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Abstract

We present a new model reduction technique for steady fluid-structure
interaction problems. When the fluid domain deformation is suitably
parametrized, the coupling conditions between the fluid and structure
can be formulated in the low-dimensional space of geometric param-
eters. Moreover, we apply the reduced basis method to reduce the
cost of repeated fluid solutions necessary to achieve convergence of
fluid-structure iterations. In this way a reduced order model with re-
liable a posteriori error bounds is obtained. The proposed method is
validated with an example of steady Stokes flow in an axisymmetric
channel, where the structure is described by a simple 1-d generalized
string model. We demonstrate rapid convergence of the reduced solu-
tion of the parametrically coupled problem as the number of geometric
parameters is increased.

1 Introduction

The numerical simulation of Fluid-Structure Interaction (FSI) problems is
an important topic in wide areas of engineering and medical research. Con-
cerning the latter, of great importance is the modelling of blood flow in the
large arteries of the human cardiovascular system, where pulsatile flows com-
bined with a high degree of deformability of the arterial walls together cause



large displacement effects that cannot be neglected when attempting to ac-
curately model the flow dynamics of the system. High fidelity computational
fluid dynamics and structural mechanics solvers based on, for example, the
Finite Element Method (FEM) need to be combined in a framework that is
challenging both from a mathematical as well as implementation viewpoint.
For an overview of cardiovascular modelling techniques we refer to [40)], 42]
and the book [I3]. The complexity and nonlinearity of FSI problems has
until recently limited the scope of physically meaningful simulations to just
small and isolated sections of arteries. When attempting to consider the en-
tire cardiovascular system as a complex network of different time and spatial
scales, Model Order Reduction (MOR) techniques can accurately and reli-
ably reduce the nonlinear FSI models to computationally more cost-efficient
ones.

In the geometric multiscale approach to MOR [12] the flow network is
decomposed to smaller parts that are joined together using physical coupling
conditions, and each part of which is modelled at a level necessary to capture
the relevant local dynamics of the system. The target for our proposed
reduced model is those parts of the cardiovascular network, where a full
fidelity 3-d Navier-Stokes solution is not necessary, but where fluid-structure
interaction effects are still important. The reduced model should fulfill two
conditions: (i) it should have certified a posteriori error bounds that can
be tuned to the user’s requirements, and (ii) it should have sufficiently low
online computational memory requirements to fit on one parallel node of a
supercomputer.

An important aspect of any large-displacement FSI problem is finding
the configuration of the interface between fluid and structure. The process
is typically iterative: a trial configuration of the geometry is used to solve
the fluid and structure subproblems, the coupling conditions are tested, and
if they are not satisfied within a desired degree of accuracy then the trial
configuration is updated and the step is repeated. A traditional approach
to FSI is that the discrete mesh is updated on each iteration by moving the
boundary nodes and adjusting the interior mesh points to ensure mesh qual-
ity. This approach leads to a large number of coupling variables (the total
number of mesh points on the free boundary). An external parametrization
of the geometry can be used to drive down the number of coupling variables.
When considering simple flow geometries the shape of the deformable wall
can be directly parametrized e.g. with splines. For realistic geometries it
might be necessary to parametrize the geometry in a way that is relatively
independent of its description.

There are many shape parametrization methods to choose from. Com-
parisons of different shape parametrization techniques from a fluid dynamics
viewpoint can be found in [51], and from a model reduction viewpoint in [49].
We propose to describe the deformations of the fluid channel with Free-Form
Deformations (FFDs) [52]. They are a technique for smooth parametric de-



formations of arbitrary shapes embedded in the grid of control points. FFDs
can be used to give a flexible and global parametric deformation of a fixed
reference domain that is completely independent of the shape and its compu-
tational mesh. Model reduction for FFD-based shape parametrizations has
been previously considered for the shape design of airfoils in potential [26]
and thermal flows [48]. In cardiovascular applications, FFDs have been used
to track the motion of the left ventricle (see [32] for a review), and to solve
an optimal shape design problem of an aorto-coronaric bypass anastomoses
[31].

After parametrizing the geometry with a FFDs we need to address the
coupling between fluid and structure. We use the deformation parameters
of the FFD as coupling variables. A fixed point coupling algorithm can be
written in the parameter space rather than the displacement space. Again an
iterative procedure is needed to ensure the coupling conditions are satisfied
to a desired tolerance. Thus a potentially large number of parametric PDE
solutions for the fluid equations need to be performed in different parametric
configurations.

To reduce the memory requirements and the online computational cost
of solving the fluid system, we apply the Reduced Basis (RB) method (origi-
nally proposed and analyzed in [T}, 10} 35 [39]). It is a reliable MOR method
for parametric PDEs. An overview can be found in [47] and a more detailed
exposition in [36]. The attractiveness of these methods is based on their
ability to give certified a posteriori bounds on the error of the field solutions
and their outputs when compared to the underlying FEM solution. We use
the reduced basis method to reduce the computational cost of the steady
Stokes equations in different configurations of the geometry.

The structure is the following: in Sect. [2| we introduce the steady FSI
problem of incompressible Stokes equations coupled to an elliptic 1-d gener-
alized string equation. This is a benchmark problem for which the existence
of solutions has been demonstrated in [17, [I8] and whose numerical solution
has been previously considered e.g. in [28] [33 53]. In Sect. [3| we discuss
the geometric parametrization and introduce the free-form deformations. In
Sect. [ we couple the fluid and structure in the space of parametric de-
formations. In Sect. [5] the reduced basis method for the fluid equations is
detailed, and we discuss a posteriori error bounds of the solutions. In Sect.
[6] we present numerical results validating our approach. Sect. [7] contains
some conclusions.

2 The steady fluid-structure interaction model

We use the following standard notations: Q € R%, d = 1,2, 3, is a bounded
open set, H*(Q) is the Sobolev space of functions with weak derivatives up
to order k square-integrable on X, H*=1/ 2(09) is the space of functions



that are traces of H¥(Q) on the boundary 99, HE(Q) is the subspace of
functions whose trace vanishes on 9€2; C*%(Q) is the space of functions with
derivatives up to order k being Holder-continuous with exponent 0 < o < 1
(if a = 1 these are the Lipschitz-continuous functions); L?(£2) is the space of
square-integrable functions, and L () is the space of essentially bounded
functions on 2.

2.1 Fluid model: the steady incompressible Stokes equations

T2

Figure 1: Axisymmetric flow geometry for the fluid-structure interaction
model problem

We assume the flow geometry represented in Fig. [I] that is axisymmetric
with cylindrical coordinates (x, ¢) = (x1,x2, @) € Qo X [0,27). The length-
wise cross-section of the domain €2, := (0, L) x (0, R) depends on the un-
known radius R(x1) of the channel, which satisfies R(z1) := Ro+n(z1) > 0,
where n € H3(0,L) is a function describing the smooth displacement of
the outer wall from its reference configuration (a cylindrical tube of radius
Ry > 0). We assume also axisymmetric forces, f = f(x) and g = g(x2).
Owing to the axial symmetry we can consider the steady Stokes equations for
incompressible fluid flow in the two-dimensional domain €,(n) with mixed
boundary conditions on its boundary I'(n) = I';, U Loy U Ty (n), that is

Veo+f=0 in Q6(n)
V-u=0 in Qy(n) , (2.1)

u=0only, w=gonly, oc-n=0 on 'yt

where u is the fluid velocity field, and o is the symmetric Cauchy stress ten-
sor. The data are assumed to have the following regularity: f € [L?(£,)]?
and g € HY2(I'), where the space [H'/2(I)]? = ~yp([H'(Q)]?) is defined
as usual with the continuous trace operator yr on I We denote by g €
[HE(Q0)]? any continuous extension of the Dirichlet data to the fluid do-
main. Assuming a Newtonian fluid, the stress-strain relationship is given



by o = —pIl +v (Vu + Vut) , where v denotes the dynamic viscosity and p
is the pressure field. After choosing the velocity space V := [H%d(Qo(n))]z
of functions that vanish on I'y = I';, UT',, and the pressure space Q :=
L?*(Q%(n)), a mixed weak formulation of the equations is to find w € V and
p € Q s.t.

/[uVu:V'v—pV-v}dQ:/ f-'de—/ vVg - Vo dQ for all v € V
Qo Qo Qo

_/ qv.udQ:/ gV - g dQ for all ¢ € Q
Qo Qo

(2.2)
For notational brevity we define the bilinear forms

A(u,v) = 1// Vu:Vvd), B(q,v):= —/ qV - v dQ) (2.3)
Qo Qo

and the linear form

F(v) := /Q f-vdQ. (2.4)

Then (2.2)) can be compactly written as

{ Alw.v) +B(p,v) = Flv) ~ A@v)  foralloev o

B(g,u) = —B(q, g) forallg € Q

With our assumptions on the displacement function 1 the domain €2, is of
class C%! and the Stokes equations have a unique solution (u,p) € V x Q
[15].

2.2 Structural model: the 1-d generalized string equation

Next we give the equations for the structural displacement function n. These
equations are in the Lagrangian form on the undeformed configuration of the
wall, which we identify as the interval (0, L) in our simplified 1-d case. We
assume the displacements are small and always in the normal direction of I'y,,
the tangential displacement being equal to zero. The equilibrium equation
for the structural displacement is chosen as the second order equation with
a fourth order perturbation (with & > 0 small)

o'n 0%n Eh n

I apZ _7
5833‘11 Ox? + 1 —v3 Ro(x1)?

=m,, 1€ (0,L) (2.6)

where h is the wall thickness, k is the Timoshenko shear correction factor,
G the shear modulus, F the Young modulus, vp the Poisson ratio, Ry the
radius of the reference configuration, and m, denotes the applied traction.
This is a simplified 1-d equation for the structure that is often used in haemo-
dynamic fluid-structure interaction problems as a “first approximation” [42].



We have added a fourth order term in order to have added regularity for the
displacement. The weak form of (2.6)) is to find the structural displacement
in the normal direction n € D s.t.

L 9%y 92 L on o L
T, (8) = € J3 a—aga—é&dm—i—kGh I fﬁa—idm—l—fﬁ% Jo Flgsdar = C(n, ¢)
(2.7)
for all ¢ in the space D := HZ(0, L) of kinematically admissible displace-
ments.

2.3 Coupling of fluid and structure

The fluid and structure are coupled together by taking the applied traction
T, to be the normal component of the normal Cauchy stress of the fluid on
Ty, ie.

T, =(on)-n, only. (2.8)

w

This can be expressed in the weak sense using the residual R(-;u,p) € X/,
of the fluid solution on the interface defined as [27]

R(v;u,p) == F(v) — A(u+g,v) — B(p,v) forveX, (2.9)

in the space of test functions X, := {v € [H'(£2,)]? : v =0 on Iy, }, or more
precisely its Riesz representant r(u,p) € X, and the trace operator 7r,, :
X, — [HY?(T,)])? that transfers velocity test functions to structural test
functions by taking the trace on I'y,. Finally the entire steady fluid-structure
interaction model can be written as follows: find (u,p,n) € V x Q x D s.t.

A(u,v) + B(p,v) = F(v)—A(g,v) Yv € V(n)
C(n,¢) = (. (r(w,p) n,d)g-1/200)yxm/20,) V¢ ED
(2.10)

Theorem 1 With the assumptions outlined above, the coupled fluid-structure
interaction problem has at least one solution (u*,p*,n*) € Vx QxD.

The proof is with the Schauder fixed point theorem; we refer to [I7, [I§] for
the details. By standard arguments it also follows that if the problem data
are Lipschitz continuous with sufficiently small Lipschitz constant, then the
fixed point map is a strict contraction and the fixed point is unique.

Remark 2.1 The displacement in satisfies n € CYY(0,L) so that
Qo(n) is piecewise CH' with conver corners. If in addition we have g €
H3/2(') then this is sufficient to obtain added regularity for the Stokes solu-
tion [16]. In this case the Stokes solution satisfies (u,p) € [H?(2,)]> NV x
H'(Q,) N Q. However, this doesn’t permit dropping the fourth order term



in since CO1 continuity of the displacement (and consequently the do-
main) would be lost. In cardiovascular applications the fourth order term is
unphysically stiff for accurate modelling of vessel wall dynamics, and should
be compensated for by choosing € very small. In [25] we experimented with
a second order equation for the structure. In addition to the aforementioned
lack of regularity, the second order model lacks the ability to set boundary
conditions on both the displacement and its derivative at the endpoints.

3 Parametric fluid equations in a fixed domain

To remove the difficulty of dealing with variable domains (7)) depending
on the displacement 7 we rewrite the fluid equations in a fixed domain.

3.1 Parametric transformation to a fixed reference domain

Let 2 be a fixed reference domain at least of class C%! and consider paramet-
ric maps T'(pu, ) € C™(D; C1(Q)) that for each finite-dimensional vector of
parameters p that belong to some admissible bounded and closed parameter
range P C R” gives a smooth and invertible map T'(p,-) : Q@ — Qo(p). As a
result the range of possible configurations of the fluid domain depends solely
on the parameter, and all our admissible domain shapes are diffeomorphic
images of the reference domain, see. Tildes are used above coordinates de-
fined on the reference domain 2 to distinguish them from the corresponding
coordinates defined on the original domain Qo (), i.e. T(p, ) = x. De-
noting by Jp := VzT the Jacobian matrix of T = (T1,T3) w.r.t the spatial
variables we define the parametric transformation tensors for the viscous
term

vr(p, ) = ‘]Et(ll’a %)‘]7:1(”7 x) det(Jr(p, z)) (3.11)

and the pressure-divergence term (also known as the Piola transformation)

Xr(p, @) = Jp* (p, @) det(Jr(p, ®)) (3.12)

respectively. We introduce the parametric bilinear forms on the fixed domain

A 5iw) = v [ (rl)Va) : Voae, B0 =~ [ 79-(ur()o)ds.
(3.13)

and the linear form
Foip) = | F0(0.9) - 5det(Ir (. 7) ds (3.14)

The spaces V := [H%d (Q)]2 and Q := L2(Q) do not depend on the parame-
ter. Now the Stokes system (2.5 can be transformed back to the reference



domain, and we obtain the parametric Stokes equations on a fixed domain
to find (u(p),p(p)) €V x Q

. (3.15)

A, ¥ p) + B, o3 p) = F(Oy ) — A, ;) forall eV
B(g,u; p) = —B(,G; ) forall §€ O

To obtain a parametric fluid domain that is compatible with the structural
model, we assume (2 is chosen as the unperturbed configuration of the ax-
isymmetric channel, Q = (0, L) x (0, Rp). While the structural equations
are in the Lagrangian formulation, and therefore already written in the ref-
erence configuration, we make use of the parametric displacement function
n(p) that in our simplified case can be written as

n(zi; p) = To(p; (21 Ro]t) — Ry, for x; €0, L]. (3.16)

3.2 Free-form deformations for flexible shape parameteriza-
tions

To define the free-form deformations we assume again that there exists a
reference geometry 2 and look for a parametric family of smooth deforma-
tions Trpp(p) that can act on any kind of shape. Let 2 C D be embedded
inside a control parallelogram D, which can be mapped affinely onto the unit
square, ¥(D) = (0,1) x (0,1) with coordinates 0 < &;,& < 1. We overlay
on the unit square a regular (K + 1) x (L 4 1) grid of control points, where
the location of each control point depends only on two scalar components
of p according to

5/ E T b } (3.17)

P o(tp(h,0): p(h ) 41) = [E/L + Hp(k,0)+1

where p(k,?) := 2(K + 1)+ 2k + 1 is a condensed index into the parameter

vector p with a total of 2(K + 1)(L + 1) scalar components. Then we can
define

K L
Trrp (1 ) - =D (6 ) Pl (1) (3.18)
k=0 /=1

a smooth, invertible “deformation of identity” map T Frp for each p in a
neighborhood of 0. The functions by are tensor products of the Bernstein
basis polynomials defined as

by (61,&) = (ij) (é’) - rg - &) (3.19)

for k=0,...,K and £ = 0,..., L, forming a total of (K + 1)(L 4 1) basis
polynomials. By using the affine maps ¥, ¥~! to map between the unit



fixed reference domain deformed parametric domain

| Q | Trrp (1, )

FFD map

affine map ¥ \L
——06—0 Py (0)

B

T .
b 0 O O Fro (s, -)

parameter

vector
b—6—6—0 H

FFD control points parameters = displacements
of control points

Figure 2: Schematic of the control points and resulting free-form parametric
deformation

square and the original control parallelogram we can define the parametric
free-form deformation map Trpp(p) := ¥~ 1o f(u) o ¥. The parametric
domains are then obtained from the restriction Qo () := Trrp (; ).

In Fig. 2| we display a schematic diagram of the free-form deformations.
Using the definition and the fact that the Bernstein basis polynomials form
a partition of unity it can be shown that Tppp(0) = I. Evaluation of
the Bernstein basis polynomials (and subsequently Tyrp and its Jacobian
matrix) can be performed in a numerically stable fashion using the recursive
de Casteljau algorithm [9] without explicitly evaluating the formulas for
Trrp. In case there is a need to reduce the number of geometric parameters,
we can keep fixed a number of control points or only allow them to move in
one dimension. This allows the user to keep the number of FFD parameters
to a desired low level (in our case roughly 5-10 parameters).

4 Parametric coupling of fluid and structure

We now introduce the computational algorithm for the solution of the cou-
pled fluid-structure interaction problem.



4.1 Formulation of the coupled problem in the parameter
space

Define the resolvant operator Ly : D — V x Q giving for each displacement
n and corresponding fluid domain €,(n) the velocity-pressure solution pair
by solving the equation , the trace operator £, : V x Q@ — H~/2(0, L)
taking the normal component of the Cauchy stress on the interface I';, com-
puted from the fluid residual according to , and the resolvant operator
L : H-1/2(0, L) — D that provides the structural displacement for a given
applied traction. The nonlinear equation system is equivalent to the
following fixed-point problem: find n € D s.t.

(I —LyoLyoLy)(n)=0. (4.20)

We can alternatively formulate the fluid-structure problem (4.20) as a min-
imization problem:

min ||(1— Ly Lro L)) B (421)
neD

Any solution of (4.20]) is also a minimizer of (4.21)). A simplified parametrized
version of (3.15)) can be given as follows: find u € P that minimizes

min || (7~ £,0 £, 0 £5)(n()) I, (4.22)
e

but this time we expect that the compatibility between the traction applied
by fluid and the structural displacement is only achieved in a least-squares
sense. The “quality of fit” depends on the dimension of the parameter space
P as well as the approximation properties of the parametrization method.
We call this the parametric coupling approach. The parametric coupling
approach was used in [33] to solve the same problem, with the exception
that there the applied traction (depending on this case only on the pressure
profile on the wall) was directly parametrized.

Replacing the true displacement with its parametric counterpart can be
understood as a nearest point projection step from the space of all kinemat-
ically admissible displacements D to the subset of parametrically admissible
displacements, Dp := {n € D : n = n(pu),u € P}, given by the operator
Ly, : D — Dp defined as £,(n) := arg min,.cp,, |[n—n"||p. We then find the
equivalent formulation of being: find p € P s.t.

(I =LpoLsoLyoLy)(n(p)) =0. (4.23)

Remark 4.1 To prove an equivalent to Theorem [1| for the parametrically
coupled problem, we need to adapt the Schauder fized-point argument. This
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requires showing that the nearest point projection is continuous in the strong
H?-norm topology. A sufficient condition for the continuity of the paramet-
ric projection is that the set of parametric displacements Dp C D be closed
and convex. This is indeed the case in our FFD parametrized model problem
when the parameter space P is closed and conver.

4.2 Finite element discretization of the Stokes equations

In order to give a computable algorithm for the solution of the parametrically
coupled problem , we introduce discrete approximation spaces for the
velocity Vi, C V, pressure Q) C O, and structural displacement D;, C D
respectively. The first two spaces can be obtained by e.g. Taylor-Hood
or mini finite element [43] discretization on a suitably regular mesh on the
domain €Q; the latter is typically discretized with cubic Hermite elements
that are C'-continuous. Because a fixed mesh on € is used to solve the fluid
equations for different parameter values, the combined dimension dim(V})+
dim(éh) = Ny+N,, =: N; of the finite element spaces should be chosen large
enough that for the entire parameter range P the finite element solution of

{ Ay, Bp; 1) + B(h, s ) = F(On; ) — A(G, ;) for all B, € V)
B(qn, un; p) = —B(qh, Gns 1) for all g, € Qp,
(4.24)
accurately represents the fluid solutions for the entire range of the parameter
p. While in the worst case this dictates that the finite element mesh needs
to be refined uniformly everywhere, in Sect. 5 we will see that the reduced
basis method alleviates the requirement of choosing a very large Ny. By
N; we denote the dimension of the structural displacement approximation
space. We have corresponding bases {\Iljj}ﬁ”l, {v], ﬁpl, and {\Ilii}i\él for each
finite element space. The matrices A(p) € RNNe. B(u) € RV >*Ne | and
C e RVs*Ns corresponding to the discrete operators in the finite element
basis are defined elementwise as

[A(,U/)]z,] = A(\Ij%7 s ), [E(H’)]ZJ = B(‘Ilgn s ), [Q]Z,] = C(\Ilgw \1137)
- (4.25)
and the right-hand side is given by [F(u)]; = (F,¥!). Similarly we denote
the vectorial counterparts of the variables [u]; = wp(x;), [pli = pn(w;), and
[n)i = nn(x;). We will also need the structural mass matrix M e RVs*Ns

defined as (M]; ; = fOL \I/%\Il}7 dr .
4.3 Parametric coupling algorithm for the discrete problem

In order to transfer the load applied by the fluid to the structure in the dis-
crete equations, we need to construct a discrete trace operator that returns
the normal component of the trace of any velocity test function on the free

11



boundary. When the finite element spaces for the velocity and structural
displacement are incompatible (because they feature either different order
polynomials or they sit on nonconforming grids) one good strategy is to per-
form an L?-projection between the two spaces. The discrete trace operator
G : Vy, — Dy, is thus defined according to

L L
/ (Gﬁh) wyp, dI' = / (’)Tw (6h) . ’I’L) wp, dI' for all wy, € Dy,. (4.26)
0 0

In matrix form we have G := M™'T, where [[];; = fOL(ZFw(\I’%) -n)Wl.
This is a mortar-like approach in which Dy, plays the role of slave space, see
[44].

After the discrete trace operator has been formed, we can introduce a
discrete version of the parametric coupled problem. Algorithm com-
putes a solution to the coupled problem by a fixed point iteration applied
to the discretized equation . The nearest point projection is done

Algorithm 4.1 Parametric coupling of fluid and structure

Require: initial guess p
1: Let n =0.
2: repeat
3:  Solve the discretized Stokes equations for u), = wuy(pu") and py =
pr(p™)
4:  Form the discrete fluid residual
Ry (iin, Bs 1) = F(u") = A(u") a7 + g, | - BB

5. Form the discrete trace operator G.
Solve the structural equations for the assumed displacement ﬁh from
i, = GRy(@in, pri 1"):

7:  Solve the constrained minimization problem in the parameter space

t

: s n+1 o n+1

o [ﬂh =, (1 )] c [Qh —n,(B"")
to obtain the next configuration parameter p"*1!.

8 Setn—n-+1.

9: until stopping criteria [T — p"| < TOL is met.

by minimizing a least-squares functional, and involves no further fluid or
structure solutions during the optimization loop. Since the analytic form
of the parametric displacement function 7, (u) is available, the first-
and second-order sensitivities are readily available, and the parametric pro-
jection step can be efficiently performed using affine-scaling interior-point
Newton methods [7] for nonlinear programming with box constraints.
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4.4 A priori convergence as the number of parameters in-
creases

The coupling accuracy that is obtainable with the parametric coupling for-
mulation depends mostly on the approximation properties of the parametric
map T'(w,-). If the parametric displacements n(p) form a linear subspace
Dp C D, the concept of (Kolmogorov) N-width [38] can be used to mea-
sure the asymptotic approximation obtainable as the number of parameters
P — oco. Let X be a Banach-space endowed with norm || - ||x, Y C X its
bounded subset whose elements we are trying to approximate, and denote
by X,, C X any linear subspace of dimension n. The optimal N-width of
the set Y in the space X is defined as

dp(Y;X)=  inf inf |z — 4.27
Vi X) = ks e —ullx (4.27)

and the space X that gives the infimum is the optimal subspace of dimen-
sion n for approximating Y. In the case that X = L?(0,L) and

Y ={y € H3(0,L) : [lyll2 < 1} (4.28)

it is known that the optimal subspace has N-width d,(X,Y) = \, Y 2,
where 0 < A\; < Ay < ... are the positive eigenvalues of an Euler-Bernoulli
boundary-value problem: find (yx, \r) € HZ(0, L) x RT s.t.
(2 @)y . _ —
(v w2 = Me(yp, w) 2 for k=1,2,.... (4.29)
An optimal subspace X is spanned by the first n eigenfunctions y;. The
N-width theory is useful in that it gives the an estimate of the worst case

asymptotic convergence rate of an approximation to the structural displace-
ment as the number of parameters P — oo. The eigenvalues A\ = K% of

(4.29)) are solutions of (see e.g. [4])
1 — (cosyL)(cosh 4y L) =0, (4.30)

they grow like £ ~ (2k + 1)5, so that in this case the N-width in the
L2-norm behaves like O(P~2).

5 Reduced basis for steady incompressible Stokes

The most computationally expensive part of Algorithm is step 3, that
is, the solution of the parametric Stokes equations. With the assumption
of small, C* geometric deformations the dependence of the solutions of the
Stokes equations on the parameter is also “smooth” in the sense that the
manifold of parametric solutions in the space X is C'°°, and there are no
bifurcation points leading to large qualitative changes in the velocity field.

13



With this assumption the reduced basis method can be reliably applied to
reduce the problem to a much lower-dimensional subspace. It holds also
for the Navier-Stokes equations when the parameter is e.g. the Reynolds
number that is taken small enough. See [24, 37] for early development of
the reduced basis method for Navier-Stokes equations, [6, 8, [54] for more
recent results in a posteriori error estimation, and [41] for implementation
details.

The reduced basis method consists of computing finite element solutions
to the parametric PDEs at suitable parameter points and using their span
to construct a low-dimensional approximation space for Galerkin projection.
Let p', 12, ..., u be a small collection of parametric configurations that
form a good ensemble for approximating the behavior of the parametric fluid
system in question. By computing the finite element snapshot solutions

(wn (™), Pr (™)) s.t.
{ AT, Bp; 1) + B(Bh, Op; ") = F(@p; ") — A(Gy, Op; ) for all T, € Vy,

B(Gn, tin: ") = ~B(Gh. Gn: ") for all G, € Qp
(5.31)
forn=1,..., N we can define the problem-dependent approximation spaces
for velocity and pressure
VN .= span(un(p") : n=1,...,N
= span(@ (") ) o)

QY = span(Fi(p") : n=1,...,N)

which possess some spectral approximation properties [5]. Namely, if we
construct a suitably orthonormalized bases {¢}}\_; and {¢}}2L; for the
spaces V,JZV and QY respectively and seek for a given g € P the Galerkin

projection (@ (™), pjy (1™)) s.t.

{ A(wy o5’ ) + BY 08 s ) = F(Op 1 ) — A(Gp, 0p ) for all By € VY
B(gy g s ) = =B(@, , Gp; 1) for all g € Qp)

(5.33)

then the convergence of this reduced basis approximation, (ﬁiv,ﬁ}jlv ) —

(un,pp) as N — oo, is in the best case exponential in N [30] and in many

applications very rapid for the entire parameter range p € P. This means

that the reduced basis dimension N can be chosen much smaller than the

finite element space dimension, N < Ny, and we expect that the reduced

system of size N x N can be efficiently assembled and solved for any p,

and that its solution takes only negligible time and memory when compared

to the cost of solving the finite element system of size Ny x Nj. Three

main aspects need to be addressed when using the reduced basis solution to

approximate the underlying finite element solution:

1. Efficient methods for the assembly and solution of the reduced system
(15.33)).
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2. Stability of the reduced basis Stokes approximation [50].
3. Certified a posteriori error bounds for the reduced basis solution [47].

The a posteriori estimate also gives us a way to choose the parameter values
{u"}N_, that define the RB space by a greedy algorithm that explores the
pararneter space [20), [47].

5.1 Efficient solution of the RB system for affine problems

The computational setup typical for reduced basis methods is of offfine
vs. online stages. We are willing to spend extra computational effort that
depends on the (a priori large) dimension of the finite element approximation
space Ny and possibly takes considerable time (the offline stage), provided
that once the necessary data structures have been precomputed and stored,
we can then assemble and solve the reduced basis system inexpensively and
with complexity only depending on N, but not on N} (the online stage)
for any parametric configuration. The same requirements hold for any a
posteriori error estimates we obtain in the online stage.

In reduced basis methods an important assumption that facilitates split-
ting the problem into offline and online stages is usually made. We say that
the parametric PDE problem is affinely parametrized if the bilinear forms
satisfy

A, v; ) Z@“ w,v), B(p,v:p) Z@b 'ﬁ, v) (5.34)

for some computable scalar functions Og, @b depending only on the param-

eters, and continuous bilinear forms .Aq, ; depending only on the spatial
variables, and if the linear form satisfies.

Qf
= 0! (n)F,@) (5.35)
q=1

for some computable scalar function @(J; depending only on the parameters,
and continuous linear forms JF; depending only on the spatial variables.
Accordingly we define the affinely decomposed matrices and right-hand sides

(Aglij = AW, 1), [Blig = By(¥), W), [f Jj:= Fo(¥l). (5.36)

With assumption (5.34]) the reduced basis problem splits into parameter-
independent matrices and parameter-dependent scalar coefficient functions,
and we obtain the linear system of 2/N x 2N equations to find @hN € RN and
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~hN€RNst

Y 0smAY Y@ ebwBY| [aN] [N
= , (5.37)
Y, Ob(w)[BY]! Rl LeV(mw
where the right-hand side is
A [ elwz,f, -5 0uwAyz,g
S g=1>4 =vd 4 q=1"q =q Zvdy
— (5.38)
N -
9"V (w) — @ eb(w)(BY)'Z,.g,
and the reduced basis matrices and vectors are defined as
(Z,)ij = Ci(x)) i=1,...,N, j=1,...,N,
[Zp]id = ;(:BJ) iZl,...,N, jIl,...,Np (539)
AN = 2,A,Z., i,j=1,...,N
[E(];V]m —ZBqZZa i,j=1,...,N

where the matrices Z,,, Z s Aév , and E(]ZV are assembled once and stored. The
system can then be assembled and solved for any p € P with com-
plexity not depending on Ny by simply evaluating the coefficient functions
and summing the contributions from each term. If the affinity assumption
is not in effect, the cost of the online evaluations increases and the reduced
basis method becomes less attractive.

5.2 Empirical interpolation method for nonaffine problems

From the expressions and for the parametric bilinear forms it
is clear that the bilinear form 4 does not satisfy the affine parametrization
assumption. In fact, most geometric parametrizations are nonaffine. One
way to treat nonaffinely parametrized PDEs is to use a process called the
Empirical Interpolation Method (EIM) [3, 19, 29]. An approximation to
the nonaffinely parametrized bilinear forms .,Z, [577 and the linear form F are
sought in the form

Alu, v p) Z@q (u,v) + epru(@, p),
B(u,v; ) Z@q (@, D) + el (@, ), (5.40)
Z@q V) + aélM(w ),
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that is, by suitable affine components plus suitable error terms gy, 5%11\/[7
5£IM that need to be controlled to an acceptable tolerance. The idea is as
follows: for any scalar function g(x,pu) € C*(P; L>®(R2)), with s > 0, the
goal is to find an approximate expansion of the form

Q
p) = Z Oq(1)q(x) (5.41)
q=1

for which [|g(-, ) — g (s #)|| () < TOL in the entire range of parameters
p € P. In the empirical 1nterpolat10n one seeks a set of interpolation points
x? € Q and a set of shape functions () s.t. the expansion is
obtained through solving the Lagrange interpolation problem

Q

> [y ql0i(w) = g, p), Vg =1,...,Q (5.42)
q=1

where the interpolation matrix T € R?*@ is defined elementwise as [X],/ , :=
Py () for q,¢' = 1,...,Q. This can be done with the greedy algorithm de-
tailed in [3),29] that proceeds to construct a hierarchical sequence of approx-
imation spaces. Using the EIM for each component of [vr]; ; and combining
the resulting approximate affine expansions

Ay (a,v) = V/Qqu’]( 8zz 3:;@ dx, forg=1,...,Q" (5.43)
we get,
2 2 QY
=> 3> 0 () Al (u, ) (5.44)
i=1 j=1g¢=1

an expansion with a total of Qq = Q%' + QY% + Q%! + Q%? terms, and
similarly for the other forms. In practice the EIM has been quite useful

for solving nonaffinely parametrized PDEs with the reduced basis method
[19, [34] [45].

Remark 5.1 For the free-form deformation detailed in Sect. in fact the
forms B and F are affine due to the fact that the map Trrp is polynomial.
This reduces the number of terms Qq + Qp + Qf needed in the approrimate
affine expansion, as was first observed in [{8]. For generic nonpolynomial
shape parametrizations the situation remains more challenging.

5.3 Inf-sup stability of the reduced basis Stokes approxima-
tion
We briefly recall the general existence and uniqueness theory for noncoercive

linear PDEs. Let X be a Hilbert-space endowed with the inner product
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(-, - )x and the corresponding norm || - ||x := y/(-, - )x. The general
noncoercive PDE in weak form is: find U € X s.t.

U, V)=F(V) forallVeX (5.45)

where ® : X x X — R is a continuous, symmetric bilinear form and F :
X — R a continuous linear form. The Babuska inf-sup stability condition
[2] that guarantees the existence of a unique solution is

: o(U,V)
dp >0 : inf sup ———— > o, 5.46
220 P IR VI =¥ (2:40)
and that solution satisfies a Lax-Milgram -type stability estimate
Ullx < [IF[lx/ ¢ (5.47)

In our Stokes case we have U = (u,p), V = (v,q), the product space
X =V x Q, the norm ||V|% = ||v||} + ||¢l|%, and the bilinear form
(U, V) := A(u,v) + B(p,v) + B(¢g, u). The inf-sup constant ¢ in this case
is the least singular value of the linear operator associated with the Stokes
equation [14].

The stability of the continuous Stokes equations is well-known to not
imply stability of the discretized Stokes equations for many “reasonable”
finite element discretizations. The situation is similar in the reduced basis
context. Rather than working directly with condition it is customary
to apply the so-called Babuska-Brezzi -theory that allows one to consider
only the bilinear form B. In a conforming finite element approximation the
ellipticity of the bilinear form A is inherited by the discretized problem, and
thus a sufficient condition for stability is that the finite element velocity
and pressure spaces V,, and Qj should be chosen such that they satisfy the
discrete Ladyzhenskaya-Babuska-Brezzi (LBB) condition [15]

B
35, >0 0 inf sup 2LV S g (5.48)
an€Qh vV, llv]lv]lallo

Popular choices of element pairs that satisfy this condition include the mini
element (P; + bubble/P;), and the Taylor-Hood Py /Py family for k£ > 1.
In the case of parametric Stokes equations on the reference domain ) we
require further that

B N Ay, .
inf  sup (qh, On: )

S 2 ) — Bu(p) >0 for all p € P. (5.49)
€0 5, ev, 1Unllplanlls

When the parametrization arises from geometric transformations and B is
given by (13.13)), we can use (in the case that the transform tensor is computed
exactly and not approximated by numerical quadratures) the divergence

18



of a vector field is invariant under the Piola transform and B(q,o;p) =
B(q,v), for all p € P; consequently SBy(p) = Bpn. For the reduced basis
approximation we have a similar inf-sup condition
B@Y, vy ’; ~
inf  sup N(qh—}iNﬂ) =N (u) >0 forall peP, (5.50)
avedl svevy llvn lI5llay I

but unfortunately it is not in general true that (5.49) implies ([5.50). One
way to guarantee stability of the reduced basis Stokes system is to enrich

the velocity space with supremizers defined using the supremizer operator
[50, 45] TH : Qp — V) s.t.

(T"Gh, B1)5 = B(Gn, Op; p)  for all By, € V. (5.51)

Note that the name “supremizer” comes from the property

sup B(&h’aha“) _ B(ath”ah;“). (552)
sy Unlly, T35

If for each pressure basis function pj we compute the corresponding suprem-
izer velocity field
Sh(p) :=T"py (5.53)

and add these to the velocity approximation basis
VY () = VN @ span(3)(p) : n=1,...,N) (5.54)

we can replace in the space 17}];] with 17,]1\/ ST () and prove (see [50])
that now E}JLV (p) > h(u) so that the supremizer-enriched velocity space
lj,iv’supr of dimension 2N inherits the inf-sup stability from the finite element
problem. A difficulty related to the supremizers is that now the reduced
velocity space depends explicitly on the parameter. In [50] a way to deal
with this is proposed so that the explicit parameter dependence is lost. The
condition B,(p) > 0 then implies that both & () > 0 and N (p) > 0. For
further study of the relationship between the different stability constants
and the a posteriori estimator given above, we refer to [46].

5.4 A posteriori error bounds for the reduced basis solution

Denoting the error between the finite element solution and its reduced basis
approximation both for the velocity and pressure as e, := up — ﬁév and
ep = qp — Eﬁbv , we define the combined residual as

Ryu(Bn, @) = Alew(p), Bn; ) +B(ep(p), Tns 1) +B (G, €u(2); 1) V(Gf(b, %))6 X
5.55
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Then R, (Vh, qrn) € X, and satisfies

Ryu(On, an) = F (O ) = Ay , 05 ) +B(Gh , On; 1) +B(Gn, iy s 1) V(T @) € X,
(5.56)

and can be evaluated without knowing the truth finite element solution. For

purposes of dual-norm computation we can define the Riesz representant

e(p) s.t.
(€(w), (On, qn))x = Ru(Vn,qn)  for all (Vn,qn) € X (5.57)

for which [[e(p)||x = [|Ru(-, - )HX;Q' By applying the Babuska stability
result (5.47) and the inf-sup constant ([5.46]), we have
Alew, U5 ) + Blep, 03 p) + B(q, €u; 1)

e [l(ewsep)llx < sup ~
oy 56\)766@ |‘(07®||X

= IRu(-, llxy = lle(w) llx-

(5.58)

Thus for any computable lower bound ¢rp(p) for the parametric stability
factor s.t. 0 < ¢orp(p) < @(p) for all p € D, the error estimator

An(p) = E8) llx (5.59)

oLB(1)

gives an upper bound for the error ||(ey, ep)||x-

5.5 Estimation of the parametric stability factor

The difficulty related to the estimator is that the definition of the
parametric Babuska inf-sup involves the combination of two different bilin-
ear forms A and B that, to our knowledge, has not been as widely analyzed
as the Babuska-Brezzi inf-sup constant, which involves only B. A succes-
sive constraint method (SCM) [23] for the construction of a lower bound
wr(p) > 0 for the inf-sup constant was given in [2I] and it works in prac-
tice also in the Stokes case. We present briefly an outline of that work with
emphasis on our Stokes application (the noncoercive problem treated in the
original paper was the Helmholtz equation).
First define the Babugka supremizer operator T# : X — X as the solu-
tion of
(TPU,V)x = ®(U,V;u) forall Ve X. (5.60)

Note that this operator acts on the whole Stokes system whereas the suprem-
izer operator T* acts only on the pressure. Similarly to the other supremizer
operator it holds that, due to (5.60)), we have

sup U, Vi)  OUTHU ;) ||THU]x
vex IUIx[IVIIx  NUlxIT*U|lx  [[Ullx

(5.61)
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Note that the evaluation of ¢(u) at a given point can be performed by
observing that in the discrete case

2
) = | il sup om VK :[-flm“%lxl- 0l 5
UhEXthGX;LHUhHXHVHX UneXp HUhHX UneXy, HUhH§(
(5.62)

is a problem of finding the least eigenvalue. In matrix form the inner product
is defined (U,,V,,)x = VXU, using a s.p.d. matrix X with Cholesky
decomposition X = H'H and thus after some computations we obtain the
following matrix eigenvalue problem: find the smallest (p%(u) s.t.

[H'®(n)X S()H ] V), = ¢ii(p) V), for some V), £0.  (5.63)

The SCM was originally proposed for computing a parametric lower bound
for the least eigenvalue of coercive problems that could be affinely decom-
posed into @) terms with complexity that is linear in @ (but depends explic-
itly on A and thus rather expensive). While the same could be done to find
a parametric lower bound for , the operator has Q2 affine terms and
the standard approach is much too cumbersome for problems with larger Q.
A modification of the SCM is thus needed for noncoercive problems.

The local natural norm version of SCM for noncoercive problems seeks
a lower bound for a surrogate inf-sup constant that, for a fixed parameter
value @, is defined as

_ . (U, THU; p)

v = inf —

(5.64)
Values of @p(p) are solutions of the eigenproblem (in matrix form) to find

the smallest @p(p) s.t.
[Ho(u)@ " (B)H '] V), = pu(p) V), for some Vi, #0.  (5.65)

Unlike the version , for o fixed the operator contains only ) affine
terms. In some neighborhood Pp 3 f it holds that || TAU||x > C||U||x for
all U € X, and thus the || - ||x norm and the natural norm ||T# - ||x are
equivalent in that neighborhood. It can be shown that p(ft)@n(p) < ¢(u)
and therefore it suffices to seek a lower bound for the surrogate . This
surrogate problem is coercive, so the standard successive constraint method
[23] can be used. Through an iterative greedy procedure it finds a set of
constraint points around which we define a set of linear constraints to find
a positive lower bound for ¢y (p) in the entire neighborhood Py. When this
is performed for sufficiently many f the sets Pj cover the entire parameter
range and we can compute a parametric lower bound for ¢(u) accordingly.
For details of the local lower bound construction for @z (@) in Py, we refer
to [21].
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Affine decomposition Successive constraint
and assembly method
ApBy f, oLB(K)
OFFLINE
STAGE
Basis selection by o .
greedy algorithm A posteriori estimator
Zu7ZP7Al]1V7§évyi;V AN(M)
Assembly
AN (), BY (), [ (1)
ONLINE
STAGE
Solution Certified RB solution
SN (W)U™ (1) = N (w) UN(n), An(p)

Figure 3: Schematic description of the offline and online stages of the RB
method. All the structures created in the offline stage are independent of u,
and thus are computed once and stored in preparation for the online stage.
The online stage is independent of the truth FEM dimension N once these
structures have been precomputed.
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5.6 An offline/online procedure for the reduced basis method

In Fig. [3] we give a general outline of the reduced basis offline and online
stages. The affine decomposition of the parametrized problem matrices and
right-hand sides allows the assembly and storage of the necessary
structures as the first step of the offline stage. Using these structures the
successive constraint method can then be used to derive a lower bound
manifold for the inf-sup constant (). This involves the solution of O(Q)
initial eigenproblems as well as the solution of several linear programming
problems of size @ with (9(@) constraints. Thus the complexity of SCM
is not only dependent on N, but also magnified by a factor relating to the
inherent complexity of the parametrization as codified by the number of
affine terms @ As is typical for offline-online reduction schemes, the cost of
the offline stage is therefore orders of magnitude larger than the cost of one
finite element solution of the parametric PDE.

Once the inf-sup lower bound has been constructed, the estimator (5.59))
is used to drive a greedy algorithm [20], such as the one detailed in Algorithm
The algorithm selects hierarchically the velocity and pressure basis
functions according to the at each iteration worst approximated element of a
training set, computes the supremizer and adds it to the velocity basis,
and performs an orthonormalization to improve the algebraic conditioning
of the . Finally, the reduced order matrices and right-hand sides are
computed and stored. With the assumption of affine parameter dependence,
the computation of the residual in the a posteriori estimator can be
treated with a similar offline-online procedure. In matrix form we can write
the vectors UL (u) and VY (u) in the reduced basis expansion

N N
UN () = > UN ), VN () = VN (e (5.66)

so that the residual can be affinely decomposed

Qy Q
R(Vip) =) OJ(m)F,(V) =) 0o, Uy, V)
q=1

. (5.67)
Qr N Q
=Y Ol FWV) =Y ul ()Y 02 (1)®g(¢, V)
q=1 n=1 q=1
which together with (5.57)) implies
Qf N Q
) = 05w Cy = > ul(w) > 0% (uLy (5.68)
g=1 n=1 qg=1
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where (C,,V)x = F,(V) for all V € X" and (LY, V)x = @, V) for all
V € X" Then

lle(w)[1%
Qr Qy

=2 05Oy (1)(Cy, Cy)x

q=lq'=1

Q N
—ZZu )0 (1 2Z®f )(Cqr L) x ZZ ul ()08 () (L2, L) x

g=1n=1
(5.69)
The inner products (Cy, Cy)x, (Cg, Ly)x, (Ly, LZ,/) x can be precomputed
at the end of the offline stage and stored in the offline stage once the reduced
basis {¢%}2V_, has been selected. In the online stage the norm of the residual
can then be evaluated from the formula ( - ) for each p with complexity
only involving N.

Algorithm 5.1 Greedy reduced basis selection

Require: Large training sample ZRB P, initial snapshot parameter

train
value p!
1: Let n =1. )
2: Set the first reduced basis vectors ¢} = % and Cp ”ph((%
3: repeat Y ©

4: Compute (Cy, Ly)x and (LZ,L,’)X forn’=1,...,nand¢=1,...,Q
needed to evaluate A, (u) via .

5. Choose next parameter using the estimator p"*t! =
Argmax,,c=RB Ap(u™h). and compute the corresponding snapshot
FE solution (@ (™), prn(u™th)).

6: Compute the next supremizer by solving Xs(u"™!) =
B(p")p, (u"t).

7:  Orthonormalize to get the next basis vectors and supremizers

2t = (pt) Z ¢ (@ (), 6 )y

=1

n+1 ;5* n+1 Z Cn ph n+1) Cn)

n+l _ Zﬁ“ n+l _ sl
- M
! oty [[s" 1 ]5

8: until A, (u"!) < TOL
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6 Numerical results

To demonstrate the reliability of the RB method for the parametrized Stokes
equations, we used a simplified FFD parametrization with P = 2 parame-
ters. The reference domain Q = (0,3) x (—1,0) represents a half-width of the
actual channel owing to symmetry, and its radius was taken as Ry = 0.5 cm.
The free-form deformation used a 4 x 2 regular grid of control points, where
only the 2 central points on the upper row were allowed to move freely in the
zo-direction. In Fig. (a) we present the resulting deformed image of the
reference domain in two different parameter configurations overlaid with the
corresponding positions of the control points. For the Stokes problem using
PPy /Pi-elements this mesh gives a total of Ny = 7940 degrees of freedom. We
choose to refine locally the mesh near the free boundary I',, and the outlet
T'out, since in our experience these parts yield the largest contribution to
the error in the reduced basis approximation of the Stokes equations. The
viscosity was chosen as the physiological value v = 0.035 g/cm-s, and the

parabolic inflow velocity g(z2) = [30(1 — (1 + 22)?) O]t cm/s.

Figure 4: Two different parametric configurations of €,(u) induced by the
FFD in case (a) P = 2 and (b) P = 10. Positions of control points in the
reference and deformed configurations marked in by o.

The transformation tensors and were computed symboli-
cally using a Computer Algebra System (CAS). The empirical interpolation
procedure was used to obtain an affinely parametrized version of the Stokes
equations on the reference domain. The transformation tensor elements were
evaluted by the CAS and the EIM procedure was used to obtain an affine ap-
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vr(p) and (b) upper bound surface puyp(p) for the parameter-dependent
Babuska inf-sup constant

proximate expansion for each tensor component separately. With a stopping
tolerance of le-5 in the L°°-norm the total number of terms was @, = 31
for the viscous part the and @, = 7 for the (affine) pressure-divergence part.
The pressure-divergence tensor being affinely parametrized it would also be
possible to derive by hand the affine decompositions, nevertheless, to be con-
sistent in treating the different coefficient functions we used the empirical
interpolation method on both parts. When the EIM is applied to an affinely
parametrized function it simply stops after a finite number of steps as the
error drops to zero (up to machine precision).

6.1 Reduction of the parametric Stokes problem with P = 2

After the flow channel has been parametrized with FFDs and the affinely
parametric decomposition of the problem has been achieved using the EIM,
we can apply the reduced basis machinery. Using the same parameter range
as for the EIM, p1, pu2 € [—0.1,0.1], we used the SCM to compute a lower
bound for the parametric Babuska inf-sup constant ¢rp(p). It turns out
that for this parametrization the SCM only needed one g = [0, 0], plus 6
constraint points ufl in Cp to achieve 100% coverage of the entire training
sample up to the acceptable tolerance for the bound gap, i.e.

¢us(p) — pLB (1)
ouB(p)

<0.25 forall p e =Z5M (6.70)

—train *

In Fig. [5| we present the online lower bound estimate ¢rp(p) and upper
bound estimate pup(p) computed for the entire parameter range. The lower
bound is everywhere positive, and therefore the SCM can be deemed to have
been successful.
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Using the a posteriori estimate and the greedy Algorithm for
basis selection, a total of Nya.x = 10 basis functions were chosen to satisfy
the tolerance Ay (p) < le-5 for all u € ZRB . After the necessary online
structures have been computed, we compare the (affinely decomposedEI) fi-
nite element “truth solution” to the reduced basis approximation using a
variable number N = 1,2,..., Nyax of basis functions. In Fig. @(a) we dis-
play the true error and compare it to the a posteriori estimator Ay (pu) for
one typical parameter value (in this case p = [0.1, —0.1]). The convergence
is rapid, if not quite exponential, and the gap between the true error and
the a posteriori estimator remains more or less the same for all N. In the

other plot we show the effectivity of the error estimator

o An(p)
) = ) = UV (Wl

over a random sample of 1000 different parameter points both as an average
over the entire sample as well as the best- and worst-case bounds. For a
rigorous upper bound we must have ¥ > 1 and to have an efficient upper
bound we demand that ¥ remains bounded for N — co. From Fig. [6] we see
that the obtained bounds in this case are both rigorous and efficient.

(6.71)

6.2 Reduction of the parametric Stokes problem with P = 10

To test the parametric coupling Algorithm we introduced a different
FFD parametrization with P = 10 parameters. This time we used a 14 x
2 regular grid of control points, where only the 10 central points on the
upper row were allowed to move freely in the zo-direction. In Fig. [4(b)
we present the resulting deformed image of the reference domain in two
different parameter configurations overlaid with the corresponding positions
of the control points. Again the two left- and rightmost columns of control
points were kept fixed. Using a stopping tolerance of le-4 in the L°°-norm
for the EIM, the total number of affine terms were @), = 68 for viscous
part the and Qp = 22 for the pressure-divergence part. As we can observe,
the number of affine terms grows considerably as a function of the number
of FFD parameters P. The acceptable parameter range was again ju, €
[-0.1,0.1] for p = 1,2,...,10. The discretization of the Stokes problem
remained the same.

The natural norm SCM algorithm converges very slowly when the num-
ber of parameters is larger than P < 3. Thus for the setup with P = 10
we were not able to obtain a lower bound estimate in a similar fashion. We
however observe that for the channel problem adding more free-form param-
eters does not affect the range of stability factors ¢~!(u). In fact, in [55]

!The nonaffine parametrization strictly speaking adds an extra inconsistency term in
the error estimator due to the empirical interpolation error. We forego here the treatment
of this small, additional error term, and refer the reader to [34] [4§].
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Figure 6: Case P = 2: (a) Relative error between reduced basis solution U}’
and truth FEM solution Uj, and the corresponding error estimate Ay ()
for one parameter value pu € P; (b) Effectivity of the a posteriori error
estimator Ax () over a sample set of 1000 different parameter values for
different reduced basis dimensions N
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and truth FEM solution Up, and the corresponding error estimate Ay ()
for one parameter value p € P; (b) Effectivity of the a posteriori error
estimator Ax(p) over a sample set of 1000 different parameter values for
different reduced basis dimensions N

it was demonstrated that for a periodic channel the Brezzi inf-sup constant
B(p) (which is related to the Babuska inf-sup constant, see e.g. [46]) de-
pends mostly on the width of the narrowest part of the channel. Thus we
circumvented the problems related to the SCM by using a global constant,
pre = 0.185 for all u € D, as the lower bound. This was obtained according
to Fig. (a) from the case P = 2. The greedy Algorithm for basis selec-
tion was driven to select a fixed number of Ny« = 30 basis functions. In
Fig. 7] we show as before the error estimate and its effectivity over a random
sample of 1000 different parameter points. Despite the rather pessimistic
bound for the parametric stability factor the resulting estimator still has
reasonable effectivity. The relative error of the reduced Stokes solutions is
slightly larger than in the previous case, but still less than 0.1%.
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6.3 Convergence and accuracy of the coupling algorithm

To test the parametric coupling algorithm the structural equations were dis-
cretized with 1-d cubic Hermite elements using N5 = 82 degrees of freedom.
In this case it was not necessary to apply a further reduction to the structural
equations, which were always solved using the full finite element model. The
physical parameters of the structural equations were chosen as E = 0.75-10°
dyn/ecm?, h = 0.1 ecm, vp = 0.5, K = 0.9643, and G = 0.20 - 10° dyn/cm?
according to [I1]. The fourth order perturbation term was chosen according
to two different values, € = le-2 and € = le-3. In the former case the shape
of the deformed tube is closer to being symmetric, while in the latter case we
obtain a highly unsymmetric deformed shape due to the reduced stiffness of
the wall and the pressure profile imposed by the mixed boundary conditions.
In Fig. [§] we display a visualization of the displacement of the structure at
the end of the coupling iteration in both of the aforementioned cases.

0.04

0.03

TR 0.05
TR
\\\““\‘\‘\\\‘ 0.04
LT
LT

(b)

Figure 8: Visualization of the displacement of the structure of the coupled
solution (displacements magnified) for (a) ¢ = le-2 and (b) ¢ = le-3.

For P = 10 parameters and € =1e-2 the fixed point algorithm converged
in 6 major iterations (reduced fluid + structure solutions) to a tolerance of
|uF — pF=1| < 1e-6. The numbers of optimization iterations (without PDE
solutions) for the NLP solver at each iteration were (74, 56, 20, 11, 2, 1),
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where the optimization problem was solved at each iteration to a relative
stopping tolerance of le-6. We use the relative error of the L?-norm between
the assumed displacement and the structural displacement to measure the
coupling accuracy. In this case after the final iteration we obtained

(k") — 7(ph)|

[In(p)]

The prototype code was written in Matlab and ran serially on one Intel
Xeon 2.40 GHz processor with 4 GB of working memory. In this case the
coupled solution was obtained in 580 s with the reduced fluid equations, and
in 630 s with the full finite element fluid equations. The rather small differ-
ence is due to the low number of major iterations (and consequently fluid
solutions) required to achieve coupling. In the unsteady case the obtained
computational cost savings will be much larger. In any case, the reduced
systems of size 30 x 30 are small enough to be used as part of a very large
flow network consisting of hundreds of coupled FSI elements.

To test the coupling accuracy obtained using a different number P’
of free-form deformation parameters we defined a monotonically increas-
ing subset of the parameters for P’ = 2,3,4,5,6,7,8,9, where the rest of
the parameters were fixed at p, = 0 in each case. The coupled solution was
then computed in each of these cases. In Fig. [9] we display the relative error
of the final displacement for different values of P’ for ¢ = le-2 and & = 1e-3,
both computed with the reduced fluid equations and the full FEM. The cou-
pling accuracies obtained by using RB and FEM were virtually the same.
The theoretical optimal N-width was computed from . In both cases
the coupling accuracy converges at least as fast as the worst-case asymptotic
rate predicted by the N-width theory. We read this as an indication that
the FFD parametrization is suitable for the problem at hand and allows the
user to achieve desired coupling accuracy by selecting the number of FFD
parameters P large enough.

=1.112¢-3 (6.72)

7 Conclusions and future work

We have presented a new approach to model reduction of a coupled fluid-
structure interaction problem. By introducing a parametric free-form de-
formation of the flow geometry the fluid equations can be written as para-
metric partial differential equations on a fixed domain. We then applied the
reduced basis method to the fluid equations to obtain an efficient reduced
model with certified error bounds. The geometric deformation parameters
were also used to couple the fluid domain to a 1-d wall equation, where the
parameters acted as the coupling variables. We demonstrated that for a
modest number of free-form deformation parameters an approximate cou-
pling between fluid and structure can be achieved. The same coupling ac-
curacy was achieved for both the full finite element fluid model and the
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reduced model with NV = 30 basis functions. Future work involves extend-
ing the approach to the unsteady case and coupling the individual reduced
basis fluid-structure models into a large flow network.
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