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Abstract

We explore the use of principal differential analysis (PDA) as a tool for
performing dimensional reduction of functional data sets. In particular, we
compare the results provided by PDA and by functional principal component
analysis (FPCA) in the dimensional reduction of three synthetic data sets,
and of a real data set concerning 65 vascular geometries (i.e., the AneuRisk
data set). The analyses of the synthetic data sets show that PDA can provide
an alternative and effective representation of functional data that is always
easily interpretable in terms of constant, exponential, sinusoidal, or damped-
sinusoidal functions and not affected by the presence of clusters or strong
correlations among the original components. Moreover, in the analysis of
the AneuRisk data set, PDA is able to detect important features of the data
that FPCA is not able to detect.

1 PDA as a Dimensional Reduction Tool

PDA is a technique that enables the estimation of a differential operator from a
functional data set. This technique has already been used to analyze various types
of applications such as the study of free handwriting ([3]), economic models ([8]),
weather ([4]) and chemical models ([2]). In those papers, the main goal of PDA
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was the estimation of the the unknown parameters of a well known underlying
differential operator. In our case, the operator is instead used as a tool for achieving
a better understanding of the phenomenon. In fact, the estimated operator becomes
a tool for obtaining a convenient representation of the data. It provides a finite-
dimensional space onto which the data can be projected and where the variability
related to linear relations among derivatives can be explored.

In order to estimate a linear differential operator L of order m with constant
coefficients by means of PDA, the observed functions xi, i = 1, . . . ,N need to be
contained in the Sobolev space Hm(a,b). Given this assumption, a natural proce-
dure to estimate the operator L is to choose the estimate L̂ such that it minimizes
the sum of squared differential residuals

RSS(L) =
N

∑
i=1

||Lxi||2L2(a,b) , (1)

over all linear differential operators L of the form

Lxi = Dmxi −βm−1Dm−1xi −·· ·−β1Dxi −β0xi . (2)

The minimization problem (1) is solved for the value β̂ = −R−1s of the pa-
rameter vector β = (β0,β1, ...,βm−1)

′
, with (R) j1 j2 = ∑N

i=1 < D j1xi,D j2xi >L2(a,b)

and (s) j1 = ∑N
i=1 < D j1xi,Dmxi >L2(a,b) with j1, j2, . . . ∈ {0,1, . . . ,m−1}.

The estimation of the linear operator L and the Partitioning Principle of Hilbert
spaces (e.g. [5]), jointly enable the orthogonal decomposition of the functional
space the data belong to, into two different components ker(L̂) and ker(L̂)⊥, where
ker(L̂) is the m-dimensional linear space of all functions x̂ satisfying the linear
differential relation L̂x̂ = 0 and ker(L̂)⊥ is its orthogonal counter part. This means
that for i = 1, . . . ,N, the function xi can be univocally decomposed in the sum of
two orthogonal components x̂i and êi (named structural and residual component,
respectively) such that xi = x̂i + êi, L̂x̂i = 0, and L̂êi = L̂xi.

Due to the orthogonality of x̂i and êi, the structural component x̂i turns out to
be the solution of the following minimization problem:

min
x∈ker(L̂)

||x− xi||2L2(a,b) for i = 1, . . . ,N , (3)

that, because of the finite dimensionality of ker(L̂), reduces to x̂i(s) =∑m
j=1 ĉi j eλ̂ j s,

with λ̂ j being the m different complex roots of the characteristic polynomial λ m −
β̂m−1λ m−1 − ·· · − β̂1λ − β̂0 and (ĉi1, ĉi2, . . . , ĉim)

′
= −R̄−1s̄i, where (R̄) j1 j2 =<

eλ̂ j1 s,eλ̂ j2 s >L2(a,b) and (s̄i) j1 =< eλ̂ j1 s,xi(s)>L2(a,b). Finally, êi = xi − x̂i.
A useful tool to measure the effectiveness of the obtained dimensional reduc-

tion is the quantity RSQ introduced in [4]. Under the assumption of constant co-
efficients, RSQ is a ratio between the structural variability and the overall vari-
ability. Indeed RSQ = 1 when there is only structural variability (i.e., xi = x̂i for
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i = 1,2, . . . ,N) and RSQ = 0 when there is no structural variability (i.e., xi = êi for
i = 1,2, . . . ,N).

A couple of theoretical remarks about the dimensional reduction achieved by
means of the projection of functional data onto ker(L̂) need to be mentioned.

The first remark pertains to the link between PDA and functional regression.
Note that, while in the minimization problem (3), N actual functional regression
analyses are performed (the only unusual feature with respect to a traditional func-
tional regression is that the regressors are not known but estimated in a previous
stage of the analysis), in the minimization problem (1), the link is instead just for-
mal and not pertaining to the modeling. Indeed, in (1), the functional “regressors”
D jxi, j = 0, . . . ,m−1, are not deterministic and the random functional “error” Lxi

is not independent from the functional “regressors”.
The second remark pertains instead to the link between PDA and functional

principal component analysis (FPCA). Differently from FPCA, where the dimen-
sional reduction is driven just by the point-wise values of the functional data along
the domain (a,b), the dimensional reduction obtained by PDA is driven by the
values of linear combinations of the first m derivatives along the domain (a,b).
By definition, FPCA is expected to provide an effective dimensional reduction in
any situation where most of the functional variability is expressed within a finite
dimensional subspace; at the same time a simple analytical expression of the prin-
cipal components is often missing and the interpretation of these components is
often non-trivial. On the contrary, PDA is expected to provide an effective dimen-
sional reduction only in those situations where most of the functional variability
is expressed within some particular finite dimensional subspaces, i.e., the ones
generated by some functions of the form e(α±ωi)s with α and ω ∈ R; despite of
its reduced applicability, PDA always provides very clear results that are easily
interpretable in terms of constant, exponential, sinusoidal, or damped-sinusoidal
functions.

Since the effectiveness of PDA is related to particular finite dimensional sub-
spaces, it is straightforward that the dimensional reduction provided by FPCA is
always more effective or at least comparable with the one provided by PDA. It
is thus clear that in all situations where FPCA provides an effective dimensional
reduction while PDA does not, the use of the latter is not suggested. It is more
interesting to determine if PDA can be a useful tool to have a better insight of
the functional variability when both PDA and FPCA provide an effective dimen-
sional reduction. To unravel this doubt, in Section 2, we compare the results of
PDA and FPCA in the analysis of three very simple synthetic data sets that can be
effectively reduced by both techniques (i.e., data sets made of sinusoids of fixed
frequency with random amplitude, horizontal and vertical shifts). In particular, we
will show that the presence of strong correlations, or of clusters, strongly depletes
the interpretability of the principal components making them unable to reveal the
simple nature of the phenomenon, while this is not affecting the results of PDA.
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Figure 1: The three synthetic data sets.

2 Comparing FPCA and PDA of three synthetic data sets

In this section we perform the dimensional reduction of three synthetic data sets
(Figure 1), made of N = 200 functions generated according the model yi(s) =
ai +bi sin

(2π
10 s

)
+ ci cos

(2π
10 s

)
, with s ∈ [0,10], i = 1, . . . ,200, and the random co-

efficients (ai bi ci)
′ ∼ iid N3(µ,Σ):

Case A: µ = 0 and Σ = I;

Case B: µ = 0 and Σ =
(

1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

)
;

Case C: µ = 1 for i = 1, . . . ,100, µ =−1 for i = 101, . . . ,200, and Σ = I.

Note that {1,sin
(2π

10 s
)
,cos

(2π
10 s

)
} is an orthogonal basis for the three-dimensional

space which all functions belong to, and that this space coincides with ker(D3 +(2π
10

)2
D). It is thus obvious that both the projection on the first three sample princi-

pal components and the projection on the kernel of a third-order operator estimated
as in (1), are expected to be effective dimensional reduction tools, and indeed they
are. In Figure 2 the basis proposed by FPCA is compared with the basis detected
by PDA in the three cases.

In case A, the non-correlation of the original components makes the basis de-
tected by FPCA almost identical to the basis detected by PDA with the first com-
ponent nearly constant and the remaining two components associated to periodic
oscillations.

In case B, due to the strong correlation among original components, the basis
detected by FPCA drifts away from the basis detected by PDA, which instead re-
mains unchanged. The constant and sinusoidal terms are indeed confounded in a
unique component explaining more than 90% of the total variability. If the model
behind the data had not been known, and FPCA had been used to perform dimen-
sional reduction, probably just the first principal component would have been taken
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Figure 2: First column: basis functions ψ1, ψ2, ψ3 detected by PDA in case A,
B, and C (results are graphically undistinguishable). Second, third, and fourth
columns: basis functions (principal components) detected by FPCA in case A, B,
and C respectively.

into account and interpreted as describing the amplitude variability within a semi-
period heuristically identified, and the simple description of functions as as sum of
a constant term and a sinusoidal term would have probably remained unrevealed.

In case C, a strong correlation among original components is artificially in-
duced by the presence of two well separated clusters of data. As expected, the first
principal component detects the direction connecting the two clusters. This direc-
tions is not associated to just one of the original components and thus, similarly to
the former case, along this principal component all three original components are
put together masking once again the simple description of functions as as sum of a
constant term and a sinusoidal term.

Note that PDA provides explicit estimates of the frequency of the sinusoidal
component while in FPCA the latter can be estimated just heuristically by compar-
ing subsequent maxima. This is not a big issue in this ideal case where no error
component is added, but it could become an issue in favor of PDA in real applica-
tions where a 100% effective dimensional reduction is hardly achievable. On the
other hand, differently from FPCA, PDA necessitates the estimate of the first m
derivatives of each function and not just of the function itself. Once again this is
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not an issue in these synthetic cases where derivatives are known exactly, but in
real applications an efficient estimation of derivatives could be tough (as shown in
[6]).

On the whole, these easy examples show how PDA, when able to effectively
reduce functional data dimensionality, can be able to provide an alternative and eas-
ily interpretable representation of functional data in terms of constant, exponential,
sinusoidal, or damped-sinusoidal functions.

3 FPCA of Internal Carotid Artery Radius

In this section we briefly sketch out the study of the radius of the inner carotid
artery performed by means of FPCA in [7], to enable the comparison with the new
PDA-based analysis.

The aim of both analyses is to test a conjecture grounded on practical experi-
ence at Neuroradiology Department of the Niguarda Ca’Granda Hospital in Milan
where data have been collected (E. Boccardi, personal communication): “cerebral
arteries of patients with an aneurysm [i.e., malformations of cerebral vessels char-
acterized by a bulge of the vessel wall] at or after the terminal bifurcation of the
internal carotid artery [ICA] show peculiar geometric features”.

The AneuRisk1 data set is based on three-dimensional angiographies of 65
patients. According to the location of the aneurysm and to the conjecture above,
the 65 patients can be divided into two groups: Lower group (thirty-two patients
that are healthy or affected by aneurysm before the terminal bifurcation of the
ICA) and Upper group (thirty-three patients that are affected by aneurysm at the
ICA terminal bifurcation or after it).

The raw data set consists of 65 sets of measures of the ICA radius (one set
for each patient). For each patient, the ICA radius is sampled along a very dense
discrete grid, differing from patient to patient, that is indexed by means of an ap-
proximated curvilinear abscissa associated to the vessel centerline ([1]). Such data
are clearly functional in nature, although they are sampled in a discrete way. An
accurate functional representation of the radii and of their derivatives, is obtained
by means of free-knot regression splines of order five. This method provides in
fact accurate estimates of derivatives, as it is shown in [6], where free-knot splines
are generalized to the case of multidimensional curves. Moreover, in order to en-
able meaningful comparisons across patients, the 65 ICA radius functions are then
registered by means of the alignment procedure described in [7].

In [7] the first two principal components (explaining the 66% and 13% of the
total variance, respectively) turn out to be amenable of a biological interpretation.
The first one is interpetable as an average size of the carotid (distinguishing be-

1The AneuRisk project involves MOX (Dip. di Matematica, Politecnico di Milano), LaBS (Dip.
di Ingegneria Strutturale, Politecnico di Milano), Istituto Mario Negri (Ranica), Ospedale Niguarda
Ca’ Granda (Milano), and Ospedale Maggiore Policlinico (Milano), and is supported by Fondazione
Politecnico di Milano and Siemens Medical Solutions Italia.
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tween narrow and wide ICAs), while the second one as a tapering factor (distin-
guishing between cylindric and conic ICAs).

From the analysis of the associated scores, it appears that the patients belonging
to the Upper group present more tapered and wider carotids, with a lower within-
group variability in the size of the radius than the Lower group.

4 PDA of Internal Carotid Artery Radius

In this section we present the PDA of the 65 internal carotid artery radius functions
introduced in Section 3. As already stated, the focus is on the possible relations
between the patient’s ICA radius and his membership to the Lower or Upper group.

The first two problems that need to be jointly solved are (i) finding the order m
of the linear operator L̂, reaching a compromise between a satisfactory goodness
of fit and an easy interpretability of the results, and (ii) finding out if one operator
alone (i.e., L̂Tot) is able to explain the variability within the two groups or if two
different operators are needed (i.e., L̂Low and L̂U p).

In the following table, the RSQ achieved by performing a PDA with m = 2 and
m = 3 for the Lower, the Upper, and the two groups together are reported:

RSQ L̂Low L̂U p L̂Tot

m = 2 < 1% < 1% < 1%
m = 3 36% 29% 33%

It is evident from the previous table that linear differential operators of order
two are not able to explain any significant portion of the functional variability of
any of the two groups. On the other hand, linear differential operators of order
three are able to explain nearly one third of the overall variability in both groups.
This means that nearly one third of the functional variability lies within a three-
dimensional space, i.e., the kernel of the corresponding operator. We choose m = 3
to be the suitable order of the linear differential operator and we decide not to
move to a higher order to avoid the use of possibly inaccurate estimates of high
order derivatives.

Focusing on third order operators, the minor difference between the RSQ asso-
ciated to L̂Low and L̂U p leaves space for the possibility that L̂Tot can jointly explain
the structural variability of both groups. Since no inferential tool is available to
test this hypothesis, we heuristically proceed by comparing the roots of two char-
acteristic polynomials of L̂Low and L̂U p. The similarity of the three roots supports
our final choice of using ker(L̂Tot) as the three-dimensional space onto which to
project all 65 ICA radius functions.

Let us now characterize ker(L̂Tot). Using the procedure presented in Section 1
the third order operator is estimated as follows:

L̂Totx = D3x+0.0217D2x+0.2940D1x+0.0021x , (4)
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Figure 3: The original radius functions Ri (left), their projections onto ker(L̂Tot) for
m = 3 (center) and m = 2 (right). Blue lines indicate Upper group patients while
red ones Lower group patients.

with λ̂1 = −0.0072, λ̂2 = −0.0072+0.5400i, and λ̂3 = −0.0072−0.5400i being
the three roots of the associated characteristic polynomial, and {ψ̂1, ψ̂2, ψ̂3} being
a practical real-valued basis associated to them:

ψ̂1(s) = e−0.0072s, ψ̂2(s) = e−0.0072s cos(0.5400s), ψ̂3(s) = e−0.0072s sin(0.5400s) .

Due to the very small values of the real parts of the three roots, the first basis
function ψ̂1 defines a slightly decreasing function and the remaining basis func-
tions ψ̂2 and ψ̂3 jointly define a nearly sinusoidal function of period 11.6 mm with
arbitrary phase.

In the left plot of Figure 3, the 65 ICA radius functions Ri are reported (red
color for the Lower group and blue color for the Upper one). The central plot of
Figure 3 shows instead the 65 structural components R̂i of the previous functions,
computed as shown in Section 1. For comparison, in the right plot of the same
figure, the result achieved using a second order operator is reported.

Most of the 65 ICA radius functions Ri (left plot of Figure 3) present a very
similar behavior with the exception of five curves presenting very “unusual” oscil-
lations. It is surprising to what extent the third order operator L̂Tot is able to jointly
describe both the 60 “usual” and the five “unusual” ICA radius functions. In [7],
the dimensional reduction achieved by FPCA completely smooths those unusual
oscillations, letting them be explained by high order principal components. This
discrepancy points out the fact that, even if the values of these five ICA radius
functions are unusual, the linear relations among the derivatives are not unusual
but similar to the ones presented by the other 60 functions.

The last part of the analysis is within a more traditional functional data anal-
ysis framework; indeed we now want to analyze the structural variability pointed
out by PDA. In particular, we want to perform a FPCA restricted to ker(L̂Tot), in
order to identify within this three-dimensional space a new origin and a new set of
basis functions that are statistically optimal (i.e., with zero-mean and uncorrelated
sample components).
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Figure 4: Boxplots of the scores the first, second, and third principal components
within ker(L̂Tot) for m = 3 (left, center, right respectively) for the Upper and the
Lower groups.

The structural variability is strongly dominated by its first functional principal
component. Indeed, the first, the second, and the third principal components of the
structural variability account for 92%, 5%, and 3% of the structural total variance,
respectively.

The first component is strongly associated with ψ1 and accounts for the average
amplitude of the radius along the ICA, thus being a scale factor among patients; the
latter two are essentially rotations of ψ2 and ψ3 and thus jointly describe sinusoidal
oscillations of period 11.6 mm. In Figure 4, the boxplots of the scores for the
Upper and the Lower groups corresponding to the first, second, and third principal
components within ker(L̂Tot) are reported. It is evident from these scores that the
first component discriminates between the two groups in terms of both location and
dispersion. Upper group patients seem to have wider carotids than Lower group
patients and a lower within-group variability. Moreover some outliers appear along
the second and third principal components.

In order to statistically quantify such differences between the two groups we
perform three Wilcoxon tests for comparing the median values of the scores of
the two groups. The corresponding p-values are 0.7%, 11.0%, and 2.0% for the
first, the second, and the third principal component, respectively, pointing out a
significant difference in the median values of the first principal component scores
for the two groups.

Moreover, not surprisingly, for the Lower group the scores associated to the
second and third principal components appear to be very far from the normal dis-
tribution (p-values of the Shapiro-Wilk test both much less than 0.1%), supporting
the idea that these two principal components are accounting for the structural vari-
ability of the “unusual” radius functions. On the other hand, there is no evidence of
the absence of normality for the scores associated to the first principal component,
neither for the Lower group nor for the Upper group (p-values of the Shapiro-Wilk
test 45.3% and 41.9% respectively).

Assuming the normality of the scores associated to the first principal compo-
nent, we thus perform an F-test for testing the equality of the variances of the
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groups. The associated p-value is much less than 0.1%, strongly supporting the
hypothesis of two different variances for the two groups.

Reading the results of the previous tests in the light of the interpretations of the
functional principal components within ker(L̂Tot) we can draw some interesting
conclusions.

Nearly one third of the functional variability of the 65 ICA radius functions
of the AneuRisk data set can be described by the third order linear differential
equation L̂Totx = 0 with L̂Tot as reported in (4). This variability is essentially due
to a term defining the average radius of each ICA and a second one defining the
amplitude and the phase of sinusoidal oscillations of the radius with period 11.6
mm.

Most of the structural variability (93%) is associated to the former component
(the average radius of each ICA). Along this component the Lower group and the
Upper group present different behaviors in terms of both location and dispersion:
in particular the Upper group patients (the ones that are affected by aneurysm at
the ICA terminal bifurcation or after it) present wider ICA than the Lower group
patients (the ones that are healthy or affected by aneurysm before the terminal bi-
furcation of the ICA). Moreover, the variance of the average radius of the Upper
group results significantly lower than the one of the Lower group, making the for-
mer group a very well defined group in terms of average radius.

Some patients, all belonging to the Lower group, present some anomalously
large oscillations of the ICA radius, that should be further investigated from a med-
ical point of view. On the other hand, except for these few cases, oscillations of the
radius represent a minor mode of variability and no significant differences appear
evident between the two groups from this perspective.

The conclusions about the average radius of the ICA are in complete agreement
with the results drawn in [7]. Conclusions about the oscillations of the ICA radius
are instead specific of the present analysis, indeed nothing similar is pointed out
by the FPCA performed in [7]. This is not surprising since these oscillations, even
if large, do not occur for similar values of the abscissa, and thus FPCA - that,
differently from PDA, focuses just on punctual values of the functions - is not able
to recognize them as a unique variability feature. On the other hand, contrary to
[7], the present analysis does not point out anything regarding the tapering of the
terminal part of the ICA.

5 Conclusions

The conclusions drawn in the application to the AneuRisk data set together with
the analysis of the synthetic data sets show that PDA can be a useful tool, alter-
native to FPCA, for performing a dimensional reduction of a functional data set.
In particular, when effective as a dimensional reduction tool, PDA (i) can provide
a representation of functional data more easily interpretable than FPCA, (ii) this
representation is not affected, differently by FPCA, by the presence of clusters or
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strong correlations among the original components, and (iii) it can detect important
features of the data that FPCA is not able to detect.
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