered in [4] for testing a struc-
tured variant of the QZ algorithm named PCP-Schur method, PCP
being the acronym of P-conjugate-P-palindromic polynomial. Due to
the property z2P · P̄ (1/z) · P = P (z) it follows that P (z) has the
spectral symmetry (λ, 1/λ̄) and the PCP-Schur method is designed to
maintain such pairing of the generalized eigenvalues.

2. The second example is also related to the stability analysis of delay
differential equations (DDE) of the form x′(t) = A0x(t) + A1x(t −
r), A0, A1 ∈ R

m×m. The associated quadratic eigenvalue problem is
p(z) : = det(P (z)) = det(z2E+ zF +PĒP ) = 0, where E = Im⊗A1,
F = Im ⊗ A0 + A0 ⊗ Im and G = A1 ⊗ Im. The matrix polynomial
P (z) has the PCP property so that p(z) is H-palindromic.

3. The quadratic eigenvalue problem p(z) : = det(P (z)) = det(C +
z2CH), where C = A + iB, A,B ∈ C

n×n and A,B are Hermitian
matrices. The problem is introduced in [8] with the aim of checking
the definiteness of the Hermitian matrix pencil (A,B), i.e.,

min
z∈Cn,‖z‖2=1

√

(zHAz)2 + (zHBz)2 > 0.

9



Specifically, it is shown that if C is nonsingular then a necessary con-
dition for the definiteness is that P (z) has 2n generalized eigenvalues
of unit modulus.

4. This is a modification of the Sign1 problem in [2], that is, q(z) : =
det(Q(z)) = det(E+FZ+Gz2), E,F,G ∈ R

81×81 Hermitian matrices.
The spectrum of P (z) is approximately located on the unit circle with
two large clusters around ±1 and two eigenvalues close ±i. Here we
deal with the eigenvalue problem for the quadratic matrix polynomial

P (z) = (1 − z)2Q

(

i
z + 1

1− z

)

. Due to the role played by the Moebius

transformation there follows that P (z) fulfills the spectral symmetry
(λ, 1/λ̄) with eigenvalues located around the imaginary axis. Most of
them are clustered near ±i and one eigenvalue is very large in magni-
tude.

5. The last example is p(z) : = det(P (z)) = det(T + γzI + z2TH), where
γ ∈ R and T ∈ C

100×100 is the symmetric tridiagonal Toeplitz matrix
with diagonal and subdiagonal entries equal to 0 and i, respectively.
It turns out that also P (z) is a complex symmetric Toeplitz matrix
and, therefore, there are explicit formulae for the eigenvalues and the
determinant. If γ is large then the zeros of p(z) are located on the
imaginary axis and are greatly varying in magnitude.

Table 1 illustrates our results for the first set of test problems. We
show the considered values of the parameters ai, bi, 0 ≤ i ≤ 2, the size m
of the coefficient matrices Ai, the number n of the sought eigenvalues, the
average number meval of trace evaluations per eigenvalue performed by our
algorithm and the numbers #Bair and #PCP of eigenvalues located on the
unit circle found by our algorithm and by the PCP-Schur method in [4],
respectively. The first and the second test are taken from [4]. The third
example is designed to test the algorithm under the occurrence of zero-
infinite pairs whereas the last two tests are taught to investigate the case of
varying coefficients and/or relatively many eigenvalues on the unit circle.

For the second set of test problems we consider small size matrices specif-
ically obtained to put in evidence some numerical difficulties arising with the
PCP-Schur method. More specifically, this algorithm employs some shifting
techniques based on the use of suitable Cayley (Moebius) transformations
and numerical problems can be expected in the case where some eigenvalues
are close to the zero of the denominator. In order to describe these problems
we can set m = 2 and

A0 =

[

−5 −3
−4 −4

]

, A1 =

[

−4 −1
−9 −5

]

.

A straightforward calculation says that there are two eigenvalues equal to
−1. The Figure 1 gives a plot of the eigenvalues computed by polyeig, the
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(

a0 b0
a1 b1
a2 b2

)

m n meval #Bair #PCP

(

2 0.3
−2 0.2
−2 −0.3

)

10 200 1 4 4
20 800 1.7 4 4
30 1800 1.8 4 4
40 3200 1.9 4 4

(

0.1 1.1
1.7 −1.5
0.2 −0.2

) 10 200 1.2 2 2
15 450 1.4 2 2
20 800 1.5 2 2

(

0.1 1.1
1.7 −1.5
0.2 −0.2π2m/(m + 1)2

) 10 200 1.3 2 2
15 450 1.5 2 2
20 800 1.7 2 2

(

−10.7 −5.9
12.8 −19.4
−18.3 −13.3

) 10 200 1 10 10
15 450 1 10 10
20 800 1 10 10

(

−400 19500
500 1500
9500 −300

) 10 200 1.8 4 4
15 450 1.9 8 8
20 800 1.9 12 12

Table 1: Numerical comparisons between our method and the PCP-Schur
method on the first set of test problems
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Figure 1: Comparison of eigenvalue plots for a small DDE problem

polyeig -1.000000001625851e+00 -9.999999983741500e-01

PCP-Schur -1.0e+00 + 9.228578184151992e-12i -1.0e+00

Bairstow -1.0e+00 + 2.449293598294706e-16i -1.0e+00

Table 2: Accuracy for the approximations of the eigenvalues clustered at −1

PCP-Schur method and our refinement approach based on the Bairstow
scheme. It is seen that the PCP-Schur method completely fails to detect
the cluster in −1 and one spurious eigenvalue arises near −9.

Another interesting case is found by modifying the matrix A1 as A1 =
A1 +

√
eps[1, 1; 0, 0]. In this case the PCP-Schur method computes eigen-

values close to −1 but the approximations are not very accurate. In table 2
we indicate the approximations of −1 returned by polyeig, the PCP-Schur
method and our algorithm.

In Figure 2 we check the definiteness of the matrix pair (A,B) where
A = (|i − j|) is the Fiedler matrix of order 40 and B = UT · U , U unit
upper triangular with ui,j = −1 for j > i, is the Moler matrix of order
40. The magnitudes of the generalized eigenvalues returned by polyeig are
approximately between 1 − 2.0e − 12 and 1 + 2.0e − 12. Our algorithm
determines 80 eigenvalues on the unit circle with meval = 1.

More difficult tests are considered in Figure 3 and Figure 4 where we
apply our algorithm for testing the definiteness of the matrix pair (A,B),
A,B ∈ R

n×n with n = 10, 20, respectively, where A is the Fiedler matrix
and B is the modified Moler matrix defined by B = UT · U + eps3/4e1e

T
1 ,

U = (ui,j) strictly upper triangular matrix with ui,j = −1 for j > i, and
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Figure 2: Eigenvalues of the Fiedler–Moler matrix pair (A,B) of order 40

eps denotes the machine precision. When n = 10 the magnitudes of the
generalized eigenvalues computed by polyeig lie approximately in the interval
[1−2.0e−10, 1+2.0e−10] whereas for n = 20 the range is [1−6.0e−10, 1+
6.0e−10]. Again in both cases our procedure determines the correct number
of eigenvalues on the unit circle at the cost of one iteration per eigenvalue
(meval = 1).

Concerning the modified Sign1 problem in Figure 5 it is shown the finite
spectrum of P (z) computed by polyeig. The error of the matching algorithm
applied to the list of initial approximations is about 1.0e− 9.

In Figure 6 and 7 we plot the finite eigenvalues computed after the
refinement procedure that are located on the unit circle and on the imaginary
axis, respectively. The error returned by the matching algorithm is of order
of the machine precision.

The last test problem is interesting since the eigenvalues can be explic-
itly characterized as the set of the solutions of n = 100 quadratic equa-
tions. If γ = 108 the eigenvalues are located approximately in the interval
3.0i[1.0 − e − 10, 1.0e + 09] and its symmetric counterpart with respect to
the origin. The list returned by polyeig includes many “infinite” eigenval-
ues. Our procedure reconstruct a correct distribution but in this case it
needs many iterations (meval = 23) to resolve the two clusters. At the end
the error returned by the matching procedure applied to the list of final
approximations and of corrected values is 6.1e − 07.
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Figure 3: Eigenvalues of the Fiedler–(modified)Moler matrix pair (A,B) for
n = 10
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Figure 4: Eigenvalues of the Fiedler–(modified)Moler matrix pair (A,B) for
n = 20
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Figure 5: Finite spectrum of the modified Sign1 problem
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Figure 6: Finite spectrum of the modified Sign1 problem on the unit circle
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Figure 7: Finite spectrum of the modified Sign1 problem on the imaginary
axis

4 Conclusion

In this paper we have presented a refinement technique for the spectrum of a
H-palindromic eigenvalue problem. Our approach incorporates the Bairstow
scheme for the approximation of a quadratic factor of a polynomial into
the Aberth process for the simultaneous refinement of polynomial roots.
Numerical experiments show that the resulting method is computationally
efficient and numerically robust. The number of refinement steps generally
depends on the quality of initial approximations and possibly can increase
in the case of poor starting guesses. In particular the method would benefit
of a preliminary deflation of zero–infinite pairs. The design of polynomial
method for this task is on ongoing research.
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